1
|
Dourdouna MM, Kourlaba G, Michos A. QuantiFERON SARS-CoV-2 assay for the evaluation of cellular immunity after immunization with mRNA SARS-CoV-2 vaccines: a systematic review and meta-analysis. Immunol Res 2024; 73:25. [PMID: 39729138 DOI: 10.1007/s12026-024-09570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/21/2024] [Indexed: 12/28/2024]
Abstract
A systematic review and meta-analysis were performed to evaluate the virus-specific T-cell response after COVID-19 mRNA vaccination, using the QuantiFERON SARS-CoV-2 interferon-γ release assay. A search was conducted (June 8, 2023) in the PUBMED, SCOPUS, and medRxiv databases, to identify studies reporting the QuantiFERON SARS-CoV-2 (Starter (two antigen tubes) or Starter + Extended Pack (three antigen tubes), cut-off ≥ 0.15 IU/mL) positivity rate (PR) in immunocompetent adults, following the administration of two or three COVID-19 mRNA vaccine doses. Study quality was evaluated with the Critical Appraisal Skills Programme Tool. A meta-analysis was conducted using a random-effects model. Heterogeneity and publication bias were assessed. Eleven eligible studies (with 5-73 vaccinated immunocompetent participants) were identified. For COVID-19-naïve participants, ≤ 3 months after the second dose, the pooled PR (random-effects model) was 86 (95% confidence interval (95% CI) 78-95%). Comparing the Starter vs. the Starter + Extended Pack, a significant difference in PRs was detected (80.6% vs. 100% p-value < 0.001). At 3-6 and >6 months after the second dose and ≥ 3 months after the third dose, the pooled PRs were 59% (95% CI 45-72%), 79% (95% CI 66-92%), and 66% (95% CI 50-82%), respectively. For convalescent participants, ≥ 6 months after the third dose, the pooled PR was 81% (95% CI 67-95%). Limitations include heterogeneity and a small number of studies, at some timepoints. In conclusion, following the second or third COVID-19 mRNA vaccine dose, QuantiFERON SARS-CoV-2 detected positive responses in a certain percentage of the vaccinees, possibly because of waning immunity, reduced assay sensitivity, or lack of T-cell response induction in some vaccinees. The detection of positive responses was higher when the Starter + Extended Pack was used. PROSPERO Registration Number: CRD42023431315.
Collapse
Affiliation(s)
- Maria-Myrto Dourdouna
- Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, Aghia Sophia" Children's Hospital, 11527, Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Athanasios Michos
- Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, Aghia Sophia" Children's Hospital, 11527, Athens, Greece.
| |
Collapse
|
2
|
Messiah SE, Abbas R, Bergqvist E, Kohl HW, Swartz MD, Talebi Y, Sabharwal R, Han H, Valerio-Shewmaker MA, DeSantis SM, Yaseen A, Gandhi HA, Amavisca XF, Ross JA, Padilla LN, Gonzalez MO, Wu L, Silberman MA, Lakey D, Shuford JA, Pont SJ, Boerwinkle E. Factors associated with elevated SARS-CoV-2 immune response in children and adolescents. Front Pediatr 2024; 12:1393321. [PMID: 39228441 PMCID: PMC11369978 DOI: 10.3389/fped.2024.1393321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Background Understanding the distinct immunologic responses to SARS-CoV-2 infection among pediatric populations is pivotal in navigating the COVID-19 pandemic and informing future public health strategies. This study aimed to identify factors associated with heightened antibody responses in children and adolescents to identify potential unique immune dynamics in this population. Methods Data collected between July and December 2023 from the Texas Coronavirus Antibody REsponse Survey (Texas CARES), a statewide prospective population-based antibody survey among 1-to-19-year-old participants, were analyzed. Each participant had the following data available for analysis: (1) Roche Elecsys® Anti-SARS-CoV-2 Immunoassay for Nucleocapsid protein antibodies (Roche N-test), (2) qualitative and semi-quantitative detection of antibodies to the SARS CoV-2 spike protein receptor binding domain (Roche S-test), and (3) self-reported antigen/PCR COVID-19 test results, vaccination, and health status. Statistical analysis identified associations between participant characteristics and spike antibody quartile group. Results The analytical sample consisted of 411 participants (mean age 12.2 years, 50.6% female). Spike antibody values ranged from a low of 6.3 U/ml in the lowest quartile to a maximum of 203,132.0 U/ml in the highest quartile in the aggregate sample. Older age at test date (OR = 1.22, 95% CI: 1.12, 1.35, p < .001) and vaccination status (primary series/partially vaccinated, one or multiple boosters) showed significantly higher odds of being in the highest spike antibody quartile compared to younger age and unvaccinated status. Conversely, fewer days since the last immunity challenge showed decreased odds (OR = 0.98, 95% CI: 0.96, 0.99, p = 0.002) of being in the highest spike antibody quartile vs. more days since last immunity challenge. Additionally, one out of every three COVID-19 infections were asymptomatic. Conclusions Older age, duration since the last immunity challenge (vaccine or infection), and vaccination status were associated with heightened spike antibody responses, highlighting the nuanced immune dynamics in the pediatric population. A significant proportion of children/adolescents continue to have asymptomatic infection, which has important public health implications.
