1
|
Zhang P, Shen D, Wang X, Wu S, Long Y, Gu F. Enhanced anaerobic digestion of waste activated sludge using magnetite-modified sludge ceramsite: Performance and microbial dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124389. [PMID: 39938297 DOI: 10.1016/j.jenvman.2025.124389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/27/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The effect of magnetite-modified sludge ceramsite on anaerobic digestion of sludge was systematically investigated in this study. The results revealed that the addition of magnetite significantly altered the properties of the ceramsite, while magnetite-modified ceramsite significantly altered the sludge anaerobic digestion process. Biochemical methane production potential experiments demonstrated that the cumulative methane production of the experimental group with moderate ceramsite addition was enhanced by 17.8% compared to the control group without ceramsite. This enhancement was attributed primarily to the favorable pore structure and biocompatibility of the modified ceramsite. The incorporation of magnetite facilitated the enrichment of microorganisms and the reduction of Fe(III), thereby promoting anaerobic digestion. Moreover, the ceramsite exhibited strong buffering capacity, contributing to the enhanced stability of the digestive system. Microbiological analyses revealed that the addition of ceramsite significantly altered the microbial community. Appropriate ceramsite addition resulted in the enrichment of bacteria associated with organic matter degradation and methanogenesis. Furthermore, potential iron-reducing bacteria (Clostridium_sensu_stricto) and bacteria capable of direct interspecies electron transfer (Syntrophomonas) were also enriched in the anaerobic system. This study demonstrates a viable approach for the efficient resource utilization of sludge.
Collapse
Affiliation(s)
- Pengqu Zhang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Xitong Wang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Shulin Wu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Foquan Gu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
2
|
Liu S, Liang D, Wang Y, He W, Feng Y. Impact of carrier capacitance on Geobacter enrichment and direct interspecies electron transfer under anaerobic conditions. BIORESOURCE TECHNOLOGY 2025; 419:132079. [PMID: 39824320 DOI: 10.1016/j.biortech.2025.132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens. Capacitive materials, such as activated carbon and biochar, significantly enriched Geobacter populations and strengthened DIET-based mutualism with Methanosarcina, both in the presence and absence of electric fields. Partial least-squares path modeling revealed that the porous structure and functional groups of materials positively and directly influenced the abundance of Geobacter and Methanosarcina. These findings contribute to a deeper understanding of critical properties of capacitive materials for screening functional microorganisms and guiding the design of electroactive materials to augment anaerobic treatment processes.
Collapse
Affiliation(s)
- Shujuan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China
| | - Yixi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China.
| |
Collapse
|
3
|
Braga CSN, Martins G, Duarte MS, Soares OSGP, Pereira MFR, Pereira IAC, Alves MM, Pereira L, Salvador AF. Microbial activity of the inoculum determines the impact of activated carbon, magnetite and zeolite on methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178340. [PMID: 39778450 DOI: 10.1016/j.scitotenv.2024.178340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)). The inocula included pure cultures of methanogens, syntrophic cocultures, and complex microbial communities, and the kinetic parameters assessed were the lag phase duration and methane production rates (MPR). The results showed that the microbial activity of the inocula is an important factor determining materials' effect on MP kinetics. AC, Mag, and Zeo significantly enhanced the MP profiles of less active microbial communities or low-active microorganisms by decreasing lag phases duration up to 85 %, consequently increasing MPR up to 15 times. Contrarily, these materials did not affect highly active microbial communities or pure cultures, as MP profiles tend to be similar with and without materials. These results indicate that from an applied point of view, the addition of materials to anaerobic bioreactors should be considered only when the methanogenic activity of the sludge is low or compromised.
Collapse
Affiliation(s)
- Cátia S N Braga
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - O Salomé G P Soares
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luciana Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
4
|
Li J, Sun D, Wu S, Yang W, Xiong L, Zhang W, Hua M, Pan B. Long-term and multiscale assessment of methanogenesis enhancement mechanisms in magnetite nanoparticle-mediated anaerobic digestion reactor. ENVIRONMENTAL RESEARCH 2024; 262:119958. [PMID: 39276839 DOI: 10.1016/j.envres.2024.119958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Magnetite nanoparticles (Fe3O4-NPs) have been demonstrated to be involved in direct interspecies electron transfer between syntrophic bacteria, yet a comprehensive assessment of the ability of Fe3O4-NPs to cope with process instability and volatile fatty acids (VFAs) accumulation in scaled-up anaerobic reactors is still lacking. Here, we investigated the start-up characteristics of an expanded granular sludge bed (EGSB) with Fe3O4-NPs as an adjuvant at high organic loading rate (OLR). The results showed that the methane production rate of R1 (with Fe3O4-NPs) was approximately 1.65 folds of R0 (control), and effluent COD removal efficiency was maintained at approximately 98.32% upon 20 kg COD/(m3·d) OLR. The components of volatile fatty acids are acetate and propionate, and the rapid scavenging of propionate accumulation was the difference between R1 and the control. The INT-ETS activity of R1 was consistently higher than that of R0 and R2, and the electron transfer efficiencies increased by 68.78% and 131.44%, respectively. Meanwhile, the CV curve analysis showed that the current of R1 was 40% higher than R3 (temporary addition of Fe3O4-NPs), indicating that multiple electron transfer modes might coexist. High-throughput analysis further revealed that it was difficult to reverse the progressive deterioration of system performance with increasing OLR by simply reconfiguring bacterial community structure and abundance, demonstrating that the Fe3O4-NPs-mediated DIET pathway is a prerequisite for establishing multiple electron transfer systems. This study provides a long-term and multi-scale assessment of the gaining effect of Fe3O4-NPs in anaerobic digestion scale-up devices, and provides technical support for their practical engineering applications.
Collapse
Affiliation(s)
- Jibin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Desheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Siqi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wenlan Yang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Lei Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
5
|
Akram J, Song C, El Mashad HM, Chen C, Zhang R, Liu G. Advances in microbial community, mechanisms and stimulation effects of direct interspecies electron transfer in anaerobic digestion. Biotechnol Adv 2024; 76:108398. [PMID: 38914350 DOI: 10.1016/j.biotechadv.2024.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Anaerobic digestion (AD) has been proven to be an effective green technology for producing biomethane while reducing environmental pollution. The interspecies electron transfer (IET) processes in AD are critical for acetogenesis and methanogenesis, and these IET processes are carried out via mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET). The latter has recently become a topic of significant interest, considering its potential to allow diffusion-free electron transfer during the AD process steps. To date, different multi-heme c-type cytochromes, electrically conductive pili (e-pili), and other relevant accessories during DIET between microorganisms of different natures have been reported. Additionally, several studies have been carried out on metagenomics and metatranscriptomics for better detection of DIET, the role of DIET's stimulation in alleviating stressed conditions, such as high organic loading rates (OLR) and low pH, and the stimulation mechanisms of DIET in mixed cultures and co-cultures by various conductive materials. Keeping in view this significant research progress, this study provides in-depth insights into the DIET-active microbial community, DIET mechanisms of different species, utilization of various approaches for stimulating DIET, characterization approaches for effectively detecting DIET, and potential future research directions. This study can help accelerate the field's research progress, enable a better understanding of DIET in complex microbial communities, and allow its utilization to alleviate various inhibitions in complex AD processes.
Collapse
Affiliation(s)
- Jehangir Akram
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hamed M El Mashad
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States; Agricultural Engineering Department, Mansoura University, Egypt
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States.
| | - Guangqing Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Li Y, Yang B, Kong Y, Tao Y, Zhao Z, Li Y, Zhang Y. Correlation between intracellular electron transfer and gene expression for electrically conductive pili in electroactive bacteria during anaerobic digestion with ethanol. WATER RESEARCH 2024; 265:122307. [PMID: 39180955 DOI: 10.1016/j.watres.2024.122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Ethanol feeding has been widely documented as an economical and effective strategy for establishing direct interspecies electron transfer (DIET) during anaerobic digestion. However, the mechanisms involved are still unclear, especially on correlation between intracellular electron transfer in electroactive bacteria and their gene expression for electrically conductive pili (e-pili), the most essential electrical connection component for DIET. Upon cooling from room temperature, the conductivity of digester aggregates with ethanol exponentially increased by an order of magnitude (from 45.5 to 125.4 μS/cm), whereas which with its metabolites (acetaldehyde [from 40.5 to 54.4 μS/cm] or acetate [from 32.1 to 50.4 μS/cm]) did not increase significantly. In addition, the digester aggregates only with ethanol were observed with a strong dependence of conductivity on pH. Metagenomic and metatranscriptomic analysis showed that Desulfovibrio desulfuricans was the most dominant and metabolically active bacterium that contained and highly expressed the genes for e-pili. Abundance of genes encoding the total type IV pilus assembly proteins (6.72E-04 vs 1.24E-03, P < 0.05), PilA that determined the conductive properties (2.22E-04 vs 2.44E-04, P > 0.05), and PilB that proceeded the polymerization of pilin (1.56E-04 vs 3.52E-03, P < 0.05) with ethanol was lower than that with acetaldehyde. However, transcript abundance of these genes with ethanol was generally higher than that with acetaldehyde. In comparison to acetaldehyde, ethanol increased the transcript abundance of genes encoding the key enzymes involved in NADH/NAD+ transformation on complex I and ATP synthesis on complex V in intracellular electron transport chain. The improvement of intracellular electron transfer in D. desulfuricans suggested that electrons were intracellularly energized with high energy to activate e-pili during DIET.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaohui Kong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yang Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
7
|
Xu P, Liu H, Liu C, Zhu G. Syntrophic methane production from volatile fatty acids: Focus on interspecies electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174410. [PMID: 38960157 DOI: 10.1016/j.scitotenv.2024.174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Methane is a renewable biomass energy source produced via anaerobic digestion (AD). Interspecies electron transfer (IET) between methanogens and syntrophic bacteria is crucial for mitigating energy barriers in this process. Understanding IET is essential for enhancing the efficiency of syntrophic methanogenesis in anaerobic digestion. Interspecies electron transfer mechanisms include interspecies H2/formate transfer, direct interspecies electron transfer (DIET), and electron-shuttle-mediated transfer. This review summarizes the mechanisms, developments, and research gaps in IET pathways. Interspecies H2/formate transfer requires strict control of low H2 partial pressure and involves complex enzymatic reactions. In contrast, DIET enhances the electron transfer efficiency and process stability. Conductive materials and key microorganisms can be modulated to stimulate the DIET. Electron shuttles (ES) allow microorganisms to interact with extracellular electron acceptors without direct contact; however, their efficiency depends on various factors. Future studies should elucidate the key functional groups, metabolic pathways, and regulatory mechanisms of IET to guide the optimization of AD processes for efficient renewable energy production.
