1
|
Mukherjee A, Verma A, Das T, Ghosh B, Ghosh Z. Circulating microRNAs in Body Fluid: "Fingerprint" RNA Snippets Deeply Impact Reproductive Biology. Reprod Sci 2025; 32:555-574. [PMID: 39658771 DOI: 10.1007/s43032-024-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Circulating miRNAs (C-miRNAs) occuring in a cell-free form within body fluids and other extracellular environments have garnered attention in recent times. They offer deeper insight into various physiological and pathological processes which include reproductive health. This review delves into their diagnostic potential across a spectrum of reproductive disorders, including conditions affecting ovarian function, male infertility and post pregnancy issues. Through analysis of C-miRNA profiles in bodily fluids, researchers uncover crucial markers indicative of reproductive challenges. Dysregulated C-miRNAs emerge as important players in the progression of several reproductive disorders which is the main focus of this review. Advancements in technology, facilitate precise detection and quantification of C-miRNAs, paving the way for innovative diagnostic approaches. Challenges in studying C-miRNAs, such as their low abundance and variability in expression levels, underscore the need for standardized protocols and rigorous validation methods. Despite these challenges, ongoing research endeavors aim to unravel the complex regulatory roles of C-miRNAs in reproductive biology, with potential implications for clinical practice and therapeutic interventions.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, West Bengal, 741252, India.
| | - Arpana Verma
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Byapti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Tafazoli P, Rad HM, Mashayekhi M, Siadat SF, Fathi R. miRNAs in ovarian disorders: Small but strong cast. Pathol Res Pract 2024; 264:155709. [PMID: 39522318 DOI: 10.1016/j.prp.2024.155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This research aimed to analyze alterations in microRNA expression in the diseases POF (Premature Ovarian Failure), PCOS (Polycystic Ovarian Syndrome), and ovarian cancer in order to understand the molecular changes associated with these conditions. The findings could potentially be utilized for diagnostic, therapeutic, predictive, and preventive purposes. Furthermore, the impact and role of microRNAs in each ailment, along with their functional pathways, were elucidated and examined. METHODS In this study, the genes involved in the disease were studied, and then the miRNAs that targeted these genes were evaluated, and finally the signaling and functional pathways of each of the miRNAs were assessed. In this process, genetic databases and previous studies were carefully assessed. RESULTS miRNAs are short nucleotide sequences that belong to the category of non-coding RNAs. They play a crucial role in various physiological activities, including cell division, growth, differentiation, and cell death (necrosis and apoptosis), miRNAs are involved in various physiological processes Such alterations are common in various diseases, including cancer. miRNAs are involved in various physiological processes, such as folliculogenesis and steroidogenesis, as well as in pathological conditions such as POF, PCOS, and ovarian cancer. They have powerful regulatory effects and controlling the most activities of normal and pathological cells. While microRNAs (miRNAs) play a significant role in normal ovarian functions, there are reports of their expression changes in PCOS, ovarian cancer, and POF. CONCLUSIONS miRNAs have been found to exert significant influence on both physiological and pathological cellular processes. Understanding the dynamic patterns of miRNA alterations can provide valuable insights for researchers and therapists, enabling them to utilize these biomarkers effectively in diagnostic, therapeutic, and preventive applications.
Collapse
Affiliation(s)
- Parsa Tafazoli
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hanieh Motahari Rad
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehri Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Li X, Ullah I, Hou C, Liu Y, Xiao K. Network pharmacology and molecular docking study on the treatment of polycystic ovary syndrome with angelica sinensis- radix rehmanniae drug pair. Medicine (Baltimore) 2023; 102:e36118. [PMID: 37986355 PMCID: PMC10659600 DOI: 10.1097/md.0000000000036118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
This study aimed to investigate the angelica sinensis - radix rehmanniae (AR) role in polycystic ovary syndrome (PCOS), employing network pharmacology and molecular docking techniques for active ingredient, targets, and pathway prediction. AR active components were obtained through TCMSP platform and literature search. The related targets of AR and PCOS were obtained through the disease and Swiss Target Prediction databases. An "active ingredient-target" network map was constructed using Cytoscape software, and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis was conducted through Hiplot. Finally, Auto Dock Tools software was used to conduct molecular docking between active ingredients and core targets. The main bioactive ingredients of AR in the treatment of PCOS are acteoside, baicalin, caffeic acid, cistanoside F, geniposide, etc. These ingredients involve 10 core targets, such as SRC, HSP90AA1, STAT3, MAPK1, and JUN. The effect of AR on anti-PCOS mainly involves the AGE-RAGE signaling pathway, Relaxin signaling pathway, TNF signaling pathway, and ErbB signaling pathway. Molecular docking results showed that the main active components and key targets of AR could be stably combined. AR can improve hyperandrogen status, regulate glucose homeostasis, and correct lipid metabolism and other physiological processes through multi-component, multi-target, and multi-pathway. Thus, it could play a significant role in PCOS treatment. The results of our study provide a scientific foundation for basic research and clinical applications of AR for the treatment of PCOS.
