1
|
Gomari MM, Ghantabpour T, Pourgholam N, Rostami N, Hatfield SM, Namazifar F, Abkhiz S, Eslami SS, Ramezanpour M, Darestanifarahani M, Astsaturov I, Bencherif SA. Breaking barriers: Smart vaccine platforms for cancer immunomodulation. Cancer Commun (Lond) 2025; 45:529-571. [PMID: 39901621 PMCID: PMC12067400 DOI: 10.1002/cac2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Despite significant advancements in cancer treatment, current therapies often fail to completely eradicate malignant cells. This shortfall underscores the urgent need to explore alternative approaches such as cancer vaccines. Leveraging the immune system's natural ability to target and kill cancer cells holds great therapeutic potential. However, the development of cancer vaccines is hindered by several challenges, including low stability, inadequate immune response activation, and the immunosuppressive tumor microenvironment, which limit their efficacy. Recent progress in various fields, such as click chemistry, nanotechnology, exosome engineering, and neoantigen design, offer innovative solutions to these challenges. These achievements have led to the emergence of smart vaccine platforms (SVPs), which integrate protective carriers for messenger ribonucleic acid (mRNA) with functionalization strategies to optimize targeted delivery. Click chemistry further enhances SVP performance by improving the encapsulation of mRNA antigens and facilitating their precise delivery to target cells. This review highlights the latest developments in SVP technologies for cancer therapy, exploring both their opportunities and challenges in advancing these transformative approaches.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Taha Ghantabpour
- Department of AnatomySchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Nima Pourgholam
- School of Nursing and MidwiferyIran University of Medical ScienceTehranIran
| | - Neda Rostami
- Department of Chemical EngineeringArak UniversityArakIran
| | - Stephen M. Hatfield
- New England Inflammation and Tissue Protection InstituteDepartment of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
| | | | - Shadi Abkhiz
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Seyed Sadegh Eslami
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
- Molecular Proteomics LaboratoryBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Mahsa Ramezanpour
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer InstituteFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Polymers, Biopolymers Surfaces (PBS) LaboratoryNational Center for Scientific Research (CNRS) Mixed Research Unit (UMR) 6270University Rouen NormandieRouenFrance
| |
Collapse
|
2
|
Ghazizadeh Y, Salehi Shadkami H, Madani F, Niknam S, Adabi M. Advances in cancer nanovaccines: a focus on colorectal cancer. Nanomedicine (Lond) 2025; 20:1029-1041. [PMID: 40186876 PMCID: PMC12051617 DOI: 10.1080/17435889.2025.2486930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Nanotechnology has revolutionized cancer treatment by providing innovative solutions through nanocancer therapies, nanovaccines, and nanoparticles. This review focuses on the application of these technologies in colorectal cancer (CRC), highlighting their progression from preclinical studies to clinical trials. Nanoparticles, including liposomes, silica, gold, and lipid nanoparticles, possess unique properties that enhance drug delivery, improve therapeutic efficacy, and minimize systemic toxicity. Additionally, nanovaccines are being developed to elicit robust immune responses against CRC cells. This paper offers a comprehensive overview of the current state of nanotechnology-based treatments for CRC, emphasizing key preclinical studies and clinical trials that demonstrate their potential. Furthermore, the review discusses the challenges faced in this field. It outlines future directions for research, underscoring the need for ongoing efforts to translate these promising technologies into practical clinical applications.
Collapse
Affiliation(s)
- Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine Student Association (NMA), Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Shadkami
- Nanomedicine Student Association (NMA), Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Niknam
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Barua A, Masum MHU, Mahdeen AA. A Reverse Vaccinology and Immunoinformatic Approach for the Designing of a Novel mRNA Vaccine Against Stomach Cancer Targeting the Potent Pathogenic Proteins of Helicobacter pylori. Bioinform Biol Insights 2025; 19:11779322251331104. [PMID: 40290636 PMCID: PMC12033411 DOI: 10.1177/11779322251331104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Helicobacter pylori infection of the stomach's epithelial cells is a significant risk factor for stomach cancer. Various H pylori proteins (CagA, GGT, NapA, PatA, urease, and VacA) were targeted to design 2 messenger RNA (mRNA) vaccines, V1 and V2, using bioinformatics tools. Physicochemical parameters, secondary and tertiary structure, molecular docking and dynamic simulation, codon optimization, and RNA structure prediction have also been estimated for these developed vaccines. Physicochemical analyses revealed that these developed vaccines are soluble (GRAVY < 0), basic (pI < 7), and stable (aliphatic index < 80). The secondary and tertiary structure of the vaccines demonstrated robustness. The docking with toll-like receptors (TLRs) revealed that the vaccines have a potential affinity for TLR-2 (V1: -1132.3 kJ/mol, V2: -1093.6 kJ/mol) and TLR-4 (V1: -1042.7 kJ/mol, V2: -1201.2 kJ/mol), and molecular dynamics simulations confirmed their dynamic stability. Structural analyses of V1 (-505.96 kcal/mol) and V2 (-634.92 kcal/mol) mRNA vaccines underscored their stability. In addition, the vaccine showed a considerable rise in the counts of B cells and extended activation of both T cells was also observed for the vaccines, suggesting the potential for long-lasting immunity, and offering enhanced protection against H pylori. These findings not only suggest potential long-lasting immunity against H pylori but also offer hope for the future of stomach cancer prevention. Notably, the study emphasizes the need for subsequent animal and human-based studies to confirm these promising results.
Collapse
Affiliation(s)
- Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
4
|
Vallet T, Vignuzzi M. Self-Amplifying RNA: Advantages and Challenges of a Versatile Platform for Vaccine Development. Viruses 2025; 17:566. [PMID: 40285008 PMCID: PMC12031284 DOI: 10.3390/v17040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Self-amplifying RNA is synthetic nucleic acid engineered to replicate within cells without generating viral particles. Derived from alphavirus genomes, saRNA retains the non-structural elements essential for replication while replacing the structural elements with an antigen of interest. By enabling efficient intracellular amplification, saRNA offers a promising alternative to conventional mRNA vaccines, enhancing antigen expression while requiring lower doses. However, this advantage comes with challenges. In this review, we highlight the key limitations of saRNA technology and explore potential strategies to overcome them. By identifying these challenges, we aim to provide insights that can guide the future design of saRNA-based therapeutics, extending their potential beyond vaccine applications.
