1
|
Qi M, Zhang K, Zhang X, Zhu Y, Cai B, Wang C, Zhao G, Zhang D, Zhang J. Arginine tagged liposomal carrier for the delivery of celastrol for ferroptosis-induced hepatocellular carcinoma therapy. Colloids Surf B Biointerfaces 2025; 250:114546. [PMID: 39919344 DOI: 10.1016/j.colsurfb.2025.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignant liver tumor that cannot be efficiently treated because of poor response, toxicity, and drug resistance. Ferroptosis is an iron-dependent way of cell death associated with abnormal intracellular lipid metabolism. Celastrol (Cel) has the ability to inhibit the progression of HCC by regulating multiple signaling pathways and induce ferroptosis. However, Cel exists the limitations of low water solubility, low oral bioavailability, and high organ toxicity. Cel was encapsulated in polyethylene glycol-based liposomes modified with L-arginine (Cel@Lip-Arg). Cel@Lip-Arg has a uniform size distribution (∼100 nm), high drug loading (80 %), and excellent ability to target liver cancer cells. In vitro experiments demonstrated that Cel@Lip-Arg considerably suppressed the activity of HuH7 (hepatoma) cells but had a negligible effect on L02 (normal) cells. Cel@Lip-Arg induced ferroptosis in hepatoma cells by promoting transferrin receptor expression, inhibiting system xc- and glutathione peroxidase 4, and favoring intracellular peroxide accumulation. In vivo experiments revealed that Cel@Lip-Arg plays a therapeutic role by inducing ferroptosis. Compared to Cel, Cel@Lip-Arg had a higher anti-hepatoma activity and effectively reduced the toxicity of Cel in mice. Cel@Lip-Arg-induced ferroptosis was concluded to be an attractive strategy for the precise treatment of HCC.
Collapse
Affiliation(s)
- Manman Qi
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Kai Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Xue Zhang
- School of Basic Medicine, Ningxia Medical University, Ningxia 750004, PR China
| | - Yuzhao Zhu
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China
| | - Banglan Cai
- School of Basic Medicine, Ningxia Medical University, Ningxia 750004, PR China
| | - Chao Wang
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China
| | - Gang Zhao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Denghai Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jian Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China.
| |
Collapse
|
2
|
Azme E, Hasan MM, Ali ML, Alam R, Hoque N, Noushin F, Kabir MF, Islam A, Nipun TS, Hossen SMM, Chung HJ. Computational identification of potential natural terpenoid inhibitors of MDM2 for breast cancer therapy: molecular docking, molecular dynamics simulation, and ADMET analysis. Front Chem 2025; 13:1527008. [PMID: 40308267 PMCID: PMC12041027 DOI: 10.3389/fchem.2025.1527008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Background Breast cancer (BC) remains a leading cause of cancer-related mortality in women. The oncoprotein MDM2 negatively regulates the tumor suppressor p53, and its overexpression in BC promotes tumor progression and resistance to therapy. Targeting the MDM2-p53 interaction represents a promising therapeutic approach. However, many existing MDM2 inhibitors suffer from poor pharmacokinetics and off-target toxicity, necessitating the discovery of novel, more selective alternatives. This study aims to identify natural terpenoid compounds with potent MDM2 inhibitory potential through computational approaches. Methods A library of 398 natural terpenoids was sourced from the NPACT database and filtered based on Lipinski's Rule of Five. A two-stage docking strategy was applied: 1) rigid protein-flexible ligand docking to screen for high-affinity binders, followed by 2) ensemble docking using multiple MDM2 conformations derived from molecular dynamics (MD) simulations. The top candidates were further evaluated for their pharmacokinetic and toxicity profiles using ADMET analysis. Finally, 150 ns MD simulations and binding free energy (MM-PBSA) calculations were performed to assess the stability and strength of protein-ligand interactions. Results Three terpenoid compounds, olean-12-en-3-beta-ol, cabralealactone, and 27-deoxyactein demonstrated strong binding affinities toward MDM2 in ensemble docking studies. ADMET analysis confirmed their favorable pharmacokinetic properties. Further MD simulations indicated that these compounds formed highly stable complexes with MDM2. Notably, 27-deoxyactein exhibited the lowest binding free energy (-154.514 kJ/mol), outperforming the reference inhibitor Nutlin-3a (-133.531 kJ/mol), suggesting superior binding stability and interaction strength. Conclusion Our findings highlight 27-deoxyactein as a promising MDM2 inhibitor with strong binding affinity, stability, and a favorable pharmacokinetic profile. This study provides a computational foundation for further experimental validation, supporting the potential of terpenoid-based MDM2 inhibitors in BC therapy.
Collapse
Affiliation(s)
- Eva Azme
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Liakot Ali
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Rashedul Alam
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Neamul Hoque
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Fabiha Noushin
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mohammed Fazlul Kabir
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Ashraful Islam
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - S. M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Hea-Jong Chung
- Honam Regional Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Bio-Analysis Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Cao F, Zhang P, Chi Y, Wang Y, Xu L, Zhang D. Celastrol Ameliorated Alzheimer's Disease in Mice by Enhancing TBX21/TREM2 Expression in Microglia and Inhibiting Tau Phosphorylation. Neurochem Res 2025; 50:126. [PMID: 40138096 DOI: 10.1007/s11064-025-04375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that is typified by the formation of senile plaques containing Aβ and neurofibrillary tangles containing tau in a hyperphosphorylated state. Celastrol, a natural compound, has proven effective in alleviating AD pathology by enhancing autophagy and reducing tau aggregates. The present study investigates the neuroprotective mechanisms of celastrol, with a particular focus on the participation of the transcription factor T-box transcription factor 21 (TBX21) and triggering receptor expressed on myeloid cells 2 (TREM2) in microglial cells. In AD mouse models, celastrol upregulated TBX21 and TREM2, suppressed phosphorylated tau and inflammatory cytokines, and restored neuronal viability. In vitro, celastrol-treated microglia enhanced neuronal survival under amyloid-beta (Aβ) stress, effects abolished by TBX21/TREM2 knockdown. Mechanistically, TBX21 directly bound the TREM2 promoter to regulate its expression. These findings identified the TBX21-TREM2 axis as a therapeutic target for AD.
Collapse
Affiliation(s)
- Fanfan Cao
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, No. 516, Jungong Rd., Yangpu District, Shanghai, 200093, PR China
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Pan Zhang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Yongbin Chi
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Ying Wang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China.
| | - Denghai Zhang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China.
| |
Collapse
|
4
|
Pilard CM, Cardouat G, Gauthereau I, Gassiat L, Dubois M, Robillard P, Sauvestre F, Pelluard F, Berenguer S, Sarreau M, Claverol S, Tokarski C, Sentilhes L, Coatleven F, Vincienne M, Marthan R, Dumas-de-la-Roque E, Berger P, Friedberg MK, Renesme L, Freund-Michel V, Guibert C. Celastrol has beneficial effects on pulmonary hypertension associated with bronchopulmonary dysplasia: Preclinical study outcomes. Biomed Pharmacother 2025; 184:117881. [PMID: 39891950 DOI: 10.1016/j.biopha.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Pulmonary hypertension associated with bronchopulmonary dysplasia (BPD-PH) is a severe cardiorespiratory disease of preterm newborns leading to an excess of mortality in infancy and no curative treatment currently exists. Inflammation and oxidative stress are the common pathways that lead to BPD-PH. Therefore, we aimed to evaluate celastrol, a molecule with anti-inflammatory and antioxidant properties, as a promising preventive treatment in BPD-PH. In a model of neonatal rats exposed to hyperoxia, we demonstrated that mortality was prevented in animals treated with celastrol. Moreover, in vivo, celastrol decreased pulmonary hypertension, right ventricular hypertrophy, vascular remodeling, pulmonary arterial hyperreactivity to endothelin-1 and inflammation but had no effect on hypoalveolarization and altered angiogenesis. In vitro experiments carried out on human fetal pulmonary artery smooth muscle cells (HfPA-SMC) exposed to hyperoxia showed that endothelin-1-induced intracellular calcium response was increased and celastrol significantly inhibited this effect, without modifying endothelin-1 receptors expression. Regarding inflammation, celastrol decreased both CD68 staining in lung and secretion of the pro-inflammatory cytokine Tissue Inhibitor of Metalloproteinases-1 in intrapulmonary arteries from neonatal rats. IL-6 secretion was also decreased by celastrol in HfPA-SMC. Finally, hyperoxia increased heme oxygenase-1 (HO-1) expression and celastrol induced an overexpression of HO-1 in both neonatal rat lung and human cells. These results suggest that celastrol has a preventive effect on major hallmarks of PH in both a rat hyperoxic model of BPD-PH and HfPA-SMC exposed to hyperoxia via modulation of macrophage inflammatory signaling and HfPA-SMC calcium cycling. Celastrol could therefore be considered as a promising preventive treatment in BPD-PH.
