1
|
Sun H, Du Z, Fan L, Xu Z, Yang W, Zhang G, Liu X. Structural alterations in butyrylated and recrystallized high-amylose maize starch and their effect on gut microbiota during in vitro fermentation. Int J Biol Macromol 2025; 302:139970. [PMID: 39826737 DOI: 10.1016/j.ijbiomac.2025.139970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
In this study, type-3 resistant starch (RS) with enhanced thermal stability and excellent short-chain fatty acid (SCFA) production was obtained through the butyrylation and subsequent recrystallization at 4 °C of high-amylose maize starch (HAMS). We comprehensively examined and contrasted the structural attributes and in vitro human fecal fermentation behavior of butyrylated RS (BRS) with varying degrees of substitution. Fourier-transform infrared analysis validated the successful integration of carbonyl groups into the starch matrix. This phenomenon was evident through the characteristic peaks at 1727 cm-1. X-ray diffraction and thermal stability analyses delineated the distinct B-type crystalline structure and high relative crystallinity of 25.31 % and 22.23 % of the 10 % and 15 % butyric anhydride BRS-10 and BRS-15, respectively, which differed from that of HAMS. Their second peak gelatinization temperature values reached 95.6 °C and 92.6 °C. The in vitro fermentation of BRS fostered SCFA production, boosting the relative abundance of beneficial bacteria (e.g., Ligilactobacillus and Roseburia). Meanwhile, the extensively modified BRS favored the propagation of Faecalibacterium and Bifidobacterium, maintaining intestinal microbiota advantage. These findings underscore the significant effects of butyrylation modification on fermentation kinetics, metabolite profiles, and gut microbiota composition, providing invaluable insights into the development of functional food products that aim to bolster colonic health.
Collapse
Affiliation(s)
- Hui Sun
- College of Tea and Food Science, Wuyi University, Fujian 354300, PR China
| | - Zhongda Du
- College of Tea and Food Science, Wuyi University, Fujian 354300, PR China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Fujian 354300, PR China
| | - Zhenyi Xu
- College of Tea and Food Science, Wuyi University, Fujian 354300, PR China
| | - Weisen Yang
- College of Tea and Food Science, Wuyi University, Fujian 354300, PR China
| | - Guoshou Zhang
- College of Tea and Food Science, Wuyi University, Fujian 354300, PR China
| | - Xiong Liu
- College of Food Science, Southwest University, Tiansheng Road 2, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
Li S, Wang S, Zhu Y, Mu R, Wang T, Zhen Y, Si H, Du R, Li Z. In vitro dynamics of rumen microbiota and fermentation profiles with Antler growth of Sika deer. Microbiol Spectr 2025; 13:e0282924. [PMID: 39873531 PMCID: PMC11878070 DOI: 10.1128/spectrum.02829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The rumen microbiota plays a vital role in the nutrient metabolism affecting the growth of velvet antler. However, the fermentation patterns and dynamics of the rumen microbiota across growth stages of velvet antler remain largely unexplored. Here, we employed an in vitro fermentation approach to assess fermentation parameters and microbial composition in the rumen liquid of sika deer during the early growth (EG), metaphase growth (MG), and fast growth (FG) phases . Our findings indicated that the levels of short-chain fatty acids (SCFAs), ammonia nitrogen, and gas production increased over fermentation time in all three groups. The concentrations of total SCFAs, ammonia nitrogen, and gas production, along with the proportions of butyrate, isobutyrate, and isovalerate, were markedly higher in the MG and FG groups compared with the EG group. Principal coordinate analysis highlighted significant variations in microbial communities among the EG, MG, and FG groups during the fermentation process. The abundances of Stomatobaculum and Blautia across the three groups increased over fermentation time, whereas Bacteroides, Lawsonibacter, Sporobacter, Papillibacter, Butyricicoccus, and Succiniclasticum exhibited higher abundances in MG or FG groups than in the EG group after 24 hours of fermentation. Co-occurrence network analysis uncovered positive correlations between butyrate levels and butyrate-producing bacteria (Stomatobaculum, Butyrivibrio) in the MG and FG groups. Additionally, there were positive correlations between proteolytic bacteria (Clostridium and Roseburia) and branched-chain volatile fatty acids in the FG group. These findings shed light on the fermentation patterns and microbial dynamics within the rumen of sika deer during different growth periods of velvet antler.IMPORTANCEVelvet antlers are distinctive and rapidly growing organs that hold significant value in traditional medicine. Through in vitro analysis, our study characterized the dynamics of microbiota and metabolites within the rumen liquid fermentation of sika deer throughout the different antler growth phase. We identified distinct microbial communities at various fermentation time points and observed shifts in fermentation patterns that paralleled antler development. These findings suggest a potentially pivotal role for these microbial dynamics in facilitating the growth process of velvet antlers.
Collapse
Affiliation(s)
- Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shaoying Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ruina Mu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Shashank CG, Sejian V, Silpa MV, Devaraj C, Madhusoodan AP, Rebez EB, Kalaignazhal G, Sahoo A, Dunshea FR. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BIOTECH 2024; 13:49. [PMID: 39584906 PMCID: PMC11586948 DOI: 10.3390/biotech13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
The livestock sector, essential for maintaining food supply and security, encounters numerous obstacles as a result of climate change. Rising global populations exacerbate competition for natural resources, affecting feed quality and availability, heightening livestock disease risks, increasing heat stress, and contributing to biodiversity loss. Although various management and dietary interventions exist to alleviate these impacts, they often offer only short-lived solutions. We must take a more comprehensive approach to understanding how animals adapt to and endure their environments. One such approach is quantifying transcriptomes under different environments, which can uncover underlying pathways essential for livestock adaptation. This review explores the progress and techniques in studies that apply gene expression analysis to livestock production systems, focusing on their adaptation to climate change. We also attempt to identify various biomarkers and transcriptomic differences between species and pure/crossbred animals. Looking ahead, integrating emerging technologies such as spatialomics could further accelerate genetic improvements, enabling more thermoresilient and productive livestock in response to future climate fluctuations. Ultimately, insights from these studies will help optimize livestock production systems by identifying thermoresilient/desired animals for use in precise breeding programs to counter climate change.
Collapse
Affiliation(s)
- Chikamagalore Gopalakrishna Shashank
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | | | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | | | - Ebenezer Binuni Rebez
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India;
| | - Artabandhu Sahoo
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Science, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Lima J, Martínez-Álvaro M, Mattock J, Auffret MD, Duthie CA, Cleveland MA, Dewhurst RJ, Watson M, Roehe R. Temporal stability of the rumen microbiome and its longitudinal associations with performance traits in beef cattle. Sci Rep 2024; 14:20772. [PMID: 39237607 PMCID: PMC11377694 DOI: 10.1038/s41598-024-70770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
The rumen microbiome is the focus of a growing body of research, mostly based on investigation of rumen fluid samples collected once from each animal. Exploring the temporal stability of rumen microbiome profiles is imperative, as it enables evaluating the reliability of findings obtained through single-timepoint sampling. We explored the temporal stability of rumen microbiomes considering taxonomic and functional aspects across the 7-month growing-finishing phase spanning 6 timepoints. We identified a temporally stable core microbiome, encompassing 515 microbial genera (e.g., Methanobacterium) and 417 microbial KEGG genes (e.g., K00856-adenosine kinase). The temporally stable core microbiome profiles collected from all timepoints were strongly associated with production traits with substantial economic and environmental impact (e.g., average daily gain, daily feed intake, and methane emissions); 515 microbial genera explained 45-83%, and 417 microbial genes explained 44-83% of their phenotypic variation. Microbiome profiles influenced by the bovine genome explained 54-87% of the genetic variation of bovine traits. Overall, our results provide evidence that the temporally stable core microbiome identified can accurately predict host performance traits at phenotypic and genetic level based on a single timepoint sample taken as early as 7 months prior to slaughter.