Collapse
Affiliation(s)
- Thomas Vallet
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| |
Collapse
|
5
|
Paczkowska A, Hoffmann K, Andrzejczak A, Pucek WF, Kopciuch D, Bryl W, Nowakowska E, Kus K. The Application of mRNA Technology for Vaccine Production-Current State of Knowledge. Vaccines (Basel) 2025; 13:389. [PMID: 40333251 PMCID: PMC12031289 DOI: 10.3390/vaccines13040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Over the past 20 years, intensive research has been conducted on the development of therapeutic mRNA, leading to numerous discoveries that have enabled its use in therapy. The main achievements in this field include increasing mRNA stability, reducing its immunogenicity (i.e., its ability to trigger an immune response), and solving the challenge of delivering mRNA into cells-all to achieve a therapeutic effect. The aim of this study was to review the scientific literature on the use of mRNA technology in the production of vaccines. Various methods of applying mRNA technology that could potentially be introduced into clinical practice in the future are described. A detailed analysis was conducted on the approved COVID-19 vaccines developed by Pfizer/BioNTech (New York, NY, USA) and Moderna (Kirkland, QC, Canada), as their introduction marked a groundbreaking moment in the advancement of mRNA technology. This study was based on the latest scientific literature from reputable publishers and medical databases such as PubMed and ClinicalTrials. In conclusion, mRNA technology is currently experiencing rapid development, significantly driven by the ongoing COVID-19 pandemic. The application of this technology holds great potential not only for vaccines against infectious diseases but also for cancer treatment. However, further research is necessary to facilitate its broader clinical implementation.
Collapse
Affiliation(s)
- Anna Paczkowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Karolina Hoffmann
- Department and Clinic of Internal Diseases and Metabolic Disorders, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (K.H.); (W.B.)
| | - Agata Andrzejczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Weronika Faustyna Pucek
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Dorota Kopciuch
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Wiesław Bryl
- Department and Clinic of Internal Diseases and Metabolic Disorders, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (K.H.); (W.B.)
| | - Elżbieta Nowakowska
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Góra, Poland;
| | - Krzysztof Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| |
Collapse
|
6
|
Haghmorad D, Eslami M, Orooji N, Halabitska I, Kamyshna I, Kamyshnyi O, Oksenych V. mRNA vaccine platforms: linking infectious disease prevention and cancer immunotherapy. Front Bioeng Biotechnol 2025; 13:1547025. [PMID: 40144393 PMCID: PMC11937095 DOI: 10.3389/fbioe.2025.1547025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The advent of mRNA vaccines, accelerated by the global response to the COVID-19 pandemic, marks a transformative shift in vaccine technology. In this article, we discuss the development, current applications, and prospects of mRNA vaccines for both the prevention and treatment of infectious diseases and oncology. By leveraging the capacity to encode antigens within host cells directly, mRNA vaccines provide a versatile and scalable platform suitable for addressing a broad spectrum of pathogens and tumor-specific antigens. We highlight recent advancements in mRNA vaccine design, innovative delivery mechanisms, and ongoing clinical trials, with particular emphasis on their efficacy in combating infectious diseases, such as COVID-19, Zika, and influenza, as well as their emerging potential in cancer immunotherapy. We also address critical challenges, including vaccine stability, optimization of immune responses, and the broader issue of global accessibility. Finally, we review potential strategies for advancing next-generation mRNA vaccines, with the aim of overcoming current limitations in vaccine technology and enhancing both preventive and therapeutic approaches for infectious and oncological diseases.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Nguyen CM, Vu TT, Nguyen MN, Tran-Nguyen TS, Huynh CT, Ha QT, Nguyen HN, Tran LS. Neoantigen-based mRNA vaccine exhibits superior anti-tumor activity compared to synthetic long peptides in an in vivo lung carcinoma model. Cancer Immunol Immunother 2025; 74:145. [PMID: 40072566 PMCID: PMC11949242 DOI: 10.1007/s00262-025-03992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Neoantigen vaccines hold great promise in cancer immunotherapy, but the comparative efficacy of different vaccine platforms, particularly in the context of tumor burden (TB), remains insufficiently studied. In this research, we evaluated the safety and therapeutic efficacy of synthetic long peptide and mRNA-based vaccines, both designed to target identical neoantigens across different Lewis Lung Carcinoma (LLC) tumor burdens. We employed the LLC syngeneic mouse model, a widely used preclinical model for aggressive and immunosuppressive tumors. Our findings demonstrated that the mRNA-based vaccine significantly outperformed the peptide-based vaccine in preventing tumor growth in mice with low TB. These results underscore the potential of mRNA vaccines as a more effective approach for treating aggressive tumors, contributing valuable insights for the future development of neoantigen-based cancer vaccines.