Collapse
Affiliation(s)
- Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunxia Hou
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuqiang Liu
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
4
|
Hadidi M, Karimabadi K, Ghanbari E, Rezakhani L, Khazaei M. Stem cells and exosomes: as biological agents in the diagnosis and treatment of polycystic ovary syndrome (PCOS). Front Endocrinol (Lausanne) 2023; 14:1269266. [PMID: 37964963 PMCID: PMC10642184 DOI: 10.3389/fendo.2023.1269266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
A typical condition of the female reproductive system is polycystic ovary syndrome (PCOS). Hyperinsulinemia, insulin resistance, obesity, and hyperandrogenism are just a few of the metabolic abnormalities linked to this disease. Type 2 diabetes, hypertension, and cardiovascular disease are further issues related to PCOS. One consequence of this syndrome for which numerous treatment procedures have been developed is infertility. Metformin and clomiphene, two common allopathic medications used to treat PCOS, both have drawbacks and are ineffective. It is vital to seek novel therapeutic modalities to address these constraints. Exosomes (EXOs) are a particular class of extracellular vesicles that cells release, and they are known to play a significant role in mediating intercellular communication. A wide range of cargo, including lipids, proteins, mRNA, miRNAs, and numerous other noncoding RNAs, are contained in the nanoscale lipid bilayer exosomes. The cytokine effects of stem cells and EXOs derived from them enable the defense against metabolic diseases like PCOS. Moreover, EXO microRNAs can potentially be employed as biomarkers in the detection and management of PCOS. In this study, the potential of stem cells and exosomes are specifically investigated in the diagnosis and treatment of PCOS as one of the diseases of the female reproductive system.
Collapse
Affiliation(s)
- Mahta Hadidi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Ubba V, Joseph S, Awe O, Jones D, Dsilva MK, Feng M, Wang J, Fu X, Akbar RJ, Bodnar BH, Hu W, Wang H, Yang X, Yang L, Yang P, Ahima R, Divall S, Wu S. Neuronal AR Regulates Glucose Homeostasis and Energy Expenditure in Lean Female Mice With Androgen Excess. Endocrinology 2023; 164:bqad141. [PMID: 37738624 DOI: 10.1210/endocr/bqad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Hyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice. A glucose tolerance test revealed impaired glucose tolerance that was partially alleviated in the SynARKO-dihydrotestosterone (DHT) mice compared with Con-DHT mice after 4 months of DHT treatment. Heat production and food intake was higher in Con-DHT mice than in Con-veh mice; these effects were not altered between SynARKO-veh and SynARKO-DHT mice, indicating that excess androgens may partially alter calorie intake and energy expenditure in females via the neuronal Ar. The pAkt/Akt activity was higher in the hypothalamus in Con-DHT mice than in Con-veh mice, and this effect was attenuated in SynARKO-DHT mice. Western blot studies show that markers of inflammation and microglia activation, such as NF-kB p-65 and IBA1, increased in the hypothalamus of Con-DHT mice compared with Con-veh. These studies suggest that neuronal Ar mediates the metabolic impacts of androgen excess in females.
Collapse
Affiliation(s)
- Vaibhave Ubba
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Serene Joseph
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin Jones
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Milan K Dsilva
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Junjiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Xiaomin Fu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Razeen J Akbar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany H Bodnar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rexford Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, WA 98145-5005, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| |
Collapse
|
6
|
Udesen PB, Sørensen AE, Svendsen R, Frisk NLS, Hess AL, Aziz M, Wissing MLM, Englund ALM, Dalgaard LT. Circulating miRNAs in Women with Polycystic Ovary Syndrome: A Longitudinal Cohort Study. Cells 2023; 12:cells12070983. [PMID: 37048055 PMCID: PMC10093401 DOI: 10.3390/cells12070983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) often change their metabolic profile over time to decrease levels of androgens while often gaining a propensity for the development of the metabolic syndrome. Recent discoveries indicate that microRNAs (miRNAs) play a role in the development of PCOS and constitute potential biomarkers for PCOS. We aimed to identify miRNAs associated with the development of an impaired metabolic profile in women with PCOS, in a follow-up study, compared with women without PCOS. METHODS AND MATERIALS Clinical measurements of PCOS status and metabolic disease were obtained twice 6 years apart in a cohort of 46 women with PCOS and nine controls. All participants were evaluated for degree of metabolic disease (hypertension, dyslipidemia, central obesity, and impaired glucose tolerance). MiRNA levels were measured using Taqman® Array cards of 96 pre-selected miRNAs associated with PCOS and/or metabolic disease. RESULTS Women with PCOS decreased their levels of androgens during follow-up. Twenty-six of the miRNAs were significantly changed in circulation in women with PCOS during the follow-up, and twenty-four of them had decreased, while levels did not change in the control group. Four miRNAs were significantly different at baseline between healthy controls and women with PCOS; miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p, which were decreased in PCOS. After follow-up, miR-28-3p, miR-139-5p, and miR-376a-3p increased in PCOS women to the levels observed in healthy controls. Of these, miR-139-5p correlated with total testosterone levels (rho = 0.50, padj = 0.013), while miR-376-3p correlated significantly with the waist-hip ratio at follow-up (rho = 0.43, padj = 0.01). Predicted targets of miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p were enriched in pathways associated with Insulin/IGF signaling, interleukin signaling, the GNRH receptor pathways, and other signaling pathways. MiRNAs altered during follow-up in PCOS patients were enriched in pathways related to immune regulation, gonadotropin-releasing hormone signaling, tyrosine kinase signaling, and WNT signaling. CONCLUSIONS These studies indicate that miRNAs associated with PCOS and androgen metabolism overall decrease during a 6-year follow-up, reflecting the phenotypic change in PCOS individuals towards a less hyperandrogenic profile.
