1
|
Wang X, Pahwa A, Bausch-Jurken MT, Chitkara A, Sharma P, Malmenäs M, Vats S, Whitfield MG, Lai KZH, Dasari P, Gupta R, Nassim M, Van de Velde N, Green N, Beck E. Comparative Effectiveness of mRNA-1273 and BNT162b2 COVID-19 Vaccines Among Adults with Underlying Medical Conditions: Systematic Literature Review and Pairwise Meta-Analysis Using GRADE. Adv Ther 2025; 42:2040-2077. [PMID: 40063213 PMCID: PMC12006235 DOI: 10.1007/s12325-025-03117-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/16/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION This systematic literature review and pairwise meta-analysis evaluated the comparative effectiveness of mRNA-1273 versus BNT162b2 in patients with at least one underlying medical condition at high risk for severe COVID-19. METHODS MEDLINE, Embase, and Cochrane databases were searched for relevant articles from January 1, 2019 to February 9, 2024. Studies reporting effectiveness data from at least two doses of mRNA-1273 and BNT162b2 vaccination in adults with medical conditions at high risk of developing severe COVID-19 according to the US Centers for Disease Control and Prevention were included. Outcomes of interest were SARS-CoV-2 infection (overall, symptomatic, and severe), hospitalization due to COVID-19, and death due to COVID-19. Risk ratios (RRs) were calculated with random effects models. Subgroup analyses by specific medical conditions, number of vaccinations, age, and SARS-CoV-2 variant were conducted. Heterogeneity between studies was estimated with chi-square testing. The certainty of evidence was assessed using the Grading of Recommendations, Assessments, Development, and Evaluations framework. RESULTS Sixty-five observational studies capturing the original/ancestral-containing primary series to Omicron-containing bivalent original-BA4-5 vaccinations were included in the meta-analysis. mRNA-1273 was associated with significantly lower risk of SARS-CoV-2 infection (RR, 0.85 [95% CI, 0.79-0.92]; I2 = 92.5%), symptomatic SARS-CoV-2 infection (RR, 0.75 [95% CI, 0.65-0.86]; I2 = 62.3%), severe SARS-CoV-2 infection (RR, 0.83 [95% CI, 0.78-0.89]; I2 = 38.0%), hospitalization due to COVID-19 (RR, 0.88 [95% CI, 0.82-0.94]; I2 = 38.7%), and death due to COVID-19 (RR, 0.84 [95% CI, 0.76-0.93]; I2 = 1.3%) than BNT162b2. Findings were generally consistent across subgroups. Evidence certainty was low or very low because sufficiently powered randomized controlled trials are impractical in this heterogeneous population. CONCLUSION Meta-analysis of 65 observational studies showed that vaccination with mRNA-1273 was associated with a significantly lower risk of SARS-CoV-2 infection and COVID-19-related hospitalization and death than BNT162b2 in patients with medical conditions at high risk of severe COVID-19.
Collapse
|
2
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Romero-Bogado L, Steiner M, Thuissard Vasallo IJ, Andreu Vázquez C, Navío T, Muñoz-Fernández S. [Impact of systemic therapies on SARS-CoV-2 antibody seroprevalence in patients with immune-mediated diseases]. Med Clin (Barc) 2024; 162:470-476. [PMID: 38418311 DOI: 10.1016/j.medcli.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 03/01/2024]
Abstract
OBJECTIVE To determine the seroprevalence of SARS-CoV-2 in patients with immune-mediated inflammatory diseases (IMID) treated with biologic (bDMARDs) or synthetic targeted disease-modifying antirheumatic drugs (tsDMARDs). METHODS An observational, descriptive, prospective and cross-sectional study of analytical prevalence analysis was conducted in patients with IMID with bDMARDs or tsDMARDs. Seroprevalence was compared by measuring immunoglobulinG (IgG) against SARS-CoV-2 between October/2020 and May/2021. RESULTS A total of 550 IMID's patients were studied, all of them on treatment with bDMARDs or tsDMARDs. The seroprevalence of the total patient group was 16% (88/550). Patients receiving therapy with tumor necrosis factor alpha inhibitors (TNFi) had a higher seroprevalence compared to other biologic and synthetic targeted therapies (OR: 1.792 [95%CI: 1.088-2.951]; P=.021). The influence on seroprevalence of concomitant use with b/tsDMARDs of conventional synthetic DMARDs (csDMARDs) was also analyzed. A lower seroprevalence was demonstrated in the group of patients treated with TNFi and methotrexate together, compared with those on TNFi monotherapy, 10.1 vs 24.1% (OR: 0.355 [95%CI: 0.165-0.764]; P=.006). No significant differences were found with the other DMARDs. Regarding IMIDs, no differences in seroprevalence were identified between the different disease groups. CONCLUSION Patients on treatment with TNFα inhibitors have better humoral response compared to the other b/tsDMARDs. However, when associated with methotrexate the seroprevalence decreases significantly.