Collapse
Affiliation(s)
- Joana Lima
- Scotland's Rural College, Edinburgh, UK.
| | | | - Jennifer Mattock
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
5
|
Lawther K, Santos FG, Oyama LB, Huws SA. - Invited Review - Chemical signalling within the rumen microbiome. Anim Biosci 2024; 37:337-345. [PMID: 38186253 PMCID: PMC10838665 DOI: 10.5713/ab.23.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.
Collapse
Affiliation(s)
- Katie Lawther
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Fernanda Godoy Santos
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Linda B Oyama
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Sharon A Huws
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| |
Collapse
|
6
|
Lima J, Ingabire W, Roehe R, Dewhurst RJ. Estimating Microbial Protein Synthesis in the Rumen-Can 'Omics' Methods Provide New Insights into a Long-Standing Question? Vet Sci 2023; 10:679. [PMID: 38133230 PMCID: PMC10747152 DOI: 10.3390/vetsci10120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Rumen microbial protein synthesis (MPS) provides at least half of the amino acids for the synthesis of milk and meat protein in ruminants. As such, it is fundamental to global food protein security. Estimating microbial protein is central to diet formulation, maximising nitrogen (N)-use efficiency and reducing N losses to the environment. Whilst factors influencing MPS are well established in vitro, techniques for in vivo estimates, including older techniques with cannulated animals and the more recent technique based on urinary purine derivative (UPD) excretion, are subject to large experimental errors. Consequently, models of MPS used in protein rationing are imprecise, resulting in wasted feed protein and unnecessary N losses to the environment. Newer 'omics' techniques are used to characterise microbial communities, their genes and resultant proteins and metabolites. An analysis of microbial communities and genes has recently been used successfully to model complex rumen-related traits, including feed conversion efficiency and methane emissions. Since microbial proteins are more directly related to microbial genes, we expect a strong relationship between rumen metataxonomics/metagenomics and MPS. The main aims of this review are to gauge the understanding of factors affecting MPS, including the use of the UPD technique, and explore whether omics-focused studies could improve the predictability of MPS, with a focus on beef cattle.
Collapse
Affiliation(s)
- Joana Lima
- SRUC Dairy Research and Innovation Centre, Barony Campus, Dumfries DG1 3NE, UK; (J.L.); (W.I.)
| | - Winfred Ingabire
- SRUC Dairy Research and Innovation Centre, Barony Campus, Dumfries DG1 3NE, UK; (J.L.); (W.I.)
| | | | - Richard James Dewhurst
- SRUC Dairy Research and Innovation Centre, Barony Campus, Dumfries DG1 3NE, UK; (J.L.); (W.I.)
| |
Collapse
|
7
|
Li F, Zhu Q, Dai M, Shu Q, Li X, Guo X, Wang Y, Wei J, Liu W, Dai Y, Li B. Tachinid parasitoid Exorista japonica affects the utilization of diet by changing gut microbial composition in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22011. [PMID: 36938839 DOI: 10.1002/arch.22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 05/16/2023]
Abstract
Changes in both intake and digestion of feed have been demonstrated in the host following parasitization. However, its regulatory mechanism has not been clarified. In this study, silkworms and Exorista japonica were used as research objects to analyze the effect of parasitism on the midgut immune system of the silkworm. After being parasitized, the expressions of antimicrobial peptide (AMP) genes of silkworms showed a fluctuating trend of first upregulation and then downregulation, while phenoloxidase and lysozyme activities were inhibited. To study the possible impact of the downregulation of AMP genes on intestinal microorganisms, the characteristics of the intestinal microbial population of silkworms on the third day of parasitism were analyzed. The relative abundance of Firmicutes, Proteobacteria, and Bacteroidota decreased, while that of Actinobacteriota increased. The increased abundance of conditionally pathogenic bacteria Serratia and Staphylococcus might lead to a decrease in the amount of silkworm ingestion. Meanwhile, the abundance of Acinetobacter, Bacillus, Pseudomonas, and Enterobacter promotes an increase in the digestion of nutrients. This study indicated that the imbalance of intestinal microbial homeostasis caused by parasitism may affect the absorption and digestion of nutrients by the host. Collectively, our findings provided a new clue for further exploring the mechanism of nutrient transport among the host, parasitoid, and intestinal microorganisms.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wei Liu
- Suzhou Taihu Snow Silk Co., Ltd, Suzhou, People's Republic of China
| | - Yan Dai
- Suzhou Taihu Snow Silk Co., Ltd, Suzhou, People's Republic of China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, Alugongo GM, Cao Z. Biodegradation and hydrolysis of rice straw with corn steep liquor and urea-alkali pretreatment. Front Nutr 2022; 9:989239. [PMID: 35990351 PMCID: PMC9387106 DOI: 10.3389/fnut.2022.989239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
The current study evaluated the corn steep liquor (CSL) and urea-alkali pretreatment effect to enhance biodegradation and hydrolysis of rice straw (RS) by ruminal microbiome. The first used RS (1) without (Con) or with additives of (2) 4% CaO (Ca), (3) 2.5% urea plus 4% CaO (UCa) and (4) 9% corn steep liquor + 2.5% urea + 4% CaO (CUCa), and then the efficacy of CSL plus urea-alkali pretreatment was evaluated both in vitro and in vivo. The Scanning electron microscopy, X-ray diffraction analysis, cellulose degree of polymerization and Fourier-transform infrared spectroscopy, respectively, results showed that Ca, UCa, and CUCa pretreatment altered the physical and chemical structure of RS. CSL plus Urea-alkali pretreated enhanced microbial colonization by improving the enzymolysis efficiency of RS, and specially induced adhesion of Carnobacterium and Staphylococcus. The CUCa pretreatment could be developed to improve RS nutritional value as forage for ruminants, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu T, Li F, Wang W, Wang X, Ma Z, Li C, Weng X, Zheng C. Early feeding strategies in lambs affect rumen development and growth performance, with advantages persisting for two weeks after the transition to fattening diets. Front Vet Sci 2022; 9:925649. [PMID: 35968009 PMCID: PMC9366302 DOI: 10.3389/fvets.2022.925649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to explore the effects of early feeding strategies on the growth and rumen development of lambs from pre-weaning to the transition to fattening diets. Ninety-six newborn, male lambs with similar body weights were randomly assigned to three treatments: fed starter at 42 days old + weaned at 56 days old (Ctrl, n = 36), fed starter at 7 days old + weaned at 56 days old (ES, n = 36), and fed starter at 7 days old + weaned at 28 days old (ES + EW, n = 24). The fattening diets of all lambs were gradually replaced from 60 to 70 days of age. Six randomly selected lambs from each treatment were slaughtered at 14, 28, 42, 56, 70, and 84 days of age. The results showed that the richness and diversity of rumen microbiota of lambs in the Ctrl group were distinct from those of lambs in the other groups at 42 days of age. Moreover, transcriptome analysis revealed 407, 219, and 1,211 unique differentially expressed genes (DEGs) in the rumen tissue of ES vs. Ctrl, ES vs. ES + EW, and ES + EW vs. Ctrl groups, respectively, at 42 days of age. Different early feeding strategies resulted in differences in ruminal anatomy, morphology, and fermentation in lambs from 42 to 84 days of age (P < 0.05). Lambs in the ES + EW group had a higher average starter diet intake than those in the other groups (P < 0.05) from 28 to 56 days of age, which affected their growth performance. After 42 days of age, the body and carcass weights of lambs in the ES and ES + EW groups were higher than those in the Ctrl group (P < 0.05). These findings demonstrate that feeding lambs with a starter diet at 7 days of age and weaning them at 28 days of age can promote rumen development and improve growth performance, and this advantage persists for up to 2 weeks after transition to the fattening diet.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyuan Ma
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chen Zheng
| |
Collapse
|
10
|
Microbial colonisation of tannin-rich tropical plants: Interplay between degradability, methane production and tannin disappearance in the rumen. Animal 2022; 16:100589. [PMID: 35839617 DOI: 10.1016/j.animal.2022.100589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and microbial colonisation. This study explored the rumen degradation of tropical tannin-rich plants and the relationship between the disappearance of free and bound condensed tannin fractions and microbial communities colonising plant particles using in situ and in vitro experiments. Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. were incubated in situ in the rumen of three dairy cows to determine their degradability for up to 96 h. Tannin disappearance was determined at 24 h of incubation, and adherent microbial communities were examined at 3 and 12 h of incubation using a metataxonomic approach. An in vitro approach was also used to assess the effects of these plants on rumen fermentation parameters. All plants contained more than 100 g/kg of condensed tannins with a large proportion (32-61%) bound to proteins. Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg). Free condensed tannins from all plants completely disappeared after 24-h incubation in the rumen. Disappearance of protein-bound condensed tannins was variable with values ranging from 93% for Gliricidia sepium to 21% for Acacia nilotica. In contrast, fibre-bound condensed tannin disappearance averaged ∼ 82% and did not vary between plants. Disappearance of bound fractions of condensed tannins was not associated with the degradability of plant fractions. The presence of tannins interfered with the microbial colonisation of plants. Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h. Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp. whereas, archaea diversity was reduced in high-tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation. Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control. Here, we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation. The effect of protein- and fibre-bound condensed tannins on degradability is less important.