Collapse
Affiliation(s)
- Claire-Marie Pilard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Guillaume Cardouat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Isabel Gauthereau
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Laure Gassiat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Mathilde Dubois
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Paul Robillard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Fanny Sauvestre
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Fanny Pelluard
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Sophie Berenguer
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Melie Sarreau
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | | | | | - Loïc Sentilhes
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Frederic Coatleven
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Marie Vincienne
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Roger Marthan
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Eric Dumas-de-la-Roque
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Patrick Berger
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Mark K Friedberg
- Department of Pediatrics, the Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Renesme
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Véronique Freund-Michel
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Christelle Guibert
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France.
| |
Collapse
|
5
|
Faheem H, Alawadhi R, Basha EH, Ismail R, Ibrahim HA, Elshamy AM, Motawea SM, Seleem MA, Elkordy A, Homouda AA, Khaled HE, Aboeida RA, Abdel Ghafar MT, Rizk FH, El-Harty YM. Ameliorating immune-dependent inflammation and apoptosis by targeting TLR4/MYD88/NF-κB pathway by celastrol mitigates the diabetic reproductive dysfunction. Physiol Genomics 2025; 57:103-114. [PMID: 39510137 DOI: 10.1152/physiolgenomics.00072.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
This study aimed to examine the protective effect of celastrol on testicular dysfunction in diabetic rats and the potential underlying mechanisms. All rats included in the study were divided into four groups: a control group treated with sodium citrate buffer and vehicle), a celastrol-treated control group, a streptozotocin (STZ)-induced diabetic group following insulin resistance, and a celastrol-treated diabetic group. Serum glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, interleukin (IL)-1β, tumor necrosis factor-α, and testosterone levels were measured. In addition, the levels of testicular homogenate superoxide dismutase and malondialdehyde were assessed. Furthermore, testicular tissue relative toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), and myeloid differentiation factor 88 (MYD88) expressions were quantitatively measured using polymerase chain reaction. Histopathological and immunohistochemical studies were also conducted. The results revealed that treatment with celastrol significantly reduced TLR4, MyD88, and NF-κB expressions, and the levels of inflammatory mediators such as tumor necrosis factor-α and IL-1β in the testicular tissue of treated rats. These findings suggest that celastrol has the potential to be effective in the treatment of diabetes-induced testicular injury by inhibiting testicular inflammation, apoptosis, and oxidative stress.NEW & NOTEWORTHY Celastrol inhibits the production of proinflammatory cytokines in the testicular tissue by specifically targeting the TLR4/MyD88/NF-κB signaling cascade pathways. This indicates that celastrol may serve as a promising new therapeutic target for treating diabetic reproductive dysfunction.
Collapse
Affiliation(s)
- Heba Faheem
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rana Alawadhi
- Science Department, College of Basic Education, PAAET, Ardhiya, Kuwait
| | - Eman H Basha
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Basic Medical Sciences-Physiology, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | - Radwa Ismail
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaimaa M Motawea
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Monira A Seleem
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alaa Elkordy
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdallah A Homouda
- Department of Urology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howayda E Khaled
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Reham A Aboeida
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Fatma H Rizk
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasmeen M El-Harty
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Moon M, Pyeon M, Yang J, Yun J, Yeom HD, Lee MH, Lee G, Lee JH. Subtype-selective effect and molecular regulation of celastrol and triptolide at human nicotinic acetylcholine receptors. Chem Biol Interact 2025; 408:111412. [PMID: 39914504 DOI: 10.1016/j.cbi.2025.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/12/2025]
Abstract
Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungmi Moon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Minsu Pyeon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Jaehui Yang
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Jeongyeon Yun
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | | | - Mee-Hyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea
| | - Gihyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea.
| | - Junho H Lee
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
7
|
Canová N, Šípková J, Arora M, Pavlíková Z, Kučera T, Šeda O, Šopin T, Vacík T, Slanař O. Effects of celastrol on the heart and liver galaninergic system expression in a mouse model of Western-type diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Front Pharmacol 2025; 16:1476994. [PMID: 39968178 PMCID: PMC11832397 DOI: 10.3389/fphar.2025.1476994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Background The complexity of the galaninergic system is still not fully understood, especially under specific pre-existing comorbidities related to metabolic dysfunction. A plant-derived triterpenoid celastrol was demonstrated to exert a complex effect on the galaninergic system and to have hepatoprotective and anti-obesity properties. However, the exact molecular mechanisms responsible for these effects remain unclear. Specifically, there are no data on the impact of celastrol on the heart and liver galaninergic system. Therefore, this study aimed to investigate the effects of celastrol on the galaninergic system expression in the heart and liver of mice suffering from diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis (MASLD/MASH). Methods The male mice C57BL/6J were fed a Western-type high-fat diet for 16 and 20 weeks to induce obesity and MASLD/MASH. Celastrol was administered along with a specific diet for the last 4 weeks to evaluate its impact on the progression of these conditions. Moreover, the inhibitor of sterol regulatory element-binding protein 1/2 (SREBP1/2), fatostatin, was also tested to compare its influence on the galaninergic system with celastrol. Results The study demonstrates that celastrol treatment was safe and led to a reduction in food and energy intake, body fat and liver weights, and MASLD-to-MASH progression and improved glucose tolerance, serum biochemistry markers, and hepatic lipid peroxidation in mice. Quantitative gene expression originally showed significant regulation of galanin and all three of its receptors (GalR1/2/3) in the heart ventricles and only GalR2 in the liver of obese mice. Celastrol influenced the gene expression of galanin receptors: it downregulated Galr1 in the heart and upregulated Galr2 in the liver and Galr3 in the heart ventricles, potentially affecting energy metabolism, oxidative stress, and inflammation. Fatostatin suppressed gene expression of all the detected members of the galaninergic system in the heart ventricles, depicting the role of SREBP in this process. Conclusion These findings suggest that celastrol may beneficially modulate the galaninergic system under obesity and MASLD-to-MASH progression, indicating its potential as a therapeutic agent for disorders associated with metabolic dysfunction.
Collapse
Affiliation(s)
- Nikolina Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Jana Šípková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Mahak Arora
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Zuzana Pavlíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tijana Šopin
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
8
|
Yang J, He B, Dang L, Liu J, Liu G, Zhao Y, Yu P, Wang Q, Wang L, Xin W. Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis. Inflammation 2025; 48:346-360. [PMID: 38874810 DOI: 10.1007/s10753-024-02060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Biyao He
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longjiao Dang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Guohao Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuwei Zhao
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Pengfei Yu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lei Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
Niu Y, Wu Z, Hu Q, Wu Y, Jiang Q, Yang X. Discovery of acetohydroxyacid synthase inhibitors as anti-tuberculosis lead compounds from natural products. Bioorg Med Chem 2025; 118:118041. [PMID: 39708691 DOI: 10.1016/j.bmc.2024.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Acetohydroxy acid synthase (AHAS) is a key enzyme that catalyzes the synthesis of branched-chain amino acids, which is indispensable for the survival and growth of Mycobacterium tuberculosis (Mtb). Aim to discover new AHAS inhibitors from natural products, here we performed computer assistant target-based screening for Mtb-AHAS inhibitors using Discovery Studio on TCMSP and SELLECK libraries. Mtb-AHAS structure was first simulated and verified for docking, and 80 compounds with top LIBDOCK and CDDOCK scores were obtained. By experimental verification, four compounds namely Salvianolic acid A, Embelin, Celastrol and Wushanicaritin showed inhibition potency against Mtb-AHAS with IC50 ranging from 805.5 nM-32.36 μM. The most potential inhibitor Celastrol exhibited bacteriostatic activity for both Mycobacterium smegmatis and Mycobacterium tuberculosis with MIC of 62.5 μM and 80 μM, respectively. This study revealed that Celastrol is the potential Mtb-AHAS inhibitor as an anti-tuberculosis lead compound.
Collapse
Affiliation(s)
- Yanhong Niu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China
| | - Zhili Wu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China
| | - Qianfang Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuchen Wu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China
| | - Qihua Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China.
| |
Collapse
|
10
|
Wainwright CL, Walsh SK. Pharmacology of Non-Psychoactive Phytocannabinoids and Their Potential for Treatment of Cardiometabolic Disease. Handb Exp Pharmacol 2025; 287:61-93. [PMID: 39235486 DOI: 10.1007/164_2024_731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of Cannabis sativa by humans dates back to the third millennium BC, and it has been utilized in many forms for multiple purposes, including production of fibre and rope, as food and medicine, and (perhaps most notably) for its psychoactive properties for recreational use. The discovery of Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive phytocannabinoid contained in cannabis by Gaoni and Mechoulam in 1964 (J Am Chem Soc 86, 1646-1647), was the first major step in cannabis research; since then the identification of the chemicals (phytocannabinoids) present in cannabis, the classification of the pharmacological targets of these compounds and the discovery that the body has its own endocannabinoid system (ECS) have highlighted the potential value of cannabis-derived compounds in the treatment of many diseases, such as neurological disorders and cancers. Although the use of Δ9-THC as a therapeutic agent is constrained by its psychoactive properties, there is growing evidence that non-psychoactive phytocannabinoids, derived from both Cannabis sativa and other plant species, as well as non-cannabinoid compounds found in Cannabis sativa, have real potential as therapeutics. This chapter will focus on the possibilities for using these compounds in the prevention and treatment of cardiovascular disease and related metabolic disturbances.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK.
