1
|
Manyi-Loh CE, Lues R. Listeria monocytogenes and Listeriosis: The Global Enigma. Foods 2025; 14:1266. [PMID: 40238523 PMCID: PMC11989209 DOI: 10.3390/foods14071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Listeria monocytogenes is an intracellular, Gram-positive, non-spore-forming, non-encapsulated, facultative anaerobic, rod-shaped, and psychrotrophic food-borne pathogen that causes the infection, listeriosis, thus it attracts great attention following listeriosis outbreaks, which are often associated with high mortality rates. The prevalence of listeriosis is quite low globally; however, the most recent and deadliest outbreak occurred in South Africa, during which 216 persons lost their lives. L. monocytogenes is endowed with the potential to multiply through a wide range of harsh environmental conditions, forming biofilms on varying surfaces in the food industry, as well as having persistent and antibiotic-resistant cells, which pose a major threat and burden to the ready-to-eat food industry. A more frustrating characteristic of this bacterium is its strain divergence, alongside an increased level of antibiotic resistance registered among the strains of L. monocytogenes recovered from food, humans, and environmental sources, especially to those antibiotics involved in the treatment of human listeriosis. Antibiotic resistance exerted by and among pathogenic food-borne microbes is an ongoing public health menace that continues to be an issue. Against this background, a thorough search into different databases using various search engines was performed, which led to the gathering of salient information that was organised, chronologically, based on Listeria monocytogenes and listeriosis. Altogether, the findings elaborated in this study present up-to date knowledge on different aspects of this pathogen which will improve our understanding of the mystery associated with it and the ways to prevent and control its dissemination through ready-to-eat foods. In addition, constant monitoring of the antibiotic resistance profiles of strains of L. monocytogenes from varying sources detected changes, giving an update on the trend in antibiotic resistance. Overall, monitoring of bacterial contamination serves as the key aspect in the control of the food safety output in the food industry.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein X9301, South Africa;
| | | |
Collapse
|
2
|
Parra-Flores J, Daza-Prieto B, Chavarria P, Troncoso M, Stöger A, Figueroa G, Mancilla-Rojano J, Cruz-Córdova A, Martinovic A, Ruppitsch W. From Traditional Typing to Genomic Precision: Whole-Genome Sequencing of Listeria monocytogenes Isolated from Refrigerated Foods in Chile. Foods 2025; 14:290. [PMID: 39856956 PMCID: PMC11765429 DOI: 10.3390/foods14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Ready-to-eat (RTE) foods are the most common sources of Listeria monocytogenes transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 L. monocytogenes strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety. Using cgMLST, a cluster was identified comprising 2 strains with zero allele differences among the 16 strains evaluated. Ninety-four percent of the isolates (15/16) were serotype 1/2b, and 88% of them (14/16) were ST5. All strains shared identical virulence genes related to adhesion (ami, iap, lapB), stress resistance (clpCEP), invasion (aut, iapcwhA, inlAB, lpeA), toxin production (hly), and intracellular regulation (prfA), with only 13 strains exhibiting the bcrBC and qacJ gene, which confer resistance to quaternary ammonium. The pCFSAN010068_01 plasmids were prevalent, and insertion sequences (ISLs) and composite transposons (cns) were detected in 87.5% of the strains. The presence of various antibiotic resistance genes, along with resistance to thermal shocks and disinfectants, may provide L. monocytogenes ST5 strains with enhanced environmental resistance to the hygiene treatments used in the studied food production plant.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Beatriz Daza-Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Pamela Chavarria
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Miriam Troncoso
- Fundación Instituto Profesional Duoc UC, Santiago 8240000, Chile;
| | - Anna Stöger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile;
| | - Jetsi Mancilla-Rojano
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Ariadnna Cruz-Córdova
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Aleksandra Martinovic
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| |
Collapse
|
3
|