Collapse
Affiliation(s)
- Pernille B Udesen
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Rikke Svendsen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Nanna L S Frisk
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Anne L Hess
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mubeena Aziz
- Department of Gynecology and Obstetrics, Amager/Hvidovre Hospital, Kettegaards Allé 30, 2650 Hvidovre, Denmark
| | | | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
7
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
8
|
De Nardo Maffazioli G, Baracat EC, Soares JM, Carvalho KC, Maciel GAR. Evaluation of circulating microRNA profiles in Brazilian women with polycystic ovary syndrome: A preliminary study. PLoS One 2022; 17:e0275031. [PMID: 36206272 PMCID: PMC9543946 DOI: 10.1371/journal.pone.0275031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy, which etiology encompasses complex genetic traits associated with epigenetic factors, including differences in microRNA (miRNA) expression in a variety of tissues. The circulating form of these molecules is raising attention in the syndrome not only as potential biomarkers of PCOS but also as possible therapeutic targets. The aim of this study was to explore the circulating miRNA profiles present in a cohort of Brazilian women with and without PCOS and to evaluate the potential role of miRNAs in the pathophysiology of the syndrome. METHODS Cross-sectional study of 36 well-characterized PCOS women and 16 healthy controls. Clinical, hormone and metabolic data were recorded and evaluated. The expression profile of the 201 circulating miRNA selected were analyzed by taqman quantitative real time polymerase chain reactions (RT-PCR) using a customized Open Array platform. Statistical and bioinformatic analyzed were performed. RESULTS Circulating miR-21-5p, miR-23a-3p and miR-26a-5p were upregulated, and miR-103a-3p, miR-376a-3p, miR-19b-3p and miR-222-3p were downregulated in women with PCOS compared to healthy normo-ovulatory controls. miR-21-5p, miR-103a-3p and miR-376a-3p levels correlated positively with androgen levels. These miRNAs, in combination, were related to pathways involved in insulin signaling, steroids biosynthesis and endothelial regulation as well as in folliculogenesis. CONCLUSION In this study, we identified a specific circulating miRNA signature in Brazilian women with PCOS. According to our data, circulating miR-21-5p, miR-23a-3p, miR-26a-5p, miR-103a-3p, miR-376a-3p, miR-19b-3p and miR-222-3p may represent potential candidates for differential diagnosis of PCOS in the future.
Collapse
Affiliation(s)
- Giovana De Nardo Maffazioli
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| | - Edmund Chada Baracat
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| | - José Maria Soares
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
| | - Kátia Cândido Carvalho
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| | - Gustavo Arantes Rosa Maciel
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| |
Collapse
|
9
|
Motahari Rad H, Mowla SJ, Ramazanali F, Rezazadeh Valojerdi M. Characterization of altered microRNAs related to different phenotypes of polycystic ovarian syndrome (PCOS) in serum, follicular fluid, and cumulus cells. Taiwan J Obstet Gynecol 2022; 61:768-779. [PMID: 36088043 DOI: 10.1016/j.tjog.2022.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE Polycystic ovarian syndrome (PCOS) is a metabolic syndrome in which steroidogenesis, folliculogenesis, and cellular adhesion play crucial roles in its prognosis. These pathways are controlled and regulated by some small non-coding RNAs called microRNAs (miRs). Several miRs have differential expression in PCOS compared to healthy women, and their dysregulation suggests important roles of miRs in PCOS pathophysiology. However, the role of miRs is still unclear, especially in various phenotypes of PCOS. MATERIALS AND METHODS This study was conducted to evaluate the diagnostic potential of miR-212-3p, miR-490-5p, miR-647, and miR-4643 in different subtypes of PCOS. Accordingly, nineteen PCOS patients with different subtypes based on Rotterdam criteria (A: 8, B: not detected in this study, C: 5, and D: 6 patients) and six control age and BMI matched women under ICSI treatment were selected. The relative expression of miRs was then measured in blood serum before hormonal treatment (S1) and before ovum pickup (S2), follicular fluid (FF), and cumulus cells (CC) in all subjects. Also, the expression of miRs predicted target genes (AMH, AR, CYP11A1, CYP17A1, CYP19A1, GDF9, and HSD17B12) were done in the CC of understudy groups. RESULTS In general, the results indicated that PCOS significantly increased the expression of miR-212-3p, miR-490-5p, and miR-4643 in FF and CCs compared to control. Although these miRs tend to increase in serum 1 of the PCOS patients, the differences were insignificant. However, there was a significant reduction in the expression of miR-647 in FF and CCs between PCOS vs. control. In addition, the miRs had significantly different expressions in various phenotypes of PCOS. For example, high levels of miR-647 in S2 and low levels of miR-490 in FF and miR-212 in CC can differentiate phenotype A from the other. Also, upregulation of miR-212 in FF and miR-4643 in S1 and low levels of this miR in FF can specifically differentiate subtype A from D. On the other hand, high levels of miR-4643 in FF and miR-490 in CC and lower titter of miR-647 can distinguish subtype C from the other. On the other hand, high levels of AMH, AR, CYP11, CYP17, and HSD17 in the hyperandrogenic PCOS and upregulation of CYP19A1 in the hypoandrogenic group can validate the role of selected miRs in the prognosis of PCOS. CONCLUSION Characterization of altered microRNAs in serum, FF, and CCs and their targets in CC showed that the miRs might play critical roles in steroidogenesis and folliculogenesis. These miRs may be used for molecular classification of PCOS subtypes and as biomarkers for PCOS diagnosis.