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| |
Collapse
|
11
|
Tian R, Guo S, Chen S, Wu J, Long A, Cheng R, Wang X, Huang L, Li C, Mao W, Xu P, Yu L, Pan H, Liu L. Natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy: Recent progress and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156342. [PMID: 39742572 DOI: 10.1016/j.phymed.2024.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) is a pivotal regulator of redox balance, metabolism, protein homeostasis and inflammation. Nrf2 is critically involved in both ferroptosis and renal diseases, and may serve as a significant target for many natural products in the treatment of renal diseases. However, a comprehensive overview on this topic is still lacking. PURPOSE To review the protective or therapeutic effects of natural products regulating Nrf2-related ferroptosis against various renal diseases. METHODS We systematically searched the electronic databases involving PubMed, Web of Science, Google Scholar, China National Knowledge Internet (CNKI), Wanfang Database and VIP Database. To ensure a comprehensive exploration, keywords including Nrf2, ferroptosis, natural products, phytochemicals, renal disease, kidney disease, kidney injury and nephropathy were employed. RESULTS Ferroptosis is deeply implicated in various kinds of renal diseases, notably including cisplatin-induced acute kidney injury, sepsis-associated acute kidney injury, renal ischemia/reperfusion injury, diabetic nephropathy, kidney stones and renal fibrosis. Nrf2 plays a regulatory role on many important genes related to iron metabolism, antioxidant system and lipid metabolism, thereby modulating ferroptosis. More than twenty natural products exert renoprotective effects by inhibiting ferroptosis via the regulation of Nrf2. This review presents a comprehensive overview of recent advancements in elucidating the ferroptosis involvement in renal diseases, the role of Nrf2 in regulating ferroptosis, and summarizes the renoprotective natural products as Nrf2 modulators for ferroptosis inhibition. CONCLUSION Through the comprehensive insights, this review clarifies the protective or therapeutic effects of natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy, in the pursuit of providing new research ideas and directions for the treatment of renal diseases. Further drug development aimed at discovering more natural products and optimizing their utilization for disease treatment is necessary.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shan Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aoyang Long
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ran Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaowan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Lihua Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chuang Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wei Mao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Peng Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| |
Collapse
|
12
|
Batool S, Asim L, Qureshi FR, Masood A, Mushtaq M, Saleem RSZ. Molecular Targets of Plant-based Alkaloids and Polyphenolics in Liver and Breast Cancer- An Insight into Anticancer Drug Development. Anticancer Agents Med Chem 2025; 25:295-312. [PMID: 38963106 DOI: 10.2174/0118715206302216240628072554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-κB, Shh, MAPK/ERK, and Wnt/β-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.
Collapse
Affiliation(s)
- Salma Batool
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Laiba Asim
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Fawad Raffaq Qureshi
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Maria Mushtaq
- Department of Technical Laboratory Analytics, Abu Dhabi Vocational Education and Training Institute (ADVETI), Abu Dhabi, UAE
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| |
Collapse
|
13
|
Al-Tantawy SM, Eraky SM, Eissa LA. Novel therapeutic target for diabetic kidney disease through downregulation of miRNA-192-5p and miRNA-21-5p by celastrol: implication of autophagy, oxidative stress, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03669-5. [PMID: 39702603 DOI: 10.1007/s00210-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
One of the most common microvascular effects of diabetes mellitus (DM) that may result in end-stage renal failure is diabetic kidney disease (DKD). Current treatments carry a substantial residual risk of disease progression regardless of treatment. By modulating various molecular targets, pentacyclic triterpenoid celastrol has been found to possess curative properties in the treatment of diabetes and other inflammatory diseases. Therefore, the present study investigated whether celastrol has anti-inflammatory, antioxidant, and antifibrotic effects as a natural compound against experimental DKD. Streptozotocin (55 mg/kg) was utilized for inducing DKD in a rat model. Antioxidant enzymes and renal function tests were assessed in serum samples. In kidney homogenate, relative miRNA-192-5p and miRNA-21-5p gene expressions were measured. Furthermore, using real-time PCR to evaluate the gene expressions of nucleus erythroid 2-related factor-2 (Nrf-2), matrix metalloproteinase-2 (MMP-2), proapoptotic caspase-3, antiapoptotic Bcl-2, LC-3, and Beclin-1. Moreover, the transforming growth factor β1 (TGF-β1), LC-3, Bcl-2, caspase-3 and NADPH oxidase 4 (NOX4) renal expressions were assessed semi-quantitatively using immunohistochemistry. Seven weeks of celastrol (1.5 mg/kg/day) treatment significantly ameliorated DKD. Celastrol improves kidney functions. Moreover, celastrol treatment demonstrated potent antioxidant effect. The mechanism of apoptosis resulting from the administration of celastrol included the modulation of Bcl-2 and caspase-3 expression in the kidney. Celasterol administration leads to an increase in LC-3 and Beclin-1 renal expression that resulting in autophagy. Celastrol treatment improved renal fibrosis by decreasing TGF-β1 and MMP-2 renal expression. These antifibrotic effects could be due to their ability to inhibit miRNA-192-5p and miRNA-21-5p expression in renal tissues. Celastrol exerts a renoprotective effect by targeting miRNA-21 and miRNA-192, as well as their downstream pathways, such as autophagy, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
14
|
Scalavino V, Piccinno E, Giannelli G, Serino G. Inflammasomes in Intestinal Disease: Mechanisms of Activation and Therapeutic Strategies. Int J Mol Sci 2024; 25:13058. [PMID: 39684769 DOI: 10.3390/ijms252313058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
NOD-like receptors (NLRs) are a family of cytosolic pattern recognition receptors (PRRs) implicated in the innate immune sensing of pathogens and damage signals. NLRs act as sensors in multi-protein complexes called inflammasomes. Inflammasome activity is necessary for the maintenance of intestinal homeostasis, although their aberrant activation contributes to the pathogenesis of several gastrointestinal diseases. In this review, we summarize the main features of the predominant types of inflammasomes involved in gastrointestinal immune responses and their implications in intestinal disease, including Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), celiac disease, and Colorectal Cancer (CRC). In addition, we report therapeutic discoveries that target the inflammasome pathway, highlighting promising novel therapeutic strategies in the treatment of intestinal diseases. Collectively, our understanding of the mechanisms of intestinal inflammasome activation and their interactions with other immune pathways appear to be not fully elucidated. Moreover, the clinical relevance of the efficacy of inflammasome inhibitors has not been evaluated. Despite these limitations, a greater understanding of the effectiveness, specificity, and reliability of pharmacological and natural inhibitors that target inflammasome components could be an opportunity to develop new therapeutic options for the treatment of intestinal disease.
Collapse
Affiliation(s)
- Viviana Scalavino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Emanuele Piccinno
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| |
Collapse
|
15
|
Chakrabarty S, Nandi S, Bandopadhyay P, Das A, Azaharuddin M, Pal A, Ghosh S, Sett U, Nandy S, Basu T. Synthesis of novel hydrophilic celastrol nanoformulation by entrapment within calcium phosphate nanoparticle and study of its antioxidant activity against neurotoxin-induced damage in human neuroblastoma cells. Biochem Biophys Res Commun 2024; 735:150480. [PMID: 39094229 DOI: 10.1016/j.bbrc.2024.150480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Celastrol, a pentacyclic triterpenoid found in Chinese herb Tripterygium wilfordii, is considered as one of the top-five natural medicinal compounds with high antioxidant property. However, celastrol has poor aqueous solubility and thereby low bioavailability, restricting its clinical application as drug. To overcome this problem, we nanonized celastrol by entrapping it within hydrophilic nanocarrier - calcium phosphate nanoparticle. The synthesized calcium phosphate celastrol nanoparticle (CPCN) had average size of 35 nm, spherical shape, significant stability with (-) 37 mV zeta potential, celastrol entrapment efficiency around 75 % and low celastrol release kinetics spanning over 7 days, as measured by different techniques like FESEM, AFM, DLS, and spectrophotometry. Studies on the antioxidant potency of CPCN by flow cytometry and fluorescence microscopy depicted that the toxicity developed in human neuroblastoma cells SH-SY5Y by treatment with the selective neurotoxin MPP+ iodide (N-Methyl-4-phenylpyridinium iodide) got reduced by pretreatment of the cells with CPCN. Determination of cellular ROS content, depolarization level of mitochondrial membrane potential, cell cycle analysis and nuclear damage in MPP+-exposed cells demonstrated that CPCN had about 65 % more antioxidant efficacy over that of bulk celastrol. Thus, the nanonization process transformed hydrophobic celastrol into hydrophilic CPCN, having high potentiality to be developed as an effective antioxidant drug.