Collapse
|
11
|
Hernández R, Chaib De Mares M, Jimenez H, Reyes A, Caro-Quintero A. Functional and Phylogenetic Characterization of Bacteria in Bovine Rumen Using Fractionation of Ruminal Fluid. Front Microbiol 2022; 13:813002. [PMID: 35401437 PMCID: PMC8992543 DOI: 10.3389/fmicb.2022.813002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Cattle productivity depends on our ability to fully understand and manipulate the fermentation process of plant material that occurs in the bovine rumen, which ultimately leads to the improvement of animal health and increased productivity with a reduction in environmental impact. An essential step in this direction is the phylogenetic and functional characterization of the microbial species composing the ruminal microbiota. To address this challenge, we separated a ruminal fluid sample by size and density using a sucrose density gradient. We used the full sample and the smallest fraction (5%), allowing the enrichment of bacteria, to assemble metagenome-assembled genomes (MAGs). We obtained a total of 16 bacterial genomes, 15 of these enriched in the smallest fraction of the gradient. According to the recently proposed Genome Taxonomy Database (GTDB) taxonomy, these MAGs belong to Bacteroidota, Firmicutes_A, Firmicutes, Proteobacteria, and Spirochaetota phyla. Fifteen MAGs were novel at the species level and four at the genus level. The functional characterization of these MAGs suggests differences from what is currently known from the genomic potential of well-characterized members from this complex environment. Species of the phyla Bacteroidota and Spirochaetota show the potential for hydrolysis of complex polysaccharides in the plant cell wall and toward the production of B-complex vitamins and protein degradation in the rumen. Conversely, the MAGs belonging to Firmicutes and Alphaproteobacteria showed a reduction in several metabolic pathways; however, they have genes for lactate fermentation and the presence of hydrolases and esterases related to chitin degradation. Our results demonstrate that the separation of the rumen microbial community by size and density reduced the complexity of the ruminal fluid sample and enriched some poorly characterized ruminal bacteria allowing exploration of their genomic potential and their functional role in the rumen ecosystem.
Collapse
Affiliation(s)
- Ruth Hernández
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Maryam Chaib De Mares
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Hugo Jimenez
- Animal Microbiology Laboratory, Agrodiversity Department, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bogotá, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,The Edison Family Center for Genome Science and Systems Biology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Alejandro Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Hart EH, Christofides SR, Davies TE, Rees Stevens P, Creevey CJ, Müller CT, Rogers HJ, Kingston-Smith AH. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Sci Rep 2022; 12:4454. [PMID: 35292703 PMCID: PMC8924208 DOI: 10.1038/s41598-022-08309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
With an increasing human population access to ruminant products is an important factor in global food supply. While ruminants contribute to climate change, climate change could also affect ruminant production. Here we investigated how the plant response to climate change affects forage quality and subsequent rumen fermentation. Models of near future climate change (2050) predict increases in temperature, CO2, precipitation and altered weather systems which will produce stress responses in field crops. We hypothesised that pre-exposure to altered climate conditions causes compositional changes and also primes plant cells such that their post-ingestion metabolic response to the rumen is altered. This “stress memory” effect was investigated by screening ten forage grass varieties in five differing climate scenarios, including current climate (2020), future climate (2050), or future climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected in terms of gas production, there was little effect of elevated temperature or CO2 compared with controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane production as a result of drought or an acute flood treatment. These results indicate that efforts to breed future forage varieties should target tolerance of acute stress rather than long term climate.
Collapse
Affiliation(s)
- Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Sarah R Christofides
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teri E Davies
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | | | - Carsten T Müller
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK.
| |
Collapse
|
13
|
Rabee AE, Sayed Alahl AA, Lamara M, Ishaq SL. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLoS One 2022; 17:e0262304. [PMID: 34995335 PMCID: PMC8740978 DOI: 10.1371/journal.pone.0262304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
Lignocellulosic biomass such as barley straw is a renewable and sustainable alternative to traditional feeds and could be used as bioenergy sources; however, low hydrolysis rate reduces the fermentation efficiency. Understanding the degradation and colonization of barley straw by rumen bacteria is the key step to improve the utilization of barley straw in animal feeding or biofuel production. This study evaluated the hydrolysis of barley straw as a result of the inoculation by rumen fluid of camel and sheep. Ground barley straw was incubated anaerobically with rumen inocula from three fistulated camels (FC) and three fistulated sheep (FR) for a period of 72 h. The source of rumen inoculum did not affect the disappearance of dry matter (DMD), neutral detergent fiber (NDFD). Group FR showed higher production of glucose, xylose, and gas; while higher ethanol production was associated with cellulosic hydrolysates obtained from FC group. The diversity and structure of bacterial communities attached to barley straw was investigated by Illumina Mi-Seq sequencing of V4-V5 region of 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes and Bacteroidetes. The dominant genera were RC9_gut_group, Ruminococcus, Saccharofermentans, Butyrivibrio, Succiniclasticum, Selenomonas, and Streptococcus, indicating the important role of these genera in lignocellulose fermentation in the rumen. Group FR showed higher RC9_gut_group and group FC revealed higher Ruminococcus, Saccharofermentans, and Butyrivibrio. Higher enzymes activities (cellulase and xylanase) were associated with group FC. Thus, bacterial communities in camel and sheep have a great potential to improve the utilization lignocellulosic material in animal feeding and the production of biofuel and enzymes.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | | | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Canada
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
14
|
The influence of electrokinetic bioremediation on subsurface microbial communities at a perchloroethylene contaminated site. Appl Microbiol Biotechnol 2021; 105:6489-6497. [PMID: 34417847 DOI: 10.1007/s00253-021-11458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is an increased interest in finding remedies for contamination in low permeability and advection-limited aquifers. A technology applicable at these sites, electrokinetic-enhanced bioremediation (EK-BIO), combines traditional bioremediation and electrokinetic technologies by applying direct current to transport bioremediation amendments and microbes in situ. The effect of this technology on the native soil microbial community has only been previously investigated at the bench scale. This research explored the influence of EK-BIO on subsurface microbial communities at a field-scale demonstration site. The results showed that, similar to the findings in laboratory studies, alpha diversity decreased and beta diversity differed temporally, based on treatment phase. Enrichments in specific taxa were linked to the bioaugmentation culture and electron donor. Overall, findings from our study, one of the first field-scale investigations of the influence of electrokinetic bioremediation on subsurface microbial communities, are very similar to bench-scale studies on the topic, suggesting good correlation between laboratory and field experiments on EK-BIO and showing that lessons learned at the benchtop are important and relevant to field-scale implementation. KEY POINTS: • Microbial community analysis of field samples validates laboratory study results • Bioaugmentation cultures and electron donors have largest effect on microbial community.