Collapse
Affiliation(s)
| | - Trung T Vu
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | | | | | - Chi Thien Huynh
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Quang Thanh Ha
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.
| |
Collapse
|
8
|
Kirtane AR, Traverso G. Improving the Efficacy of Cancer mRNA Vaccines. Cancer J 2025; 31:e0764. [PMID: 40126883 DOI: 10.1097/ppo.0000000000000764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
mRNA vaccines consist of antigen-encoding mRNA, which produces the antigenic protein upon translation. Coupling antigen production with innate immune activation can generate a potent, antigen-specific T-cell response. Clinical reports have demonstrated the ability of mRNA vaccines to elicit an anticancer immune response against various tumor types. Here, we discuss strategies to enhance the potency of mRNA vaccines. We provide an overview of existing knowledge regarding the activation and trafficking mechanisms of mRNA vaccines and share optimization strategies to boost mRNA-mediated antigen production. In addition, we address methods to target mRNA vaccines to dendritic cells and lymph nodes, key initiators of the immune response. Finally, we review strategies for enhancing immune activation using adjuvants compatible with mRNA vaccines. mRNA vaccines offer unique advantages that can be utilized for oncology applications. However, significant work is needed to understand their underlying mechanisms and develop technologies to improve their effectiveness.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA
- Department of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
9
|
Tenchov R, Hughes KJ, Ganesan M, Iyer KA, Ralhan K, Lotti Diaz LM, Bird RE, Ivanov JM, Zhou QA. Transforming Medicine: Cutting-Edge Applications of Nanoscale Materials in Drug Delivery. ACS NANO 2025; 19:4011-4038. [PMID: 39823199 PMCID: PMC11803921 DOI: 10.1021/acsnano.4c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Since their inception in the early 1960s, the development and use of nanoscale materials have progressed tremendously, and their roles in diverse fields ranging from human health to energy and electronics are undeniable. The application of nanotechnology inventions has revolutionized many aspects of everyday life including various medical applications and specifically drug delivery systems, maximizing the therapeutic efficacy of the contained drugs by means of bioavailability enhancement or minimization of adverse effects. In this review, we utilize the CAS Content Collection, a vast repository of scientific information extracted from journal and patent publications, to analyze trends in nanoscience research relevant to drug delivery in an effort to provide a comprehensive and detailed picture of the use of nanotechnology in this field. We examine the publication landscape in the area to provide insights into current knowledge advances and developments. We review the major classes of nanosized drug delivery systems, their delivery routes, and targeted diseases. We outline the most discussed concepts and assess the advantages of various nanocarriers. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding nanosized drug delivery systems, to outline challenges, and to evaluate growth opportunities. The merit of the review stems from the extensive, wide-ranging coverage of the most up-to-date scientific information, allowing unmatched breadth of landscape analysis and in-depth insights.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Kevin J. Hughes
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Kavita A. Iyer
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Leilani M. Lotti Diaz
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert E. Bird
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Julian M. Ivanov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
10
|
Zhu Y, Yao ZC, Li S, Ma J, Wei C, Yu D, Stelzel JL, Ni BYX, Miao Y, Van Batavia K, Lu X, Lin J, Dai Y, Kong J, Shen R, Goodier KD, Liu X, Cheng L, Vuong I, Howard GP, Livingston NK, Choy J, Schneck JP, Doloff JC, Reddy SK, Hickey JW, Mao HQ. mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite generates a local immunostimulatory niche for cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.633179. [PMID: 39975373 PMCID: PMC11838205 DOI: 10.1101/2025.01.27.633179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hydrogel materials have emerged as versatile platforms for various biomedical applications. Notably, the engineered nanofiber-hydrogel composite (NHC) has proven effective in mimicking the soft tissue extracellular matrix, facilitating substantial recruitment of host immune cells and the formation of a local immunostimulatory microenvironment. Leveraging this feature, here we report an mRNA lipid nanoparticle (LNP)-incorporated NHC microgel matrix, termed LiNx, by incorporating LNPs loaded with mRNA encoding tumour antigens. Harnessing the potent transfection efficiency of LNPs in antigen-presenting cells (APCs), LiNx demonstrates remarkable immune cell recruitment, antigen expression and presentation, and cellular interaction. These attributes collectively create an immunostimulating milieu and yield a potent immune response achievable with a single dose, comparable to the conventional three-dose LNP immunization regimen. Further investigations reveal that the LiNx not only generates heightened Th1 and Th2 responses but also elicits a distinctive Type 17 T helper cell-mediated response pivotal for bolstering antitumour efficacy. Our findings elucidate the mechanism underlying LiNx's role in potentiating antigen-specific immune responses, presenting a new strategy for cancer immunotherapy.
Collapse
|
11
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
12
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
13
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
14
|
Maine CJ, Miyake-Stoner SJ, Spasova DS, Picarda G, Chou AC, Brand ED, Olesiuk MD, Domingo CC, Little HJ, Goodman TT, Posy JL, Gonzalez J, Bayone TL, Sparks J, Gary EN, Xiang Z, Tursi NJ, Hojecki CE, Ertl HCJ, Weiner DB, Casmil IC, Blakney AK, Essink B, Somodevilla G, Wang NS, Geall AJ, Goldberg Z, Aliahmad P. Safety and immunogenicity of an optimized self-replicating RNA platform for low dose or single dose vaccine applications: a randomized, open label Phase I study in healthy volunteers. Nat Commun 2025; 16:456. [PMID: 39774967 PMCID: PMC11707033 DOI: 10.1038/s41467-025-55843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development. Optimized srRNA vaccines generate protective immunity (according to the WHO defined thresholds) at doses up to 1,000,000-fold lower than mRNA in female mouse models of influenza and rabies. Clinically, safety and immunogenicity of RBI-4000, an srRNA vector encoding the rabies glycoprotein, was evaluated in a Phase I study (NCT06048770). RBI-4000 was able to elicit de novo protective immunity in the majority of healthy participants when administered at a dose of 0.1, 1, or 10 microgram (71%, 94%, 100%, respectively) in a prime-boost schedule. Similarly, we observe immunity above the WHO benchmark of protection following a single administration in most participants at both 1 and 10 microgram doses. There are no serious adverse events reported across all cohorts. These data establish the high therapeutic index of optimized srRNA vectors, demonstrating feasibility of both low dose and single dose approaches for vaccine applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ebony N Gary
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Zhi Xiang
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nicholas J Tursi
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey E Hojecki
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Hildegund C J Ertl
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - David B Weiner
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Irafasha C Casmil
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
16
|
Parr MK, Keiler AM. Oligonucleotide therapeutics in sports? An antidoping perspective. Arch Pharm (Weinheim) 2025; 358:e2400404. [PMID: 39449227 PMCID: PMC11704058 DOI: 10.1002/ardp.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Within the last two decades, the European Medicines Agency and the US Food and Drug Administration have approved several gene therapies. One category is oligonucleotide therapeutics, which allow for the regulation of the expression of target genes. Besides already approved therapeutics, there are several preclinical and clinical trials ongoing. The World Anti-Doping Agency prohibits the use of "nucleic acids or nucleic acid analogs that may alter genome sequences and/or alter gene expression by any mechanism" as a nonspecified method at all times. Hence, the administration of nucleic acids or analogs by athletes would cause an Anti-Doping Rule Violation. Herein, we discuss types of oligonucleotide therapeutics, their potential to be misused in sports, and considerations to sample preparation and mass spectrometric approaches with regard to antidoping analysis.