Collapse
Affiliation(s)
- Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| |
Collapse
|
16
|
Zhu Y, Meng Y, Zhang J, Liu R, Shen S, Gu L, Wong YK, Ma A, Chai X, Zhang Y, Liu Y, Wang J. Recent Trends in anti-tumor mechanisms and molecular targets of celastrol. Int J Biol Sci 2024; 20:5510-5530. [PMID: 39494324 PMCID: PMC11528459 DOI: 10.7150/ijbs.99592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Celastrol, a compound derived from traditional Chinese medicine, has therapeutic effects and has been used to treat inflammation-related diseases, cancer, cardiovascular diseases, and neurodegenerative diseases. However, current reviews lack a comprehensive and systematic summary of the anti-tumor mechanisms and molecular targets of celastrol. For this reason, this paper reviews the anticancer properties of celastrol and the molecular mechanisms underlying its anticancer effects. This paper primarily focuses on the mechanism of action of celastrol in terms of inhibition of cell proliferation and regulation of the cell cycle, regulation of apoptosis and autophagy, inhibition of cell invasion and metastasis, anti-inflammation, regulation of immunotherapy, and angiogenesis. More importantly, the target proteins of celastrol identified by chemical proteomics or other methods are highlighted, providing detailed targets with novel therapeutic potential for anti-tumor treatment. In addition, we describe the side effects and strategies to improve the bioavailability of celastrol. In summary, this paper analyzes celastrol, a natural compound with therapeutic effects and clear targets, aiming to draw more attention from the scientific and pharmacological communities and accelerating its clinical application for the benefit of cancer patients.
Collapse
Affiliation(s)
- Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin-kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Pan M, Li H, Shi X. A New Target for Hepatic Fibrosis Prevention and Treatment: The Warburg Effect. FRONT BIOSCI-LANDMRK 2024; 29:321. [PMID: 39344326 DOI: 10.31083/j.fbl2909321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Pan
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Xiaoyan Shi
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| |
Collapse
|
18
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
19
|
Ouyang H, Zhang Y, Zhu Y, Gong T, Zhang Z, Fu Y. Adipocyte-targeted celastrol delivery via biguanide-modified micelles improves treatment of obesity in DIO mice. J Mater Chem B 2024; 12:7905-7914. [PMID: 39028265 DOI: 10.1039/d4tb00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Obesity has emerged as a significant global health burden, exacerbated by serious side effects associated with existing anti-obesity medications. Celastrol (CLT) holds promise for weight loss but encounters challenges related to poor solubility and systemic toxicity. Here, we present chondroitin sulfate (CS)-derived micelles engineered for adipocyte-specific targeting, aiming to enhance the therapeutic potential of CLT while minimizing its systemic toxicity. To further enhance adipocyte affinity, we introduced a biguanide moiety into a micellar vehicle. CS is sequentially modified with hydrophilic metformin and hydrophobic 4-aminophenylboronic acid pinacol ester (PBE), resulting in the self-assembly of CLT-encapsulated micelles (MET-CS-PBE@CLT). This innovative design imparts amphiphilicity via the PBE moieties while ensuring the outward exposure of hydrophilic metformin moieties, facilitating active interactions with adipocytes. In vitro studies confirmed the enhanced uptake of MET-CS-PBE@CLT micelles by adipocytes, while in vivo studies demonstrated increased distribution within adipose tissues. In a diet-induced obese mouse model, MET-CS-PBE@CLT exhibited remarkable efficacy in weight loss without affecting food intake. This pioneering strategy offers a promising, low-risk, and highly effective solution to address the global obesity epidemic.
Collapse
Affiliation(s)
- Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yueting Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
21
|
Wang B, Shen J, Zhou C, Wang X, Wang S, Hou R. Enhanced Pharmacokinetics of Celastrol via Long-Circulating Liposomal Delivery for Intravenous Administration. Int J Nanomedicine 2024; 19:5707-5718. [PMID: 38882540 PMCID: PMC11179669 DOI: 10.2147/ijn.s461624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Background Rheumatoid Arthritis (RA) involves prolonged inflammation of the synovium, damaging joints and causing stiffness and deformity. Celastrol (Cel), derived from the Chinese herbal medicine Tripterygium wilfordii Hook F, offers immunosuppressive effects for RA treatment but is limited by poor solubility and bioavailability. Purpose In this study, long-circulating Cel-loaded liposomes (Cel-LPs) were used to increase the pharmacokinetics of Cel, thereby improving drug delivery and efficacy for the treatment of RA. Methods Cel-LPs were prepared and administered orally and intravenously to compare the elimination half-life of drugs and bioavailability of Cel. Cel-LPs were prepared using the lipid thin-layer-hydration-extrusion method. Human rheumatoid arthritis synovial (MH7A) cells were used to investigate the compatibility of Cel-LPs. The pharmacokinetic studies were performed on male Sprague-Dawley (SD) rats. Results The Cel-LPs had an average size of 72.20 ± 27.99 nm, a PDI of 0.267, a zeta potential of -31.60 ± 6.81 mV, 78.77 ± 5.69% drug entrapment efficiency and sustained release (5.83 ± 0.42% drug loading). The cytotoxicity test showed that liposomes had excellent biocompatibility and the fluorescence microscope diagram indicated that liposome entrapment increased intracellular accumulation of Rhodamine B by MH7A cells. Furthermore, the results exhibited that Cel-LPs improved the pharmacokinetics of Cel by increasing the elimination half-life (t1/2) to 11.71 hr, mean residence time (MRT(0-∞)) to 7.98 hr and apparent volume of distribution (Vz/F) to 44.63 L/kg in rats, compared to the Cel solution. Conclusion In this study, liposomes were demonstrated to be effective in optimizing the delivery of Cel, enabling the formulation of Cel-LPs with prolonged blood circulation and sustained release characteristics. This formulation enhanced the intravenous solubility and bioavailability of Cel, developing a foundation for its clinical application in RA and providing insights on poorly soluble drug management.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Jiquan Shen
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Changjian Zhou
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Xinggao Wang
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
| |
Collapse
|
22
|
Wu KY, Wang XC, Anderson M, Tran SD. Advancements in Nanosystems for Ocular Drug Delivery: A Focus on Pediatric Retinoblastoma. Molecules 2024; 29:2263. [PMID: 38792122 PMCID: PMC11123804 DOI: 10.3390/molecules29102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
23
|
Quiros-Guerrero LM, Allard PM, Nothias LF, David B, Grondin A, Wolfender JL. Comprehensive mass spectrometric metabolomic profiling of a chemically diverse collection of plants of the Celastraceae family. Sci Data 2024; 11:415. [PMID: 38649352 PMCID: PMC11035674 DOI: 10.1038/s41597-024-03094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Natural products exhibit interesting structural features and significant biological activities. The discovery of new bioactive molecules is a complex process that requires high-quality metabolite profiling data to properly target the isolation of compounds of interest and enable their complete structural characterization. The same metabolite profiling data can also be used to better understand chemotaxonomic links between species. This Data Descriptor details a dataset resulting from the untargeted liquid chromatography-mass spectrometry metabolite profiling of 76 natural extracts of the Celastraceae family. The spectral annotation results and related chemical and taxonomic metadata are shared, along with proposed examples of data reuse. This data can be further studied by researchers exploring the chemical diversity of natural products. This can serve as a reference sample set for deep metabolome investigation of this chemically rich plant family.
Collapse
Affiliation(s)
- Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland.
| | | | - Louis-Felix Nothias
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland
| | - Bruno David
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Antonio Grondin
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland.
| |
Collapse
|
24
|
Qin JJ, Niu MD, Cha Z, Geng QH, Li YL, Ren CG, Molloy DP, Yu HR. TRAIL and Celastrol Combinational Treatment Suppresses Proliferation, Migration, and Invasion of Human Glioblastoma Cells via Targeting Wnt/β-catenin Signaling Pathway. Chin J Integr Med 2024; 30:322-329. [PMID: 37861963 DOI: 10.1007/s11655-023-3752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells. METHODS Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and β-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored. RESULTS Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3β and down-regulated the expression of β-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of β-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01). CONCLUSIONS Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/β-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.
Collapse
Affiliation(s)
- Jing-Jing Qin
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Meng-da Niu
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Cha
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qing-Hua Geng
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Lin Li
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hua-Rong Yu
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Sun Y, Wang C, Li X, Lu J, Wang M. Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Front Pharmacol 2024; 15:1137289. [PMID: 38434700 PMCID: PMC10904542 DOI: 10.3389/fphar.2024.1137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Celastrol is a quinone methyl triterpenoid monomeric ingredient extracted from the root of Tripterygium wilfordii. Celastrol shows potential pharmacological activities in various diseases, which include inflammatory, obesity, cancer, and bacterial diseases. However, the application prospect of celastrol is largely limited by its low bioavailability, poor water solubility, and undesired off-target cytotoxicity. To address these problems, a number of drug delivery methods and technologies have been reported to enhance the efficiency and reduce the toxicity of celastrol. We classified the current drug delivery technologies into two parts. The direct chemical modification includes nucleic acid aptamer-celastrol conjugate, nucleic acid aptamer-dendrimer-celastrol conjugate, and glucolipid-celastrol conjugate. The indirect modification includes dendrimers, polymers, albumins, and vesicular carriers. The current technologies can covalently bond or encapsulate celastrol, which improves its selectivity. Here, we present a review that focalizes the recent advances of drug delivery strategies in enhancing the efficiency and reducing the toxicity of celastrol.