Collapse
Affiliation(s)
- Panhui Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Haichen Liu
- Shanghai Investigation, Design & Research Institute Co., Ltd., 200080, China
| | - Chong Liu
- The 101 Research Institute, Ministry of Civil Affairs of the People's Republic of China, Beijing 100070, China.
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
8
|
Xu H, Wang M, Hei S, Qi X, Zhang X, Liang P, Fu W, Pan B, Huang X. Neglected role of iron redox cycle in direct interspecies electron transfer in anaerobic methanogenesis: Inspired from biogeochemical processes. WATER RESEARCH 2024; 262:122125. [PMID: 39053210 DOI: 10.1016/j.watres.2024.122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Anaerobic digestion is an indispensable technical option towards green and low-carbon wastewater treatment, with interspecies electron transfer (IET) playing a key role in its efficiency and operational stability. The exogenous semiconductive iron oxides have been proven to effectively enhance IET, while the cognition of the physicochemical-biochemical coupling stimulatory mechanism was circumscribed and remains to be elucidated. In this study, semiconductive iron oxides, α-Fe2O3, γ-Fe2O3, α-FeOOH, and γ-FeOOH were found to significantly enhance syntrophic methanogenesis by 76.39, 72.40, 37.33, and 32.64% through redirecting the dominant IET pathway from classical interspecies hydrogen transfer to robust direct interspecies electron transfer (DIET). Their alternative roles as electron shuttles potentially substituting for c-type cytochromes were conjectured to establish an electron transport matrix associated with conductive pili. Distinguished from the conventional electron conductor mechanism of conductive Fe3O4, semiconductive iron oxides facilitated DIET intrinsically through the capacitive Fe(III/II) redox cycles coupled with secondary mineralization. The growth of Aminobacterium, Sedimentibacter, and Methanothrix was enriched and the gene copy numbers of Geobacteraceae 16S ribosomal ribonucleic acid were selectively flourished by 2.0-∼4.5- fold to establish a favorable microflora for DIET pathway. Metabolic pathways of syntrophic acetogenesis from propionate/butyrate and CO2 reduction methanogenesis were correspondingly promoted. The above findings provide new insights into the underlying mechanism of iron minerals enhancing the DIET-oriented pathway and offer paradigms for redox-mediated energy harvesting biological wastewater treatment.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Dong X, Dong A, Liu J, Qadir K, Xu T, Fan X, Liu H, Ji F, Xu W. Impact of Iron Oxide on Anaerobic Digestion of Frass in Biogas and Methanogenic Archaeal Communities' Analysis. BIOLOGY 2024; 13:536. [PMID: 39056727 PMCID: PMC11273746 DOI: 10.3390/biology13070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.
Collapse
Affiliation(s)
- Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Aoqi Dong
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Juhao Liu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Kamran Qadir
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Tianping Xu
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiya Fan
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Weiping Xu
- School of Chemical Engineering, Ocean, and Life Sciences, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| |
Collapse
|
10
|
Liu H, Xu Y, Dai X. Electron-transfer-driven spatial optimisation of anaerobic consortia for efficient methanogenesis: Neglected inductive effect of conductive materials. BIORESOURCE TECHNOLOGY 2024; 403:130856. [PMID: 38763204 DOI: 10.1016/j.biortech.2024.130856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The inductive effect of conductive materials (CMs) on enhancing methanogenesis metabolism has been overlooked. Herein, we highlight role of CMs in inducing the spatial optimisation of methanogenic consortia by altering the Lewis acid-base (AB) interactions within microbial aggregates. In the presence of CMs and after their removal, the methane production and methane proportion in biogas significantly increase, with no significant difference between the two situations. Analyses of interactions between CMs and extracellular polymer substances (EPSs) with and without D2O reveal that CMs promote release and transfer potential of electron in EPSs, which induce and enhance the role of water molecules being primarily as proton acceptors in the hydrogen bonding between EPSs and water, thereby changing the electron-donor- and electron-acceptor-based AB interactions. Investigations of succession dynamics of microbial communities, co-occurrence networks, and metagenomics further indicate that electron transfer drives the microbial spatial optimisation for efficient methanogenesis through intensive interspecies interactions.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Nguyen TH, Nguyen DV, Hatamoto M, Takimoto Y, Watari T, Do KU, Yamaguchi T. Harnessing iron materials for enhanced decolorization of azo dye wastewater: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119418. [PMID: 38897434 DOI: 10.1016/j.envres.2024.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Highly colored azo dye-contaminated wastewater poses significant environmental threats and requires effective treatment before discharge. The anaerobic azo dye treatment method is a cost-effective and environmentally friendly solution, while its time-consuming and inefficient processes present substantial challenges for industrial scaling. Thus, the use of iron materials presents a promising alternative. Laboratory studies have demonstrated that systems coupled with iron materials enhance the decolorization efficiency and reduce the processing time. To fully realize the potential of iron materials for anaerobic azo dye treatment, a comprehensive synthesis and evaluation based on individual-related research studies, which have not been conducted to date, are necessary. This review provides, for the first time, an extensive and detailed overview of the utilization of iron materials for azo dye treatment, with a focus on decolorization. It assesses the treatment potential, analyzes the influencing factors and their impacts, and proposes metabolic pathways to enhance anaerobic dye treatment using iron materials. The physicochemical characteristics of iron materials are also discussed to elucidate the mechanisms behind the enhanced bioreduction of azo dyes. This study further addresses the current obstacles and outlines future prospects for industrial-scale application of iron-coupled treatment systems.
Collapse
Affiliation(s)
- Thu Huong Nguyen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan
| | - Duc Viet Nguyen
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuya Takimoto
- Department of Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan; School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Khac-Uan Do
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
12
|
Zhang P, Shen D, Shao J, He X, Zeng J, Wu SL, Long Y, Wei W, Ni BJ. Green synthesis of Fe 3O 4@ceramsite from sludge improving anaerobic digestion performance of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121085. [PMID: 38728986 DOI: 10.1016/j.jenvman.2024.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.
Collapse
Affiliation(s)
- Pengqu Zhang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Jinyang Shao
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Xiaoyu He
- Hangzhou Guotai Environmental Protection Technology Co., Ltd, China
| | - Jianjun Zeng
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shu-Lin Wu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Zhang F, Qin Y, Zhao C, Wu W. Soft magnetic ferrite for enhanced anaerobic digestion of food waste: Effects on methane production and magnetic recovery. BIORESOURCE TECHNOLOGY 2023; 387:129601. [PMID: 37541551 DOI: 10.1016/j.biortech.2023.129601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Soft magnetic ferrite (SMF) is a potentially efficient anaerobic digestion (AD) additive that can be recovered simultaneously along with the microorganisms it carries. In this study, two typical SMFs (Fe3O4 and γ-Fe2O3) were compared in batch experiments to investigate their effects on food waste AD and to examine the recovery characteristics of both the SMFs and the microorganisms they carried after AD. The results showed that Fe3O4 and γ-Fe2O3 addition increased methane production by 31% and 68% respectively, compared with the control treatment. Both SMF materials and enriched microorganisms were effectively adsorbed post-AD using a magnet. The observed enhancement in biomethanization after SMF addition was likely due to enhanced syntrophic acetate oxidation and hydrogenotrophic methanogenesis, and direct interspecific electron transfer. γ-Fe2O3 outperformed Fe3O4 due to its high recycling rate and ability to promote Methanosarcina growth. This study provides a potential economically efficient solution for developing AD enhancement technologies.