Collapse
Affiliation(s)
- Maria K. Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal ChemistryFreie Universität BerlinBerlinGermany
| | - Annekathrin M. Keiler
- Institute of Doping Analysis & Sports BiochemistryKreischaGermany
- Environmental Monitoring & Endocrinology, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
17
|
Grant M, Ni Lee L, Chinnakannan S, Tong O, Kwok J, Cianci N, Tillman L, Saha A, Pereira Almeida V, Leung C. Unlocking cancer vaccine potential: What are the key factors? Hum Vaccin Immunother 2024; 20:2331486. [PMID: 38564321 PMCID: PMC11657071 DOI: 10.1080/21645515.2024.2331486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer is a global health challenge, with changing demographics and lifestyle factors producing an increasing burden worldwide. Screening advancements are enabling earlier diagnoses, but current cancer immunotherapies only induce remission in a small proportion of patients and come at a high cost. Cancer vaccines may offer a solution to these challenges, but they have been mired by poor results in past decades. Greater understanding of tumor biology, coupled with the success of vaccine technologies during the COVID-19 pandemic, has reinvigorated cancer vaccine development. With the first signs of efficacy being reported, cancer vaccines may be beginning to fulfill their potential. Solid tumors, however, present different hurdles than infectious diseases. Combining insights from previous cancer vaccine clinical development and contemporary knowledge of tumor immunology, we ask: who are the 'right' patients, what are the 'right' targets, and which are the 'right' modalities to maximize the chances of cancer vaccine success?
Collapse
|
18
|
Shoji N, Ito S, Nojiri S, Urasaki W, Nara T, Okuzawa A, Tobita M. Adverse reactions to mRNA COVID-19 vaccine in people with allergies in Japan. Glob Health Med 2024; 6:363-374. [PMID: 39741991 PMCID: PMC11680453 DOI: 10.35772/ghm.2024.01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 01/03/2025]
Abstract
mRNA vaccines emerged as a new therapeutic modality during the COVID-19 pandemic. Individuals with allergies often experience anxiety about potential adverse reactions to these vaccines. This study aims to elucidate the relationship between adverse reactions and various allergies, asthma, or atopic disorders. Data from approximately 20,000 Japanese healthcare workers participating in a prospective cohort study were analyzed. The number of vaccinated individuals was 19,792 (first dose), with systemic reactions occurring in 35.8% after the first dose and 75.3% after the second dose. Participants with allergies were categorized into groups: food and/or drug allergies (n = 806), asthma and/or atopic disorders (n = 2,370), asthma (both past medical history [PMH] and present illness [PI]) (n = 1,983), and atopic disorders (PI) (n = 567). Most systemic reactions in those with food and/or drug allergies occurred within the first three days of vaccination. Logistic regression analysis showed that food and/or drug allergies, asthma (PMH and PI), and asthma and/or atopic disorders were significantly associated with systemic reactions (odds ratios [95% confidence interval]: 1.65 [1.43-1.91], 1.36 [1.23-1.49], and 1.32 [1.21-1.45], respectively, for the first dose). These findings suggest the risk of systemic reactions after COVID-19 vaccination in individuals with the specified allergies, potentially contributing to vaccine hesitancy. Medical professionals should clearly communicate the risks and benefits of vaccination to those with allergies to alleviate their concerns. Additionally, our study's data may be useful for making decisions whether or not to get vaccinated in those with allergies and inform the development of future mRNA vaccines.
Collapse
Affiliation(s)
- Naoko Shoji
- Department of Healthcare Innovation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Suminobu Ito
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
- Clinical Research and Trial Center, Juntendo University Hospital, Tokyo, Japan
| | - Shuko Nojiri
- Department of Healthcare Innovation, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
- Clinical Research and Trial Center, Juntendo University Hospital, Tokyo, Japan
| | - Wataru Urasaki
- Clinical Research and Trial Center, Juntendo University Hospital, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Tamaki Nara
- Department of Healthcare Innovation, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
- Clinical Research and Trial Center, Juntendo University Hospital, Tokyo, Japan
| | - Atsushi Okuzawa
- Department of Healthcare Innovation, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
- Clinical Research and Trial Center, Juntendo University Hospital, Tokyo, Japan
| | - Morikuni Tobita
- Department of Healthcare Innovation, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
- Clinical Research and Trial Center, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
19
|
Chekaoui A, Garofalo M, Gad B, Staniszewska M, Chiaro J, Pancer K, Gryciuk A, Cerullo V, Salmaso S, Caliceti P, Masny A, Wieczorek M, Pesonen S, Kuryk L. Cancer vaccines: an update on recent achievements and prospects for cancer therapy. Clin Exp Med 2024; 25:24. [PMID: 39720956 DOI: 10.1007/s10238-024-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines. Using the latest research technologies has also enabled scientists to interpret complex and multiomics data of the tumour mutanome, thus identifying new tumour-specific antigens to design new generations of cancer vaccines with high specificity and long-term efficacy. Furthermore, combinatorial regimens of cancer vaccines with immune checkpoint inhibitors have offered new therapeutic approaches and demonstrated impressive efficacy in cancer patients over the last few years. In the present review, we summarize the current state of cancer vaccines, including their potential therapeutic effects and the limitations that hinder their effectiveness. We highlight the current efforts to mitigate these limitations and highlight ongoing clinical trials. Finally, a special focus will be given to the latest milestones expected to transform the landscape of cancer therapy and nurture hope among cancer patients.