Collapse
Affiliation(s)
- Hanieh Motahari Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fariba Ramazanali
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Combined Transcriptomic and Metabolomic Analysis of Women with Polycystic Ovary Syndrome. DISEASE MARKERS 2022; 2022:4000424. [PMID: 36072900 PMCID: PMC9441417 DOI: 10.1155/2022/4000424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Background. Polycystic ovary syndrome (PCOS) is a complex class of endocrine disorders with insulin resistance, compensatory hyperinsulinemia, and obesity. However, the pathogenesis and therapies of PCOS have not been fully elucidated. Exosomal miRNAs have the potential to serve as biomarkers and therapies for a wide range of medical conditions. Method. We collected follicular fluid from 5 PCOS patients and 5 healthy people. High-throughput sequencing technology to identify differentially expressed miRNAs and untargeted metabolome identify differential metabolites in follicular fluid exosomal. RT-qPCR and AUC analysis were performed. Result. miRNA high-throughput sequencing identified 124 differential miRNAs. RT-qPCR analysis confirmed the sequencing results. These differential miRNA target genes are mainly involved in metabolic pathways. Metabolomics studies identified 31 differential metabolites. miRNA and lncRNA coexpression networks in metabolic pathways rigorously screened 28 differentially expressed miRNAs. This network would identify miRNA signatures associated with metabolic processes in PCOS. Meanwhile, the area under curve of receiver operating characteristic revealed that hsa-miR-196a-3p, hsa-miR-143-5p, hsa-miR-106a-3p, hsa-miR-34a-5p, and hsa-miR-20a-5p were potential biomarkers for the diagnosis of PCOS. Conclusion. Collectively, these results demonstrate the potential pathogenesis of PCOS, and follicular fluid exosomal miRNAs may be efficient targets for the diagnosis and treatment of PCOS in long-term clinical studies.
Collapse
|
11
|
Wander PL, Enquobahrie DA, Bammler TK, MacDonald JW, Srinouanprachanh S, Kaleru T, Khakpour D, Trikudanathan S. Associations of plasma miRNAs with waist circumference and insulin resistance among women with polycystic ovary syndrome - Pilot study. Mol Cell Endocrinol 2022; 554:111723. [PMID: 35843386 PMCID: PMC9552972 DOI: 10.1016/j.mce.2022.111723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Insulin resistance (IR) and central obesity are common in polycystic ovary syndrome (PCOS), but pathomechanisms for IR in PCOS are not established. Circulating microRNAs (miRNAs) are non-invasive biomarkers of epigenetic regulation that may contribute to the pathogenesis of IR and central adiposity in PCOS. METHODS We conducted a pilot study to examine associations of circulating miRNAs with IR and central adiposity among women with PCOS (n = 11) using high-throughput miRNA sequencing. We fit generalized linear models examining associations of waist circumference and HOMA-IR with plasma miRNAs. We used false discovery rate (FDR)-adjusted cutoff p < 0.1 to correct for multiple testing. We used miRDB's Gene Ontology (GO) tool to identify predicted pathways for top hits. RESULTS Mean age and BMI of participants were 27.9 years and 32.5 kg/m2, respectively. Lower levels of miR-1294 were associated with higher waist circumference (β = -0.10, FDR = 0.095). While no miRNAs were associated with HOMA-IR at our FDR cut off <0.1, 11 miRNAs were associated with waist circumference and 14 miRNAs with HOMA-IR at unadjusted p < 0.01, including members of the highly conserved miR-17/92 cluster and miR-1294 (β = -0.10, p < 0.001). The GO analysis of miR-1294 identified 54 overrepresented pathways, including "negative regulation of insulin receptor signaling" (FDR = 0.019), and 6 underrepresented pathways. CONCLUSIONS Plasma miR-1294 along with members of the miR-17/92 cluster and miRNAs involved in insulin signaling may be associated with central obesity and insulin resistance in PCOS. Larger studies among women with and without PCOS are needed to validate these findings.