Collapse
Affiliation(s)
- Feixiang Zhang
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China.
| | - Changxun Zhao
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| |
Collapse
|
14
|
Chen C, Deng Y, Zhou H, Jiang L, Deng Z, Chen J, Han X, Zhang D, Zhang C. Revealing the response of microbial communities to polyethylene micro(nano)plastics exposure in cold seep sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163366. [PMID: 37044349 DOI: 10.1016/j.scitotenv.2023.163366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
To date, multiple studies have shown that the accumulation of microplastics (MPs)/nanoplastics (NPs) in the environment may lead to various problems. However, the effects of MPs/NPs on microbial communities and biogeochemical processes, particularly methane metabolism in cold seep sediments, have not been well elucidated. In this study, an indoor microcosm experiment for a period of 120 days exposure of MPs/NPs was conducted. The results showed that MPs/NPs addition did not significantly influence bacterial and archaeal richness in comparison with the control (p > 0.05), whereas higher levels of NPs (1 %, w/w) had a significant adverse effect on bacterial diversity (p < 0.05). Moreover, the bacterial community was more sensitive to the addition of MPs/NPs than the archaea, and Epsilonbacteraeota replaced Proteobacteria as the dominant phylum in the MPs/NPs treatments (except 0.2 % NPs). With respect to the co-occurrence relationships, network analysis showed that the presence of NPs, in comparison with MPs, reduced microbial network complexity. Finally, the presence of MPs/NPs decreased the abundance of mcrA, while promoting the abundance of pmoA. This study will help elucidate the responses of microbial communities to MPs/NPs and evaluate their effects on methane metabolism in cold seep ecosystems.
Collapse
Affiliation(s)
- Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Hanghai Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Jiawang Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Xiqiu Han
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Key Laboratory of Submarine Geosciences & The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
15
|
Ziganshina EE, Ziganshin AM. Magnetite Nanoparticles and Carbon Nanotubes for Improving the Operation of Mesophilic Anaerobic Digesters. Microorganisms 2023; 11:microorganisms11040938. [PMID: 37110361 PMCID: PMC10141571 DOI: 10.3390/microorganisms11040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Anaerobic waste processing contributes to the development of the bioenergy sector and solves environmental problems. To date, many technologies have been developed for increasing the rate of the anaerobic digestion process and yield of methane. However, new technological advancements are required to eliminate biogas production inefficiencies. The performance of anaerobic digesters can be improved by adding conductive materials. In this study, the effects of the separate and shared use of magnetite nanoparticles and carbon nanotubes in anaerobic digesters converting high-nitrogen-containing waste, chicken manure, were investigated. The tested nanomaterials accelerated the methane production and increased the decomposition of products from the acidogenesis and acetogenesis stages. The combined use of magnetite nanoparticles and carbon nanotubes gavae better results compared to using them alone or without them. Members of the bacterial classes Bacteroidia, Clostridia, and Actinobacteria were detected at higher levels in the anaerobic digesters, but in different proportions depending on the experiment. Representatives of the genera Methanosarcina, Methanobacterium, and Methanothrix were mainly detected within the methanogenic communities in the anaerobic digesters. The present study provides new data for supporting the anaerobic treatment of substrates with a high content of inhibitory compounds, such as chicken wastes.
Collapse
Affiliation(s)
- Elvira E. Ziganshina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Yang M, Liu N, Wang B, Li Y, Li J, Liu CQ. Archaeal contribution to carbon-functional composition and abundance in China's coastal wetlands: Not to be underestimated. Front Microbiol 2022; 13:1013408. [PMID: 36439847 PMCID: PMC9685420 DOI: 10.3389/fmicb.2022.1013408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/27/2022] [Indexed: 01/16/2024] Open
Abstract
Microbial diversity, together with carbon function, plays a key role in driving the wetland carbon cycle; however, the composition, driving factors of carbon-functional genes and the relationship with microbial community have not been well characterized in coastal wetlands. To understand these concerns, microbes, carbon-functional genes, and related environmental factors were investigated in twenty wetlands along China's coast. The results indicate that carbon-functional gene composition is dominated by archaeal rather than bacterial community and that Nanoarchaeaeota is the dominant archaeal phylum associated with carbon cycling in anoxic sediments. Compared with microbes, carbon-functional composition was more stable because they showed the highest Shannon diversity and archaeal functional redundancy. Deterministic processes dominated microbial community, and stochastic processes were more important for carbon-functional genes. Labile Fe governed archaeal and carbon-functional composition by coupling with nitrogen and carbon biogeochemical cycles, while bacterial community was affected by NH4-N and SOC/SON. This study highlights the predominant contributions of archaea to carbon-functional genes and to the stability of carbon-functional composition, thus providing new insights into the microbial dominance of the carbon cycle and the evaluation of carbon function in coastal wetlands.
Collapse
Affiliation(s)
- Meiling Yang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Na Liu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Baoli Wang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
| | - Yajun Li
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Jianfeng Li
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Cong-Qiang Liu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Xu XJ, Yan J, Yuan QK, Wang XT, Yuan Y, Ren NQ, Lee DJ, Chen C. Enhanced methane production in anaerobic digestion: A critical review on regulation based on electron transfer. BIORESOURCE TECHNOLOGY 2022; 364:128003. [PMID: 36155810 DOI: 10.1016/j.biortech.2022.128003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a potential bioprocess for waste biomass utilization and energy conservation. Various iron/carbon-based CMs (e.g., magnetite, biochar, granular activated carbon (GAC), graphite and zero valent iron (ZVI)) have been supplemented in anaerobic digestors to improve AD performance. Generally, the supplementation of CMs has shown to improve methane production, shorten lag phase and alleviate environmental stress because they could serve as electron conduits and promote direct interspecies electron transfer (DIET). However, the CMs dosage varied greatly in previous studies and CMs wash out remains a challenge for its application in full-scale plants. Future work is recommended to standardize the CMs dosage and recover/reuse the CMs. Moreover, additional evidence is required to verify the electrotrophs involved in DIET.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qing-Kang Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
18
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
19
|
Al Bkoor Alrawashdeh K, Al-Zboon KK, Rabadi SA, Gul E, AL-Samrraie LA, Ali R, Al-Tabbal JA. Impact of Iron oxide nanoparticles on sustainable production of biogas through anaerobic co-digestion of chicken waste and wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.974546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As The effect of iron oxide nanoparticles (IONPs) on the anaerobic co-digestion (AD) of olive mill wastewater and chicken manure was investigated. In mesophilic conditions, biogas yield, methane (CH4) content, the removal efficiency of TS, VS., acidification and hydrolysis percentage, and contaminant removal efficiency were investigated. Supplementing AD with IONPs at a concentration of 20 mg/g VS. > IONPs and INOPs >30 mg/g VS. causes an inhibitor impact on biogas, methane generation, and hydrolysis. Furthermore, implantation with 20–30 mg of IONPs/kg VS. has induced an equivalent favorable impact, with hydrolysis percentages reaching roughly 7.2%–15.1% compared to the control test, in addition to a 1.3%–4.2% enhancement in methane generation yield. The maximum acidification concentration after five days of the incubation of 1,084, 9,463, and 760 g/L was attained with IONPs dosages of 25, 30, and 20 mg/g VS., respectively, compared to 713 g/L obtained with the control test. The results have illustrated that supplementing AD with a specific concentration of IONPs (20–30 mg/g VS.) has a significant effect and enhances the inhibitor removal efficiency, most possibly due to the small surface area of IONP particles. The resultant increase in the active surface area enhances the enzyme diffusion within the substrate. This study provides new data specifying the enhancement of iron oxide nanoparticles (IONPs) and identifies the impact of IONP doses at various concentrations on the AD of olive mill wastewater and chicken waste.
Collapse
|
20
|
Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater. ENERGIES 2022. [DOI: 10.3390/en15155387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes.
Collapse
|
21
|
Logan M, Tan LC, Nzeteu CO, Lens PNL. Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor. GLOBAL CHANGE BIOLOGY. BIOENERGY 2022; 14:840-857. [PMID: 35915605 PMCID: PMC9324911 DOI: 10.1111/gcbb.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the potential of granular activated carbon (GAC) supplementation to enhance anaerobic degradation of dairy wastewater. Two sequential batch reactors (SBRs; 0.8 L working volume), one control and another amended with GAC, were operated at 37°C and 1.5-1.6 m/h upflow velocity for a total of 120 days (four cycles of 30 days each). The methane production at the end of each cycle run increased by about 68%, 503%, 110%, and 125% in the GAC-amended SBR, compared with the Control SBR. Lipid degradation was faster in the presence of GAC. Conversely, the organic compounds, especially lipids, accumulated in the absence of the conductive material. In addition, a reduction in lag phase duration by 46%-100% was observed at all four cycles in the GAC-amended SBR. The peak methane yield rate was at least 2 folds higher with GAC addition in all cycles. RNA-based bacterial analysis revealed enrichment of Synergistes (0.8% to 29.2%) and Geobacter (0.4% to 11.3%) in the GAC-amended SBR. Methanolinea (85.8%) was the dominant archaea in the biofilm grown on GAC, followed by Methanosaeta (11.3%), at RNA level. Overall, this study revealed that GAC supplementation in anaerobic digesters treating dairy wastewater can promote stable and efficient methane production, accelerate lipid degradation and might promote the activity of electroactive microorganisms.