Zawiasa A, Olejnik-Schmidt A. The Genetic Determinants of Listeria monocytogenes Resistance to Bacteriocins Produced by Lactic Acid Bacteria. Genes (Basel) 2025; 16:50. [PMID: 39858597 PMCID: PMC11765107 DOI: 10.3390/genes16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a serious foodborne disease that can lead to serious health complications. Pregnant women, newborns, the elderly, and patients with weakened immune systems are particularly susceptible to infection. Due to the ability of L. monocytogenes to survive in extreme environmental conditions, such as low temperatures, high salinity, and acidity, this bacterium poses a serious threat to food production plants and is particularly difficult to eliminate from these plants. One of the promising solutions to reduce the presence of this bacterium in food products is bacteriocins as natural control agents. These are substances with antibacterial activity produced by other bacteria, mainly lactic acid bacteria (LAB), which can effectively inhibit the development of pathogens such as L. monocytogenes. The use of bacteriocins in the food industry is beneficial due to their natural origin, specificity of action, and consumer safety. However, the problem of resistance to these substances exists. RESULTS This review focuses on the mechanisms of bacteriocin resistance, such as modifications of bacteriocin docking receptors, changes in the structure of the cell wall and membrane, and the occurrence of cross-resistance to different bacteriocins. Genetic factors determining these mechanisms and strategies to cope with the problem of resistance are also presented. CONCLUSIONS Research on this issue is crucial for developing effective preventive methods that will enable the safe and long-term use of bacteriocins in food production.
Collapse
Affiliation(s)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| |
Collapse
|
4
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Liu M, Ding Y, Ye Q, Wu S, Gu Q, Chen L, Zhang Y, Wei X, Deng M, Zhang J, Wu Q, Wang J. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit Rev Food Sci Nutr 2024; 65:2031-2045. [PMID: 38441497 DOI: 10.1080/10408398.2024.2322141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qinghua Ye
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Shi Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qihui Gu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Ling Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Youxiong Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Xianhu Wei
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Meiqing Deng
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Hillig N, Schumann-Muck F, Hamedy A, Braun PG, Koethe M. Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes. Folia Microbiol (Praha) 2024; 69:173-180. [PMID: 37688746 PMCID: PMC10876764 DOI: 10.1007/s12223-023-01089-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.
Collapse
Affiliation(s)
- Nadja Hillig
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Felicitas Schumann-Muck
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Ahmad Hamedy
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Peggy G Braun
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Martin Koethe
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Arnaboldi S, Benincà E, Evers EG. Improvement of quantitative microbiological risk assessment (QMRA) methodology through integration with gaenetic data. EFSA J 2023; 21:e211003. [PMID: 38047129 PMCID: PMC10687759 DOI: 10.2903/j.efsa.2023.e211003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Quantitative microbiological risk assessment (QMRA) methodology aims to estimate and describe the transmission of pathogenic microorganisms from animals and food to humans. In microbiological literature, the availability of whole genome sequencing (WGS) data is rapidly increasing, and incorporating this data into QMRA has the potential to enhance the reliability of risk estimates. This study provides insight into which are the key pathogen properties for incorporating WGS data to enhance risk estimation, through examination of example risk assessments for important foodborne pathogens: Listeria monocytogenes (Lm), Salmonella, Campylobacter and Shiga toxin-producing Escherichia coli. By investigating the relationship between phenotypic pathogen properties and genetic traits, a better understanding was gained regarding their impact on risk assessment. Virulence of Lm was identified as a promising property for associating different symptoms observed in humans with specific genotypes. Data from a genome-wide association study were used to correlate lineages, serotypes, sequence types, clonal complexes and the presence or absence of virulence genes of each strain with patient's symptoms. We also investigated the effect of incorporating WGS data into a QMRA model including relevant genomic traits of Lm, focusing on the dose-response phase of the risk assessment model, as described with the case/exposure ratio. The results highlighted that WGS studies which include phenotypic information must be encouraged, so as to enhance the accuracy of QMRA models. This study also underscores the importance of executing more risk assessments that consider the ongoing advancements in OMICS technologies, thus allowing for a closer investigation of different bacterial subtypes relevant to human health.