Collapse
Affiliation(s)
- Yuan Sun
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chengen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Xiaoguang Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Jun Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| |
Collapse
|
26
|
Feng F, Duan Q, Jiang X, Kao X, Zhang D. DendroX: multi-level multi-cluster selection in dendrograms. BMC Genomics 2024; 25:134. [PMID: 38308243 PMCID: PMC10835886 DOI: 10.1186/s12864-024-10048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in the dendrogram. RESULTS We developed DendroX, a web app that provides interactive visualization of a dendrogram where users can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has its members sharing broad anticancer, anti-inflammatory and antioxidant activities. CONCLUSIONS DendroX solves the problem of matching visually and computationally determined clusters in a cluster heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent mechanisms.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoming Kao
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.
| |
Collapse
|
27
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Campbell MJ, Beenken KE, Spencer HJ, Jayana B, Hester H, Sahukhal GS, Elasri MO, Smeltzer MS. Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiol Spectr 2024; 12:e0314723. [PMID: 38059629 PMCID: PMC10782960 DOI: 10.1128/spectrum.03147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Because biofilm formation is such a problematic feature of Staphylococcus aureus infections, much effort has been put into identifying biofilm inhibitors. However, the results observed with these compounds are often reported in isolation, and the methods used to assess biofilm formation vary between labs, making it impossible to assess relative efficacy and prioritize among these putative inhibitors for further study. The studies we report address this issue by directly comparing putative biofilm inhibitors using a consistent in vitro assay. This assay was previously shown to maximize biofilm formation, and the results observed with this assay have been proven to be relevant in vivo. Of the 19 compounds compared using this method, many had no impact on biofilm formation under these conditions. Indeed, only one proved effective at limiting biofilm formation without also inhibiting growth.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bina Jayana
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hana Hester
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
29
|
Cho O, Lee JW, Jeong YJ, Kim LK, Jung BK, Heo TH. Celastrol, which targets IL-2/CD25 binding inhibition, induces T cell-mediated antitumor activity in melanoma. Eur J Pharmacol 2024; 962:176239. [PMID: 38043776 DOI: 10.1016/j.ejphar.2023.176239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Interleukin-2 (IL-2) induces contrasting immune responses depending on its binding receptor subunit; thus, selective receptor binding is considered a key challenge in cancer therapeutic strategies. In this study, we aimed to investigate the inhibition of IL-2 action and antitumor activity of celastrol (CEL), a compound identified in a screen for IL-2/CD25 binding inhibitors, and to elucidate the underlying role of CEL in immune cells. We found that CEL selectively impairs the binding of IL-2 and CD25 and directly binds to IL-2 but not to CD25. CEL significantly suppressed the proliferation and signaling of IL-2-dependent murine T cells and interfered with IL-2-responsive STAT5 phosphorylation in IL-2 reporter cells and human PBMCs. After confirming the impact of CEL on IL-2, we evaluated its antitumor activity in C57BL/6 mice bearing B16F10 tumors and found that CEL significantly inhibited tumor growth by increasing CD8+ T cells. We also found that CEL did not inhibit tumor growth in T cell-deficient BALB/c nude mice, suggesting that its activity was mediated by the T-cell response. Moreover, combination therapy with low-dose CEL and a TNFR2 antagonist synergistically improved the therapeutic efficacy of the individual monotherapies by increasing the ratio of intratumoral CD8/Treg cells and suppressing Foxp3 expression. These findings suggest that CEL, which inhibits CD25 binding by targeting IL-2, exerts antitumor activity by mediating the T-cell response and could be a promising candidate for combination therapy in cancer immunotherapy against melanoma.
Collapse
Affiliation(s)
- Okki Cho
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joong-Woon Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Bo-Kyung Jung
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
30
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
31
|
Wu SQ, Zhu X, Yuan T, Yuan FY, Zhou S, Huang D, Wang Y, Tang GH, Huang ZS, Chen X, Yin S. Discovery of Ingenane Diterpenoids from Euphorbia hylonoma as Antiadipogenic Agents. JOURNAL OF NATURAL PRODUCTS 2023; 86:2691-2702. [PMID: 37974450 DOI: 10.1021/acs.jnatprod.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Thirteen new Euphorbia diterpenoids, euphylonanes A-M (1-13), and eight known ones were isolated from the whole plants of Euphorbia hylonoma. Compounds 1 and 2 are two rearranged ingenanes bearing a rare 6/6/7/3-fused ring system. Compound 3 represents the first example of a 9,10-epoxy tigliane, while 4-21 are typical ingenanes varying with substituents. Structures were elucidated using a combination of spectroscopic, computational, and chemical methods. Most ingenanes exerted a significant antiadipogenic effect in 3T3-L1 adipocytes, among which 4 was the most active with an EC50 value of 0.60 ± 0.27 μM. Mechanistic study revealed that 4 inhibited the adipogenesis and lipogenesis in adipocytes via activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shu-Qi Wu
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Yuan
- School of Health, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shiyou Zhou
- Guangdong Vision and Eye Institute, Guangzhou 510060, People's Republic of China
| | - Dong Huang
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ying Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xin Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
32
|
Wang X, Wang L, Fekrazad R, Zhang L, Jiang X, He G, Wen X. Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: recent advances and future prospects. Front Immunol 2023; 14:1275859. [PMID: 38022517 PMCID: PMC10644286 DOI: 10.3389/fimmu.2023.1275859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a potent contender in the fight against microbial infections, especially in the context of the rising antibiotic resistance crisis. Recently, there has been significant interest in polyphenolic natural products as potential photosensitizers (PSs) in aPDT, given their unique chemical structures and inherent antimicrobial properties. Polyphenolic natural products, abundant and readily obtainable from natural sources, are generally regarded as safe and highly compatible with the human body. This comprehensive review focuses on the latest developments and future implications of using natural polyphenols as PSs in aPDT. Paramount polyphenolic compounds, including curcumin, hypericin, quercetin, hypocrellin, celastrol, riboflavin, resveratrol, gallic acid, and aloe emodin, are elaborated upon with respect to their structural characteristics, absorption properties, and antimicrobial effects. Furthermore, the aPDT mechanism, specifically its targeted action on microbial cells and biofilms, is also discussed. Polyphenolic natural products demonstrate immense potential as PSs in aPDT, representing a promising alternate approach to counteract antibiotic-resistant bacteria and biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Huang CL, Chen DY, Tzang CC, Lin JW, Tzang BS, Hsu TC. Celastrol attenuates human parvovirus B19 NS1‑induced NLRP3 inflammasome activation in macrophages. Mol Med Rep 2023; 28:193. [PMID: 37654202 PMCID: PMC10502933 DOI: 10.3892/mmr.2023.13080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Human parvovirus B19 (B19V) has been strongly associated with a variety of inflammatory disorders, such as rheumatoid arthritis (RA), inflammatory bowel disease and systemic lupus erythematosus. Non‑structural protein 1 (NS1) of B19V has been demonstrated to play essential roles in the pathological processes of B19V infection due to its regulatory properties on inflammatory cytokines. Celastrol, a quinone methide isolated from Tripterygium wilfordii, has displayed substantial potential in treating inflammatory diseases, such as psoriasis and RA. However, little is known about the effects of celastrol on B19V NS1‑induced inflammation. Therefore, cell viability assay, migration assay, phagocytosis analysis, zymography assay, ELISA and immunoblotting were conducted to verify the influences of celastrol on macrophages. The present study reported the attenuating effects of celastrol on B19V NS1‑induced inflammatory responses in macrophages derived from human acute monocytic leukemia cell lines, U937 and THP‑1. Although the migration was not significantly decreased by celastrol in both U937 and THP‑1 macrophages, significantly decreased viability, migration and phagocytosis were detected in both B19V NS1‑activated U937 and THP‑1 macrophages in the presence of celastrol. Additionally, celastrol significantly decreased MMP‑9 activity and the levels of inflammatory cytokines, including IL‑6, TNF‑α and IL‑1β, in B19V NS1‑activated U937 and THP‑1 cells. Notably, significantly decreased levels of NLR family pyrin domain‑containing 3, apoptosis‑associated speck‑like, caspase‑1 and IL‑18 proteins were observed in both B19V NS1‑activated U937 and THP‑1 cells in the presence of celastrol, indicating the involvement of the inflammasome pathway. To the best of our knowledge, the present study is the first to report on the attenuating effects of celastrol on B19V NS1‑induced inflammatory responses in macrophages, suggesting a therapeutic role for celastrol in B19V NS1‑related inflammatory diseases.