Collapse
Affiliation(s)
- Arezki Chekaoui
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Katarzyna Pancer
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, University Federico II of Naples, Naples, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | | | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland.
- Valo Therapeutics Oy, Helsinki, Finland.
| |
Collapse
|
20
|
Huang S, Que H, Wang M, Wei X. mRNA vaccines as cancer therapies. Chin Med J (Engl) 2024; 137:2979-2995. [PMID: 39668413 PMCID: PMC11706586 DOI: 10.1097/cm9.0000000000003455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 12/14/2024] Open
Abstract
ABSTRACT Cancer remains a major global health challenge, with conventional treatments like chemotherapy and radiotherapy often hindered by significant side effects, lack of specificity, and limited efficacy in advanced cases. Among emerging therapeutic strategies, mRNA vaccines have shown remarkable potential due to their adaptability, rapid production, and capability for personalized cancer treatment. This review provides an in-depth analysis of messenger RNA (mRNA) vaccines as a therapeutic approach for cancer immunotherapy, focusing on their molecular biology, classification, mechanisms, and clinical studies. Derived from reported literature and data on clinicaltrials.gov, it examines studies on mRNA vaccines encoding tumor-specific antigens (TSAs), tumor-associated antigens (TAAs), immunomodulators, and chimeric antigen receptors (CARs) across various cancer types. The review highlights the ability of mRNA vaccines to encode TSAs and TAAs, enabling personalized cancer treatments, and classifies these vaccines into non-replicating and self-amplifying types. It further explores their mechanisms of action, including antigen presentation and immune activation, while emphasizing findings from clinical studies that demonstrate the potential of mRNA vaccines in cancer therapy. Despite their promise, challenges remain in enhancing delivery systems, improving immunogenicity, and addressing tumor heterogeneity. Overcoming these obstacles will require further investigation to fully harness the potential of mRNA vaccines in personalized cancer treatment.
Collapse
Affiliation(s)
- Shaoxiong Huang
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
21
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
22
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
23
|
Massariol Pimenta T, Carlos de Souza J, da Silva Martins B, Silva Butzene SM, Simões Padilha JM, Ganho Marçal M, Dos Santos Elias G, Rangel LBA. Emerging strategies to overcome ovarian cancer: advances in immunotherapy. Front Pharmacol 2024; 15:1490896. [PMID: 39564107 PMCID: PMC11573523 DOI: 10.3389/fphar.2024.1490896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer is the second most common malignant neoplasm of gynecological origin and the leading cause of death from cancer in the female reproductive system worldwide. This scenario is largely due to late diagnoses, often in advanced stages, and the development of chemoresistance by cancer cells. These challenges highlight the need for alternative treatments, with immunotherapy being a promising option. Cancer immunotherapy involves triggering an anti-tumor immune response and developing immunological memory to eliminate malignant cells, prevent recurrence, and inhibit metastasis. Some ongoing research investigate potentially immunological advancements in the field of cancer vaccines, immune checkpoint blockade, CAR-T cell, and other strategies.
Collapse
Affiliation(s)
- Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - José Matheus Simões Padilha
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Milleny Ganho Marçal
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Guilherme Dos Santos Elias
- Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Leticia Batista Azevedo Rangel
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
24
|
Ramadan E, Ahmed A, Naguib YW. Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions. J Pers Med 2024; 14:1092. [PMID: 39590584 PMCID: PMC11595619 DOI: 10.3390/jpm14111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in mRNA vaccine research and development, attracting the scientific community to explore all its other applications beyond infectious diseases. Recently, researchers have focused on the possibility of adapting this vaccination approach to cancer immunotherapy. While there is a huge potential, challenges still remain in the design and optimization of the synthetic mRNA molecules and the lipid nanoparticle delivery system required to ensure the adequate elicitation of the immune response and the successful eradication of tumors. This review points out the basic mechanisms of mRNA-LNP vaccines in cancer immunotherapy and recent approaches in mRNA vaccine design. This review displays the current mRNA modifications and lipid nanoparticle components and how these factors affect vaccine efficacy. Furthermore, this review discusses the future directions and clinical applications of mRNA-LNP vaccines in cancer treatment.
Collapse
Affiliation(s)
- Eslam Ramadan
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary;
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ali Ahmed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Youssef Wahib Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Zhang X, Wang H, Yuan Y, Zhang J, Yang J, Zhang L, He J. PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review). Int J Oncol 2024; 65:109. [PMID: 39329206 PMCID: PMC11436262 DOI: 10.3892/ijo.2024.5697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Global statistics indicate that hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer‑related death. Protein phosphatase Mg2+/Mn2+ dependent 1G (PPM1G, also termed PP2Cγ) is one of the 17 members of the PPM family. The enzymatic activity of PPM1G is highly reliant on Mg2+ or Mn2+ and serves as a dephosphorylation regulator for numerous key proteins. PPM1G, functioning as a phosphatase, is involved in a number of significant biological processes such as the regulation of eukaryotic gene expression, DNA damage response, cell cycle and apoptosis, cell migration ability, cell survival and embryonic nervous system development. Additionally, PPM1G serves a role in regulating various signaling pathways. In recent years, further research has increasingly highlighted PPM1G as an oncogene in HCC. A high expression level of PPM1G is closely associated with the occurrence, progression and poor prognosis of HCC, offering notable diagnostic and therapeutic value for this patient population. In the present review, the regulatory role of PPM1G in diverse biological processes and signaling pathway activation in eukaryotes is evaluated. Furthermore, its potential application as a biomarker in the diagnosis and prognosis evaluation of HCC is assessed, and future prospects for HCC treatment strategies centered on PPM1G are discussed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Heyue Wang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yiran Yuan
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jieya Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jize Yang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiefeng He
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
26
|
Hegazi A, Rager LE, Watkins DE, Su KH. Advancing Immunotherapy in Pancreatic Cancer. Int J Mol Sci 2024; 25:11560. [PMID: 39519112 PMCID: PMC11546161 DOI: 10.3390/ijms252111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer remains one of the deadliest malignancies, with a consistently low five-year survival rate for the past several decades. This is in stark contrast to other cancers, which have seen significant improvement in survival and prognosis due to recent developments in therapeutic modalities. These modest improvements in pancreatic cancer outcomes have primarily resulted from minor advances in cytotoxic chemotherapeutics, with limited progress in other treatment approaches. A major focus of current therapeutic research is the further development of immunomodulatory therapies characterized by antibody-based approaches, cellular therapies, and vaccines. Although initial results utilizing immunotherapy in pancreatic cancer have been mixed, recent clinical trials have demonstrated significant improvements in patient outcomes. In this review, we detail these three approaches to immunomodulation, highlighting their common targets and distinct shortcomings, and we provide a narrative summary of completed and ongoing clinical trials that utilize these approaches to immunomodulation. Within this context, we aim to inform future research efforts by identifying promising areas that warrant further exploration.