Collapse
Affiliation(s)
- Sarah E. Messiah
- Department of Epidemiology, UTHealth Houston School of Public Health, Dallas, TX, United States
- Center for Pediatric Population Health, UTHealth Houston School of Public Health, Dallas, TX, United States
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX, United States
| | - Rhiana Abbas
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Emma Bergqvist
- Department of Epidemiology, UTHealth Houston School of Public Health, Dallas, TX, United States
- Center for Pediatric Population Health, UTHealth Houston School of Public Health, Dallas, TX, United States
| | - Harold W. Kohl
- Department of Epidemiology, UTHealth Houston School of Public Health, Austin, TX, United States
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Michael D. Swartz
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Yashar Talebi
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Rachit Sabharwal
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Haoting Han
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Melissa A. Valerio-Shewmaker
- Department of Health Promotion and Behavioral Sciences, UTHealth Houston School of Public Health, Brownsville, TX, United States
| | - Stacia M. DeSantis
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Ashraf Yaseen
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Henal A. Gandhi
- Department of Epidemiology, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Ximena Flandes Amavisca
- Department of Epidemiology, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Jessica A. Ross
- Department of Epidemiology, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Lindsay N. Padilla
- Department of Epidemiology, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Michael O. Gonzalez
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | - Leqing Wu
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, United States
| | | | - David Lakey
- The University of Texas System, Austin, TX, United States
- The University of Texas at Tyler Health Science Center, Tyler, TX, United States
| | | | - Stephen J. Pont
- Texas Department of State Health Services, Austin, TX, United States
| | - Eric Boerwinkle
- Department of Epidemiology, UTHealth Houston School of Public Health, Houston, TX, United States
| |
Collapse
|
3
|
Noviello M, De Lorenzo R, Chimienti R, Maugeri N, De Lalla C, Siracusano G, Lorè NI, Rancoita PMV, Cugnata F, Tassi E, Dispinseri S, Abbati D, Beretta V, Ruggiero E, Manfredi F, Merolla A, Cantarelli E, Tresoldi C, Pastori C, Caccia R, Sironi F, Marzinotto I, Saliu F, Ghezzi S, Lampasona V, Vicenzi E, Cinque P, Manfredi AA, Scarlatti G, Dellabona P, Lopalco L, Di Serio C, Malnati M, Ciceri F, Rovere-Querini P, Bonini C. The longitudinal characterization of immune responses in COVID-19 patients reveals novel prognostic signatures for disease severity, patients' survival and long COVID. Front Immunol 2024; 15:1381091. [PMID: 39136010 PMCID: PMC11317765 DOI: 10.3389/fimmu.2024.1381091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.