Collapse
Affiliation(s)
- Sara Arnaboldi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER)Italy
| | - Elisa Benincà
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)the Netherlands
| | - Eric G. Evers
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)the Netherlands
| |
Collapse
|
8
|
Byun KH, Kim HJ. Survival strategies of Listeria monocytogenes to environmental hostile stress: biofilm formation and stress responses. Food Sci Biotechnol 2023; 32:1631-1651. [PMID: 37780599 PMCID: PMC10533466 DOI: 10.1007/s10068-023-01427-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Listeria monocytogenes is a critical foodborne pathogen that causes listeriosis and threatens public health. This pathogenic microorganism forms a transmission cycle in nature, food industry, and humans, expanding the areas of contamination among them and influencing food safety. L. monocytogenes forms biofilms to protect itself and promotes survival through stress responses to the various stresses (e.g., temperature, pH, and antimicrobial agents) that may be inflicted during food processing. Biofilms and mechanisms of resistance to hostile external or general stresses allow L. monocytogenes to survive despite a variety of efforts to ensure food safety. The current review article focuses on biofilm formation, resistance mechanisms through biofilms, and external specific or general stress responses of L. monocytogenes to help understand the unexpected survival rates of this bacterium; it also proposes the use of obstacle technology to effectively cope with it in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113 Republic of Korea
| |
Collapse
|
9
|
Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Korkus J, Grudlewska-Buda K, Budzyńska A, Wnuk K, Gospodarek-Komkowska E, Skowron K. The influence of stress factors on selected phenotypic and genotypic features of Listeria monocytogenes - a pilot study. BMC Microbiol 2023; 23:259. [PMID: 37716959 PMCID: PMC10504795 DOI: 10.1186/s12866-023-03006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Listeria monocytogenes are Gram-positive rods, widespread in the environment due to their wide tolerance to changing conditions. The apilot study aimed to assess the impact of six various stresses (heat, cold, osmotic, acid, alkali, frozen) on phenotypic features: MIC of antibiotics (penicillin, ampicillin, meropenem, erythromycin, co-trimoxazole; gradient stripes), motility, ability to form a biofilm (crystal violet method) and growth rate (OD and quantitative method), expression level of sigB (stress induced regulator of genes), agrA, agrB (associated with biofilm formation) and lmo2230, lmo0596 (acid and alkali stress) (qPCR) for three strains of L. monocytogenes. RESULTS Applied stress conditions contributed to changes in phenotypic features and expression levels of sigB, agrA, agrB, lmo2230 and lmo0596. Stress exposure increased MIC value for penicillin (ATCC 19111 - alkaline stress), ampicillin (472CC - osmotic, acid, alkaline stress), meropenem (strains: 55 C - acid, alkaline, o smotic, frozen stress; 472CC - acid, alkaline stress), erythromycin (strains: 55 C - acid stress; 472CC - acid, alkaline, osmotic stress; ATCC 19111 - osmotic, acid, alkaline, frozen stress), co-trimoxazole (strains: 55 C - acid stress; ATCC 19111 - osmotic, acid, alkaline stress). These changes, however, did not affect antibiotic susceptibility. The strain 472CC (a moderate biofilm former) increased biofilm production after exposure to all stress factors except heat and acid. The ATCC 19111 (a weak producer) formed moderate biofilm under all studied conditions except cold and frozen stress, respectively. The strain 55 C became a strong biofilm producer after exposure to cold and produced a weak biofilm in response to frozen stress. Three tested strains had lower growth rate (compared to the no stress variant) after exposure to heat stress. It has been found that the sigB transcript level increased under alkaline (472CC) stress and the agrB expression increased under cold, osmotic (55 C, 472CC), alkali and frozen (472CC) stress. In contrast, sigB transcript level decreased in response to acid and frozen stress (55 C), lmo2230 transcript level after exposure to acid and alkali stress (ATCC 19111), and lmo0596 transcript level after exposure to acid stress (ATCC 19111). CONCLUSIONS Environmental stress changes the ability to form a biofilm and the MIC values of antibiotics and affect the level of expression of selected genes, which may increase the survival and virulence of L. monocytogenes. Further research on a large L. monocytogenes population is needed to assess the molecular mechanism responsible for the correlation of antibiotic resistance, biofilm formation and resistance to stress factors.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Kacper Wnuk