Collapse
Affiliation(s)
| | - Lea Chua Tan
- National University of Ireland, GalwayGalwayIreland
| | | | | |
Collapse
|
22
|
Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure. SUSTAINABILITY 2022. [DOI: 10.3390/su14010447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, the impact of granular activated carbon (GAC) on the mesophilic and thermophilic anaerobic digestion of chicken manure and the structure of microbial communities was investigated. These results demonstrated that GAC supplementation effectively enhanced the consumption of produced organic acids in the mesophilic and thermophilic batch tests, accompanied by faster biomethane production in the presence of GAC than from reactors without GAC. However, since the free ammonia level was 3–6 times higher in the thermophilic reactors, this led to the instability of the anaerobic digestion process of the nitrogen-rich substrate at thermophilic temperatures. Bacteroidia and Clostridia were the two main bacterial classes in the mesophilic reactors, whereas the class Clostridia had a competitive advantage over other groups in the thermophilic systems. The archaeal communities in the mesophilic reactors were mainly represented by representatives of the genera Methanosarcina, Methanobacterium, and Methanotrix, whereas the archaeal communities in the thermophilic reactors were mainly represented by members of the genera Methanosarcina, Methanoculleus, and Methanothermobacter. New data obtained in this research will help control and manage biogas reactors in the presence of GAC at different temperatures.
Collapse
|
23
|
Hassanein A, Naresh Kumar A, Lansing S. Impact of electro-conductive nanoparticles additives on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2021; 342:126023. [PMID: 34852449 DOI: 10.1016/j.biortech.2021.126023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a biochemical process that converts waste organic matter into energy-rich biogas with methane as the main component. Addition of electric electro-conductive, such as that nanoparticles (NP), has been shown to improve biogas generation. Interspecies electron transfer and direct interspecies electron transfer (DIET) using conductive materials is one of the mechanisms responsible for observed increases in CH4. This article discusses the effect of the type and size of electro-conductive NPs on improving microbial degradation within AD systems, as well as the effect of electro-conductive NPs on microbial community shifts and syntrophic metabolism. Limitations and future perspectives of using NPs in an AD system is also discussed.
Collapse
Affiliation(s)
- Amro Hassanein
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Liao W, Tong D, Li Z, Nie X, Liu Y, Ran F, Liao S. Characteristics of microbial community composition and its relationship with carbon, nitrogen and sulfur in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148848. [PMID: 34246137 DOI: 10.1016/j.scitotenv.2021.148848] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms play an important role in the biogeochemical cycles of lacustrine sediments. However, little is known about their vertical responses to sedimentary depths and their contributions to important element cycles such as carbon, nitrogen and sulfur. Here, we investigated the community features of sedimental prokaryotes along with vertical profiles (i.e., sedimental depths of 0-230 cm) in the Dongting watershed. In the entire profile, the bacterial diversity wavelike decreased with increasing sediment depths, whereas archaeal diversity increased monotonically in the deep layer (100-230 cm). Bacteria were more sensitive to sedimental depths than archaea (B: P < 0.001, R = 0.534; A: P < 0.001, R = 0.327). The relative abundance of the primary phylum of bacteria (e.g. Proteobacteria) and archaea (e.g. Thaumarchaeota) changed significantly with sediment layers (P < 0.05). The vertical distribution of prokaryotes in sediments was related to the changes in sediment properties (P < 0.05, e.g., the content of nutrients, pH, texture, etc.). The co-occurrence network analysis further indicated that the superficial (0-40 cm) and deep (100-230 cm) networks contained more tightly connected node groups (more modules number), while the tighter connections (shorter APL) and more complex networks (higher avgK) were seen in sub-deep (40-100 cm) sediments. Based on the FAPROTAX database, we found that the predicted prokaryotic microbial functional groups involved in the N cycle had the highest abundance (87.47%), followed by the C cycle (9.48%) and the S cycle (2.39%). In addition, these groups were enriched in the superficial and deep layers. Taken together, these results reveal a new perspective on the vertical spatial variation in microorganisms at the fine-scale of the lake sediments. Distinct microbiome response patterns may have important implications for carbon, nitrogen and sulfur cycling along with the sediment profile in Dongting lake ecosystems.
Collapse
Affiliation(s)
- Wenfei Liao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Di Tong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China.
| | - Xiaodong Nie
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yaojun Liu
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Fengwei Ran
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Shanshan Liao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
25
|
Synergistic Effects of Magnetic Nanomaterials on Post-Digestate for Biogas Production. Molecules 2021; 26:molecules26216434. [PMID: 34770843 PMCID: PMC8588561 DOI: 10.3390/molecules26216434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Digestate is characterized by high water content, and in the water and wastewater treatment settings, necessitates both large storage capacities and a high cost of disposal. By seeding digestate with four magnetic nanoparticles (MNPs), this study aimed to recover biogas and boost its methane potential anaerobically. This was carried out via biochemical methane potential (BMP) tests with five 1 L bioreactors, with a working volume of 80% and 20% head space. These were operated under anaerobic conditions at a temperature 40 °C for a 30 d incubation period. The SEM/EDX results revealed that the morphological surface area of the digestate with the MNPs increased as compared to its raw state. Comparatively, the degree of degradation of the bioreactors with MNPs resulted in over 75% decontamination (COD, color, and turbidity) as compared to the control system result of 60% without MNPs. The highest biogas production (400 mL/day) and methane yield (100% CH4) was attained with 2 g of Fe2O4-TiO2 MNPs as compared to the control biogas production (350 mL/day) and methane yield (65% CH4). Economically, the highest energy balance achieved was estimated as 320.49 ZAR/kWh, or 22.89 USD/kWh in annual energy savings for this same system. These findings demonstrate that digestate seeded with MNPs has great potential to improve decontamination efficiency, biogas production and circular economy in wastewater management.
Collapse
|
26
|
Shi Z, Usman M, He J, Chen H, Zhang S, Luo G. Combined microbial transcript and metabolic analysis reveals the different roles of hydrochar and biochar in promoting anaerobic digestion of waste activated sludge. WATER RESEARCH 2021; 205:117679. [PMID: 34600232 DOI: 10.1016/j.watres.2021.117679] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal pretreatment of waste activated sludge (WAS) could eliminate the rate limiting step of anaerobic digestion (AD) -hydrolysis. However, the high organic loading rate may cause acid accumulation, thus leading to an unstable system. This study compared the effect of different hydrochar (HC2-260°C and HC3-320°C) and biochar (BC5-500°C and BC7-700°C) on AD of hydrothermal pretreated WAS (HPS). Results demonstrated that hydrochar was superior to biochar in the methane yield and production rate, especially HC2. HC2 had the highest surface oxygen-containing functional groups that could facilitate direct interspecies electron transfer (DIET). The enhanced methane yield was related with the increased protein utilization, and hydrochar and biochar enriched different microbes related to protein degradation. Metabolomic analysis showed the significantly changed metabolites induced by hydrochar and biochar were involved in fatty acids and amino acids-related metabolism, indicating the rapid conversion of intermediated products, which was consistent with the microbial community structure results. Hydrochar and biochar also induced upregulation of metabolites related to microbial metabolic activity and extracellular electron transfer. Although biochar induced the same metabolic changes, the alterations of these metabolites were weaker than those of hydrochar. The results of this study offered new insights into the molecular mechanisms of enhanced AD of HPS by hydrochar and biochar.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Muhammad Usman
- Bioproducts Science and Engineering Laboratory, Washington State University (WSU), Tri-Cities, WA 99354, United States
| | - Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huihui Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
27
|
Response of Methanogen Communities to the Elevation of Cathode Potentials in Bioelectrochemical Reactors Amended with Magnetite. Appl Environ Microbiol 2021; 87:e0148821. [PMID: 34432490 DOI: 10.1128/aem.01488-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electromethanogenesis refers to the process whereby methanogens utilize current for the reduction of CO2 to CH4. Setting low cathode potentials is essential for this process. In this study, we tested if magnetite, an iron oxide mineral widespread in the environment, can facilitate the adaptation of methanogen communities to the elevation of cathode potentials in electrochemical reactors. Two-chamber electrochemical reactors were constructed with inoculants obtained from paddy field soil. We elevated cathode potentials stepwise from the initial -0.6 V versus the standard hydrogen electrode (SHE) to -0.5 V and then to -0.4 V over the 130 days of acclimation. Only weak current consumption and CH4 production were observed in the bioreactors without magnetite. However, significant current consumption and CH4 production were recorded in the magnetite bioreactors. The robustness of electroactivity of the magnetite bioreactors was not affected by the elevation of cathode potentials from -0.6 V to -0.4 V. However, the current consumption and CH4 production were halted in the bioreactors without magnetite when the cathode potentials were elevated to -0.4 V. Methanogens related to Methanospirillum were enriched on the cathode surfaces of magnetite bioreactors at -0.4 V, while Methanosarcina relatively dominated in the bioreactors without magnetite. Methanobacterium also increased in the magnetite bioreactors but stayed off electrodes at -0.4 V. Apparently, the magnetite greatly facilitates the development of biocathodes, and it appears that with the aid of magnetite, Methanospirillum spp. can adapt to the high cathode potentials, performing efficient electromethanogenesis. IMPORTANCE Converting CO2 to CH4 through bioelectrochemistry is a promising approach to the development of green energy biotechnology. This process, however, requires low cathode potentials, which entails a cost. In this study, we tested if magnetite, a conductive iron mineral, can facilitate the adaptation of methanogens to the elevation of cathode potentials. In two-chamber reactors constructed by using inoculants obtained from paddy field soil, biocathodes developed robustly in the presence of magnetite, whereas only weak activities in CH4 production and current consumption were observed in the bioreactors without magnetite. The elevation of cathode potentials did not affect the robustness of electroactivity of the magnetite bioreactors over the 130 days of acclimation. Methanospirillum strains were identified as the key methanogens associated with the cathode surfaces during the operation at high potentials. The findings reported in this study shed new light on the adaptation of methanogen communities to the elevated cathode potentials in the presence of magnetite.