Collapse
Affiliation(s)
- Maddalena Noviello
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Raniero Chimienti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia De Lalla
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriel Siracusano
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maria Vittoria Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caccia
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sironi
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Andrea Manfredi
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Malnati
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Chwa JS, Kim M, Lee Y, Cheng WA, Shin Y, Jumarang J, Bender JM, Pannaraj PS. Detection of SARS-CoV-2-Specific Secretory IgA and Neutralizing Antibodies in the Nasal Secretions of Exposed Seronegative Individuals. Viruses 2024; 16:852. [PMID: 38932145 PMCID: PMC11209246 DOI: 10.3390/v16060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Mucosal immunity may contribute to clearing SARS-CoV-2 infection prior to systemic infection, thereby allowing hosts to remain seronegative. We describe the meaningful detection of SARS-CoV-2-specific nasal mucosal antibodies in a group of exposed-household individuals that evaded systemic infection. Between June 2020 and February 2023, nasopharyngeal swab (NPS) and acute and convalescent blood were collected from individuals exposed to a SARS-CoV-2-confirmed household member. Nasal secretory IgA (SIgA) antibodies targeting the SARS-CoV-2 spike protein were measured using a modified ELISA. Of the 36 exposed individuals without SARS-CoV-2 detected by the RT-PCR of NPS specimens and seronegative for SARS-CoV-2-specific IgG at enrollment and convalescence, 13 (36.1%) had positive SARS-CoV-2-specific SIgA levels detected in the nasal mucosa at enrollment. These individuals had significantly higher nasal SIgA (median 0.52 AU/mL) compared with never-exposed, never-infected controls (0.001 AU/mL) and infected-family participants (0.0002 AU/mL) during the acute visit, respectively (both p < 0.001). The nasal SARS-CoV-2-specific SIgA decreased rapidly over two weeks in the exposed seronegative individuals compared to a rise in SIgA in infected-family members. The nasal SARS-CoV-2-specific SIgA may have a protective role in preventing systemic infection.
Collapse
Affiliation(s)
- Jason S. Chwa
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Minjun Kim
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yesun Lee
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Wesley A. Cheng
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yunho Shin
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Jaycee Jumarang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Jeffrey M. Bender
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
5
|
Domènech-Montoliu S, Puig-Barberà J, Pac-Sa MR, Orrico-Sanchéz A, Gómez-Lanas L, Sala-Trull D, Domènech-Leon C, Del Rio-González A, Sánchez-Urbano M, Satorres-Martinez P, Aparisi-Esteve L, Badenes-Marques G, Blasco-Gari R, Casanova-Suarez J, Gil-Fortuño M, Hernández-Pérez N, Jovani-Sales D, López-Diago L, Notari-Rodríguez C, Pérez-Olaso O, Romeu-Garcia MA, Ruíz-Puig R, Arnedo-Pena A. Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case-Control Study. EPIDEMIOLOGIA 2024; 5:167-186. [PMID: 38651389 PMCID: PMC11036210 DOI: 10.3390/epidemiologia5020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Our goal was to determine the cellular immune response (CIR) in a sample of the Borriana COVID-19 cohort (Spain) to identify associated factors and their relationship with infection, reinfection and sequelae. We conducted a nested case-control study using a randomly selected sample of 225 individuals aged 18 and older, including 36 individuals naïve to the SARS-CoV-2 infection and 189 infected patients. We employed flow-cytometry-based immunoassays for intracellular cytokine staining, using Wuhan and BA.2 antigens, and chemiluminescence microparticle immunoassay to detect SARS-CoV-2 antibodies. Logistic regression models were applied. A total of 215 (95.6%) participants exhibited T-cell response (TCR) to at least one antigen. Positive responses of CD4+ and CD8+ T cells were 89.8% and 85.3%, respectively. No difference in CIR was found between naïve and infected patients. Patients who experienced sequelae exhibited a higher CIR than those without. A positive correlation was observed between TCR and anti-spike IgG levels. Factors positively associated with the TCR included blood group A, number of SARS-CoV-2 vaccine doses received, and anti-N IgM; factors inversely related were the time elapsed since the last vaccine dose or infection, and blood group B. These findings contribute valuable insights into the nuanced immune landscape shaped by SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
| | - Joan Puig-Barberà
- Vaccines Research Unit, Foundation for the Promotion of Health and Biomedical Research in Valencia Region FISABIO-Public Health, 46020 Valencia, Spain; (J.P.-B.); (A.O.-S.)
