1
|
Meng Y, Zhang J, Liu Y, Zhu Y, Lv H, Xia F, Guo Q, Shi Q, Qiu C, Wang J. The biomedical application of inorganic metal nanoparticles in aging and aging-associated diseases. J Adv Res 2025; 71:551-570. [PMID: 38821357 DOI: 10.1016/j.jare.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haining Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- Department of Urology, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Wu Q, Qin Z, Sun P, Liu F, Ge Y, Wang P. Determination of Antioxidant, Cytotoxicity, and Anti-human Lung Cancer Properties of Silver Nanoparticles Green-Formulated by Foeniculum vulgare Extract Combined with Radiotherapy. Biol Trace Elem Res 2025; 203:2139-2148. [PMID: 39107456 DOI: 10.1007/s12011-024-04332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 03/20/2025]
Abstract
The current investigation involved the silver nanoparticles green synthesis utilizing the aqueous extract derived from the Foeniculum vulgare leaves (AgNPs@FV). The effectiveness of these newly developed nanoparticles in conjunction with radiotherapy was evaluated on lung cancer cells. The synthesized AgNPs@FV underwent characterization through various analytical techniques such as energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectrophotometry. The efficacy of AgNPs@FV in conjunction with radiotherapy against human lung cancer was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The AgNPs@FV exhibited a spherical morphology ranging in size from 10.16 to 42.74 nm. The EDX diagram of nanoparticles shows energy signals at 3.02 and 2.64 keV, which are attributed to Ag Lβ and Ag Lα, respectively. During the antioxidant evaluation, AgNPs@FV and butylated hydroxytoluene (BHT) displayed IC50 values of 166 and 59 µg/mL, respectively. The cells treated with AgNPs@FV in conjunction with radiotherapy were evaluated using the MTT assay over 48 h to determine cytotoxicity and anti-human lung cancer characteristics on normal (human umbilical vein endothelial cell (HUVEC)) and lung cancer cells and exhibited IC50 values of 211, 166, and 296 µg/mL against NCI-H2126, NCI-H1299, and NCI-H1437, respectively. Furthermore, the malignant lung cell viability decreased when treated with a combination of AgNPs@FV and radiotherapy. Based on the aforementioned findings, it is possible that the newly developed AgNPs@FV could serve as a novel chemotherapeutic medication or adjunct for addressing lung cancer following the completion of clinical trials involving human subjects.
Collapse
Affiliation(s)
- Qian Wu
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No.216 Guanshan Road, Hongshan District, Wuhan, 430074, Hubei, China
| | - Zifu Qin
- Department of Health, Vertigo Examination Room, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Pei Sun
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Fang Liu
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No.216 Guanshan Road, Hongshan District, Wuhan, 430074, Hubei, China
| | - Yin Ge
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No.216 Guanshan Road, Hongshan District, Wuhan, 430074, Hubei, China
| | - Pengbo Wang
- Department of Radiotherapy, Yantaishan Hospital, No.91, Jiefang Road, Zhifu District, Yantai, 264001, Shandong, China.