Collapse
|
28
|
Cong S, Xu Y, Lu Y. Growth Coordination Between Butyrate-Oxidizing Syntrophs and Hydrogenotrophic Methanogens. Front Microbiol 2021; 12:742531. [PMID: 34603271 PMCID: PMC8481629 DOI: 10.3389/fmicb.2021.742531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Syntrophy is a thermodynamically required mutualistic cooperation between fatty acid-oxidizing bacteria and methanogens that plays the important role in organic decomposition and methanogenesis in anoxic environments. In this study, three experiments were conducted to evaluate the cell-to-cell interaction in a thermophilic coculture consisting of Syntrophothermus lipocalidus and Methanocella conradii and a mesophilic coculture consisting of Syntrophomonas wolfei and Methanococcus maripaludis. First, syntrophs and methanogens were inoculated at different initial cell ratios to evaluate the growth synchronization. The quantitative PCR analysis revealed that the organism with a lower relative abundance at the beginning always grew faster, and the cell ratio converged over time to relative constant values in both the thermophilic and mesophilic cocultures. Next, intermittent ultrasound and constant shaking treatments were used to evaluate the influence of physical disturbance on microbial aggregation in the mesophilic coculture. The fluorescence in situ hybridization and scanning electron microscopy revealed that the tendency of syntrophic aggregation was not affected by the physical disturbances, although the activity was slightly depressed. Syntrophomonas dominated in the initial microbial aggregates, which, however, did not grow until Methanococcus was attached and increased to a significant extent, indicating the local growth synchronization during the formation and maturation of syntrophic aggregates. Last, microfluidic experiments revealed that whether or not Syntrophomonas or Methanococcus was loaded first, the second organism preferred moving to the place where the first organism was located, suggesting the cell-to-cell attraction between Syntrophomonas and Methanococcus. Collectively, our study demonstrated the growth synchronization and cell-to-cell attraction between the butyrate-oxidizing bacteria and methanogens for optimizing the syntrophic cooperation.
Collapse
Affiliation(s)
- Shuqi Cong
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiqin Xu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
29
|
Liu Y, Li X, Wu S, Tan Z, Yang C. Enhancing anaerobic digestion process with addition of conductive materials. CHEMOSPHERE 2021; 278:130449. [PMID: 34126684 DOI: 10.1016/j.chemosphere.2021.130449] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is widely used for the treatment of wastewater for its low costs and bioenergy production, but the performances of anaerobic digestion often need improving in practical applications. The addition of conductive materials could lead to direct interspecies electron transfer (DIET) among the anaerobic microorganisms, and consequently enhance the efficiencies of anaerobic digestion. In this paper, the effects of DIET via conductive materials on chemical organic demand (COD) removal, volatile fatty acid (VFA) consumption and methane production were reviewed. The reports on the increase of conductive microorganisms due to the addition of conductive materials were discussed. Results regarding activities of microorganisms and morphology and properties of sludge were described and commented, and future research needs were also proposed which included better understanding of the roles of DIET in each step of anaerobic digestion, mechanisms of metabolism of pollutants in DIET-established systems and inhibition of excessive dosage of conductive materials.
Collapse
Affiliation(s)
- Yiwei Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Zhao Tan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| |
Collapse
|
30
|
Li L, Zhang X, Zhu P, Yong X, Wang Y, An W, Jia H, Zhou J. Enhancing biomethane production and pyrene biodegradation by addition of bio-nano FeS or magnetic carbon during sludge anaerobic digestion. ENVIRONMENTAL TECHNOLOGY 2021; 42:3496-3507. [PMID: 32085684 DOI: 10.1080/09593330.2020.1733674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 05/22/2023]
Abstract
Pyrene exerts toxic effects on methanogens during anaerobic digestion of sludge, thus affecting the efficiency of sludge treatment. This study evaluated the facilitated direct interspecific electron transfer (DIET) between bacteria and methanogens when bio-nano FeS or magnetic carbon is added into anaerobic reactors. Results showed that adding 200 mg/L bio-nano FeS or magnetic carbon clearly reduced the accumulation of short-chain fatty acids and avoided acidification during 25 days of anaerobic digestion. The methane productions were 98.38 L/kg total solid (TS) and 73.69 L/kg TS in the bio-nano FeS and magnetic carbon systems, respectively, which accelerated methane production by 58.1% and 33.4%, respectively, compared with the control system (40.26 L/kg TS). The pyrene removal rates reached 77.5% and 72.1% in the bio-nano FeS and magnetic carbon systems, whereas it was only 40.8% in the control system. Analysis of microbial community structure revealed that methanogens (e.g. Methanosarcina and Methanosaeta) and extracellular electron-transfer bacteria (e.g. Pseudomonas, Cloastridia, and Synergistetes) were enriched in the reactors added with bio-nano FeS or magnetic carbon. This result indicates that the addition of bio-nano FeS or magnetic carbon may promote the activity and growth of microorganisms to improve the efficiency of methane production and pyrene degradation by enhancing DIET.
Collapse
Affiliation(s)
- Lian Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
- College of Environment, Nanjing TECH University, Nanjing, People's Republic of China
| | - Xueying Zhang
- College of Environment, Nanjing TECH University, Nanjing, People's Republic of China
| | - Peiru Zhu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
- College of Environment, Nanjing TECH University, Nanjing, People's Republic of China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Honghua Jia
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Johnravindar D, Wong JWC, Chakraborty D, Bodedla G, Kaur G. Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112457. [PMID: 33895449 DOI: 10.1016/j.jenvman.2021.112457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
This work investigated the impact of the addition of different biochar types on mitigation of volatile fatty acid (VFA) accumulation, methane recovery and digestate quality in mesophilic food waste-sludge co-digestion. Four biochars derived from agricultural and sludge residues under different pyrolysis temperatures were compared. Specific biochar properties such as pH, surface area, chemical properties and presence of surface functional groups likely influenced biochar reactions during digestion, thereby resulting in a varying performance of different biochars. Miscanthus straw biochar addition led to the highest specific methane yield of 307 ± 0.3 mL CH4/g VSadded versus 241.87 ± 5.9 mL CH4/g VSadded from control with no biochar addition over 30 days of the co-digestion period. Biochar supplementation led to enhanced process stability which likely resulted from improved syntrophic VFA oxidation facilitated by specific biochar properties. Overall, a 21.4% increase in the overall methane production was obtained with biochar addition as compared to control. The resulting digestate quality was also investigated. Biochar-amended digester generated a digestate rich in macro- and micro-nutrients including K, Mg, Ca, Fe making biochar-amended digestate a potential replacement of agricultural lime fertilizer. This work demonstrated that the addition of specific biochars with desirable properties alleviated VFA accumulation and facilitated enhanced methane recovery, thereby providing a means to achieve process stability even under high organic loading conditions in co-digestions. Moreover, the availability of biochar-enriched digestate with superior characteristics than biochar-free digestate adds further merit to this process.
Collapse
Affiliation(s)
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | | | - Govardhan Bodedla
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Guneet Kaur
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
32
|
Li Y, Ma Y, Zhao Z, Wen X, Xu G, Jiang L, Liu L, Zhang Y, Zhao Z. Magnetite drives self-dechlorination of 4-chlorophenol in anoxic aquatic sediments. CHEMOSPHERE 2021; 273:129668. [PMID: 33493817 DOI: 10.1016/j.chemosphere.2021.129668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The lack of available electron donors is well known as a major factor limiting the efficiency of microbial dechlorination of 4-chlorophenol (4-CP) in anoxic aquatic sediments. Considering that Fe(III) minerals largely contained in sediments can especially enrich Fe(III)-reducing bacteria and unlock the ring-like intermediates produced by dechlorination of 4-CP via dissimilatory Fe(III) reduction, a strategy of self-dechlorination of 4-CP utilizing its metabolism intermediates such as short-fatty acids (SCFAs) as the endogenous electron donors with magnetite was proposed in this study. The results showed that the removal efficiency of 4-CP increased by 156-203% in magnetite-supplemented biotic groups compared with the magnetite-free biotic group. Liquid chromatography-mass spectrometer (LC-MS) and gas chromatography (GC) revealed the possible metabolic pathway of anoxic 4-CP degradation with magnetite: 4-CP→phenol→cyclohexene-1-carboxylic acid→2-hydroxycyclohexanecarboxylic acid→hexanoic acid/valeric acid→butyric/propionic acids→CO2. High-throughput sequencing analysis showed that the abundance of functional bacteria, Desulfuromonas, Pseudomonas and Bacillus species, were increased by 1.38-1.97, 1.50-2.04, and 11.60-17.18 folds in magnetite-supplemented biotic groups, compared with the magnetite-free biotic groups. Analysis of Fe2+ concentration and cyclic voltammetry (CV) suggested that the potential Fe(III)/Fe(II) transformation occurred and proceeded the anoxic 4-CP degradation continuously.