Collapse
Affiliation(s)
- Pandora L Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Division of General Internal Medicine, University of Washington, Seattle, WA, United States.
| | - Daniel A Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Sengkeo Srinouanprachanh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Thanmai Kaleru
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
| | - Dori Khakpour
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
| | - Subbulaxmi Trikudanathan
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Vitale SG, Fulghesu AM, Mikuš M, Watrowski R, D’Alterio MN, Lin LT, Shah M, Reyes-Muñoz E, Sathyapalan T, Angioni S. The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside—A Systematic Literature Review. Biomedicines 2022; 10:biomedicines10081816. [PMID: 36009364 PMCID: PMC9405312 DOI: 10.3390/biomedicines10081816] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are essential for the regulation of post-transcriptional gene expression during tissue development and differentiation. They are involved in the regulation of manifold metabolic and hormonal processes and, within the female reproductive tract, in oocyte maturation and folliculogenesis. Altered miRNA levels have been observed in oncological and inflammatory diseases, diabetes or polycystic ovary syndrome (PCOS). Therefore, miRNAs are proving to be promising potential biomarkers. In women with PCOS, circulating miRNAs can be obtained from whole blood, serum, plasma, urine, and follicular fluid. Our systematic review summarizes data from 2010–2021 on miRNA expression in granulosa and theca cells; the relationship between miRNAs, hormonal changes, glucose and lipid metabolism in women with PCOS; and the potential role of altered miRNAs in fertility (oocyte quality) in PCOS. Furthermore, we discuss miRNAs as a potential therapeutic target in PCOS and as a diagnostic marker for PCOS.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy;
| | - Anna Maria Fulghesu
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.M.F.); (M.N.D.)
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Rafał Watrowski
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Maurizio Nicola D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.M.F.); (M.N.D.)
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Pei-Tou, Taipei 112, Taiwan
- Department of Biological Science, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung City 80424, Taiwan
| | - Mohsin Shah
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Enrique Reyes-Muñoz
- Department of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Stefano Angioni
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy;
- Correspondence:
| |
Collapse
|
13
|
Kalhori MR, Soleimani M, Yari K, Moradi M, Kalhori AA. MiR-1290: a potential therapeutic target for regenerative medicine or diagnosis and treatment of non-malignant diseases. Clin Exp Med 2022:10.1007/s10238-022-00854-9. [PMID: 35802264 DOI: 10.1007/s10238-022-00854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are a set of small non-coding RNAs that could change gene expression with post-transcriptional regulation. MiRNAs have a significant role in regulating molecular signaling pathways and innate and adaptive immune system activity. Moreover, miRNAs can be utilized as a powerful instrument for tissue engineers and regenerative medicine by altering the expression of genes and growth factors. MiR-1290, which was first discovered in human embryonic stem cells, is one of those miRNAs that play an essential role in developing the fetal nervous system. This review aims to discuss current findings on miR-1290 in different human pathologies and determine whether manipulation of miR-1290 could be considered a possible therapeutic strategy to treat different non-malignant diseases. The results of these studies suggest that the regulation of miR-1290 may be helpful in the treatment of some bacterial (leprosy) and viral infections (HIV, influenza A, and Borna disease virus). Also, adjusting the expression of miR-1290 in non-infectious diseases such as celiac disease, necrotizing enterocolitis, polycystic ovary syndrome, pulmonary fibrosis, ankylosing spondylitis, muscle atrophy, sarcopenia, and ischemic heart disease can help to treat these diseases better. In addition to acting as a biomarker for the diagnosis of non-malignant diseases (such as NAFLD, fetal growth, preeclampsia, down syndrome, chronic rhinosinusitis, and oral lichen planus), the miR-1290 can also be used as a valuable instrument in tissue engineering and reconstructive medicine. Consequently, it is suggested that the regulation of miR-1290 could be considered a possible therapeutic target in the treatment of non-malignant diseases in the future.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoudreza Moradi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Ali Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
15
|
Guz M, Jeleniewicz W, Cybulski M. An Insight into miR-1290: An Oncogenic miRNA with Diagnostic Potential. Int J Mol Sci 2022; 23:1234. [PMID: 35163157 PMCID: PMC8835968 DOI: 10.3390/ijms23031234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
For more than two decades, the view of the roles of non-coding RNAs (ncRNAs) has been radically changing. These RNA molecules that are transcribed from our genome do not have the capacity to encode proteins, but are critical regulators of gene expression at different levels. Our knowledge is constantly enriched by new reports revealing the role of these new molecular players in the development of many pathological conditions, including cancer. One of the ncRNA classes includes short RNA molecules called microRNAs (miRNAs), which are involved in the post-transcriptional control of gene expression affecting various cellular processes. The aberrant expression of miRNAs with oncogenic and tumor-suppressive function is associated with cancer initiation, promotion, malignant transformation, progression and metastasis. Oncogenic miRNAs, also known as oncomirs, mediate the downregulation of tumor-suppressor genes and their expression is upregulated in cancer. Nowadays, miRNAs show promising application in diagnosis, prediction, disease monitoring and therapy response. Our review presents a current view of the oncogenic role of miR-1290 with emphasis on its properties as a cancer biomarker in clinical medicine.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (W.J.); (M.C.)