Collapse
Affiliation(s)
- Chang-Lun Huang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Medical Foundation Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Der-Yuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
- College of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Jhen-Wei Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
34
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, Chang CM, Priyadarshini A. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coord Chem Rev 2023; 491:215251. [DOI: 10.1016/j.ccr.2023.215251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
35
|
Li H, Niu C, Luo J, Huang Z, Zhou W. Anticariogenic Activity of Celastrol and Its Enhancement of Streptococcal Antagonism in Multispecies Biofilm. Antibiotics (Basel) 2023; 12:1245. [PMID: 37627665 PMCID: PMC10451999 DOI: 10.3390/antibiotics12081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a chronic disease resulting from dysbiosis in the oral microbiome. Antagonism of commensal Streptococcus sanguinis and Streptococcus gordonii against cariogenic Streptococcus mutans is pivotal to keep the microecological balance. However, concerns are growing on antimicrobial agents in anticaries therapy, for broad spectrum antimicrobials may have a profound impact on the oral microbial community, especially on commensals. Here, we report celastrol, extracted from Traditional Chinese Medicine's Tripterygium wilfordii (TW) plant, as a promising anticaries candidate. Our results revealed that celastrol showed antibacterial and antibiofilm activity against cariogenic bacteria S. mutans while exhibiting low cytotoxicity. By using a multispecies biofilm formed by S. mutans UA159, S. sanguinis SK36, and S. gordonii DL1, we observed that even at relatively low concentrations, celastrol reduced S. mutans proportion and thereby inhibited lactic acid production as well as water-insoluble glucan formation. We found that celastrol thwarted S. mutans outgrowth through the activation of pyruvate oxidase (SpxB) and H2O2-dependent antagonism between commensal oral streptococci and S. mutans. Our data reveal new anticaries properties of celastrol that enhance oral streptococcal antagonism, which thwarts S. mutans outgrowth, indicating its potential to maintain oral microbial balance for prospective anticaries therapy.
Collapse
Affiliation(s)
- Hao Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Junyuan Luo
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
36
|
Xu Y, Li W, Wen R, Sun J, Liu X, Zhao S, Zhang J, Liu Y, Zhao M. Voltage-gated sodium channels, potential targets of Tripterygium wilfordii Hook. f. to exert activity and produce toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116448. [PMID: 37030557 DOI: 10.1016/j.jep.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Tripterygium wilfordii Hook. f. has been widely used in clinical practice due to its good anti-inflammatory and analgesic activities. However, its application is limited by potential toxicity and side effects. AIM OF THE STUDY The study aimed to identify the mechanisms responsible for the pharmacological activity and cardiotoxicity of the main monomers of Tripterygium wilfordii. MATERIALS AND METHODS Database analysis predicted that ion channels may be potential targets of Tripterygium wilfordii. The regulatory effects of monomers (triptolide, celastrol, demethylzeylasteral, and wilforgine) on protein Nav1.5 and Nav1.7 were predicted and detected by Autodock and patch clamping. Then, we used the formalin-induced pain model and evaluated heart rate and myocardial zymograms to investigate the analgesic activity and cardiotoxicity of each monomer in vivo. RESULTS All four monomers were able to bind to Nav1.7 and Nav1.5 with different binding energies and subsequently inhibited the peak currents of both Nav1.7 and Nav1.5. The monomers all exhibited analgesic effects on formalin-induced pain; therefore, we hypothesized that Nav1.7 is one of the key analgesic targets. Demethylzeylasteral reduced heart rate and increased the level of creatine kinase-MB, thus suggesting a potential cardiac risk; data suggested that the inhibitory effect on Nav1.5 might be an important factor underlying its cardiotoxicity. CONCLUSION Our findings provide an important theoretical basis for the further screening of active monomers with higher levels of activity and lower levels of toxicity.
Collapse
Affiliation(s)
- Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Wenwen Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Ruojin Wen
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Jianfang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Shangfeng Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Jinghai Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Yanfeng Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
37
|
Liu P, Chen Y, Zhang Z, Yuan Z, Sun JG, Xia S, Cao X, Chen J, Zhang CJ, Chen Y, Zhan H, Jin Y, Bao X, Gu Y, Zhang M, Xu Y. Noncanonical contribution of microglial transcription factor NR4A1 to post-stroke recovery through TNF mRNA destabilization. PLoS Biol 2023; 21:e3002199. [PMID: 37486903 PMCID: PMC10365314 DOI: 10.1371/journal.pbio.3002199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023] Open
Abstract
Microglia-mediated neuroinflammation is involved in various neurological diseases, including ischemic stroke, but the endogenous mechanisms preventing unstrained inflammation is still unclear. The anti-inflammatory role of transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) in macrophages and microglia has previously been identified. However, the endogenous mechanisms that how NR4A1 restricts unstrained inflammation remain elusive. Here, we observed that NR4A1 is up-regulated in the cytoplasm of activated microglia and localizes to processing bodies (P-bodies). In addition, we found that cytoplasmic NR4A1 functions as an RNA-binding protein (RBP) that directly binds and destabilizes Tnf mRNA in an N6-methyladenosine (m6A)-dependent manner. Remarkably, conditional microglial deletion of Nr4a1 elevates Tnf expression and worsens outcomes in a mouse model of ischemic stroke, in which case NR4A1 expression is significantly induced in the cytoplasm of microglia. Thus, our study illustrates a novel mechanism that NR4A1 posttranscriptionally regulates Tnf expression in microglia and determines stroke outcomes.
Collapse
Affiliation(s)
- Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yan Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Jian-Guang Sun
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jian Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Cun-Jin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yanting Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Hui Zhan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yuexinzi Jin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Zheng H, Zhao C, Lu Y, Cao J, Zeng F, Wang H, Qin Z, Tao T. Celastrol-encapsulated microspheres prepared by microfluidic electrospray for alleviating inflammatory pain. BIOMATERIALS ADVANCES 2023; 149:213398. [PMID: 36990025 DOI: 10.1016/j.bioadv.2023.213398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Inflammatory pain is induced by trauma, infection, chemical stimulation, etc. It causes severe physical and psychological agony to patients. Celastrol has powerful anti-inflammatory property and has achieved good results in various inflammation-related diseases. However, the low water solubility and multi-system toxicity limit its clinical application. Herein, we proposed alginate microspheres with core-shell structure which encapsulated celastrol by microfluidic electrospray to effectively overcome the shortcomings and improve the therapeutic effect. The microspheres had uniform size and good biocompatibility, and could release the loaded drugs in the gut. The behavioral tests showed that the celastrol-loaded microspheres effectively alleviated inflammatory pain, and the hematoxylin and eosin staining (HE staining), immunofluorescence and detection of inflammatory cytokines showed the anti-inflammatory effect. These results indicated that the microspheres could reduce dose and toxicity without affecting efficacy, and facilitate the application of celastrol in different clinical situations.
Collapse
Affiliation(s)
- Huiyu Zheng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Central People's Hospital of Zhanjiang, Yuanzhu Road, Zhanjiang 524045, China
| | - Cheng Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210096, China; Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
| | - Yitian Lu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Central People's Hospital of Zhanjiang, Yuanzhu Road, Zhanjiang 524045, China
| | - Jun Cao
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518000, China
| | - Fanning Zeng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Yuanzhu Road, Zhanjiang 524045, China.
| |
Collapse
|
39
|
Chen N, Zhang R, Zeng T, Zhang X, Wu R. Developing TeroENZ and TeroMAP modules for the terpenome research platform TeroKit. Database (Oxford) 2023; 2023:7173549. [PMID: 37207351 PMCID: PMC10380177 DOI: 10.1093/database/baad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 03/17/2023] [Indexed: 05/21/2023]
Abstract
Terpenoids and their derivatives are collectively known as the terpenome and are the largest class of natural products, whose biosynthesis refers to various kinds of enzymes. To date, there is no terpenome-related enzyme database, which is a desire for enzyme mining, metabolic engineering and discovery of new natural products related to terpenoids. In this work, we have constructed a comprehensive database called TeroENZ (http://terokit.qmclab.com/browse_enz.html) containing 13 462 enzymes involved in the terpenoid biosynthetic pathway, covering 2541 species and 4293 reactions reported in the literature and public databases. At the same time, we classify enzymes according to their catalytic reactions into cyclase, oxidoreductase, transferase, and so on, and also make a classification according to species. This meticulous classification is beneficial for users as it can be retrieved and downloaded conveniently. We also provide a computational module for isozyme prediction. Moreover, a module named TeroMAP (http://terokit.qmclab.com/browse_rxn.html) is also constructed to organize all available terpenoid enzymatic reactions into an interactive network by interfacing with the previously established database of terpenoid compounds, TeroMOL. Finally, all these databases and modules are integrated into the web server TeroKit (http://terokit.qmclab.com/) to shed light on the field of terpenoid research. Database URL http://terokit.qmclab.com/.