Collapse
Affiliation(s)
- Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| | - Ying Ma
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| | - Zisheng Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xin Wen
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| | - Guangkuo Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| | - Lin Jiang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| | - Lifen Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
33
|
Li J, Li C, Zhao L, Pan X, Cai G, Zhu G. The application status, development and future trend of nano-iron materials in anaerobic digestion system. CHEMOSPHERE 2021; 269:129389. [PMID: 33385673 DOI: 10.1016/j.chemosphere.2020.129389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Growing environment problem and emphasis of environmental protection motivate intense research efforts in exploring technology to improve treatment efficiency on refractory organic pollutants. Hence, finding a method to make up for the deficiency of anaerobic digestion (AD) is very attractive and challenging tasks. The recent spark in the interest for the usage of some nanomaterials as an additive to strengthen AD system. The adoption of iron compounds can influence the performance and stability in AD system. However, different iron species and compounds can influence AD system in significantly different ways, both positive and negative. Therefore, strengthening mechanism, treatment efficiency, microbial community changes in Nanoscale Zero Valent Iron (nZVI) and Fe3O4 nanoparticles (Fe3O4 NPs) added AD systems were summarized by this review. The strengthening effects of nZVI and Fe3O4 NPs in different pollutants treatment system were analyzed. Previous study on the effects of nZVI and Fe3O4 NPs addition on AD have reported the concentration of nZVI and Fe3O4 NPs, and the types and biodegradability of pollutants might be the key factors that determine the direction and extent of effect in AD system. This review provides a summary on the nZVI and Fe3O4 NPs added AD system to establish experiment systems and conduct follow-up experiments in future study.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
34
|
Gao K, Lu Y. Putative Extracellular Electron Transfer in Methanogenic Archaea. Front Microbiol 2021; 12:611739. [PMID: 33828536 PMCID: PMC8019784 DOI: 10.3389/fmicb.2021.611739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that a few methanogens are capable of extracellular electron transfers. For instance, Methanosarcina barkeri can directly capture electrons from the coexisting microbial cells of other species. Methanothrix harundinacea and Methanosarcina horonobensis retrieve electrons from Geobacter metallireducens via direct interspecies electron transfer (DIET). Recently, Methanobacterium, designated strain YSL, has been found to grow via DIET in the co-culture with Geobacter metallireducens. Methanosarcina acetivorans can perform anaerobic methane oxidation and respiratory growth relying on Fe(III) reduction through the extracellular electron transfer. Methanosarcina mazei is capable of electromethanogenesis under the conditions where electron-transfer mediators like H2 or formate are limited. The membrane-bound multiheme c-type cytochromes (MHC) and electrically-conductive cellular appendages have been assumed to mediate the extracellular electron transfer in bacteria like Geobacter and Shewanella species. These molecules or structures are rare but have been recently identified in a few methanogens. Here, we review the current state of knowledge for the putative extracellular electron transfers in methanogens and highlight the opportunities and challenges for future research.
Collapse
Affiliation(s)
- Kailin Gao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
35
|
Tang Y, Li Y, Zhang M, Xiong P, Liu L, Bao Y, Zhao Z. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds. ENVIRONMENTAL RESEARCH 2021; 194:110498. [PMID: 33220246 DOI: 10.1016/j.envres.2020.110498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Fe(III) oxides have been investigated to accelerate anaerobic methanogenic degradation of complex organic compounds. However, the critical role linked to the characteristics of different types of Fe(III) oxides is still unclear. Study presented here performed a side-by-side comparison of four types of Fe(III) oxides including Fe(III)-citrate, ferrihydrite, hematite and magnetite to evaluate their effectiveness in methanogenic degradation of phenol. Results showed that, amorphous Fe(III)-citrate group showed the fastest phenol degradation and Fe2+ release among all the groups, followed by poorly crystalline ferrihydrite. Although Fe(III)-citrate group also showed the fastest methane production rate, the efficiency of electron recovery in methane production was only 58-78%, which was evidently lower than that in both crystalline hematite (86-89%) and magnetite (93-97%) groups. Methane production rate with non-conductive ferrihydrite was nearly same as that with conductive magnetite, both of which were significantly higher than that with semi-conductive hematite. X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis showed that sludge collected from hematite and magnetite group still respectively presented a relatively intact characteristic spectra involved in hematite and magnetite. Differently, the characteristic spectra involved in ferrihydrite was not evident in sludge collected from ferrihydrite group, whereas the characteristic spectra involved in magnetite was detected. Microbial community analysis showed that, both Fe(III)-citrate and ferrihydrite specially enriched Fe(III)-reducing bacteria capable of degrading phenol into fatty acids (Trichococcus and Caloramator) via dissimilatory Fe(III) reduction. Fe(III)-citrate also stimulated the growth of Syntrophus capable of degrading phenol/benzoate into acetate and proceeding direct interspecies electron transfer (DIET). In magnetite and hematite group, the abundance of Enterococcus species evidently increased, and they might proceed DIET with Methanothrix species in syntrophic conversion of fatty acids into methane.
Collapse
Affiliation(s)
- Yapeng Tang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Mingqian Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Pu Xiong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Lifen Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yongming Bao
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
36
|
Feng D, Xia A, Liao Q, Nizami AS, Sun C, Huang Y, Zhu X, Zhu X. Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116030. [PMID: 33257151 DOI: 10.1016/j.envpol.2020.116030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The anaerobic digestion of wastewater rich in volatile fatty acids (VFAs) provides a sustainable approach for methane production whilst reducing environmental pollution. However, the anaerobic digestion of VFAs may not be stable during long-term operation under a short hydraulic retention time. In this study, conductive carbon cloth was supplemented to investigate the impacts on the anaerobic digestion of VFAs in wastewater sourced from dark fermentation. The results demonstrated that the failure of anaerobic digestion could be avoided when carbon cloth was supplemented. In the stable stage, the methane production rate with carbon cloth supplementation was improved by 200-260%, and the chemical oxygen demand (COD) removal efficiency was significantly enhanced compared with that in the control without carbon cloth. The relative abundance of potential exoelectrogens on the carbon cloth was increased by up to 8-fold compared with that in the suspension. Electrotrophic methanogens on the carbon cloth were enriched by 4.2-17.2% compared with those in the suspension. The genera Ercella and Petrimonas along with the methanogenic archaea Methanosaeta and Methanosarcina on the carbon cloth may facilitate direct interspecies electron transfer, thereby enhancing methane production.
Collapse
Affiliation(s)
- Dong Feng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Chihe Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
37
|
Kang HJ, Lee SH, Lim TG, Park JH, Kim B, Buffière P, Park HD. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective. BIORESOURCE TECHNOLOGY 2021; 322:124587. [PMID: 33358582 DOI: 10.1016/j.biortech.2020.124587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
Conductive materials can serve as biocatalysts during direct interspecies electron transfer for methanogenesis in anaerobic reactors. However, the mechanism promoting direct interspecies electron transfer in anaerobic reactors, particularly under environments in which diverse substrates and microorganisms coexist, remains to be elucidated from a scientific or an engineering point of view. Currently, many molecular microbiological approaches are employed to understand the fundamentals of this phenomenon. Here, the direct interspecies electron transfer mechanisms and relevant microorganisms identified to date using molecular microbiological methods were critically reviewed. Moreover, molecular microbiological methods for direct interspecies electron transfer used in previous studies and important findings thus revealed were analyzed. This review will help us better understand the phenomena of direct interspecies electron transfer using conductive materials and offer a framework for future molecular microbiological studies.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Tae-Guen Lim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, South Korea
| | - Boram Kim
- DEEP Laboratory, Université de Lyon, INSA Lyon, Lyon, France
| | - Pierre Buffière
- DEEP Laboratory, Université de Lyon, INSA Lyon, Lyon, France
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
38
|
Zhao Z, Li Y, Zhang Y, Lovley DR. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. iScience 2020; 23:101794. [PMID: 33294801 PMCID: PMC7695907 DOI: 10.1016/j.isci.2020.101794] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anaerobic digestion was one of the first bioenergy strategies developed, yet the interactions of the microbial community that is responsible for the production of methane are still poorly understood. For example, it has only recently been recognized that the bacteria that oxidize organic waste components can forge electrical connections with methane-producing microbes through biologically produced, protein-based, conductive circuits. This direct interspecies electron transfer (DIET) is faster than interspecies electron exchange via diffusive electron carriers, such as H2. DIET is also more resilient to perturbations such as increases in organic load inputs or toxic compounds. However, with current digester practices DIET rarely predominates. Improvements in anaerobic digestion associated with the addition of electrically conductive materials have been attributed to increased DIET, but experimental verification has been lacking. This deficiency may soon be overcome with improved understanding of the diversity of microbes capable of DIET, which is leading to molecular tools for determining the extent of DIET. Here we review the microbiology of DIET, suggest molecular strategies for monitoring DIET in anaerobic digesters, and propose approaches for re-engineering digester design and practices to encourage DIET.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Derek R. Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| |
Collapse
|
39
|
Yin Q, Gu M, Wu G. Inhibition mitigation of methanogenesis processes by conductive materials: A critical review. BIORESOURCE TECHNOLOGY 2020; 317:123977. [PMID: 32799079 DOI: 10.1016/j.biortech.2020.123977] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Methanogenesis can be promoted by the addition of conductive materials. Although stimulating effects of conductive materials on methane (CH4) production has been extensively reported, the crucial roles on recovering methanogenic activities under inhibitory conditions have not been systematically discussed. This critical review presents the current findings on the effects of conductive materials in methanogenic systems under volatile fatty acids (VFAs), ammonia, sulfate, and nano-cytotoxicity stressed conditions. Conductive materials induce fast VFAs degradation, avoiding VFAs accumulation during anaerobic digestion. Under high ammonia concentrations, conductive materials may ensure sufficient energy conservation for methanogens to maintain intracellular pH and proton balance. When encountering the competition of sulfate-reducing bacteria, conductive materials can benefit electron competitive capability of methanogens, recovering CH4 production activity. Conductive nanomaterials stimulate the excretion of extracellular polymeric substances, which can prevent cells from nano-cytotoxicity. Future perspectives about unraveling mitigation mechanisms induced by conductive materials in methanogenesis processes are further discussed.