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
10
|
Xiong R, Yan J, Mei J, Ye J, Xie J. The enhanced expression of genes encoding diguanylate cyclases under cold stress contributes to the adhesion and biofilm formation of Shewanella putrefaciens WS13. Front Nutr 2022; 9:1076932. [DOI: 10.3389/fnut.2022.1076932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Shewanella putrefaciens is a special spoilage bacterium of seafood during cold storage, which is easy to form biofilm and bring serious hazard to the seafood quality. Life cycle of biofilm starts after bacterial adhesion, which is essential for the formation and development of biofilm. As a ubiquitous second messenger in bacteria, c-di-GMP regulates the conversion between bacterial planktonic state and biofilm state. In this study, the adhesion and biofilm formation of S. putrefaciens WS13 under 4°C were compared to those under 30°C. Atom force microscope and scanning electron microscope were used to study the bacterial adhesion. Biofilm was analyzed by Fourier transform infrared spectroscopy, Bradford assay and phenol-sulfuric acid method. High-performance liquid chromatographic-tandem mass spectrometric and quantitative real-time PCR were applied to study c-di-GMP level and genes encoding diguanylate cyclases in cells, respectively. Results showed that the swarming mobility of S. putrefaciens WS13 was weaker under 4°C, however, the adhesive force under 4°C was 4–5 times higher than that under 30°C. Biofilm biomass, extracellular polysaccharides and extracellular proteins were 2.5 times, 3 times, and 1.6 times more than those under 30°C, respectively, but biofilm composition formed under both temperatures were similar. c-di-GMP level in S. putrefaciens WS13 under 30°C was no more than half of that in the corresponding growth stage under 4°C. Quantitative real-time PCR analysis also showed that the expression of genes encoding diguanylate cyclases were significantly enhanced under 4°C than that under 30°C. S. putrefaciens WS13 adapted to the cold stress by enhancing the expression of genes encoding diguanylate cyclases to promote bacterial adhesion and biofilm formation. This study provides a theoretical foundation for the research on the cold adaptation mechanism of specific spoilage bacteria of seafood based on c-di-GMP, and also provides a new idea to control seafood quality from the perspective of microbial molecular biology.
Collapse
|
11
|
D'Onofrio F, Visciano P, Krasteva I, Torresi M, Tittarelli M, Pomilio F, Iannetti L, Di Febo T, Paparella A, Schirone M, Luciani M. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022; 22:e2200082. [PMID: 35916071 DOI: 10.1002/pmic.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is one of the main foodborne pathogens worldwide. Although its response to stress conditions has been extensively studied, it is still present in the food processing environments and is a concern for consumers. To investigate how this microorganism adapts its proteome in mild stress conditions, a combined proteomics and bioinformatics approach was used to characterize the immunogenic protein profile of an ST7 strain that caused severe listeriosis outbreaks in central Italy. Extracted proteins were analyzed by immunoblotting using positive sera against L. monocytogenes and nLC-ESI-MS/MS, and all data were examined by five software to predict subcellular localization. Two hundred and twenty-six proteins were extracted from the bands of interest, 58 of which were classified as potential immunogenic antigens. Compared to control cells grown under optimal conditions, six proteins, some of which under-described, were expressed under mild acid and salt stress conditions and/or at 12°C. In particular, adaptation and shaping of the proteome mainly involved cell motility at 12°C without acid and salt stress, whereas the combination of the same temperature with mild acid and salt stress induced a response concerning carbohydrate metabolism, oxidative stress and DNA repair. Raw data are available via ProteomeXchange with identifier PXD033519. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| |
Collapse
|
12
|