Collapse
|
15
|
Huws SA, Edwards JE, Lin W, Rubino F, Alston M, Swarbreck D, Caim S, Stevens PR, Pachebat J, Won MY, Oyama LB, Creevey CJ, Kingston-Smith AH. Microbiomes attached to fresh perennial ryegrass are temporally resilient and adapt to changing ecological niches. MICROBIOME 2021; 9:143. [PMID: 34154659 PMCID: PMC8215763 DOI: 10.1186/s40168-021-01087-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Gut microbiomes, such as the rumen, greatly influence host nutrition due to their feed energy-harvesting capacity. We investigated temporal ecological interactions facilitating energy harvesting at the fresh perennial ryegrass (PRG)-biofilm interface in the rumen using an in sacco approach and prokaryotic metatranscriptomic profiling. RESULTS Network analysis identified two distinct sub-microbiomes primarily representing primary (≤ 4 h) and secondary (≥ 4 h) colonisation phases and the most transcriptionally active bacterial families (i.e Fibrobacteriaceae, Selemondaceae and Methanobacteriaceae) did not interact with either sub-microbiome, indicating non-cooperative behaviour. Conversely, Prevotellaceae had most transcriptional activity within the primary sub-microbiome (focussed on protein metabolism) and Lachnospiraceae within the secondary sub-microbiome (focussed on carbohydrate degradation). Putative keystone taxa, with low transcriptional activity, were identified within both sub-microbiomes, highlighting the important synergistic role of minor bacterial families; however, we hypothesise that they may be 'cheating' in order to capitalise on the energy-harvesting capacity of other microbes. In terms of chemical cues underlying transition from primary to secondary colonisation phases, we suggest that AI-2-based quorum sensing plays a role, based on LuxS gene expression data, coupled with changes in PRG chemistry. CONCLUSIONS In summary, we show that fresh PRG-attached prokaryotes are resilient and adapt quickly to changing niches. This study provides the first major insight into the complex temporal ecological interactions occurring at the plant-biofilm interface within the rumen. The study also provides valuable insights into potential plant breeding strategies for development of the utopian plant, allowing optimal sustainable production of ruminants. Video Abstract.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK.
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK.
| | - Joan E Edwards
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
- Laboratory of Microbiology, Wageningen University & Research, 6708, Wageningen, WE, Netherlands
- Current work address: Palital Feed Additives, Velddriel, Netherlands
| | - Wanchang Lin
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Francesco Rubino
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | | | | | | | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Justin Pachebat
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Mi-Young Won
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Linda B Oyama
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Christopher J Creevey
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| |
Collapse
|
16
|
Takizawa S, Asano R, Fukuda Y, Feng M, Baba Y, Abe K, Tada C, Nakai Y. Change of Endoglucanase Activity and Rumen Microbial Community During Biodegradation of Cellulose Using Rumen Microbiota. Front Microbiol 2020; 11:603818. [PMID: 33391225 PMCID: PMC7775302 DOI: 10.3389/fmicb.2020.603818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Treatment with rumen microorganisms improves the methane fermentation of undegradable lignocellulosic biomass; however, the role of endoglucanase in lignocellulose digestion remains unclear. This study was conducted to investigate endoglucanases contributing to cellulose degradation during treatment with rumen microorganisms, using carboxymethyl cellulose (CMC) as a substrate. The rate of CMC degradation increased for the first 24 h of treatment. Zymogram analysis revealed that endoglucanases of 52 and 53 kDa exhibited high enzyme activity for the first 12 h, whereas endoglucanases of 42, 50, and 101 kDa exhibited high enzyme activities from 12 to 24 h. This indicates that the activities of these five endoglucanases shifted and contributed to efficient CMC degradation. Metagenomic analysis revealed that the relative abundances of Selenomonas, Eudiplodinium, and Metadinium decreased after 12 h, which was positively correlated with the 52- and 53-kDa endoglucanases. Additionally, the relative abundances of Porphyromonas, Didinium, unclassified Bacteroidetes, Clostridiales family XI, Lachnospiraceae and Sphingobacteriaceae increased for the first 24 h, which was positively correlated with endoglucanases of 42, 50, and 101 kDa. This study suggests that uncharacterized and non-dominant microorganisms produce and/or contribute to activity of 40, 50, 52, 53, and 101 kDa endoglucanases, enhancing CMC degradation during treatment with rumen microorganisms.
Collapse
Affiliation(s)
- Shuhei Takizawa
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Ryoki Asano
- Department of Agro-Food Science, Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Mengjia Feng
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Yasunori Baba
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Kenichi Abe
- Department of Agro-Food Science, Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Japan
| | - Chika Tada
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Yutaka Nakai
- Department of Agro-Food Science, Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Japan
| |
Collapse
|
17
|
McDermott K, Lee MRF, McDowall KJ, Greathead HMR. Cross Inoculation of Rumen Fluid to Improve Dry Matter Disappearance and Its Effect on Bacterial Composition Using an in vitro Batch Culture Model. Front Microbiol 2020; 11:531404. [PMID: 33072005 PMCID: PMC7541951 DOI: 10.3389/fmicb.2020.531404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Environmental pressures of ruminant production could be reduced by improving digestive efficiency. Previous in vivo attempts to manipulate the rumen microbial community have largely been unsuccessful probably due to the influencing effect of the host. Using an in vitro consecutive batch culture technique, the aim of this study was to determine whether manipulation was possible once the bacterial community was uncoupled from the host. Two cross inoculation experiments were performed. Rumen fluid was collected at time of slaughter from 11 Holstein-Friesian steers from the same herd for Experiment 1, and in Experiment 2 were collected from 11 Charolais cross steers sired by the same bull and raised on a forage only diet on the same farm from birth. The two fluids that differed most in their in vitro dry matter disappearance (IVDMD; “Good,” “Bad”) were selected for their respective experiment. The fluids were also mixed (1:1, “Mix”) and used to inoculate the model. In Experiment 1, the mixed rumen fluid resulted in an IVDMD midway between that of the two rumen fluids from which it was made for the first 24 h batch culture (34, 29, 20 g per 100 g DM for the Good, Mix, and Bad, respectively, P < 0.001) which was reflected in fermentation parameters recorded. No effect of cross inoculation was seen for Experiment 2, where the Mix performed most similarly to the Bad. In both experiments, IVDMD increased with consecutive culturing as the microbial population adapted to the in vitro conditions and differences between the fluids were lost. The improved performance with each consecutive batch culture was associated with reduced bacterial diversity. Increases in the genus Pseudobutyrivibrio were identified, which may be, at least in part, responsible for the improved digestive efficiency observed, whilst Prevotella declined by 50% over the study period. It is likely that along with host factors, there are individual factors within each community that prevent other microbes from establishing. Whilst we were unable to manipulate the bacterial community, uncoupling the microbiota from the host resulted in changes in the community, becoming less diverse with time, likely due to environmental heterogeneity, and more efficient at digesting DM.