Collapse
Affiliation(s)
- Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Mengqi Gu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
40
|
Multi-Walled Carbon Nanotubes Enhance Methanogenesis from Diverse Organic Compounds in Anaerobic Sludge and River Sediments. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Conductive nanomaterials affect anaerobic digestion (AD) processes usually by improving methane production. Nevertheless, their effect on anaerobic communities, and particularly on specific trophic groups such as syntrophic bacteria or methanogens, is not extensively reported. In this work, we evaluate the effect of multi-walled carbon nanotubes (MWCNT) on the activity of two different anaerobic microbial communities: an anaerobic sludge and a river sediment. Methane production by anaerobic sludge was assessed in the presence of different MWCNT concentrations, with direct methanogenic substrates (acetate, hydrogen) and with typical syntrophic substrates (ethanol, butyrate). MWCNT accelerated the initial specific methane production rate (SMPR) from all compounds, with a more pronounced effect on the assays with acetate and butyrate, i.e., 2.1 and 2.6 times, respectively. In the incubations with hydrogen and ethanol, SMPR increased 1.1 and 1.2 times. Experiments with the river sediment were performed in the presence of MWCNT and MWCNT impregnated with 2% iron (MWCNT-Fe). Cumulative methane production was 10.2 and 4.5 times higher in the assays with MWCNT-Fe and MWCNT, respectively, than in the assays without MWCNT. This shows the high potential of MWCNT toward bioenergy production, in waste/wastewater treatment or ex situ bioremediation in anaerobic digesters.
Collapse
|
41
|
Influence of Granular Activated Carbon on Anaerobic Co-Digestion of Sugar Beet Pulp and Distillers Grains with Solubles. Processes (Basel) 2020. [DOI: 10.3390/pr8101226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anaerobic digestion is an important technology to receive energy from various types of biomass. In this work, the impact of granular activated carbon (GAC) on the mesophilic anaerobic co-digestion of sugar beet pulp and distillers grains was investigated. After a short period, anaerobic reactors began to produce biomethane and were ready for completion within 19–24 days. The addition of GAC to reactors (5–10 g L−1) significantly enhanced the methane production rate and consumption of produced volatile fatty acids. Thus, the maximum methane production rate increased by 13.7% in the presence of GAC (5 g L−1). Bacterial and archaeal community structure and dynamics were investigated, based on 16S rRNA genes analysis. The abundant classes of bacteria in GAC-free and GAC-containing reactors were Clostridia, Bacteroidia, Actinobacteria, and Synergistia. Methanogenic communities were mainly represented by the genera Methanosarcina, Methanoculleus, Methanothrix, and Methanomassiliicoccus in GAC-free and GAC-containing reactors. Our results indicate that the addition of granular activated carbon at appropriate dosages has a positive effect on anaerobic co-digestion of by-products of the processing of sugar beet and ethanol distillation process.
Collapse
|
42
|
Kaur G, Johnravindar D, Wong JWC. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: A step towards increased organic loading efficiency in co-digestion. BIORESOURCE TECHNOLOGY 2020; 308:123250. [PMID: 32244132 DOI: 10.1016/j.biortech.2020.123250] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 05/22/2023]
Abstract
This work investigated the effect of biochar addition to mitigate VFA accumulation and enhance methane production in mesophilic food waste/sludge co-digestion. Different types of biochar derived from agricultural and forestry residues at two pyrolysis temperatures were tested. Results showed that wheat straw biochar 550 °C supported the highest specific methane yield of 381.9 LCH4/kg VSadded and VS removal efficiency of 41.62% among all treatments. Degradation of propionic acid and long-chain fatty acids such as valeric, caproic and isovaleric acids was observed. This also corresponded to an increase in methanogenic favorable substrates including acetic acid (>40%) and butyric acid (~20%) over the control. Consequently, a 24% increase in overall methane production was obtained as compared to control. This demonstrated that biochar addition had positive effects on VFA degradation and methane production which could be a useful strategy to increase the organic loading in co-digestions without the fear of process failure.
Collapse
Affiliation(s)
- Guneet Kaur
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
43
|
Li Y, Tang Y, Xiong P, Zhang M, Deng Q, Liang D, Zhao Z, Feng Y, Zhang Y. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge. WATER RESEARCH 2020; 176:115763. [PMID: 32272323 DOI: 10.1016/j.watres.2020.115763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Kitchen wastes (KW) have been widely investigated for bio-ethanol production, while no study utilizes KW as ethanol source to stimulate the methanogenic communities to perform direct interspecies electron transfer (DIET), since the excess acidity contained after the biological ethanol-type fermentation pretreatment (BEFP) can seriously inhibit the DIET-based syntrophic metabolism. In this study, a strategy that utilized waste activated sludge (WAS) as co-substrate to relieve the excess acidity after BEFP during anaerobic co-digestion (AcoD) was proposed. The results showed that, under the mixed ratio of 1:2 and 1:5 (KW:WAS, volume ratio), both methane production and organic compound removal evidently increased, compared with that treating the sole WAS. Conversely, under the other mixed ratios (sole KW, 5:1, 2:1 and 1:1), no methane but the evident hydrogen production was detected, and syntrophic metabolism of organic acids and alcohols was prevented. Three-dimensional excitation emission matrix (3D-EEM) analysis showed that the protein-like organic compounds contained in both KW and WAS were effectively degraded. Furthermore, the maximum methane production potential from WAS during AcoD (260.5 ± 4.1 and 264.3 ± 2.7 mL/g-COD) was higher than that treating sole WAS (250.8 ± 0.1 mL/g-COD). Microbial community analysis showed that, some genera capable of metabolizing the complex organic compounds with the reduction of the elemental sulfur or equipped with the electrically conductive pili were specially enriched during AcoD under the mixed ratio of 1:2 and 1:5. They might proceed DIET with methanogens, such as Methanosarcina and Methanospirillum species, to maintain the syntrophic metabolism effective and stable, since the abundance of both Methanosarcina and Methanospirillum species evidently increased.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Yapeng Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Pu Xiong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Mingqian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Qingling Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
44
|
Impact of Nanoscale Magnetite and Zero Valent Iron on the Batch-Wise Anaerobic Co-Digestion of Food Waste and Waste-Activated Sludge. WATER 2020. [DOI: 10.3390/w12051283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As a potential approach for enhanced energy generation from anaerobic digestion, iron-based conductive nanoparticles have been proposed to enhance the methane production yield and rate. In this study, the impact of two different types of iron nanoparticles, namely the nano-zero-valent-iron particles (NZVIs) and magnetite (Fe3O4) nanoparticles (NPs) was investigated, using batch test under mesophilic conditions (35 °C). Magnetite NPs have been applied in doses of 25, 50 and 80 mg/L, corresponding to 13.1, 26.2 and 41.9 mg magnetite NPs/gTS of substrate, respectively. The results reveal that supplementing anaerobic batches with magnetite NPs at a dose of 25 mg/L induces an insignificant effect on hydrolysis and methane production. However, incubation with 50 and 80 mg/L magnetite NPs have instigated comparable positive impact with hydrolysis percentages reaching approximately 95% compared to 63% attained in control batches, in addition to a 50% enhancement in methane production yield. A biodegradability percentage of 94% was achieved with magnetite NP doses of 50 and 80 mg/L, compared to only 62.7% obtained with control incubation. NZVIs were applied in doses of 20, 40 and 60 mg/L, corresponding to 10.8, 21.5 and 32.2 mg NZVIs/gTS of substrate, respectively. The results have shown that supplementing anaerobic batches with NZVIs revealed insignificant impact, most probably due to the agglomeration of NZVI particles and consequently the reduction in available surface area, making the applied doses insufficient for measurable effect.