Collapse
Affiliation(s)
- Nianhang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
40
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
41
|
Xu J, Chen S, Yang J, Nie Z, He J, Zhao Y, Liu X, Zhang J, Zhao Y. Hyaluronidase-trigger nanocarriers for targeted delivery of anti-liver cancer compound. RSC Adv 2023; 13:11160-11170. [PMID: 37056973 PMCID: PMC10086574 DOI: 10.1039/d3ra00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Chemotherapy is recognized as one of the significant treatment methods for liver cancer. The compound celastrol (CSL) could effectively inhibit the proliferation, migration, and invasion of liver cancer cells, which is regarded as a promising candidate to become a mainstream anti-liver cancer drug. However, the application of CSL in liver cancer chemotherapy is limited due to its systemic toxicity, poor water solubility, multidrug resistance, premature degradation, and lack of tumor targeting. Meanwhile, in order to comply with the current concept of precision medicine, precisely targeted delivery of the anti-liver compound CSL was desired. This paper takes into account that liver cancer cells were equipped with hyaluronic acid (HA) receptors (CD44) on their surface and overexpressed. Hyaluronidase (HAase) capable of degrading HA, HAase-responsive nanocarriers (NCs), named HA/(MI)7-β-CD NCs, were prepared based on the electrostatic interaction between HA and imidazole moieties modified β-cyclodextrin (MI)7-β-CD. HA/(MI)7-β-CD NCs showed disassembly properties under HAase stimuli, which was utilized to trap, deliver, and the controllable release of the anti-liver cancer compound CSL. Furthermore, cytotoxicity assay experiments revealed that CSL-trapped HA/(MI)7-β-CD NCs not only reduced cytotoxicity for normal cells but also effectively inhibited the survival for five tumor cells, and even the apoptotic effect of CSL-trapped NCs with a concentration of 5 μg mL-1 on tumor cells (SMMC-7721) was consistent with free CSL. Cell uptake experiments demonstrated HA/(MI)7-β-CD NCs possessed the capability of targeted drug delivery to cancerous cells. HA/(MI)7-β-CD NCs exhibited site-specific and controllable release performance, which is anticipated to proceed further in precision-targeted drug delivery systems.
Collapse
Affiliation(s)
- Junxin Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Siling Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Jianmei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Zhengquan Nie
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Yong Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Xiaoqing Liu
- Shenzhen Kewode Technology Co., Ltd Shenzhen 518028 People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| |
Collapse
|
42
|
Shirai T, Nakai A, Ando E, Fujimoto J, Leach S, Arimori T, Higo D, van Eerden FJ, Tulyeu J, Liu YC, Okuzaki D, Murayama MA, Miyata H, Nunomura K, Lin B, Tani A, Kumanogoh A, Ikawa M, Wing JB, Standley DM, Takagi J, Suzuki K. Celastrol suppresses humoral immune responses and autoimmunity by targeting the COMMD3/8 complex. Sci Immunol 2023; 8:eadc9324. [PMID: 37000855 DOI: 10.1126/sciimmunol.adc9324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Celastrol, a bioactive molecule extracted from the
Tripterygium wilfordii
plant, has been shown to exhibit anti-inflammatory properties. However, its mechanism of action has not been fully elucidated. Here, we show that celastrol suppresses humoral immune responses and autoimmunity by disabling a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex), a signaling adaptor for chemoattractant receptors. Having demonstrated the involvement of the COMMD3/8 complex in a mouse model of rheumatoid arthritis, we identified celastrol as a compound that covalently bound to and dissociated the COMMD3/8 complex. Celastrol inhibited B cell migration, reduced antibody responses, and blocked arthritis progression, recapitulating deficiency of the COMMD3/8 complex. These effects of celastrol were abolished in mice expressing a celastrol-resistant mutant of the COMMD3/8 complex. These findings establish that celastrol exerts immunosuppressive activity by targeting the COMMD3/8 complex. Our study suggests that the COMMD3/8 complex is a potentially druggable target in autoimmune diseases and points to celastrol as a lead pharmacologic candidate in this capacity.
Collapse
Affiliation(s)
- Taiichiro Shirai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emiko Ando
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Jun Fujimoto
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sarah Leach
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takao Arimori
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific K.K., Yokohama, Kanagawa, Japan
| | - Floris J. van Eerden
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Janyerkye Tulyeu
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masanori A. Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Tani
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - James B. Wing
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Daron M. Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
43
|
Javidan A, Jiang W, Yang L, Frony AC, Subramanian V. Celastrol Supplementation Ablates Sexual Dimorphism of Abdominal Aortic Aneurysm Formation in Mice. Biomolecules 2023; 13:603. [PMID: 37189351 PMCID: PMC10136124 DOI: 10.3390/biom13040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) are permanent dilations of the abdominal aorta with 4-5 times greater prevalence in males than in females. The aim of this study is to define whether Celastrol, a pentacyclic triterpene from the root extracts of Tripterygium wilfordii, supplementation influences angiotensin II (AngII)-induced AAAs in hypercholesterolemic mice. METHODS Age-matched (8-12 weeks old) male and female low-density lipoprotein (Ldl) receptor-deficient mice were fed a fat-enriched diet supplemented with or without Celastrol (10 mg/kg/day) for five weeks. After one week of diet feeding, mice were infused with either saline (n = 5 per group) or AngII (500 or 1000 ng/kg/min, n = 12-15 per group) for 28 days. RESULTS Dietary supplementation of Celastrol profoundly increased AngII-induced abdominal aortic luminal dilation and external aortic width in male mice as measured by ultrasonography and ex vivo measurement, with a significant increase in incidence compared to the control group. Celastrol supplementation in female mice resulted in significantly increased AngII-induced AAA formation and incidence. In addition, Celastrol supplementation significantly increased AngII-induced aortic medial elastin degradation accompanied by significant aortic MMP9 activation in both male and female mice compared to saline and AngII controls. CONCLUSIONS Celastrol supplementation to Ldl receptor-deficient mice ablates sexual dimorphism and promotes AngII-induced AAA formation, which is associated with increased MMP9 activation and aortic medial destruction.
Collapse
Affiliation(s)
- Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ana Clara Frony
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
44
|
Wang X, Chauhan G, Tacderas ARL, Muth A, Gupta V. Surface-Modified Inhaled Microparticle-Encapsulated Celastrol for Enhanced Efficacy in Malignant Pleural Mesothelioma. Int J Mol Sci 2023; 24:5204. [PMID: 36982279 PMCID: PMC10049545 DOI: 10.3390/ijms24065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer affecting the pleural lining of the lungs. Celastrol (Cela), a pentacyclic triterpenoid, has demonstrated promising therapeutic potential as an antioxidant, anti-inflammatory, neuroprotective agent, and anti-cancer agent. In this study, we developed inhaled surface-modified Cela-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles (Cela MPs) for the treatment of MPM using a double emulsion solvent evaporation method. The optimized Cela MPs exhibited high entrapment efficiency (72.8 ± 6.1%) and possessed a wrinkled surface with a mean geometric diameter of ~2 µm and an aerodynamic diameter of 4.5 ± 0.1 µm, suggesting them to be suitable for pulmonary delivery. A subsequent release study showed an initial burst release up to 59.9 ± 2.9%, followed by sustained release. The therapeutic efficacy of Cela MPs was evaluated against four mesothelioma cell lines, where Cela MP exhibited significant reduction in IC50 values, and blank MPs produced no toxicity to normal cells. Additionally, a 3D-spheroid study was performed where a single dose of Cela MP at 1.0 µM significantly inhibited spheroid growth. Cela MP was also able to retain the antioxidant activity of Cela only while mechanistic studies revealed triggered autophagy and an induction of apoptosis. Therefore, these studies highlight the anti-mesothelioma activity of Cela and demonstrate that Cela MPs are a promising inhalable medicine for MPM treatment.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alison R. L. Tacderas
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
45
|
Li H, Wang Z, Yu S, Chen S, Zhou Y, Qu Y, Xu P, Jiang L, Yuan C, Huang M. Albumin-based drug carrier targeting urokinase receptor for cancer therapy. Int J Pharm 2023; 634:122636. [PMID: 36696930 DOI: 10.1016/j.ijpharm.2023.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Urokinase plasminogen activator receptor (uPAR) is a key participant in extracellular proteolysis, tissue remodeling and cell motility. uPAR overexpresses in most solid tumors and several hematologic malignancies, but has low levels on normal tissues, thus is advocated as a molecular target for cancer therapy. One of the obstacles for the evaluation of uPAR targeting agents in preclinical study is the species specificity, where targeting agents for human uPAR usually not bind to murine uPAR. Here, we develop a targeting agent that binds to both murine and human uPAR. This targeting agent is genetically fused to human serum albumin, a commonly used drug carrier, and the final construct is named as uPAR targeting carrier (uPARTC). uPARTC binds specifically to uPAR-overexpressing 293T/huPAR and 293T/muPAR as demonstrated by flow cytometry. A cytotoxic compound, celastrol, is embedded into uPARTC non-covalently. The resulting macromolecular complex show effective proliferation inhibition on both murine and human uPAR overexpressing cells, and exhibit potent antitumor efficacy on hepatoma H22-bearing mice. This work demonstrates that uPARTC is a promising tumor targeting drug carrier, which address the species-specificity challenge of uPAR targeting agents and can be used to load other cytotoxic compounds.