| |
Collapse
|
3
|
Huang Y, Rao Z, Tan W, Zhou Y, Hu S. Green Synthesis and Chemical Characterization of Silver Nanoparticles by Tribulus terrestris for the Treatment of Myocardial Infarction. Biol Trace Elem Res 2025; 203:1961-1971. [PMID: 39134771 DOI: 10.1007/s12011-024-04336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 03/20/2025]
Abstract
Silver nanoparticles (AgNPs) are commonly utilized in the medical sector, particularly in cardiovascular applications. Nevertheless, there is a studies scarcity examining the impact of AgNPs on myocardial infarction protection. A green formulation of AgNPs was documented in the research. Different spectroscopic methods were utilized to examine the AgNPs, and their potential for treating myocardial infarction was explored. The NPs exhibited a spherical morphology upon formation. Isoproterenol (85 mg/kg) was administered to induce myocardial infarction in mice. The mice were categorized into four distinct groups (n = 15): (1) untreated; (2) normal; (3,4) AgNPs + isoproterenol at various doses (5 and 50 µg/kg). The activation of PPAR-Υ/NF-κB and subsequent cytokine release induced by lipopolysaccharide were quantified using real-time PCR and western blot techniques. Subsequent to the administration of AgNPs at different doses, the evaluation of cardiac function was conducted through biochemical, histochemical, and electrocardiogram (ECG) analysis. AgNPs significantly inhibit the levels of myocardial injury markers, reduce the incidence of mortality, and improve the condition of ventricular wall infarction. In addition, the administration of AgNPs effectively prevents the characteristic ST segment depression when compared to animals with myocardial infarction. The positive effects of AgNPs could potentially be attributed to the restoration of normal gene expression in PPAR-Υ/NF-κB/ΙκB-α/ΙΚΚα/β and PPAR-Υ phosphorylation pathways. Additionally, the application of AgNPs led to a reduction in the levels of pro-inflammatory cytokines in the hearts of mice suffering from myocardial infarction. The expression suppression of inflammation cytokines and cell death was significantly reduced by AgNPs. Recent findings suggest that AgNPs possess cardioprotective properties on isoproterenol-induced myocardial infarction, possibly by the inhibition of NF-κB signaling and activation of PPAR-γ. To summarize, the present study introduces a contemporary therapeutic approach for treating myocardial infarction in clinical settings.
Collapse
Affiliation(s)
- Yuexia Huang
- Department of Respiration, Research Center for Clinical Medicine, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Zhongxian Rao
- Neurosurgery, Wuhan University of Science and Technology Affiliated Geriatric Hospital, Wuhan, 430065, Hubei, China
| | - Wei Tan
- General Medicine, Wuhan University of Science and Technology Affiliated Geriatric Hospital, Wuhan, Wuhan, 430065, Hubei, China
| | - You Zhou
- General Medicine, Wuhan University of Science and Technology Affiliated Geriatric Hospital, Wuhan, Wuhan, 430065, Hubei, China
| | - Shanshan Hu
- General Medicine, Wuhan University of Science and Technology Affiliated Geriatric Hospital, Wuhan, Wuhan, 430065, Hubei, China.
| |
Collapse
|
4
|
Kamal NH, Heikal LA, Abdallah OY. The future of cardiac repair: a review on cell-free nanotherapies for regenerative myocardial infarction. Drug Deliv Transl Res 2025:10.1007/s13346-024-01763-y. [PMID: 39833466 DOI: 10.1007/s13346-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Cardiovascular diseases as myocardial infarction (MI) represent a major cause for morbidity and mortality worldwide. Even though, patients who survive MI are susceptible to high risk of heart failure. This is mainly attributed to the major loss of cardiomyocytes and limited regenerative potential of myocardium. Despite the availability of various cardiovascular drugs, they fail to address the main cause of MI. The optimum therapeutic goal should therefore focus on enhancing cardiac regeneration through cellular and cell-free therapeutic approaches. This review focused on different mechanisms of cardiac regeneration that can be achieved via non-cellular therapeutic modalities. Passive and active targeting of the infarcted myocardium using various nanoparticles that can be loaded with growth factors, drugs or affordable natural products can reduce negative ventricular remodeling, infarct size and the apoptotic rate of cardiomyocytes. In addition, injectable biomaterials-based nanocomposite can be used as a scaffold to support infarcted heart and recruit cells. Innovative affordable and less invasive cell-free approaches can be implemented to enhance cardiac regeneration post MI.