Collapse
Affiliation(s)
| | | | | | - Kuo-Hui Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (A.H.); (L.E.R.); (D.E.W.)
| |
Collapse
|
27
|
Parvin N, Mandal TK, Joo SW. The Impact of COVID-19 on RNA Therapeutics: A Surge in Lipid Nanoparticles and Alternative Delivery Systems. Pharmaceutics 2024; 16:1366. [PMID: 39598489 PMCID: PMC11597542 DOI: 10.3390/pharmaceutics16111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic has significantly accelerated progress in RNA-based therapeutics, particularly through the successful development and global rollout of mRNA vaccines. This review delves into the transformative impact of the pandemic on RNA therapeutics, with a strong focus on lipid nanoparticles (LNPs) as a pivotal delivery platform. LNPs have proven to be critical in enhancing the stability, bioavailability, and targeted delivery of mRNA, facilitating the unprecedented success of vaccines like those developed by Pfizer-BioNTech and Moderna. Beyond vaccines, LNP technology is being explored for broader therapeutic applications, including treatments for cancer, rare genetic disorders, and infectious diseases. This review also discusses emerging RNA delivery systems, such as polymeric nanoparticles and viral vectors, which offer alternative strategies to overcome existing challenges related to stability, immune responses, and tissue-specific targeting. Additionally, we examine the pandemic's influence on regulatory processes, including the fast-tracked approvals for RNA therapies, and the surge in research funding that has spurred further innovation in the field. Public acceptance of RNA-based treatments has also grown, laying the groundwork for future developments in personalized medicine. By providing an in-depth analysis of these advancements, this review highlights the long-term impact of COVID-19 on the evolution of RNA therapeutics and the future of precision drug delivery technologies.
Collapse
Affiliation(s)
| | - Tapas K. Mandal
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang-Woo Joo
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
28
|
Malacopol AT, Holst PJ. Cancer Vaccines: Recent Insights and Future Directions. Int J Mol Sci 2024; 25:11256. [PMID: 39457036 PMCID: PMC11508577 DOI: 10.3390/ijms252011256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The field of cancer immunotherapy has seen incredible advancements in the past decades. mRNA-based cancer vaccines generating de novo T cell responses, particularly against tumor-specific antigens (TSAs), have demonstrated promising clinical outcomes and overcome diverse challenges. Despite the high potential of neoantigens to provide personalized immunotherapies through their tumor specificity and immunogenicity, challenges related to the scarcity of immunogenic neoepitopes have prompted continuous research towards finding new tumor-associated antigens (TAAs) and broader therapeutic frameworks, which may now learn from the genuine successes obtained with neoantigens. As an example, human endogenous retroviruses (HERVs) have emerged as potential alternatives to tumor neoantigens due to their high tumoral expression and ability to elicit both T cell reactivity and B cell responses associated with the efficacy of existing immunotherapies. This review aims to assess the status and limitations of TSA-directed mRNA cancer vaccines and the lessons that can be derived from these and checkpoint inhibitor studies to guide TAA vaccine development. We expect that shared B cell, CD4 and CD8 T cell antigen presentation will be key to stimulate continuous T cell expansion and efficacy for tumors that do not contain pre-existing tertiary lymphoid structures. When these structures are present in highly mutated tumors, the current checkpoint-based immunotherapies show efficacy even in immune privileged sites, and vaccines may hold the key to broaden efficacy to more tumor types and stages.
Collapse
Affiliation(s)
- Aretia-Teodora Malacopol
- HERVOLUTION Therapeutics, Copenhagen Bio Science (COBIS), 215 Nordre Fasanvej, DK2200 Copenhagen, Denmark;
| | - Peter Johannes Holst
- HERVOLUTION Therapeutics, Copenhagen Bio Science (COBIS), 215 Nordre Fasanvej, DK2200 Copenhagen, Denmark;
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, DK2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Zhao H, Li M, Zhou J, Hu L, Lu S, Li P. The Recent Research Progress of the Tumor mRNA Vaccine. Vaccines (Basel) 2024; 12:1167. [PMID: 39460333 PMCID: PMC11512251 DOI: 10.3390/vaccines12101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Tumors have long posed a significant threat to human life and health, and the messenger ribonucleic acid (mRNA) vaccine is seen as an attractive approach for cancer immunotherapy due to its developmental simplicity, rapid manufacture, and increased immune safety and efficiency. In this review, we have summarized details of the developmental history of mRNA vaccines, discussed the basic molecular structure and the effect on the stable and translation level of mRNA, analyzed the underlying immune efficiency and mechanisms on tumors, and assessed the current status of clinical research. We explored the treatment and application prospects of mRNA vaccines, aiming to provide perspectives on the future of mRNA tumor vaccines for ongoing clinical research.