Collapse
Affiliation(s)
- Hanlin Li
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Zhiyou Wang
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Yuhan Qu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian 350108, China.
| |
Collapse
|
46
|
Selenized Polymer-Lipid Hybrid Nanoparticles for Oral Delivery of Tripterine with Ameliorative Oral Anti-Enteritis Activity and Bioavailability. Pharmaceutics 2023; 15:pharmaceutics15030821. [PMID: 36986681 PMCID: PMC10059782 DOI: 10.3390/pharmaceutics15030821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The oral delivery of insoluble and enterotoxic drugs has been largely plagued by gastrointestinal irritation, side effects, and limited bioavailability. Tripterine (Tri) ranks as the hotspot of anti-inflammatory research other than inferior water-solubility and biocompatibility. This study was intended to develop selenized polymer-lipid hybrid nanoparticles loading Tri (Se@Tri-PLNs) for enteritis intervention by improving its cellular uptake and bioavailability. Se@Tri-PLNs were fabricated by a solvent diffusion-in situ reduction technique and characterized by particle size, ζ potential, morphology, and entrapment efficiency (EE). The cytotoxicity, cellular uptake, oral pharmacokinetics, and in vivo anti-inflammatory effect were evaluated. The resultant Se@Tri-PLNs were 123 nm around in particle size, with a PDI of 0.183, ζ potential of −29.70 mV, and EE of 98.95%. Se@Tri-PLNs exhibited retardant drug release and better stability in the digestive fluids compared with the unmodified counterpart (Tri-PLNs). Moreover, Se@Tri-PLNs manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy. The oral bioavailability of Tri-PLNs and Se@Tri-PLNs was up to 280% and 397% relative to Tri suspensions, respectively. Furthermore, Se@Tri-PLNs demonstrated more potent in vivo anti-enteritis activity, which resulted in a marked resolution of ulcerative colitis. Polymer-lipid hybrid nanoparticles (PLNs) enabled drug supersaturation in the gut and the sustained release of Tri to facilitate absorption, while selenium surface engineering reinforced the formulation performance and in vivo anti-inflammatory efficacy. The present work provides a proof-of-concept for the combined therapy of inflammatory bowel disease (IBD) using phytomedicine and Se in an integrated nanosystem. Selenized PLNs loading anti-inflammatory phytomedicine may be valuable for the treatment of intractable inflammatory diseases.
Collapse
|
47
|
McMahon A, Zhao J, Yan S. APE2: catalytic function and synthetic lethality draw attention as a cancer therapy target. NAR Cancer 2023; 5:zcad006. [PMID: 36755963 PMCID: PMC9900424 DOI: 10.1093/narcan/zcad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
AP endonuclease 2 (APE2, APEX2 or APN2) is an emerging critical protein involved in genome and epigenome integrity. Whereas its catalytic function as a nuclease in DNA repair is widely accepted, recent studies have elucidated the function and mechanism of APE2 in the immune response and DNA damage response. Several genome-wide screens have identified APE2 as a synthetic lethal target for deficiencies of BRCA1, BRCA2 or TDP1 in cancer cells. Due to its overexpression in several cancer types, APE2 is proposed as an oncogene and could serve as prognostic marker of overall survival of cancer treatment. However, it remains to be discovered whether and how APE2 catalytic function and synthetic lethality can be modulated and manipulated as a cancer therapy target. In this review, we provide a current understanding of alterations and expression of APE2 in cancer, the function of APE2 in the immune response, and mechanisms of APE2 in ATR/Chk1 DNA damage response. We also summarize the role of APE2 in DNA repair pathways in the removal of heterogenous and complexed 3'-termini and MMEJ. Finally, we provide an updated perspective on how APE2 may be targeted for cancer therapy and future directions of APE2 studies in cancer biology.
Collapse
Affiliation(s)
- Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
48
|
Yuan X, Tang B, Chen Y, Zhou L, Deng J, Han L, Zhai Y, Zhou Y, Gill DL, Lu C, Wang Y. Celastrol inhibits store operated calcium entry and suppresses psoriasis. Front Pharmacol 2023; 14:1111798. [PMID: 36817139 PMCID: PMC9928759 DOI: 10.3389/fphar.2023.1111798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Psoriasis is an inflammatory autoimmune skin disease that is hard to cure and prone to relapse. Currently available global immunosuppressive agents for psoriasis may cause severe side effects, thus it is crucial to identify new therapeutic reagents and druggable signaling pathways for psoriasis. Methods: To check the effects of SOCE inhibitors on psoriasis, we used animal models, biochemical approaches, together with various imaging techniques, including calcium, confocal and FRET imaging. Results and discussion: Store operated calcium (Ca2+) entry (SOCE), mediated by STIM1 and Orai1, is crucial for the function of keratinocytes and immune cells, the two major players in psoriasis. Here we showed that a natural compound celastrol is a novel SOCE inhibitor, and it ameliorated the skin lesion and reduced PASI scores in imiquimod-induced psoriasis-like mice. Celastrol dose- and time-dependently inhibited SOCE in HEK cells and HaCaT cells, a keratinocyte cell line. Mechanistically, celastrol inhibited SOCE via its actions both on STIM1 and Orai1. It inhibited Ca2+ entry through constitutively-active Orai1 mutants independent of STIM1. Rather than blocking the conformational switch and oligomerization of STIM1 during SOCE activation, celastrol diminished the transition from oligomerized STIM1 into aggregates, thus locking STIM1 in a partially active state. As a result, it abolished the functional coupling between STIM1 and Orai1, diminishing SOCE signals. Overall, our findings identified a new SOCE inhibitor celastrol that suppresses psoriasis, suggesting that SOCE pathway may serve as a new druggable target for treating psoriasis.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingwen Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| |
Collapse
|
49
|
Fuzo CA, Martins RB, Fraga‐Silva TFC, Amstalden MK, Canassa De Leo T, Souza JP, Lima TM, Faccioli LH, Okamoto DN, Juliano MA, França SC, Juliano L, Bonato VLD, Arruda E, Dias‐Baruffi M. Celastrol: A lead compound that inhibits SARS-CoV-2 replication, the activity of viral and human cysteine proteases, and virus-induced IL-6 secretion. Drug Dev Res 2022; 83:1623-1640. [PMID: 35989498 PMCID: PMC9539158 DOI: 10.1002/ddr.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.
Collapse
Affiliation(s)
- Carlos A. Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Ronaldo B. Martins
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Thais F. C. Fraga‐Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Martin K. Amstalden
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Thais Canassa De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Juliano P. Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Thais M. Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Lucia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Débora Noma Okamoto
- Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Suzelei C. França
- Unidade de BiotecnologiaUniversidade de Ribeirão PretoRibeirão PretoSão PauloBrazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Vania L. D. Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Marcelo Dias‐Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| |
Collapse
|
50
|
Jakobsson PJ, Robertson L, Welzel J, Zhang M, Zhihua Y, Kaixin G, Runyue H, Zehuai W, Korotkova M, Göransson U. Where traditional Chinese medicine meets Western medicine in the prevention of rheumatoid arthritis. J Intern Med 2022; 292:745-763. [PMID: 35854675 PMCID: PMC9796271 DOI: 10.1111/joim.13537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chinese medicine has a long tradition of use against rheumatoid arthritis (RA). The formulations are based on combinations of typically 5-10 plants, which are usually boiled and administered as a decoction or tea. There are few clinical trials performed so the clinical evidence is sparse. One fundamental of traditional medicine is to prevent disease. RA is an autoimmune, inflammatory and chronic disease that primarily affects the joints of 0.5%-1% of the population. In two out of three of the cases, the patients are characterised by the presence of autoantibodies such as the rheumatoid factor and the more disease-specific autoantibody against citrullinated proteins, so-called 'ACPA' (anticitrullinated protein/peptide antibodies). ACPA positivity is also strongly associated with specific variations in the HLA-DRB1 gene, the shared epitope alleles. Together with smoking, these factors account for the major risks of developing RA. In this review, we will summarise the background using certain plant-based formulations based on Chinese traditional medicine for the treatment and prevention of RA and the strategy we have taken to explore the mechanisms of action. We also summarise the major pathophysiological pathways related to RA and how these could be analysed. Finally, we summarise our ideas on how a clinical trial using Chinese herbal medicine to prevent RA could be conducted.
Collapse
Affiliation(s)
- Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine Solna & Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Luke Robertson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Janika Welzel
- Division of Rheumatology, Department of Medicine Solna & Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mingshu Zhang
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Yang Zhihua
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gao Kaixin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Runyue
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Wen Zehuai
- Key Unit of Methodology in Clinical Research, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine Solna & Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|