| | | | | |
Collapse
|
16
|
Tamaddon M, Azimzadeh M, Tavangar SM. microRNAs and long non-coding RNAs as biomarkers for polycystic ovary syndrome. J Cell Mol Med 2022; 26:654-670. [PMID: 34989136 PMCID: PMC8817139 DOI: 10.1111/jcmm.17139] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as the most common metabolic/endocrine disorder among women of reproductive age. Its complicated causality assessment and diagnostic emphasized the role of non‐coding regulatory RNAs as molecular biomarkers in studying, diagnosing and even as therapeutics of PCOS. This review discusses a comparative summary of research into microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs) that are molecularly or statistically related to PCOS. We categorize the literature in terms of centering on either miRNAs or lncRNAs and discuss the combinatory studies and promising ideas as well. Additionally, we compare the pros and cons of the prominent research methodologies used for each of the abovementioned research themes and discuss how errors can be stopped from propagation by selecting correct methodologies for future research. Finally, it can be concluded that research into miRNAs and lncRNAs has the potential for identifying functional networks of regulation with multiple mRNAs (and hence, functional proteins). This new understanding may eventually afford clinicians to control the molecular course of the pathogenesis better. With further research, RNA (with statistical significance and present in the blood) may be used as biomarkers for the disease, and more possibilities for RNA therapy agents can be identified.
Collapse
Affiliation(s)
- Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Azimzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Comparison of MicroRNA Profiles in Extracellular Vesicles from Small and Large Goat Follicular Fluid. Animals (Basel) 2021; 11:ani11113190. [PMID: 34827922 PMCID: PMC8614480 DOI: 10.3390/ani11113190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ovarian follicular development is associated with ovulation and is further related to litter size in goats. Extracellular vesicles (EVs) derived from miRNAs within follicular fluid undergo dynamic changes, and, together with follicle growth, may be considered as potential regulators of follicular development. However, the function and changes in EVs remain ambiguous. Here, we identified miRNA changes in EVs from small to large goat follicular fluid. Using bioinformatics tools, we demonstrated the existence of differentially expressed miRNAs in EVs from follicles of different sizes that are responsible for an altered biological effect. This study contributes to a better understanding of follicular development in goats. Abstract Extracellular vesicles (EVs), which exist in the follicular fluid of ruminant ovaries, are considered as cargo carriers for the transfer of biomolecules to recipient cells. However, the functions and changes in EVs in antral follicles remain ambiguous. In the present study, we isolated and characterized EVs from goat follicular fluid by means of differential ultracentrifugation and Western blotting of marker proteins. Bioinformatics tools were used to detect miRNA expression levels in EVs. Different miRNA expression patterns of EVs exist in small to large follicles. Thirteen differentially expressed miRNAs (seven upregulated and six downregulated) were identified and used for analysis. A total of 1948 predicted target genes of 13 miRNAs were mapped to signaling pathways, and three significantly enriched pathways (FoxO, MAPK, and PI3K-AKT signaling pathways) were involved in follicular development, as revealed by KEGG enrichment analysis. Our findings suggest that EVs in follicular fluid play biofunctional roles during follicular development in goats.
Collapse
|
18
|
Sánchez JM, Gómez-Redondo I, Browne JA, Planells B, Gutiérrez-Adán A, Lonergan P. MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle†. Biol Reprod 2021; 105:345-358. [PMID: 33889937 PMCID: PMC8335352 DOI: 10.1093/biolre/ioab079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
We hypothesized that sexually dimorphic differences exist in the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) in association with the process of sex determination and gonad differentiation in cattle. Amniotic fluid and MP were collected from six pregnant heifers (three carrying a single male and three a single female embryo) following slaughter on Day 39 postinsemination, coinciding with the peak of SRY expression. Samples (six AF and six MP) were profiled using an miRNA Serum/Plasma Focus PCR Panel. Differentially expressed (DE) miRNAs were identified in AF (n = 5) and associated MP (n = 56) of male vs. female embryos (P < 0.05). Functional analysis showed that inflammatory and immune response were among the 13 biological processes enriched by miRNAs DE in MP in the male group (FDR < 0.05), suggesting that these sex-dependent DE miRNAs may be implicated in modulating the receptivity of the dam to a male embryo. Further, we compared the downstream targets of the sex-dependent DE miRNAs detected in MP with genes previously identified as DE in male vs. female genital ridges. The analyses revealed potential targets that might be important during this developmental stage such as SHROOM2, DDX3Y, SOX9, SRY, PPP1CB, JARID2, USP9X, KDM6A, and EIF2S3. Results from this study highlight novel aspects of sex determination and embryo–maternal communication in cattle such as the potential role of miRNAs in gonad development as well as in the modulation of the receptivity of the dam to a male embryo.