Collapse
Affiliation(s)
- Nermeen H Kamal
- Department of Pharmaceutics, Division of Pharmaceutical Sciences. College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
5
|
Barinda AJ, Arozal W, Hardi H, Dewi YR, Safutra MS, Lee HJ. Water Extracts of Moringa oleifera Leaves Alter Oxidative Stress-Induced Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. ScientificWorldJournal 2024; 2024:7652217. [PMID: 39569182 PMCID: PMC11578659 DOI: 10.1155/2024/7652217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/05/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Moringa oleifera (MO) has been an important plant for food and traditional medicine in Asian countries, including Indonesia. The leaves of these plants are reported to be rich in antioxidants, vitamins, and micronutrients and have been proven to have nootropic properties. Therefore, we investigated whether MO could provide protective effects on SH-SY5Y neuroblastoma cells exposed to H2O2. In this study, we observed cotreating water-extracted MO leaves on the inhibition of reactive oxygen species (ROS). We found that this treatment enhanced the activities of glutathione peroxidase, catalase, and superoxide dismutase. In addition, it suppressed the mRNA expression levels of apoptotic gene-related genes, specifically Bcl-2 associated protein X (BAX) and caspase 3. Furthermore, it promoted neuroplasticity by increasing the brain-derived neurotropic factor (BDNF) mRNA expression in SH-SY5Y cells. The protein expression of phosphorylated-Akt and phosphorylated-CREB, essential genes in neuroplasticity, was also increased in cells treated with H2O2 and MO. Therefore, the neuroprotective effects of MO against oxidative stress are attributed to its antioxidant and antiapoptotic properties, as well as its ability to modify the neuronal signaling pathway.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harri Hardi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yulia Ratna Dewi
- Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Muhamad Sadam Safutra
- Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Pharmacology and Pharmacy, Faculty of Medicine, Pattimura University, Poka Campus, Ambon, Indonesia
| | - Hee Jae Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Laib I, Ali BD, Alsalme A, Croun D, Bechelany M, Barhoum A. Therapeutic potential of silver nanoparticles from Helianthemum lippii extract for mitigating cadmium-induced hepatotoxicity: liver function parameters, oxidative stress, and histopathology in wistar rats. Front Bioeng Biotechnol 2024; 12:1400542. [PMID: 39007052 PMCID: PMC11240457 DOI: 10.3389/fbioe.2024.1400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: This study explores the therapeutic potential of silver nanoparticles (Ag NPs) synthesized using a Helianthemum lippii extract in mitigating cadmium-induced hepatotoxicity in Wistar rats. Given the increasing environmental and health concerns associated with cadmium exposure, novel and eco-friendly therapeutic strategies are essential. Methods: Ag NPs were characterized using X-ray diffraction, UV-Vis spectrometry, and energy-dispersive X-ray spectroscopy with scanning electron microscopy, confirming their formation with a cubic crystal structure and particle sizes ranging from 4.81 to 12.84 nm. A sub-acute toxicity study of Ag NPs (2 mg/kg and 10 mg/kg) was conducted, showing no significant difference compared to untreated control rats (n = 3 animals/group). Subsequently, adult Wistar rats (n = 5/group) were divided into a control group and three experimental groups: Ag NPs alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, and CdCl2 exposure followed by 0.1 mg/kg/day Ag NPs intraperitoneally for 15 days. Results: In the CdCl2-exposed group, there was a significant decrease in body weight and increases in alanine and aspartate transaminase levels (p < 0.05 vs. control), indicating hepatotoxicity. Additionally, antioxidant defenses were decreased, and malondialdehyde levels were elevated. Liver histology revealed portal fibrosis, inflammation, necrosis, sinusoid and hepatic vein dilation, and cytoplasmic vacuolations. Treatment with Ag NPs post-CdCl2 exposure mitigated several adverse effects on liver function and architecture and improved body weight. Discussion: This study demonstrates the efficacy of Ag NPs synthesized via a green method in reducing cadmium-induced liver damage. These findings support the potential of Ag NPs in therapeutic applications and highlight the importance of sustainable and eco-friendly nanoparticle synthesis methods. By addressing both toxicity concerns and therapeutic efficacy, this research aligns with the growing emphasis on environmentally conscious practices in scientific research and healthcare.