Collapse
Affiliation(s)
- Katie McDermott
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, United Kingdom
| | - Michael R F Lee
- Rothamsted Research, North Wyke, Okehampton, United Kingdom.,Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Kenneth J McDowall
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Henry M R Greathead
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Moreira SM, de Oliveira Mendes TA, Santanta MF, Huws SA, Creevey CJ, Mantovani HC. Genomic and gene expression evidence of nonribosomal peptide and polyketide production among ruminal bacteria: a potential role in niche colonization? FEMS Microbiol Ecol 2020; 96:5673486. [PMID: 31825517 DOI: 10.1093/femsec/fiz198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Genomic and transcriptomic analyses were performed to investigate nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) in 310 genomes of ruminal/fecal microorganisms. A total of 119 biosynthetic genes potentially encoding distinct nonribosomal peptides (NRPs) and polyketides (PKs) were predicted in the ruminal microbial genomes and functional annotation separated these genes into 19 functional categories. The phylogenetic reconstruction of the 16S rRNA sequences coupled to the distribution of the three 'backbone' genes involved in NRPS and PKS biosyntheses suggested that these genes were not acquired through horizontal gene transfer. Metatranscriptomic analyses revealed that the predominant genes involved in the synthesis of NRPs and PKs were more abundant in sheep rumen datasets. Reads mapping to the NRPS and PKS biosynthetic genes were represented in the active ruminal microbial community, with transcripts being highly expressed in the bacterial community attached to perennial ryegrass, and following the main changes occurring between primary and secondary colonization of the forage incubated with ruminal fluid. This study is the first comprehensive characterization demonstrating the rich genetic capacity for NRPS and PKS biosyntheses within rumen bacterial genomes, which highlights the potential functional roles of secondary metabolites in the rumen ecosystem.
Collapse
Affiliation(s)
- Sofia Magalhães Moreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa-MG, 36570-900, Brazil
| | | | - Mateus Ferreira Santanta
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa-MG, 36570-900, Brazil
| | - Sharon A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast,University Rd, Belfast, BT7 1NN, UK
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast,University Rd, Belfast, BT7 1NN, UK
| | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa-MG, 36570-900, Brazil
| |
Collapse
|
19
|
Smith PE, Waters SM, Kenny DA, Boland TM, Heffernan J, Kelly AK. Replacing Barley and Soybean Meal With By-products, in a Pasture Based Diet, Alters Daily Methane Output and the Rumen Microbial Community in vitro Using the Rumen Simulation Technique (RUSITEC). Front Microbiol 2020; 11:1614. [PMID: 32793146 PMCID: PMC7387412 DOI: 10.3389/fmicb.2020.01614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 01/04/2023] Open
Abstract
Plant based by-products (BP) produced from food and bioethanol industries are human inedible, but can be recycled into the global food chain by ruminant livestock. However, limited data is available on the methanogenesis potential associated with supplementing a solely BP formulated concentrate to a pastoral based diet. Therefore the objective of this in vitro study was to investigate the effects of BP inclusion rate (in a formulated concentrate) to a pasture based diet on dietary digestibility, rumen fermentation patterns, methane production and the prokaryotic microbial community composition. Diets consisted of perennial ryegrass and one of two supplementary concentrates, formulated to be isonitrogenous (16% CP) and isoenergetic (12.0 MJ/ME/kg), containing either 35% BP, barley and soybean meal (BP35) or 95% BP (BP95) offered on a 50:50 basis, however, starch, NDF and fat content varied. The BPs, included in equal proportions on a DM basis, were soyhulls, palm kernel expeller and maize dried distillers grains. The BP35 diet had greater (P < 0.05) digestibility of the chemical constituents DM, OM, CP, NDF, ADF. Greater total VFA production was seen in the BP35 diet (P < 0.05). Daily methane production (mmol/day; +22.7%) and methane output per unit of total organic matter digested (MPOMD; +20.8%) were greatest in the BP35 diet (P < 0.01). Dietary treatment influenced microbial composition (PERMANOVA; P = 0.023) with a greater relative abundance of Firmicutes (adj P < 0.01) observed in the BP35. The Firmicutes:Bacteroidetes ratio was significantly reduced in the BP95 diet (P < 0.01). The relative proportions of Proteobacteria (adj P < 0.01), Succinivibrionaceae (adj P < 0.03) and Succinivibrio (adj P = 0.053) increased in the BP95 diet. The abundance of Proteobacteria was found to be negatively associated with daily methane production (rs, −0.71; P < 0.01) and MPOMD (rs, −0.65; P < 0.01). Within Proteobacteria, the relationship of methane production was maintained with the mean abundance of Succinivibrio (rs, −0.69; P < 0.01). The abundance of the Firmicutes phyla was found to be positively correlated with both daily methane production (rs, 0.79; P < 0.001) and MPOMD (rs, 0.75; P < 0.01). Based on in vitro rumen simulation data, supplementation of an exclusively BP formulated concentrate was shown to reduce daily methane output by promoting a favorable alteration to the rumen prokaryotic community.
Collapse
Affiliation(s)
- Paul E Smith
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland.,Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Sinéad M Waters
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - David A Kenny
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland.,Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Tommy M Boland
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | - John Heffernan
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | - Alan K Kelly
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Sward type alters the relative abundance of members of the rumen microbial ecosystem in dairy cows. Sci Rep 2020; 10:9317. [PMID: 32518306 PMCID: PMC7283238 DOI: 10.1038/s41598-020-66028-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
The performance of ruminant livestock has been shown to benefit from the enhanced nutritive value and herbage yield associated with clover incorporation in the grazing sward. However, little research to date has been conducted investigating the effects of mixed swards containing white clover on the composition of the rumen microbiome. In this study, the rumen microbial composition of late lactation dairy cows grazing perennial ryegrass only (PRG; n = 20) or perennial ryegrass and white clover (WCPRG; n = 19) swards, was characterised using 16S rRNA amplicon sequencing. PERMANOVA analysis indicated diet significantly altered the composition of the rumen microbiome (P = 0.024). Subtle shifts in the relative abundance of 14 bacterial genera were apparent between diets, including an increased relative abundance of Lachnospira (0.04 vs. 0.23%) and Pseudobutyrivibrio (1.38 vs. 0.81%) in the WCPRG and PRG groups, respectively. The composition of the archaeal community was altered between dietary groups, with a minor increase in the relative abundance of Methanosphaera in the WCPRG observed. Results from this study highlight the potential for sward type to influence the composition of the rumen microbial community.