Functional Genomics Identified Novel Genes Involved in Growth at Low Temperatures in Listeria monocytogenes. Microbiol Spectr 2022; 10:e0071022. [PMID: 35735974 PMCID: PMC9431668 DOI: 10.1128/spectrum.00710-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen that can cause severe human illness. Standard control measures for restricting bacterial growth, such as refrigeration, are often inadequate as Lm grows well at low temperatures. To identify genes involved in growth at low temperatures, a powerful functional genomics method Tn-seq was performed in this study. This genome-wide screening comprehensively identified the known and novel genetic determinants involved in low-temperature growth. A novel gene lmo1366, encoding rRNA methyltransferase, was identified to play an essential role in Lm growth at 16°C. In contrast, the inactivation of lmo2301, a gene encoding the terminase of phage A118, significantly enhanced the growth of Lm at 16°C. The deletion of lmo1366 or lmo2301 resulted in cell morphology alterations and impaired the growth rate in milk and other conditions at low temperatures. Transcriptomic analysis revealed that the Δlmo1366 and Δlmo2301 mutants exhibited altered transcriptional patterns compared to the wild-type strain at 16°C with significant differences in genes involved in ribosome structural stability and function, and membrane biogenesis, respectively. This work uncovered novel genetic determinants involved in Lm growth at 16°C, which could lead to a better understanding of how bacteria survive and multiply at low temperatures. Furthermore, these findings could potentially contribute to developing novel antibacterial strategies under low-temperature conditions. IMPORTANCEListeria monocytogenes is a Gram-positive pathogen that contributes to foodborne outbreaks due to its ability to survive at low temperatures. However, the genetic determinants of Lm involved in growth at low temperatures have not been fully defined. Here, the genetic determinants involved in the low-temperature growth of Lm were comprehensively identified on a genome-wide scale by Tn-seq. The gene lmo1366, encoding rRNA methyltransferase, was identified essential for growth under low-temperature conditions. On the other hand, the gene lmo2301, encoding terminase of phage A118, plays a negative role in bacterial growth at low temperatures. The transcriptomic analysis revealed the potential mechanisms. These findings lead to a better understanding of how bacteria survive and multiply at low temperatures and could provide unique targets for novel antibacterial strategies under low-temperature conditions.
Collapse
|
13
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
14
|
Vásquez L, Parra A, Quesille-Villalobos AM, Gálvez G, Navarrete P, Latorre M, Toro M, González M, Reyes-Jara A. Cobalamin cbiP mutant shows decreased tolerance to low temperature and copper stress in Listeria monocytogenes. Biol Res 2022; 55:9. [PMID: 35236417 PMCID: PMC8889760 DOI: 10.1186/s40659-022-00376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans. This pathogen activates multiple regulatory mechanisms in response to stress, and cobalamin biosynthesis might have a potential role in bacterial protection. Low temperature is a strategy used in the food industry to control bacteria proliferation; however, L. monocytogenes can grow in cold temperatures and overcome different stress conditions. In this study we selected L. monocytogenes List2-2, a strain with high tolerance to the combination of low temperature + copper, to understand whether the cobalamin biosynthesis pathway is part of the tolerance mechanism to this stress condition. For this, we characterized the transcription level of three cobalamin biosynthesis-related genes (cbiP, cbiB, and cysG) and the eutV gene, a transcriptional regulator encoding gene involved in ethanolamine metabolism, in L. monocytogenes strain List2-2 growing simultaneously under two environmental stressors: low temperature (8 °C) + copper (0.5 mM of CuSO4 × 5H2O). In addition, the gene cbiP, which encodes an essential cobyric acid synthase required in the cobalamin pathway, was deleted by homologous recombination to evaluate the impact of this gene in L. monocytogenes tolerance to a low temperature (8 °C) + different copper concentrations. RESULTS By analyzing the KEGG pathway database, twenty-two genes were involved in the cobalamin biosynthesis pathway in L. monocytogenes List2-2. The expression of genes cbiP, cbiB, and cysG, and eutV increased 6 h after the exposure to low temperature + copper. The cobalamin cbiP mutant strain List2-2ΔcbiP showed less tolerance to low temperature + copper (3 mM) than the wild-type L. monocytogenes List2-2. The addition of cyanocobalamin (5 nM) to the medium reverted the phenotype observed in List2-2ΔcbiP. CONCLUSION These results indicate that cobalamin biosynthesis is necessary for L. monocytogenes growth under stress and that the cbiP gene may play a role in the survival and growth of L. monocytogenes List2-2 at low temperature + copper.