Collapse
Affiliation(s)
- Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued, Algeria
- Higher School of Saharan Agriculture, El Oued, Algeria
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued, Algeria
| | - Boutlilis Djahra Ali
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued, Algeria
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued, Algeria
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Croun
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Gulf University for Science and Technology, GUST, Helwan, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Wei Q, Xiao Y, Du L, Li Y. Advances in Nanoparticles in the Prevention and Treatment of Myocardial Infarction. Molecules 2024; 29:2415. [PMID: 38893291 PMCID: PMC11173599 DOI: 10.3390/molecules29112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Myocardial infarction (MI) is one of the most prevalent types of cardiovascular disease. During MI, myocardial cells become ischemic and necrotic due to inadequate blood perfusion, leading to irreversible damage to the heart. Despite the development of therapeutic strategies for the prevention and treatment of MI, their effects are still unsatisfactory. Nanoparticles represent a new strategy for the pre-treatment and treatment of MI, and novel multifunctional nanoparticles with preventive and therapeutic capabilities hold promise for the prevention and treatment of this disease. This review summarizes the common types and properties of nanoparticles, and focuses on the research progress of nanoparticles for the prevention and treatment of MI.
Collapse
Affiliation(s)
| | | | | | - Ya Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.W.); (Y.X.); (L.D.)
| |
Collapse
|
8
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
9
|
El‐Kersh K, Hopkins CD, Wu X, Rai SN, Cave MC, Smith MR, Go Y, Jones DP, Cai L, Huang J. Metallomics in pulmonary arterial hypertension patients. Pulm Circ 2023; 13:e12202. [PMID: 36824690 PMCID: PMC9941844 DOI: 10.1002/pul2.12202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) prevalence is increasing worldwide, and the prognosis is poor with 5-year survival < 50% in high risk patients. The relationship between metal exposure/essential metal dyshomeostasis and PAH/right ventricular dysfunction is less investigated. The aim of this study is to investigate vegetable consumptions and metal levels between PAH patients and controls. This was a prospective, single center pilot study. Questionnaires were completed by all study subjects (20 PAH patients and 10 healthy controls) on smoking, metal exposure risks, metal supplements, and vegetable consumptions. Blood and urine samples were collected to measure 25 metal levels in blood, plasma, and urine using an X Series II quadrupole inductively coupled plasma mass spectrometry. Statistical analysis was conducted using SAS 9.5 and results with p value < 0.05 were considered significant. Vegetables consumptions (broccoli risk ratio [RR] = 0.4, CI = (0.2, 0.9)], cabbage [RR = 0.2, CI = (0.1, 0.8)], and brussel sprouts [RR = 0.2, CI = (0.1, 0.5)]) are associated with less risks of PAH. In the plasma samples, silver (p < 0.001), and copper (p = 0.002) levels were significantly higher in PAH patients. There was significant positive correlation between cardiac output and cardiac index with plasma levels of silver (r = 0.665, p = 0.001 and r = 0.678 p = 0.001), respectively. There was significant correlation between mixed venous saturation, 6-min walk distance, and last BNP with plasma levels of chromium (r = -0.520, p = 0.022; r = -0.55, p = 0.014; r = 0.463, p = 0.039), respectively. In conclusion, there are significant differences between PAH and control groups in terms of vegetable consumptions and metal concentrations. Silver and chromium levels are correlated with clinical indicators of PAH severities.
Collapse
Affiliation(s)
- Karim El‐Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - C. Danielle Hopkins
- Department of Anesthesiology and Perioperative MedicineUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Xiaoyong Wu
- Department of Environmental HealthUniversity of CincinnatiCincinnatiOhioUSA
| | - Shesh N. Rai
- Department of Environmental HealthUniversity of CincinnatiCincinnatiOhioUSA
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of MedicineUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- The Center for Integrative Environmental Health SciencesUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- The Transplant Program at UofL Health — Jewish Hospital Trager Transplant CenterLouisvilleKentuckyUSA
| | - M. Ryan Smith
- Division of Pulmonary, Allergy and Critical Care MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Young‐Mi Go
- Division of Pulmonary, Allergy and Critical Care MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Lu Cai
- The Center for Integrative Environmental Health SciencesUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- Department of Radiation OncologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative MedicineUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- The Center for Integrative Environmental Health SciencesUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
- The Transplant Program at UofL Health — Jewish Hospital Trager Transplant CenterLouisvilleKentuckyUSA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation InstituteUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- Division of Infectious Diseases, Department of Medicine, Center of Excellence for Research in infectious DiseasesUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|