Collapse
|
45
|
Ma W, Li H, Zhang W, Shen C, Wang L, Li Y, Li Q, Wang Y. TiO 2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136602. [PMID: 31955098 DOI: 10.1016/j.scitotenv.2020.136602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, the response of methane (CH4) production to the addition of titanium dioxide nanoparticles (TiO2 NPs) with three types of short-chain fatty acids (sodium acetate, sodium propionate and sodium butyrate) as carbon sources in mangrove sediment was investigated. The results showed that the maximum CH4 formation rate increased by 45.2%, 32.7% and 48.6% and the maximum cumulative CH4 production increased by 25.2%, 7.7% and 6.3% with the addition of TiO2 NPs in the sodium acetate, sodium propionate and sodium butyrate systems, respectively. The microbial community analysis revealed that the electrogenic bacteria Proteiniclasticum and Pseudomonas, butyrate oxidizing bacteria Syntrophomonas and methanogens Methanobacterium and Methanosarcina were significantly enriched in the presence of TiO2 NPs, indicating that TiO2 NPs can enhance CH4 production by stimulating the growth of different species of methanogens and butyrate oxidizing bacteria. The enlarged distance between microbes, the enhanced conductivity of the sediment and the typical microorganisms for direct interspecies electron transfer (DIET) with the addition of TiO2 NPs suggest that the promoted DIET between distinct microorganisms could be another possible explanation for the improvement in CH4 production. It can be speculated that a weaker effect on methanogenesis increases under the natural concentration of TiO2 NPs compared with the experimental conditions; however, the amounts of TiO2 NPs are increasing enriched in wetland environments. Therefore, the findings of this study increase current knowledge about the effect of nanomaterials on global CH4 emissions and suggest that the discharge of wastewater containing TiO2 NPs from the synthesis and incorporation of TiO2 NPs in customer products needs to be monitored.
Collapse
Affiliation(s)
- Wende Ma
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, China.
| | - Weidong Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengcheng Shen
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Liuying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
46
|
Abstract
Since the observation of direct interspecies electron transfer (DIET) in anaerobic mixed cultures in 2010s, the topic “DIET-stimulation” has been the main route to enhance the performance of anaerobic digestion (AD) under harsh conditions, such as high organic loading rate (OLR) and the toxicants’ presence. In this review article, we tried to answer three main questions: (i) What are the merits and strategies for DIET stimulation? (ii) What are the consequences of stimulation? (iii) What is the mechanism of action behind the impact of this stimulation? Therefore, we introduced DIET history and recent relevant findings with a focus on the theoretical advantages. Then, we reviewed the most recent articles by categorizing how DIET reaction was stimulated by adding conductive material (CM) and/or applying external voltage (EV). The emphasis was made on the enhanced performance (yield and/or production rate), CM type, applied EV, and mechanism of action for each stimulation strategy. In addition, we explained DIET-caused changes in microbial community structure. Finally, future perspectives and practical limitations/chances were explored in detail. We expect this review article will provide a better understanding for DIET pathway in AD and encourage further research development in a right direction.
Collapse
|
47
|
Xu Q, Liao Y, Cho E, Ko JH. Effects of biochar addition on the anaerobic digestion of carbohydrate-rich, protein-rich, and lipid-rich substrates. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:455-467. [PMID: 32091971 DOI: 10.1080/10962247.2020.1733133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Although biochar addition into the anaerobic digestion of food waste (FW) is an efficient means to enhance methane production, the effects of biochar on various FW components remain unclear. Laboratory batch experiments were conducted to investigate the impact of sewage sludge-derived biochar (SSB) supplementation on the anaerobic digestion (AD) of major FW components, including carbohydrate-rich, protein-rich, and lipid-rich substrates. The lag phase of AD with the carbohydrate-rich substrate was 48.6% shorter when SSB was added, and the cumulative methane yield was 4.74 times higher compared to AD without biochar. SSB supplementation also increased the rate of methane production from the lipid-rich substrate. However, the effect of SSB addition on AD of the protein-rich substrate was minor. Analysis of the microbial communities revealed that methanogen growth was enhanced during AD of the carbohydrate-rich and lipid-rich substrates, but not the protein-rich substrate, following SSB supplementation. Also, the most dominant methanogenic genus varied with the substrates. SSB addition promoted the growth of hydrolytic and fermentative bacteria, particularly phylum Bacteroidetes.Implications: Biochar supplementation has been studied to overcome the shortcomings of anaerobic digestion (AD). However, the effects of biochar on different substrates remain unclear. This study compared carbohydrate-rich, protein-rich, and lipid-rich substrates in anaerobic digestion with sewage sludge-derived biochar (SSB). SSB supplementation improved methane generation from all but the protein-rich substrate. The study results imply that the effect of SSB addition on AD varied with the substrate due to the substrates underwent different degradation processes with different microbial communities.
Collapse
Affiliation(s)
- Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Yuqing Liao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Eunil Cho
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju-si, Republic of Korea
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju-si, Republic of Korea
| |
Collapse
|
48
|
Zhao Z, Wang J, Li Y, Zhu T, Yu Q, Wang T, Liang S, Zhang Y. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. WATER RESEARCH 2020; 171:115425. [PMID: 31881499 DOI: 10.1016/j.watres.2019.115425] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Accepted: 12/19/2019] [Indexed: 05/10/2023]
Abstract
Stimulating Methanothrix-dominant communities with ethanol is recently considered as a promising strategy of improving the efficiency and stability of anaerobic digestion (AD), while the effects on methanogenic pathway and energy metabolism linked to the establishment of direct interspecies electron transfer (DIET) were not investigated yet. The results showed that, Methanothrix species were the dominant and metabolically active methanogens in the methanogenic sludge fed with the ethanol-type fermentation products, and the abundance of genes that encoded the key enzymes involved in the reduction of carbon dioxide was significantly higher than that fed with the other products, such as propionate and butyrate. Conversely, the abundance of genes that encoded the key enzymes involved in acetate decarboxylation among all the methanogenic sludge were nearly same. In the presence of ethanol, the abundance of gene for pilA significantly increased. The gene for pliA was primarily derived from Sphaerochaeta, Sedimentibacter and Pseudomonas species that were specially abundant and metabolically active. Further analysis showed that, the abundance of genes that encoded V/A-type ATPase in the methanogenic digesters fed with the ethanol-type fermentation products was 1.3-1.5 folds higher than that fed with the other products. As a result, the concentration of total ATP in the cells was increased by 1.8-2.3 folds. These results, and the fact that DIET is the only electron donor to support the reduction of carbon dioxide in Methanothrix species for the first time revealed the mechanisms involved in the establishment of DIET-based methanogenic metabolism with ethanol.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jianfeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Tingting Zhu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tingting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Song Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
49
|
Mostafa A, Im S, Song YC, Kang S, Kim DH. Enhanced Anaerobic Digestion of Long Chain Fatty Acid by Adding Magnetite and Carbon Nanotubes. Microorganisms 2020; 8:E333. [PMID: 32120882 PMCID: PMC7143112 DOI: 10.3390/microorganisms8030333] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022] Open
Abstract
This study investigated the impact of stimulating direct interspecies electron transfer (DIET), by supplementing nano-sized magnetite (nFe3O4, 0.5 g Fe/g VSS) and carbon nanotubes (CNT, 1 g/L), in anaerobic digestion of oleic acid (OA) at various concentrations (0.10 - 4.00 g chemical oxygen demand(COD)/L). Both supplementations could enhance CH4 production, and its beneficial impact increased with increased OA concentration. The biggest improvements of 114% and 165% compared to the control were achieved by nFe3O4 and CNT, respectively, at OA of 4 g COD/L. The enhancement can be attributed to the increased sludge conductivity: 7.1 ± 0.5 (control), 12.5 ± 0.8 (nFe3O4-added), and 15.7 ± 1.1 µS/cm (CNT-supplemented). Dissolved iron concentration, released from nFe3O4, seemed to have a negligible role in improving CH4 production. The excretion of electron shuttles, i.e., humic-like substances and protein-like substances, were found to be stimulated by supplementing nFe3O4 and CNT. Microbial diversity was found to be simplified under DIET-stimulating conditions, whereby five genera accounted for 88% of the total sequences in the control, while more than 82% were represented by only two genera (Methanotrix concilli and Methanosarcina flavescens) by supplementing nFe3O4 and CNT. In addition, the abudance of electro-active bacteria such as Syntrophomonas zehnderi was significantly increased from 17% to around 45%.
Collapse
Affiliation(s)
- Alsayed Mostafa
- Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea; (A.M.); (S.I.)
| | - Seongwon Im
- Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea; (A.M.); (S.I.)
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Korea;
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea; (A.M.); (S.I.)
| |
Collapse
|
50
|
Zheng S, Li Z, Zhang P, Wang B, Zhang P, Feng Y. Multi-walled carbon nanotubes accelerate interspecies electron transfer between Geobacter cocultures. Bioelectrochemistry 2020; 131:107346. [DOI: 10.1016/j.bioelechem.2019.107346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
|