Collapse
Affiliation(s)
- Liz Romero-Bogado
- Sección de Reumatología, Hospital Universitario Infanta Sofía, Universidad Europea de Madrid, San Sebastián de los Reyes, Madrid, España.
| | - Martina Steiner
- Sección de Reumatología, Hospital Universitario Infanta Sofía, Universidad Europea de Madrid, San Sebastián de los Reyes, Madrid, España
| | | | - Cristina Andreu Vázquez
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, España
| | - Teresa Navío
- Sección de Reumatología, Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, España
| | - Santiago Muñoz-Fernández
- Sección de Reumatología, Hospital Universitario Infanta Sofía, Universidad Europea de Madrid, San Sebastián de los Reyes, Madrid, España
| |
Collapse
|
4
|
Dalinkeviciene E, Gradauskiene B, Sakalauskaite S, Petruliene K, Vaiciuniene R, Skarupskiene I, Bastyte D, Sauseriene J, Valius L, Bumblyte IA, Ziginskiene E. Immune Response after Anti-SARS-CoV-2 mRNA Vaccination in Relation to Cellular Immunity, Vitamin D and Comorbidities in Hemodialysis Patients. Microorganisms 2024; 12:861. [PMID: 38792691 PMCID: PMC11123711 DOI: 10.3390/microorganisms12050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
In the global threat of SARS-CoV-2, individuals undergoing maintenance dialysis represent a vulnerable population with an increased risk of severe COVID-19 outcomes. Therefore, immunization against SARS-CoV-2 is an essential component of healthcare strategy for these patients. Existing data indicate that they tend to exhibit a reduced immune response to vaccines compared to the general population. Our study aimed to assess both humoral and cellular immune responses following two doses of an anti-SARS-CoV-2 mRNA vaccine, an ability to maintain adequate antibody titers over time, and potential relations with vitamin D, comorbidities and other factors in hemodialysis patients based on a single center experience. A total of 41/45 patients (91.1%) responded to the second dose of the anti-SARS-CoV-2 mRNA vaccine. The titer of anti-SARS-CoV-2 IgG class antibodies and levels of T cells three to four weeks after vaccination were lower in dialysis patients than in healthy controls. Antibodies titer in dialysis patients had a positive correlation with B lymphocytes and was related to cardiovascular diseases. The level of CD4+ cells had a negative correlation with hemodialysis vintage, as did the vitamin D level with post-vaccination seroconversion and decline in anti-SARS-CoV-2 antibodies titer during six months after vaccination. Hemodialysis patients had decreased amounts of CD4+ and CD8+ cells and lower levels of anti-SARS-CoV-2 antibodies than healthy controls. Therefore, chronic hemodialysis could lead to diminished cellular immunity and humoral immune response to the anti-SARS-CoV-2 mRNA vaccination and reduced protection from COVID-19. Comorbidity in cardiovascular diseases was associated with a lower level of specific anti-SARS-CoV-2 antibody titer. Vitamin D may be important in maintaining stable levels of anti-SARS-CoV-2 antibodies, while the duration of dialysis treatment could be one of the factors decreasing anti-SARS-CoV-2 antibody titer and determining lower CD4+ cell counts.
Collapse
Affiliation(s)
- Egle Dalinkeviciene
- Department of Nephrology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (K.P.); (R.V.); (I.S.); (I.A.B.); (E.Z.)
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Sandra Sakalauskaite
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (S.S.); (D.B.)
| | - Kristina Petruliene
- Department of Nephrology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (K.P.); (R.V.); (I.S.); (I.A.B.); (E.Z.)
| | - Ruta Vaiciuniene
- Department of Nephrology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (K.P.); (R.V.); (I.S.); (I.A.B.); (E.Z.)
| | - Inga Skarupskiene
- Department of Nephrology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (K.P.); (R.V.); (I.S.); (I.A.B.); (E.Z.)
| | - Daina Bastyte
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (S.S.); (D.B.)
| | - Jolanta Sauseriene
- Department of Family Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.S.); (L.V.)
| | - Leonas Valius
- Department of Family Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.S.); (L.V.)