Collapse
Affiliation(s)
- L Vásquez
- Laboratorio de Microbiología y Probióticos, INTA Universidad de Chile, Avenida El Líbano 5524 Macul, Santiago, Chile
| | - A Parra
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - A M Quesille-Villalobos
- Laboratorio de Microbiología y Probióticos, INTA Universidad de Chile, Avenida El Líbano 5524 Macul, Santiago, Chile
| | - G Gálvez
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - P Navarrete
- Laboratorio de Microbiología y Probióticos, INTA Universidad de Chile, Avenida El Líbano 5524 Macul, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - M Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - M Toro
- Laboratorio de Microbiología y Probióticos, INTA Universidad de Chile, Avenida El Líbano 5524 Macul, Santiago, Chile
| | - M González
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - A Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA Universidad de Chile, Avenida El Líbano 5524 Macul, Santiago, Chile.
| |
Collapse
|
15
|
Gray J, Chandry PS, Kaur M, Kocharunchitt C, Fanning S, Bowman JP, Fox EM. Colonisation dynamics of Listeria monocytogenes strains isolated from food production environments. Sci Rep 2021; 11:12195. [PMID: 34108547 PMCID: PMC8190317 DOI: 10.1038/s41598-021-91503-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium capable of colonising and persisting within food production environments (FPEs) for many years, even decades. This ability to colonise, survive and persist within the FPEs can result in food product cross-contamination, including vulnerable products such as ready to eat food items. Various environmental and genetic elements are purported to be involved, with the ability to form biofilms being an important factor. In this study we examined various mechanisms which can influence colonisation in FPEs. The ability of isolates (n = 52) to attach and grow in biofilm was assessed, distinguishing slower biofilm formers from isolates forming biofilm more rapidly. These isolates were further assessed to determine if growth rate, exopolymeric substance production and/or the agr signalling propeptide influenced these dynamics and could promote persistence in conditions reflective of FPE. Despite no strong association with the above factors to a rapid colonisation phenotype, the global transcriptome suggested transport, energy production and metabolism genes were widely upregulated during the initial colonisation stages under nutrient limited conditions. However, the upregulation of the metabolism systems varied between isolates supporting the idea that L. monocytogenes ability to colonise the FPEs is strain-specific.
Collapse
Affiliation(s)
- Jessica Gray
- CSIRO Agriculture and Food, Werribee, VIC, Australia. .,Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | | | - Mandeep Kaur
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, D04 N2E5, Ireland.,Institute for Global Food Security, Queen's University Belfast, Chlorine Gardens, Belfast, BT5 6AG, UK
| | - John P Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, VIC, Australia. .,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
16
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
17
|
Cold-shock proteins affect desiccation tolerance, biofilm formation and motility in Listeria monocytogenes. Int J Food Microbiol 2020; 329:108662. [DOI: 10.1016/j.ijfoodmicro.2020.108662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
|
18
|
Roberts BN, Chakravarty D, Gardner J, Ricke SC, Donaldson JR. Listeria monocytogenes Response to Anaerobic Environments. Pathogens 2020; 9:pathogens9030210. [PMID: 32178387 PMCID: PMC7157565 DOI: 10.3390/pathogens9030210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative anaerobic bacterium that is responsible for the disease, listeriosis. It is particularly lethal in pregnant women, the fetus, the elderly and the immunocompromised. The pathogen survives and replicates over a wide range of temperatures (4 to 42 °C), pH, salt and oxygen concentrations. Because it can withstand various environments, L. monocytogenes is a major concern in food processing industries, especially in dairy products and ready-to-eat fruits, vegetables and deli meats. The environment in which the pathogen is exposed can influence the expression of virulence genes. For instance, studies have shown that variations in oxygen availability can impact resistance to stressors. Further investigation is needed to understand the essential genes required for the growth of L. monocytogenes in anaerobic conditions. Therefore, the purpose of this review is to highlight the data on L. monocytogenes under known environmental stresses in anaerobic environments and to focus on gaps in knowledge that may be advantageous to study in order to better understand the pathogenicity of the bacterium.