Collapse
|
21
|
Li Z, Mu C, Xu Y, Shen J, Zhu W. Changes in the Solid-, Liquid-, and Epithelium-Associated Bacterial Communities in the Rumen of Hu Lambs in Response to Dietary Urea Supplementation. Front Microbiol 2020; 11:244. [PMID: 32153533 PMCID: PMC7046558 DOI: 10.3389/fmicb.2020.00244] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
The rumen bacteria in the solid, liquid, and epithelial fractions are distinct and play important roles in the degradation of urea nitrogen. However, the effects of urea on rumen bacteria from the three fractions remain unclear. In this study, 42 Hu lambs were fed a total mixed ration based on concentrate and roughage (55:45, dry matter basis) and randomly assigned to one of three experimental diets: a basal diet with no urea (UC, 0 g/kg), a basal diet supplemented with low urea levels (LU, 10 g/kg DM), and a basal diet supplemented with high urea levels (HU, 30 g/kg DM). After an 11-week feeding trial, six animals from each treatment were harvested. Rumen metabolites levels were measured, and bacteria of the rumen solid, liquid, and epithelial fractions were examined based on 16S rRNA gene sequencing. Under urea supplementation, the concentrations of ammonia and butyrate in the rumen increased, whereas the concentration of propionate decreased. The population of total protozoa was the highest in the LU treatment. Prevotella 1 was the most abundant genus in all samples. The unclassified Muribaculaceae, bacteria within the families Lachnospiraceae and Ruminococcaceae, and Christensenellaceae R7 were abundant in the solid and liquid fractions. Butyrivibrio 2 and Treponema 2 were the abundant bacteria in the epithelial fraction. Principal coordinate analysis showed separation of the solid, liquid and epithelial bacteria regardless of diet, suggesting that rumen fraction had stronger influences on the bacterial community than did urea supplementation. However, the influences on the bacterial community differed among the three fractions. In the solid and liquid fractions, Succinivibrionaceae UCG 001 and Prevotella 1 showed decreased abundance with dietary urea supplementation, whereas the abundance of Oscillospira spp. was increased. Howardella spp. and Desulfobulbus spp. were higher in the epithelial fraction of the UC and LU treatments relative to HU treatment. Comparisons of predictive function in the rumen solid, liquid, and epithelial fractions among the three treatments also revealed differences. Collectively, these results reveal the change of the rumen bacterial community to dietary urea supplementation.
Collapse
Affiliation(s)
- Zhipeng Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Junshi Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Zhang Y, Cheng J, Zheng N, Zhang Y, Jin D. Different milk replacers alter growth performance and rumen bacterial diversity of dairy bull calves. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Attwood GT, Wakelin SA, Leahy SC, Rowe S, Clarke S, Chapman DF, Muirhead R, Jacobs JME. Applications of the Soil, Plant and Rumen Microbiomes in Pastoral Agriculture. Front Nutr 2019; 6:107. [PMID: 31380386 PMCID: PMC6646666 DOI: 10.3389/fnut.2019.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The production of dairy, meat, and fiber by ruminant animals relies on the biological processes occurring in soils, forage plants, and the animals' rumens. Each of these components has an associated microbiome, and these have traditionally been viewed as distinct ecosystems. However, these microbiomes operate under similar ecological principles and are connected via water, energy flows, and the carbon and nitrogen nutrient cycles. Here, we summarize the microbiome research that has been done in each of these three environments (soils, forage plants, animals' rumen) and investigate what additional benefits may be possible through understanding the interactions between the various microbiomes. The challenge for future research is to enhance microbiome function by appropriate matching of plant and animal genotypes with the environment to improve the output and environmental sustainability of pastoral agriculture.
Collapse
Affiliation(s)
| | | | | | - Suzanne Rowe
- Animal Science, AgResearch, Invermay, New Zealand
| | | | | | | | | |
Collapse
|
24
|
Sechovcová H, Kulhavá L, Fliegerová K, Trundová M, Morais D, Mrázek J, Kopečný J. Comparison of enzymatic activities and proteomic profiles of Butyrivibrio fibrisolvens grown on different carbon sources. Proteome Sci 2019; 17:2. [PMID: 31168299 PMCID: PMC6545216 DOI: 10.1186/s12953-019-0150-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/15/2019] [Indexed: 01/12/2023] Open
Abstract
Background The rumen microbiota is one of the most complex consortia of anaerobes, involving archaea, bacteria, protozoa, fungi and phages. They are very effective at utilizing plant polysaccharides, especially cellulose and hemicelluloses. The most important hemicellulose decomposers are clustered with the genus Butyrivibrio. As the related species differ in their range of hydrolytic activities and substrate preferences, Butyrivibrio fibrisolvens was selected as one of the most effective isolates and thus suitable for proteomic studies on substrate comparisons in the extracellular fraction. The B. fibrisolvens genome is the biggest in the butyrivibria cluster and is focused on “environmental information processing” and “carbohydrate metabolism”. Methods The study of the effect of carbon source on B. fibrisolvens 3071 was based on cultures grown on four substrates: xylose, glucose, xylan, xylan with 25% glucose. The enzymatic activities were studied by spectrophotometric and zymogram methods. Proteomic study was based on genomics, 2D electrophoresis and nLC/MS (Bruker Daltonics) analysis. Results Extracellular β-endoxylanase as well as xylan β-xylosidase activities were induced with xylan. The presence of the xylan polymer induced hemicellulolytic enzymes and increased the protein fraction in the interval from 40 to 80 kDa. 2D electrophoresis with nLC/MS analysis of extracellular B. fibrisolvens 3071 proteins found 14 diverse proteins with significantly different expression on the tested substrates. Conclusion The comparison of four carbon sources resulted in the main significant changes in B. fibrisolvens proteome occurring outside the fibrolytic cluster of proteins. The affected proteins mainly belonged to the glycolysis and protein synthesis cluster. Electronic supplementary material The online version of this article (10.1186/s12953-019-0150-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hana Sechovcová
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic.,5Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 286 Prague, Czech Republic
| | - Lucie Kulhavá
- 2Institute of Physiology, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic.,4Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Kateřina Fliegerová
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Mária Trundová
- 3Institute of Biotechnology, CAS, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Daniel Morais
- 6Institute of Microbiology, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jakub Mrázek
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Kopečný
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
25
|
Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 2019; 13:1843-1854. [PMID: 31062682 DOI: 10.1017/s1751731119000752] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ruminants are unique among livestock due to their ability to efficiently convert plant cell wall carbohydrates into meat and milk. This ability is a result of the evolution of an essential symbiotic association with a complex microbial community in the rumen that includes vast numbers of bacteria, methanogenic archaea, anaerobic fungi and protozoa. These microbes produce a diverse array of enzymes that convert ingested feedstuffs into volatile fatty acids and microbial protein which are used by the animal for growth. Recent advances in high-throughput sequencing and bioinformatic analyses have helped to reveal how the composition of the rumen microbiome varies significantly during the development of the ruminant host, and with changes in diet. These sequencing efforts are also beginning to explain how shifts in the microbiome affect feed efficiency. In this review, we provide an overview of how meta-omics technologies have been applied to understanding the rumen microbiome, and the impact that diet has on the rumen microbial community.