| | - María Rosario Pac-Sa
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
| | - Alejandro Orrico-Sanchéz
- Vaccines Research Unit, Foundation for the Promotion of Health and Biomedical Research in Valencia Region FISABIO-Public Health, 46020 Valencia, Spain; (J.P.-B.); (A.O.-S.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Secretary of Chair of Vaccines Catholic University of Valencia, 46001 Valencia, Spain
| | - Lorna Gómez-Lanas
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Diego Sala-Trull
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Carmen Domènech-Leon
- Department of Medicine, University CEU Cardenal Herrera, 12006 Castelló de la Plana, Spain;
| | | | - Manuel Sánchez-Urbano
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Paloma Satorres-Martinez
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | | | - Gema Badenes-Marques
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Roser Blasco-Gari
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | | | - María Gil-Fortuño
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | - Noelia Hernández-Pérez
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | - David Jovani-Sales
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Laura López-Diago
- Clinical Analysis Service University Hospital de la Plana, 12540 Vila-real, Spain;
| | - Cristina Notari-Rodríguez
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Oscar Pérez-Olaso
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | | | - Raquel Ruíz-Puig
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Alberto Arnedo-Pena
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health Science, Public University Navarra, 31006 Pamplona, Spain
| |
Collapse
|
6
|
Liu M, Zhang J, Li L, Tian J, Yang M, Shang B, Wang X, Li M, Li H, Yue C, Yao S, Lin Y, Guo Y, Zong K, Zhang D, Zhao Y, Cai K, Dong S, Xu S, Zhan J, Gao GF, Liu WJ. Inactivated vaccine fueled adaptive immune responses to Omicron in 2-year COVID-19 convalescents. J Med Virol 2023; 95:e28998. [PMID: 37548149 DOI: 10.1002/jmv.28998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Over 3 years, humans have experienced multiple rounds of global transmission of SARS-CoV-2 and its variants. In addition, the widely used vaccines against SARS-CoV-2 involve multiple strategies of development and inoculation. Thus, the acquired immunity established among humans is complicated, and there is a lack of understanding within a panoramic vision. Here, we provided the special characteristics of the cellular and humoral responses in 2-year convalescents after inactivated vaccines, in parallel to vaccinated COVID-19 naïve persons and unvaccinated controls. The decreasing trends of the IgG, IgA, and NAb, but not IgM of the convalescents were reversed by the vaccination. Both cellular and humoral immunity in convalescents after vaccination were higher than the vaccinated COVID-19 naïve persons. Notably, inoculation with inactivated vaccine fueled the NAb to BA.1, BA.2, BA.4, and BA.5 in 2-year convalescents, much higher than the NAb during 6 months and 1 year after symptoms onset. And no obvious T cell escaping to the S protein was observed in 2-year convalescents after inoculation. The study provides insight into the complicated features of human acquired immunity to SARS-CoV-2 and variants in the real world, indicating that promoting vaccine inoculation is essential for achieving herd immunity against emerging variants, especially in convalescents.
Collapse
Affiliation(s)
- Maoshun Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jie Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengjie Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Bingli Shang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xin Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Min Li
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hongmei Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Yao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ying Lin
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yuanyuan Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Kexin Zong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Danni Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shaobo Dong
- Macheng Center for Disease Control and Prevention, Huanggang, China
| | - Shengping Xu
- Macheng Center for Disease Control and Prevention, Huanggang, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - George F Gao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| | - William J Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Hausinger RI, Bachmann Q, Crone-Rawe T, Hannane N, Monsef I, Haller B, Heemann U, Skoetz N, Kreuzberger N, Schmaderer C. Effectiveness, Immunogenicity and Harms of Additional SARS-CoV-2 Vaccine Doses in Kidney Transplant Recipients: A Systematic Review. Vaccines (Basel) 2023; 11:vaccines11040863. [PMID: 37112775 PMCID: PMC10141039 DOI: 10.3390/vaccines11040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) who have a highly impaired immune response are in need of intensified and safe vaccination strategies to achieve seroconversion and prevent severe disease. METHODS We searched the Web of Science Core Collection, the Cochrane COVID-19 Study Register and the WHO COVID-19 global literature on coronavirus disease from January 2020 to 22 July 2022 for prospective studies that assessed immunogenicity and efficacy after three or more SARS-CoV-2 vaccine doses. RESULTS In 37 studies on 3429 patients, de novo seroconversion after three and four vaccine doses ranged from 32 to 60% and 25 to 37%. Variant-specific neutralization was 59 to 70% for Delta and 12 to 52% for Omicron. Severe disease after infection was rarely reported but all concerned KTRs lacked immune responses after vaccination. Studies investigating the clinical course of COVID-19 found remarkably higher rates of severe disease than in the general population. Serious adverse events and acute graft rejections were very rare. Substantial heterogeneity between the studies limited their comparability and summary. CONCLUSION Additional SARS-CoV-2 vaccine doses are potent and safe in general terms as well as regarding transplant-specific outcomes whilst the Omicron wave remains a significant threat to KTRs without adequate immune responses.
Collapse
Affiliation(s)
- Renate Ilona Hausinger
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Quirin Bachmann
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Timotius Crone-Rawe
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nora Hannane
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ina Monsef
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Bernhard Haller
- Institute for AI and Informatics in Medicine, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nicole Skoetz
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nina Kreuzberger
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|