Collapse
Affiliation(s)
- Hao Zhao
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Miying Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Jiaren Zhou
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Lidan Hu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Shaohong Lu
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Pan Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| |
Collapse
|
30
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
31
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Hao P, Li X, Li X, Zhong W. mRNA vaccine technology for infectious diseases and beyond. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2267-2270. [PMID: 38965140 DOI: 10.1007/s11427-024-2639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100085, China.
| |
Collapse
|
33
|
Ghemrawi R, Abuamer L, Kremesh S, Hussien G, Ahmed R, Mousa W, Khoder G, Khair M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024; 12:2158. [PMID: 39335671 PMCID: PMC11429153 DOI: 10.3390/biomedicines12092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer immunotherapy has emerged as a transformative approach in oncology, utilizing the body's immune system to specifically target and destroy malignant cells. This review explores the scope and impact of various immunotherapeutic strategies, including monoclonal antibodies, chimeric antigen receptor (CAR)-T cell therapy, checkpoint inhibitors, cytokine therapy, and therapeutic vaccines. Monoclonal antibodies, such as Rituximab and Trastuzumab, have revolutionized treatment paradigms for lymphoma and breast cancer by offering targeted interventions that reduce off-target effects. CAR-T cell therapy presents a potentially curative option for refractory hematologic malignancies, although challenges remain in effectively treating solid tumors. Checkpoint inhibitors have redefined the management of cancers like melanoma and lung cancer; however, managing immune-related adverse events and ensuring durable responses are critical areas of focus. Cytokine therapy continues to play a vital role in modulating the immune response, with advancements in cytokine engineering improving specificity and reducing systemic toxicity. Therapeutic vaccines, particularly mRNA-based vaccines, represent a frontier in personalized cancer treatment, aiming to generate robust, long-lasting immune responses against tumor-specific antigens. Despite these advancements, the field faces significant challenges, including immune resistance, tumor heterogeneity, and the immunosuppressive tumor microenvironment. Future research should address these obstacles through emerging technologies, such as next-generation antibodies, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based gene editing, and AI-driven drug discovery. By integrating these novel approaches, cancer immunotherapy holds the promise of offering more durable, less toxic, and highly personalized treatment options, ultimately improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Lama Abuamer
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghadeer Hussien
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rahaf Ahmed
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
34
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
35
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
36
|
Parvin N, Joo SW, Mandal TK. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024; 14:1036. [PMID: 39199422 PMCID: PMC11353004 DOI: 10.3390/biom14081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
37
|
Isaac I, Bhatia M, Bhattacharya C. Recent Advances in Biomaterials for mRNA Delivery to Immune Cells. ACS APPLIED BIO MATERIALS 2024; 7:5136-5146. [PMID: 39058246 DOI: 10.1021/acsabm.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Modulating the function of immune cells by targeting the cells themselves has become a key strategy in immunotherapy for combating various diseases such as cancer, autoimmune disorders, and infectious ailments. The use of mRNA (mRNA) is a powerful tool for transiently inducing protein expression, which is often used for genetic manipulation. However, its inherent instability and inability to precisely reach target cells necessitate the use of biomaterials for safe and effective delivery. Additionally, transfecting immune cells is difficult and complex due to their resistance mechanisms, signaling pathways, and cellular interactions. This review focuses on the recent development of biomaterials for mRNA delivery to immune cells, including lipid nanoparticles and polymeric carriers. It also outlines the challenges of targeting and delivering therapeutic payloads to immune cells, providing commentary and outlook on the design of next-generation materials. Finally, this approach has the potential to significantly enhance the precision and effectiveness of therapeutic interventions for various diseases, shaping the future of mRNA delivery for immune conditions.
Collapse
Affiliation(s)
- Ivan Isaac
- Department of Chemistry and Biochemistry, University of Nevada─Las Vegas 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Mayurakkhi Bhatia
- Department of Chemistry and Biochemistry, University of Nevada─Las Vegas 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Chandrabali Bhattacharya
- Department of Chemistry and Biochemistry, University of Nevada─Las Vegas 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
- Interdisciplinary Biomedical Engineering Program, University of Nevada─Las Vegas, Las Vegas, Nevada 89154, United States
| |
Collapse
|
38
|
Abdollahi P, Norseth HM, Schjesvold F. Advances and challenges in anti-cancer vaccines for multiple myeloma. Front Immunol 2024; 15:1411352. [PMID: 39161773 PMCID: PMC11331005 DOI: 10.3389/fimmu.2024.1411352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple myeloma (MM) is a hematological cancer marked by plasma cell accumulation in the bone marrow. Despite treatment advancements, MM remains incurable in most patients. MM-associated immune dysregulation fosters disease progression, prompting research into immunotherapy to combat the disease. An area of immunotherapy investigation is the design of myeloma vaccine therapy to reverse tumor-associated immune suppression and elicit tumor-specific immune responses to effectively target MM cells. This article reviews vaccine immunotherapy for MM, categorizing findings by antigen type and delivery method. Antigens include idiotype (Id), tumor-associated (TAA), tumor-specific (TSA), and whole tumor lysate. Myeloma vaccination has so far shown limited clinical efficacy. However, further studies are essential to optimize various aspects, including antigen and patient selection, vaccine timing and sequencing, and rational combinations with emerging MM treatments.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
39
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Malla R, Srilatha M, Muppala V, Farran B, Chauhan VS, Nagaraju GP. Neoantigens and cancer-testis antigens as promising vaccine candidates for triple-negative breast cancer: Delivery strategies and clinical trials. J Control Release 2024; 370:707-720. [PMID: 38744346 DOI: 10.1016/j.jconrel.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Immunotherapy is gaining prominence as a promising strategy for treating triple-negative breast cancer (TNBC). Neoantigens (neoAgs) and cancer-testis antigens (CTAs) are tumor-specific targets originating from somatic mutations and epigenetic changes in cancer cells. These antigens hold great promise for personalized cancer vaccines, as supported by preclinical and early clinical evidence in TNBC. This review delves into the potential of neoAgs and CTAs as vaccine candidates, emphasizing diverse strategies and delivery approaches. It also highlights the current status of vaccination modalities undergoing clinical trials in TNBC therapy. A comprehensive understanding of neoAgs, CTAs, vaccination strategies, and innovative delivery methods is crucial for optimizing neoAg-based immunotherapies in clinical practice.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Veda Muppala