Collapse
Affiliation(s)
- José María Sánchez
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - John A Browne
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Pat Lonergan
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Hu T, Wei Z, Ju Q, Chen W. Sexualhormone und Akne: Aktueller Stand. J Dtsch Dermatol Ges 2021; 19:509-516. [PMID: 33861017 DOI: 10.1111/ddg.14426_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Hu
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ziyu Wei
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Qiang Ju
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - WenChieh Chen
- Abteilung Dermatologie und Allergologie, Technische Universität München, München, Germany
| |
Collapse
|
20
|
Javadi M, Rad JS, Farashah MSG, Roshangar L. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci 2021; 29:1395-1407. [PMID: 33825167 DOI: 10.1007/s43032-021-00556-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are small bilayer-lipid membrane vesicles secreted by living cells that are able to transfer regulatory molecules and genetic information from one cell to another. These vesicles are enriched with several nucleic acids including mRNAs, microRNAs (miRNAs), other non-coding RNAs, as well as proteins and lipids. Alterations in the exosomal content and functions are observed in numerous reproductive diseases in both animals and human cases. MicroRNAs, a class of small endogenous RNA molecules, can negatively regulate gene expression at the post-transcription level. Aberrant microRNA expression has been reported in multiple human reproductive diseases such as polycystic ovary syndrome, preeclampsia, uterine leiomyomata, ovarian cancer, endometriosis, and Asherman's syndrome. This study focuses to review recent research on alterations of microRNA expression and the role of exosomes in female reproductive diseases. It has been demonstrated that exosomes may be a potential therapeutic approach in various female reproductive diseases. In addition, changes in expression of microRNAs act as molecular biomarkers for diagnosis of several reproductive diseases in women, and regulation of their expression can potentially reduce infertility.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Hu T, Wei Z, Ju Q, Chen W. Sex hormones and acne: State of the art. J Dtsch Dermatol Ges 2021; 19:509-515. [PMID: 33576151 DOI: 10.1111/ddg.14426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
Acne is an androgen-dependent inflammatory disease of sebaceous follicles. Herein, we reviewed and discussed the underlying pathways of androgen biosynthesis and metabolism, non-genomic regulation of androgen receptor expression and function, posttranslational regulation of androgen excess in acne and acne-associated syndromes, such as polycystic ovary syndrome, and congenital adrenal hyperplasia. We provide insights into the involvement of sex hormones, particularly androgens, in skin homeostasis and acne pathogenesis, including comedogenesis, lipogenesis, microbiota, and inflammation. Advanced understanding of the action mechanisms of classical acne treatment and new development of antiandrogens, both topical and systemic, are also highlighted.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziyu Wei
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - WenChieh Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
23
|
Udesen PB, Glintborg D, Sørensen AE, Svendsen R, Nielsen NLS, Wissing MLM, Andersen MS, Englund ALM, Dalgaard LT. Metformin decreases miR-122, miR-223 and miR-29a in women with polycystic ovary syndrome. Endocr Connect 2020; 9:1075-1084. [PMID: 33112812 PMCID: PMC7774773 DOI: 10.1530/ec-20-0195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Metformin is associated with increased insulin sensitivity, whereas oral contraceptive pills (OCP) could increase the risk for type 2 diabetes (T2D) in women with polycystic ovary syndrome (PCOS). Certain miRNAs might serve as biomarkers for the risk of T2D. The aim of this study was to investigate changes in circulating miRNA levels during treatment with metformin and OCP in women with PCOS. Sixty-five women with PCOS according to Rotterdam criteria were randomized to metformin (2 g/day), metformin + OCP (150 mg desogestrel + 30 µg ethinylestradiol) or OCP alone for 12 months. Serum miRNA analysis was performed with individual RT-qPCR or Taqman low density array cards of 22 selected miRNAs previously related to PCOS, glucose and/or lipid metabolism. miR-122 and miR-29a levels were decreased after treatment with metformin compared with metformin + OCP and OCP group: miR-122: log2 difference -0.7 (P = 0.01) and -0.7 (P = 0.02), miR-29a: log2 difference -0.5 (P = 0.01) and -0.4 (P = 0.04), while miR-223 levels were decreased in the metformin + OCP group after treatment: log2 difference -0.5 (P = 0.02). During the treatment period, a significant weight loss was observed in the metformin group compared with the OCP group. In the OCP group, miRNA levels were unchanged during the treatment period. Levels of circulating miRNAs associated with lipid and glucose metabolism decreased during metformin treatment. Changes in miRNA levels in the metformin group could be explained by the simultaneous weight loss in the same group. These results support the notion that metformin treatment alone may be superior for metabolic health compared with OCP.