Collapse
Affiliation(s)
- Brandy N. Roberts
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Damayanti Chakravarty
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.C.); (J.C.G.III)
| | - J.C. Gardner
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.C.); (J.C.G.III)
| | - Steven C. Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA;
| | - Janet R. Donaldson
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.C.); (J.C.G.III)
- Correspondence: ; Tel.: +1-601-206-6795
| |
Collapse
|
19
|
Kragh ML, Truelstrup Hansen L. Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel. Front Microbiol 2020; 10:3132. [PMID: 32038566 PMCID: PMC6987299 DOI: 10.3389/fmicb.2019.03132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes survives exposure to a variety of stresses including desiccation in the food industry. Strand-specific RNA sequencing was applied to analyze changes in the transcriptomes of two strains of L. monocytogenes (Lm 568 and Lm 08-5578) during desiccation [15°C, 43% relative humidity (RH)] on food grade stainless steel surfaces over 48 h to simulate a weekend with no food production. Both strains showed similar survival during desiccation with a 1.8-2 Log CFU/cm2 reduction after 48 h. Analysis of differentially expressed (DE) genes (>twofold, adjusted p-value <0.05) revealed that the initial response to desiccation was established after 6 h and remained constant with few new genes being DE after 12, 24, and 48 h. A core of 81 up- and 73 down-regulated DE genes were identified as a shared, strain independent response to desiccation. Among common upregulated genes were energy and oxidative stress related genes e.g., qoxABCD (cytochrome aa3) pdhABC (pyruvate dehydrogenase complex) and mntABCH (manganese transporter). Common downregulated genes related to anaerobic growth, proteolysis and the two component systems lmo1172/lmo1173 and cheA/cheY, which are involved in cold growth and flagellin production, respectively. Both strains upregulated additional genes involved in combatting oxidative stress and reactive oxygen species (ROS), including sod (superoxide dismutase), kat (catalase), tpx (thiol peroxidase) and several thioredoxins including trxAB, lmo2390 and lmo2830. Osmotic stress related genes were also upregulated in both strains, including gbuABC (glycine betaine transporter) and several chaperones clpC, cspA, and groE. Significant strain differences were also detected with the food outbreak strain Lm 08-5578 differentially expressing 1.9 × more genes (726) compared to Lm 568 (410). Unique to Lm 08-5578 was a significant upregulation of the expression of the alternative transcription factor σB and its regulon. A number of long antisense transcripts (lasRNA) were upregulated during desiccation including anti0605, anti0936, anti1846, and anti0777, with the latter controlling flagellum biosynthesis and possibly the downregulation of motility genes observed in both strains. This exploration of the transcriptomes of desiccated L. monocytogenes provides further understanding of how this bacterium encounters and survives the stress faced when exposed to dry conditions in the food industry.
Collapse
|
20
|
Santos T, Viala D, Chambon C, Esbelin J, Hébraud M. Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics. Front Nutr 2019; 6:89. [PMID: 31259174 PMCID: PMC6587611 DOI: 10.3389/fnut.2019.00089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| |
Collapse
|
21
|
Quesille-Villalobos AM, Parra A, Maza F, Navarrete P, González M, Latorre M, Toro M, Reyes-Jara A. The Combined Effect of Cold and Copper Stresses on the Proliferation and Transcriptional Response of Listeria monocytogenes. Front Microbiol 2019; 10:612. [PMID: 30984140 PMCID: PMC6447683 DOI: 10.3389/fmicb.2019.00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause severe disease in susceptible humans. This microorganism has the ability to adapt to hostile environmental conditions such as the low temperatures used by the food industry for controlling microorganisms. Bacteria are able to adjust their transcriptional response to adapt to stressful conditions in order to maintain cell homeostasis. Understanding the transcriptional response of L. monocytogenes to stressing conditions could be relevant to develop new strategies to control the pathogen. A possible alternative for controlling microorganisms in the food industry could be to use copper as an antimicrobial agent. The present study characterized three L. monocytogenes strains (List2-2, Apa13-2, and Al152-2A) adapted to low temperature and challenged with different copper concentrations. Similar MIC-Cu values were observed among studied strains, but growth kinetic parameters revealed that strain List2-2 was the least affected by the presence of copper at 8°C. This strain was selected for a global transcriptional response study after a 1 h exposition to 0.5 mM of CuSO4 × 5H2O at 8 and 37°C. The results showed that L. monocytogenes apparently decreases its metabolism in response to copper, and this reduction is greater at 8°C than at 37°C. The most affected metabolic pathways were carbohydrates, lipids and nucleotides synthesis. Finally, 15 genes were selected to evaluate the conservation of the transcriptional response in the other two strains. Results indicated that only genes related to copper homeostasis showed a high degree of conservation between the strains studied, suggesting that a low number of genes is implicated in the response to copper stress in L. monocytogenes. These results contribute to the understanding of the molecular mechanisms used by bacteria to overcome a combination of stresses. This study concluded that the application of copper in low concentrations in cold environments may help to control foodborne pathogens as L. monocytogenes in the industry.