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (K.P.); (R.V.); (I.S.); (I.A.B.); (E.Z.)
| | - Edita Ziginskiene
- Department of Nephrology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (K.P.); (R.V.); (I.S.); (I.A.B.); (E.Z.)
| |
Collapse
|
5
|
Paganelli R. When Cell-Mediated Immunity after Vaccination Is Important. Pathogens 2024; 13:65. [PMID: 38251372 PMCID: PMC10819879 DOI: 10.3390/pathogens13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The review by Reeg D [...].
Collapse
Affiliation(s)
- Roberto Paganelli
- Internal Medicine, UniCamillus, International Medical University in Rome, 00131 Rome, Italy;
- YDA, Institute of Clinical Immunotherapy and Advanced Biological Treatments, 66100 Pescara, Italy
| |
Collapse
|
6
|
Serra López-Matencio JM, Vicente-Rabaneda EF, Alañón E, Aranguren Oyarzabal A, Martínez Fleta P, Castañeda S. COVID-19 Vaccination and Immunosuppressive Therapy in Immune-Mediated Inflammatory Diseases. Vaccines (Basel) 2023; 11:1813. [PMID: 38140217 PMCID: PMC10747214 DOI: 10.3390/vaccines11121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The COVID-19 vaccination program has probably been the most complex and extensive project in history until now, which has been a challenge for all the people involved in the planning and management of this program. Patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive therapy have required special attention, not only because of the particular haste in carrying out the process but also because of the uncertainty regarding their response to the vaccines. We now have strong scientific evidence that supports the hypothesis that immunosuppressive therapy inhibits the humoral response to vaccines against other infectious agents, such as influenza, pneumococcus and hepatitis B. This has led to the hypothesis that the same could happen with the COVID-19 vaccine. Several studies have therefore already been carried out in this area, suggesting that temporarily discontinuing the administration of methotrexate for 2 weeks post-vaccination could improve the vaccine response, and other studies with various immunosuppressive drugs are in the same line. However, the fact of withholding or interrupting immunosuppressive therapy when dealing with COVID-19 vaccination remains unclear. On this basis, our article tries to compile the information available on the effect of immunosuppressant agents on COVID-19 vaccine responses in patients with IMIDs and proposes an algorithm for the management of these patients.
Collapse
Affiliation(s)
- José M. Serra López-Matencio
- Hospital Pharmacy Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (E.A.); (A.A.O.)
| | | | - Estefanía Alañón
- Hospital Pharmacy Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (E.A.); (A.A.O.)
| | - Ainhoa Aranguren Oyarzabal
- Hospital Pharmacy Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (E.A.); (A.A.O.)
| | - Pedro Martínez Fleta
- Immunology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain;
| | - Santos Castañeda
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain;
| |
Collapse
|
7
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
8
|
Shim K, Jo H, Jeoung D. Cancer/Testis Antigens as Targets for RNA-Based Anticancer Therapy. Int J Mol Sci 2023; 24:14679. [PMID: 37834126 PMCID: PMC10572814 DOI: 10.3390/ijms241914679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In the last few decades, RNA-based drugs have emerged as a promising candidate in the treatment of various diseases. The introduction of messenger RNA (mRNA) as a vaccine or therapeutic agent enables the production of almost any functional protein/peptide. The key to applying RNA therapy in clinical trials is developing safe and effective delivery systems. Exosomes and lipid nanoparticles (LNPs) have been exploited as promising vehicles for drug delivery. This review discusses the feasibility of exosomes and LNPs as vehicles for mRNA delivery. Cancer/testis antigens (CTAs) show restricted expression in normal tissues and widespread expression in cancer tissues. Many of these CTAs show expression in the sera of patients with cancers. These characteristics of CTAs make them excellent targets for cancer immunotherapy. This review summarizes the roles of CTAs in various life processes and current studies on mRNAs encoding CTAs. Clinical studies present the beneficial effects of mRNAs encoding CTAs in patients with cancers. This review highlight clinical studies employing mRNA-LNPs encoding CTAs.