Collapse
Affiliation(s)
- Pernille Bækgaard Udesen
- The Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Dorte Glintborg
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | | | - Rikke Svendsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nanna Louise Skov Nielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Næstved Hospital, Næstved, Denmark
| | | | | | - Anne Lis Mikkelsen Englund
- The Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | | |
Collapse
|
24
|
Lu T, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. A Preliminary Study on the Characteristics of microRNAs in Ovarian Stroma and Follicles of Chuanzhong Black Goat during Estrus. Genes (Basel) 2020; 11:genes11090970. [PMID: 32825655 PMCID: PMC7564575 DOI: 10.3390/genes11090970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNAs) play a significant role in ovarian follicular maturity, but miRNA expression patterns in ovarian stroma (OS), large follicles (LF), and small follicles (SF) have been rarely explored. We herein aimed to identify miRNAs, their target genes and signaling pathways, as well as their interaction networks in OS, LF, and SF of Chuanzhong black goats at the estrus phase using small RNA-sequencing. We found that the miRNA expression profiles of LF and SF were more similar than those of OS—32, 16, and 29 differentially expressed miRNAs were identified in OS vs. LF, OS vs. SF, and LF vs. SF, respectively. Analyses of functional enrichment and the miRNA-targeted gene interaction network suggested that miR-182 (SMC3), miR-122 (SGO1), and miR-206 (AURKA) were involved in ovarian organogenesis and hormone secretion by oocyte meiosis. Furthermore, miR-202-5p (EREG) and miR-485-3p (FLT3) were involved in follicular maturation through the MAPK signaling pathway, and miR-2404 (BMP7 and CDKN1C) played a key role in follicular development through the TGF-β signaling pathway and cell cycle; nevertheless, further research is warranted. To our knowledge, this is the first study to investigate miRNA expression patterns in OS, LF, and SF of Chuanzhong black goats during estrus. Our findings provide a theoretical basis to elucidate the role of miRNAs in follicular maturation. These key miRNAs might provide candidate biomarkers for the diagnosis of follicular maturation and will assist in developing new therapeutic targets for female goat infertility.
Collapse
Affiliation(s)
- Tingting Lu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Xian Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- Correspondence: ; Tel.: +86-1862-019-3682
| |
Collapse
|
25
|
Lionett S, Kiel IA, Camera DM, Vanky E, Parr EB, Lydersen S, Hawley JA, Moholdt T. Circulating and Adipose Tissue miRNAs in Women With Polycystic Ovary Syndrome and Responses to High-Intensity Interval Training. Front Physiol 2020; 11:904. [PMID: 32848854 PMCID: PMC7406716 DOI: 10.3389/fphys.2020.00904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In women with polycystic ovary syndrome (PCOS), several miRNAs are differentially expressed compared to women without PCOS, suggesting a role for miRNAs in PCOS pathophysiology. Exercise training modulates miRNA abundance and is primary lifestyle intervention for women with PCOS. Accordingly, we measured the expression of eight circulating miRNAs selected a priori along with miRNA expression from gluteal and abdominal adipose tissue (AT) in 12 women with PCOS and 12 women matched for age and body mass index without PCOS. We also determined the miRNA expression “signatures” before and after high-intensity interval training (HIT) in 42 women with PCOS randomized to either: (1) low-volume HIT (LV-HIT, 10 × 1 min work bouts at maximal, sustainable intensity, n = 13); (2) high-volume HIT (HV-HIT, 4 × 4 min work bouts reaching 90–95% of maximal heart rate, n = 14); or (3) non-exercise control (Non-Ex, n = 15). Both HIT groups trained three times/week for 16 weeks. miRNAs were extracted from plasma, gluteal and abdominal AT, and quantified via a customized plate array containing eight miRNAs associated with PCOS and/or exercise training responses. Basal expression of circulating miRNA-27b (c-miR-27b), implicated in fatty acid metabolism, adipocyte differentiation and inflammation, was 1.8-fold higher in women with compared to without PCOS (P = 0.006) despite no difference in gluteal or abdominal AT miR-27b expression. Only the HV-HIT protocol increased peak oxygen uptake (VO2peak L/min; 9%, P = 0.008). There were no changes in body composition. In LV-HIT, but not HV-HIT, the expression of c-miR-27b decreased (0.5-fold, P = 0.007). None of the remaining seven circulating miRNAs changed in LV-HIT, nor was the expression of gluteal or abdominal AT miRNAs altered. Despite increased cardiorespiratory fitness, HV-HIT did not alter the expression of any circulating, gluteal or abdominal AT miRNAs. We conclude that women with PCOS have a higher basal expression of c-miR-27b compared to women without PCOS and that 16 weeks of LV-HIT reduces the expression of this miRNA in women with PCOS. Intense exercise training had little effect on the abundance of the selected miRNAs within subcutaneous AT depots in women with PCOS.
Collapse
Affiliation(s)
- Sofie Lionett
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ida A Kiel
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| | - Donny M Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Eszter Vanky
- Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| |
Collapse
|