Collapse
|
26
|
Temporal fermentation and microbial community dynamics in rumens of sheep grazing a ryegrass-based pasture offered either in the morning or in the afternoon. Animal 2019; 13:2242-2251. [PMID: 30786945 DOI: 10.1017/s1751731119000168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight ruminally-fistulated wethers were used to examine the temporal effects of afternoon (PM; 1600h) v. morning (AM; 0800 h) allocation of fresh spring herbage from a perennial ryegrass (Lolium perenne L.)-based pasture on fermentation and microbial community dynamics. Herbage chemical composition was minimally affected by time of allocation, but daily mean ammonia concentrations were greater for the PM group. The 24-h pattern of ruminal fermentation (i.e. time of sampling relative to time of allocation), however, varied considerably for all fermentation variables (P⩽0.001). Most notably amongst ruminal fermentation characteristics, ammonia concentrations showed a substantial temporal variation; concentrations of ammonia were 1.7-, 2.0- and 2.2-fold greater in rumens of PM wethers at 4, 6 and 8h after allocation, respectively, compared with AM wethers. The relative abundances of archaeal and ciliate protozoal taxa were similar across allocation groups. In contrast, the relative abundances of members of the rumen bacterial community, like Prevotella 1 (P=0.04), Bacteroidales RF16 group (P=0.005) and Fibrobacter spp. (P=0.008) were greater for the AM group, whereas the relative abundance of Kandleria spp. was greater (P=0.04) for the PM group. Of these taxa, only Prevotella 1 (P=0.04) and Kandleria (P<0.001) showed a significant interaction between time of allocation and time of sampling relative to feed allocation. Relative abundances of Prevotella 1 were greater at 2h (P=0.05), 4h (P=0.003) and 6h (P=0.01) after AM allocation of new herbage, whereas relative abundances of Kandleria were greater at 2h (P=0.003) and 4h (P<0.001) after PM allocation. The early post-allocation rise in ammonia concentrations in PM rumens occurred simultaneously with sharp increases in the relative abundance of Kandleria spp. and with a decline in the relative abundance of Prevotella. All measures of fermentation and most microbial community composition data showed highly dynamic changes in concentrations and genus abundances, respectively, with substantial temporal changes occurring within the first 8h of allocating a new strip of herbage. The dynamic changes in the relative abundances of certain bacterial groups, in synchrony with a substantial diurnal variation in ammonia concentrations, has potential effects on the efficiency by which N is utilised by the grazing ruminant.
Collapse
|
27
|
Accetto T, Avguštin G. The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity? Syst Appl Microbiol 2018; 42:107-116. [PMID: 30853065 DOI: 10.1016/j.syapm.2018.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Although the Prevotella are commonly observed in high shares in the mammalian hindgut and rumen studies using NGS approach, the knowledge on their actual role, though postulated to lie in soluble fibre degradation, is scarce. Here we analyse in total 23, more than threefold of hitherto known rumen and hindgut Prevotella species and show that rumen/hindgut Prevotella generally possess extensive repertoires of polysaccharide utilization loci (PULs) and carbohydrate active enzymes targeting various plant polysaccharides. These PUL repertoires separate analysed Prevotella into generalists and specialists yet a finer diversity among generalists is evident too, both in range of substrates targeted and in PUL combinations targeting the same broad substrate classes. Upon evaluation of the shares of species analysed in this study in rumen metagenomes we found firstly, that they contributed significantly to total Prevotella abundance though much of rumen Prevotella diversity may still be unknown. Secondly, the hindgut Prevotella species originally isolated in pigs and humans occasionally dominated among the Prevotella with surprisingly high metagenome read shares and were consistently found in rumen metagenome samples from sites as apart as New Zealand and Scotland. This may indicate frequent passage between different hosts and relatively low barriers to their successful establishment in rumen versus the hindgut.
Collapse
Affiliation(s)
- Tomaž Accetto
- University of Ljubljana, Biotechnical faculty, Animal Science Department, Groblje 3, 1230 Domžale, Slovenia.
| | - Gorazd Avguštin
- University of Ljubljana, Biotechnical faculty, Animal Science Department, Groblje 3, 1230 Domžale, Slovenia
| |
Collapse
|
28
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
29
|
Wirth R, Kádár G, Kakuk B, Maróti G, Bagi Z, Szilágyi Á, Rákhely G, Horváth J, Kovács KL. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing. Front Microbiol 2018; 9:2285. [PMID: 30319585 PMCID: PMC6165872 DOI: 10.3389/fmicb.2018.02285] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a “back-up” team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - József Horváth
- Faculty of Agriculture, University of Szeged, Hódmezövásárhely, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
30
|
Elliott CL, Edwards JE, Wilkinson TJ, Allison GG, McCaffrey K, Scott MB, Rees-Stevens P, Kingston-Smith AH, Huws SA. Using 'Omic Approaches to Compare Temporal Bacterial Colonization of Lolium perenne, Lotus corniculatus, and Trifolium pratense in the Rumen. Front Microbiol 2018; 9:2184. [PMID: 30283417 PMCID: PMC6156263 DOI: 10.3389/fmicb.2018.02184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding rumen plant-microbe interactions is central for development of novel methodologies allowing improvements in ruminant nutrient use efficiency. This study investigated rumen bacterial colonization of fresh plant material and changes in plant chemistry over a period of 24 h period using three different fresh forages: Lolium perenne (perennial ryegrass; PRG), Lotus corniculatus (bird's foot trefoil; BFT) and Trifolium pratense (red clover; RC). We show using 16S rRNA gene ion torrent sequencing that plant epiphytic populations present pre-incubation (0 h) were substantially different to those attached post incubations in the presence of rumen fluid on all forages. Thereafter primary and secondary colonization events were evident as defined by changes in relative abundances of attached bacteria and changes in plant chemistry, as assessed using Fourier transform infrared (FTIR) spectroscopy. For PRG colonization, primary colonization occurred for up to 4 h and secondary colonization from 4 h onward. The changes from primary to secondary colonization occurred significantly later with BFT and RC, with primary colonization being up to 6 h and secondary colonization post 6 h of incubation. Across all 3 forages the main colonizing bacteria present at all time points post-incubation were Prevotella, Pseudobutyrivibrio, Ruminococcus, Olsenella, Butyrivibrio, and Anaeroplasma (14.2, 5.4, 1.9, 2.7, 1.8, and 2.0% on average respectively), with Pseudobutyrivibrio and Anaeroplasma having a higher relative abundance during secondary colonization. Using CowPI, we predict differences between bacterial metabolic function during primary and secondary colonization. Specifically, our results infer an increase in carbohydrate metabolism in the bacteria attached during secondary colonization, irrespective of forage type. The CowPI data coupled with the FTIR plant chemistry data suggest that attached bacterial function is similar irrespective of forage type, with the main changes occurring between primary and secondary colonization. These data suggest that the sward composition of pasture may have major implications for the temporal availability of nutrients for animal.
Collapse
Affiliation(s)
- Christopher L Elliott
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Toby J Wilkinson
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Gordon G Allison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Kayleigh McCaffrey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark B Scott
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Pauline Rees-Stevens
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon A Huws
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
31
|
Latham EA, Pinchak WE, Trachsel J, Allen HK, Callaway TR, Nisbet DJ, Anderson RC. Isolation, characterization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation, nitrate/nitrite detoxification and food safety. BIORESOURCE TECHNOLOGY 2018; 263:358-364. [PMID: 29758485 DOI: 10.1016/j.biortech.2018.04.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The effects of dietary nitrate and Paenibacillus 79R4 (79R4), a denitrifying bacterium, when co-administered as a probiotic, on methane emissions, nitrate and nitrite-metabolizing capacity and fermentation characteristics were studied in vitro. Mixed populations of rumen microbes inoculated with 79R4 metabolized all levels of nitrite studied after 24 h in vitro incubation. Results from in vitro simulations resulted in up to 2 log10 colony forming unit reductions in E. coli O157:H7 and Campylobacter jejuni when these were co-cultured with 79R4. Nitrogen gas was the predominant final product of nitrite reduction by 79R4. When tested with nitrate-treated incubations of rumen microbes, 79R4 inoculation (provided to achieve 106 cells/mL rumen fluid volume) complemented the ruminal methane-decreasing potential of nitrate (P < 0.05) while concurrently increasing fermentation efficiency and enhancing ruminal nitrate and nitrite-metabolizing activity (P < 0.05) compared to untreated and nitrate only-treated incubations.