- Department of Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Batoul Farran
- Division of Hematology and Oncology, Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Virander Singh Chauhan
- Molecular Medicine Group, Molecular Medicines International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
41
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
42
|
Park JK, Lee EB, Winthrop KL. What rheumatologists need to know about mRNA vaccines: current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:687-695. [PMID: 38413167 DOI: 10.1136/ard-2024-225492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Messenger RNA (mRNA) vaccines as a novel vaccine platform offer new tools to effectively combat both emerging and existing pathogens which were previously not possible. The 'plug and play' feature of mRNA vaccines enables swift design and production of vaccines targeting complex antigens and rapid incorporation of new vaccine constituents as needed. This feature makes them likely to be adopted for widespread clinical use in the future.Currently approved mRNA vaccines include only those against SARS-CoV-2 virus. These vaccines demonstrate robust immunogenicity and offer substantial protection against severe disease. Numerous mRNA vaccines against viral pathogens are in the early to late phase of development. Several mRNA vaccines for influenza are tested in clinical trials, with some already in phase 3 studies. Other vaccines in the early and late phases of development include those targeting Cytomegalovirus, varicella zoster virus, respiratory syncytial virus and Epstein-Barr virus. Many of these vaccines will likely be indicated for immunosuppressed populations including those with autoimmune inflammatory rheumatic diseases (AIIRD). This review focuses on the mechanism, safety and efficacy of mRNA in general and summarises the status of mRNA vaccines in development for common infectious diseases of particular interest for patients with AIIRD.
Collapse
Affiliation(s)
- Jin Kyun Park
- Rheumatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
43
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
44
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
45
|
Patz EF, Gottlin EB, Simon GR. Perspective: rethinking therapeutic strategies in oncology. Front Oncol 2024; 13:1335987. [PMID: 38269024 PMCID: PMC10805859 DOI: 10.3389/fonc.2023.1335987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Immuno-oncology has revolutionized cancer care, drug development, the design of clinical trials, standard treatment paradigms, and the evaluation of response to therapy. These are all areas, however, that have not fully incorporated principles of tumor immunology. Insufficient emphasis is put on the effect drugs have on the immune system, and specifically, the impact that multiple lines of therapy can have on the functioning of the immune system, hindering a robust anti-tumor immune response. A paradigm shift in how we approach the development of novel immunotherapeutic agents is necessary to facilitate the effective improvements in patient outcomes.
Collapse
Affiliation(s)
- Edward F. Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth B. Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - George R. Simon
- Department of Medical Oncology at Advent Health, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
46
|
Hu C, Bai Y, Liu J, Wang Y, He Q, Zhang X, Cheng F, Xu M, Mao Q, Liang Z. Research progress on the quality control of mRNA vaccines. Expert Rev Vaccines 2024; 23:570-583. [PMID: 38733272 DOI: 10.1080/14760584.2024.2354251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The mRNA vaccine technologies have progressed rapidly in recent years. The COVID-19 pandemic has accelerated the application of mRNA vaccines, with research and development and clinical trials underway for many vaccines. Application of the quality by design (QbD) framework to mRNA vaccine development and establishing standardized quality control protocols for mRNA vaccines are essential for the continued development of high-quality mRNA vaccines. AREAS COVERED mRNA vaccines include linear mRNA, self-amplifying mRNA, and circular RNA vaccines. This article summarizes the progress of research on quality control of these three types of vaccines and presents associated challenges and considerations. EXPERT OPINION Although there has been rapid progress in research on linear mRNA vaccines, their degradation patterns remain unclear. In addition, standardized assays for key impurities, such as residual dsRNA and T7 RNA polymerase, are still lacking. For self-amplifying mRNA vaccines, a key focus should be control of stability in vivo and in vitro. For circular RNA vaccines, standardized assays, and reference standards for determining degree of circularization should be established and optimized.
Collapse
Affiliation(s)
- Chaoying Hu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jianyang Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yiping Wang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qian He
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xuanxuan Zhang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Feiran Cheng
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Institutes for Food and Drug Control, Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- National Institutes for Food and Drug Control, Evaluation of Biological Products, Beijing, China
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
47
|
Ni L. Advances in mRNA-Based Cancer Vaccines. Vaccines (Basel) 2023; 11:1599. [PMID: 37897001 PMCID: PMC10611059 DOI: 10.3390/vaccines11101599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a leading cause of death worldwide, accounting for millions of deaths every year. Immunotherapy is a groundbreaking approach for treating cancer through harnessing the power of the immune system to target and eliminate cancer cells. Cancer vaccines, one immunotherapy approach, have shown promise in preclinical settings, but researchers have struggled to reproduce these results in clinical settings. However, with the maturity of mRNA technology and its success in tackling the recent coronavirus disease 2019 (COVID-19) pandemic, cancer vaccines are expected to regain attention. In this review, we focused on the recent progress made in mRNA-based cancer vaccines over the past five years. The mechanism of action of mRNA vaccines, advancements in neoantigen discovery, adjuvant identification, and delivery materials are summarized and reviewed. In addition, we also provide a detailed overview of current clinical trials involving mRNA cancer vaccines. Lastly, we offer an insight into future considerations for the application of mRNA vaccines in cancer immunotherapy. This review will help researchers to understand the advances in mRNA-based cancer vaccines and explore new dimensions for potential immunotherapy approaches.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Medical Research Building, No. 30 Haidian Shuangqing Road, Beijing 100084, China
| |
Collapse
|