Collapse
Affiliation(s)
- Ana María Quesille-Villalobos
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Angel Parra
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Felipe Maza
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation (CGR), Santiago, Chile
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation (CGR), Santiago, Chile
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Magaly Toro
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Lanciotti R, Braschi G, Patrignani F, Gobbetti M, De Angelis M. How Listeria monocytogenes Shapes Its Proteome in Response to Natural Antimicrobial Compounds. Front Microbiol 2019; 10:437. [PMID: 30930865 PMCID: PMC6423498 DOI: 10.3389/fmicb.2019.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The goal of this study was to investigate the adaptation of L. monocytogenes Scott A cells to treatments with sublethal doses of antimicrobials (ethanol, citral, carvacrol, E-2-hexenal and thyme essential oil). The survival of L. monocytogenes cells was not affected by the antimicrobials at the concentrations assayed, with the exception of ethanol (1% v/v) and thyme essential oil (100 mg/L), which decreased cell viability from 8.53 ± 0.36 to 7.20 ± 0.22 log CFU/mL (P = 0.04). We subsequently evaluated how L. monocytogenes regulates and shapes its proteome in response to antimicrobial compounds. Compared to the control cells grown under optimal conditions, L. monocytogenes treated for 1 h with the antimicrobial compounds showed increased or decreased (≥ or ≤2-fold, respectively, P < 0.05) levels of protein synthesis for 223 protein spots. As shown multivariate clustering analysis, the proteome profiles differed between treatments. Adaptation and shaping of proteomes mainly concerned cell cycle control, cell division, chromosome, motility and regulatory related proteins, carbohydrate, pyruvate, nucleotide and nitrogen metabolism, cofactors and vitamins and stress response with contrasting responses for different stresses. Ethanol, citral (85 mg/l) or (E)-2-hexenal (150 mg/L) adapted cells increased survival during acid stress imposed under model (BHI) and food-like systems.
Collapse
Affiliation(s)
- Rosalba Lanciotti
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | - Giacomo Braschi
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | - Francesca Patrignani
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | | | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
23
|
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front Microbiol 2018; 9:2700. [PMID: 30555426 PMCID: PMC6282059 DOI: 10.3389/fmicb.2018.02700] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | | | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
24
|
Quantifying growth of cold-adapted Listeria monocytogenes and Listeria innocua on fresh spinach leaves at refrigeration temperatures. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Hingston P, Chen J, Allen K, Truelstrup Hansen L, Wang S. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. PLoS One 2017; 12:e0180123. [PMID: 28662112 PMCID: PMC5491136 DOI: 10.1371/journal.pone.0180123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/11/2017] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Allen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
NicAogáin K, O’Byrne CP. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Front Microbiol 2016; 7:1865. [PMID: 27933042 PMCID: PMC5120093 DOI: 10.3389/fmicb.2016.01865] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σB) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σB also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host's humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future.
Collapse
Affiliation(s)
| | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, College of Science, National University of IrelandGalway, Ireland
| |
Collapse
|