Collapse
Affiliation(s)
- Elizabeth A Latham
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; Texas A&M AgriLife Research, Vernon, TX, USA.
| | | | - Julian Trachsel
- United States Department of Agriculture, Agricultural Research Service, Food Safety and Enteric Pathogens Research Unit, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Heather K Allen
- United States Department of Agriculture, Agricultural Research Service, Food Safety and Enteric Pathogens Research Unit, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Todd R Callaway
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX, USA
| | - David J Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX, USA
| | - Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX, USA
| |
Collapse
|
32
|
Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep 2018; 8:10504. [PMID: 30002438 PMCID: PMC6043501 DOI: 10.1038/s41598-018-28827-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
The rumen is a complex ecosystem. It is the primary site for microbial fermentation of ingested feed allowing conversion of a low nutritional feed source into high quality meat and milk products. However, digestive inefficiencies lead to production of high amounts of environmental pollutants; methane and nitrogenous waste. These inefficiencies could be overcome by development of forages which better match the requirements of the rumen microbial population. Although challenging, the application of meta-proteomics has potential for a more complete understanding of the rumen ecosystem than sequencing approaches alone. Here, we have implemented a meta-proteomic approach to determine the association between taxonomies of microbial sources of the most abundant proteins in the rumens of forage-fed dairy cows, with taxonomic abundances typical of those previously described by metagenomics. Reproducible proteome profiles were generated from rumen samples. The most highly abundant taxonomic phyla in the proteome were Bacteriodetes, Firmicutes and Proteobacteria, which corresponded with the most abundant taxonomic phyla determined from 16S rRNA studies. Meta-proteome data indicated differentiation between metabolic pathways of the most abundant phyla, which is in agreement with the concept of diversified niches within the rumen microbiota.
Collapse
Affiliation(s)
- E H Hart
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3FG, UK
| | - C J Creevey
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3FG, UK
| | - T Hitch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3FG, UK
| | - A H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3FG, UK.
| |
Collapse
|
33
|
Wilkinson TJ, Huws SA, Edwards JE, Kingston-Smith AH, Siu-Ting K, Hughes M, Rubino F, Friedersdorff M, Creevey CJ. CowPI: A Rumen Microbiome Focussed Version of the PICRUSt Functional Inference Software. Front Microbiol 2018; 9:1095. [PMID: 29887853 PMCID: PMC5981159 DOI: 10.3389/fmicb.2018.01095] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Metataxonomic 16S rDNA based studies are a commonplace and useful tool in the research of the microbiome, but they do not provide the full investigative power of metagenomics and metatranscriptomics for revealing the functional potential of microbial communities. However, the use of metagenomic and metatranscriptomic technologies is hindered by high costs and skills barrier necessary to generate and interpret the data. To address this, a tool for Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was developed for inferring the functional potential of an observed microbiome profile, based on 16S data. This allows functional inferences to be made from metataxonomic 16S rDNA studies with little extra work or cost, but its accuracy relies on the availability of completely sequenced genomes of representative organisms from the community being investigated. The rumen microbiome is an example of a community traditionally underrepresented in genome and sequence databases, but recent efforts by projects such as the Global Rumen Census and Hungate 1000 have resulted in a wide sampling of 16S rDNA profiles and almost 500 fully sequenced microbial genomes from this environment. Using this information, we have developed “CowPI,” a focused version of the PICRUSt tool provided for use by the wider scientific community in the study of the rumen microbiome. We evaluated the accuracy of CowPI and PICRUSt using two 16S datasets from the rumen microbiome: one generated from rDNA and the other from rRNA where corresponding metagenomic and metatranscriptomic data was also available. We show that the functional profiles predicted by CowPI better match estimates for both the meta-genomic and transcriptomic datasets than PICRUSt, and capture the higher degree of genetic variation and larger pangenomes of rumen organisms. Nonetheless, whilst being closer in terms of predictive power for the rumen microbiome, there were differences when compared to both the metagenomic and metatranscriptome data and so we recommend, where possible, functional inferences from 16S data should not replace metagenomic and metatranscriptomic approaches. The tool can be accessed at http://www.cowpi.org and is provided to the wider scientific community for use in the study of the rumen microbiome.
Collapse
Affiliation(s)
- Toby J Wilkinson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon A Huws
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Joan E Edwards
- Animal Nutrition Group, Wageningen University and Research, Wageningen, Netherlands
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Karen Siu-Ting
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Martin Hughes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Francesco Rubino
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.,Animal and Bioscience Research Department, Teagasc, Grange, Ireland
| | - Maximillian Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
34
|
Yang HE, Zotti CA, McKinnon JJ, McAllister TA. Lactobacilli Are Prominent Members of the Microbiota Involved in the Ruminal Digestion of Barley and Corn. Front Microbiol 2018; 9:718. [PMID: 29692773 PMCID: PMC5902705 DOI: 10.3389/fmicb.2018.00718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The chemical composition of barley grain can vary among barley varieties (Fibar, Xena, McGwire, and Hilose) and result in different digestion efficiencies in the rumen. It is not known if compositional differences in barley can affect the microbiota involved in the ruminal digestion of barley. The objective of this study was to characterize the in situ rumen degradability and microbiota of four barley grain varieties and to compare these to corn. Three ruminally cannulated heifers were fed a low (60% barley silage, 37% barley grain, and 3% supplement) or high grain (37% barley silage, 60% barley grain, and 3% supplement) diet. One set of bags was used to estimate dry matter (DM), starch and crude protein (CP) degradability. A second set was used to extract DNA from the adherent microbiota and visualize grain after incubation using scanning electron microscopy (SEM). DNA was subjected to amplicon 16S rRNA gene sequencing followed by analysis using QIIME. In the low grain diet, McGwire had the highest effective degradability (ED) of DM (P < 0.01). The ED of starch was highest (P < 0.01) for Fibar, McGwire, and Xena, but the ED of CP was not affected by variety. For the high grain diet, Xena and McGwire had the highest ED of DM (P < 0.01). The ED of starch was highest (P < 0.01) for Xena and Fibar. The ED of protein was highest (P < 0.01) for Xena and McGwire. Although the microbiota did not differ among barley varieties, they did differ from corn and with incubation time. Lactobacilli were dominant members of the mature biofilms associated with corn and barley and were accompanied by a notable increase in the lactic acid utilizing genera, Megasphaera. As none of the cattle exhibited subclinical or clinical acidosis during the study, our results suggest that lactobacilli play a more prominent role in routine starch digestion than presently surmised.
Collapse
Affiliation(s)
- Hee E. Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claiton A. Zotti
- Department of Animal Science, Universidade do Oeste de Santa Catarina, Xanxerê, Xanxerê, Brazil
| | - John J. McKinnon
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
35
|
Zhao S, Li G, Zheng N, Wang J, Yu Z. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. BIORESOURCE TECHNOLOGY 2018; 253:244-251. [PMID: 29353752 DOI: 10.1016/j.biortech.2018.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guodong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhongtang Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Belanche A, Newbold CJ, Lin W, Rees Stevens P, Kingston-Smith AH. A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation. Front Microbiol 2017; 8:1456. [PMID: 28824585 PMCID: PMC5541034 DOI: 10.3389/fmicb.2017.01456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/18/2017] [Indexed: 11/29/2022] Open
Abstract
Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0-2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4-8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes.
Collapse
Affiliation(s)
- Alejandro Belanche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
- Estacion Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Charles J. Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Wanchang Lin
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Alison H. Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| |
Collapse
|
37
|
Abstract
The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments.
Collapse
|