Collapse
Affiliation(s)
| | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.S.); (H.J.)
| |
Collapse
|
9
|
Speer C, Töllner M, Benning L, Bartenschlager M, Kim H, Nusshag C, Kälble F, Reineke M, Reichel P, Schnitzler P, Zeier M, Morath C, Schmitt W, Bergner R, Bartenschlager R, Lorenz HM, Schaier M. BA.1/BA.5 Immunogenicity, Reactogenicity, and Disease Activity after COVID-19 Vaccination in Patients with ANCA-Associated Vasculitis: A Prospective Observational Cohort Study. Viruses 2023; 15:1778. [PMID: 37632120 PMCID: PMC10458303 DOI: 10.3390/v15081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Emerging omicron subtypes with immune escape lead to inadequate vaccine response with breakthrough infections in immunocompromised individuals such as Anti-neutrophil Cytoplasmic Antibody (ANCA)-associated vasculitis (AAV) patients. As AAV is considered an orphan disease, there are still limited data on SARS-CoV-2 vaccination and prospective studies that have focused exclusively on AAV patients are lacking. In addition, there are safety concerns regarding the use of highly immunogenic mRNA vaccines in autoimmune diseases, and further studies investigating reactogenicity are urgently needed. In this prospective observational cohort study, we performed a detailed characterization of neutralizing antibody responses against omicron subtypes and provided a longitudinal assessment of vaccine reactogenicity and AAV disease activity. Different vaccine doses were generally well tolerated and no AAV relapses occurred during follow-up. AAV patients had significantly lower anti-S1 IgG and surrogate-neutralizing antibodies after first, second, and third vaccine doses as compared to healthy controls, respectively. Live-virus neutralization assays against omicron subtypes BA.1 and BA.5 revealed that previous SARS-CoV-2 vaccines result in an inadequate neutralizing immune response in immunocompromised AAV patients. These data demonstrate that new vaccination strategies including adapted mRNA vaccines against epitopes of emerging variants are needed to help protect highly vulnerable individuals such as AAV patients.
Collapse
Affiliation(s)
- Claudius Speer
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
- Molecular Medicine Partnership Unit Heidelberg, EMBL, 69120 Heidelberg, Germany
| | - Maximilian Töllner
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Louise Benning
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Marie Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, 68167 Heidelberg, Germany; (M.B.); (H.K.); (R.B.)
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, 68167 Heidelberg, Germany; (M.B.); (H.K.); (R.B.)
| | - Christian Nusshag
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Florian Kälble
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Marvin Reineke
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Paula Reichel
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Martin Zeier
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | - Christian Morath
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| | | | - Raoul Bergner
- Department of Internal Medicine A, Clinical Center Ludwigshafen, 67071 Ludwigshafen, Germany;
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, 68167 Heidelberg, Germany; (M.B.); (H.K.); (R.B.)
- German Center for Infection Research (DZIF), Heidelberg Partner Site, 69120 Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Matthias Schaier
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.T.); (L.B.); (C.N.); (F.K.); (M.R.); (P.R.); (M.Z.); (C.M.); (M.S.)
| |
Collapse
|
10
|
Tani Y, Takita M, Wakui M, Saito H, Nishiuchi T, Zhao T, Yamamoto C, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Shinaha R, Tsubokura M. Five doses of the mRNA vaccination potentially suppress ancestral-strain stimulated SARS-CoV2-specific cellular immunity: a cohort study from the Fukushima vaccination community survey, Japan. Front Immunol 2023; 14:1240425. [PMID: 37662950 PMCID: PMC10469480 DOI: 10.3389/fimmu.2023.1240425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
The bivalent mRNA vaccine is recommended to address coronavirus disease variants, with additional doses suggested for high-risk groups. However, the effectiveness, optimal frequency, and number of doses remain uncertain. In this study, we examined the long-term cellular and humoral immune responses following the fifth administration of the mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients undergoing hemodialysis. To our knowledge, this is the first study to monitor long-term data on humoral and cellular immunity dynamics in high-risk populations after five doses of mRNA vaccination, including the bivalent mRNA vaccine. Whereas most patients maintained humoral immunity throughout the observation period, we observed reduced cellular immune reactivity as measured by the ancestral-strain-stimulated ELISpot assay in a subset of patients. Half of the individuals (50%; 14/28) maintained cellular immunity three months after the fifth dose, despite acquiring humoral immunity. The absence of a relationship between positive controls and T-Spot reactivity suggests that these immune alterations were specific to SARS-CoV-2. In multivariable analysis, participants aged ≥70 years showed a marginally significant lower likelihood of having reactive results. Notably, among the 14 individuals who received heterologous vaccines, 13 successfully acquired cellular immunity, supporting the effectiveness of this administration strategy. These findings provide valuable insights for future vaccination strategies in vulnerable populations. However, further research is needed to evaluate the involvement of immune tolerance and exhaustion through repeated vaccination to optimize immunization strategies.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima, Japan
| | | | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical and Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryuzaburo Shinaha
- Department of Internal Medicine, Soma Central Hospital, Fukushima, Japan
| | - Masaharu Tsubokura
- Medical Governance Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima, Japan
| |
Collapse
|