1
|
Atta SA, Fahmy ZH, Selim EAH, Aboushousha T, Mostafa RR. Effect of linex treatment on IFN-γ and IL-4 in mice infected with Trichinella. BMC Infect Dis 2024; 24:1360. [PMID: 39609767 PMCID: PMC11603642 DOI: 10.1186/s12879-024-10202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Trichinellosis is a zoonotic, foodborne parasitic infection causing muscle damage. This study investigated the potential therapeutic effects of the commercially available probiotic treatment Linex, both alone and in combination with Albendazole (ALB), on the intestinal and muscular stages of Trichinella spiralis infection in mice, assessing outcomes through parasitological, immunological, and histopathological measures. This study is the first to demonstrate the synergistic effect of combining the commercially available probiotic Linex with Albendazole for trichinellosis treatment. By enhancing both parasitological and immunological outcomes, this combined therapy not only significantly reduces parasite burden but also modulates the immune response, shifting it toward a protective Th1 profile. In parasitological terms, the highest adult and larval count reduction was observed in combined Linex and Albendazole treatment (100%, 97.7%) respectively. Lesser percentage of reduction were recorded in Linex alone therapy (43.2%, 88.4%) respectively. Histopathologically there was amelioration of the inflammatory cellular infiltration in all treated groups with best results in combined Linex and Albendazole treatment. Immunologically, serum IFN-γ levels increased significantly in all treated groups with highest levels in combined Linex and Albendazole treatment, while IL-4 and IL-13 level decreased significantly in all treated groups with best results observed in Linex alone treatment. To conclude; combined Linex and Albendazole treatment of mice infected with T. spirals could ameliorate the infection and improve the immune response.
Collapse
Affiliation(s)
- Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab H Fahmy
- Department of Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Eman A H Selim
- Department of Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Reham Refaat Mostafa
- Departments of Medical Parasitology Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Vivekanandan KE, Kasimani R, Kumar PV, Meenatchisundaram S, Sundar WA. Overview of cloning in lactic acid bacteria: Expression and its application of probiotic potential in inflammatory bowel diseases. Biotechnol Appl Biochem 2024; 71:881-895. [PMID: 38576028 DOI: 10.1002/bab.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Inflammatory bowel disease (IBD) imposes a significant impact on the quality of life for affected individuals. However, there was a current lack of a systematic summary regarding the latest epidemic trends and the underlying pathogenesis of IBD. This highlights the need for a thorough examination of both the epidemiological aspects of IBD and the specific mechanisms by which lactic acid bacteria (LAB) contribute to mitigating this condition. In developed countries, higher incidences and death rates of IBD have been observed, influenced by a combination of environmental and genetic factors. LAB offer significant advantages and substantial potential for enhancing IBD treatment. LAB's capabilities include the production of bioactive metabolites, regulation of gut immunity, protection of intestinal mechanical barriers, inhibition of oxidative damage, and restoration of imbalanced gut microbiota. The review suggests that screening effective LAB using cell models and metabolites, optimizing LAB intake through dose-effect studies, enhancing utilization through nanoencapsulation and microencapsulation, investigating mechanisms to deepen the understanding of LAB, and refining clinical study designs. These efforts aim to contribute to comprehending the epidemic trend, pathogenesis, and treatment of IBD, ultimately fostering the development of targeted therapeutic products, such as LAB-based interventions.
Collapse
Affiliation(s)
- K E Vivekanandan
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - R Kasimani
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - P Vinoth Kumar
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - S Meenatchisundaram
- Department of Microbiology, Shree Nehru Maha Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - William Arputha Sundar
- Department of Pharmaceuticals, Swamy Vivekananda College of Pharmacy, Namakkal, Tamil Nadu, India
| |
Collapse
|
3
|
Hashemi SMB, Jafarpour D. Lactic acid fermentation of guava juice: Evaluation of nutritional and bioactive properties, enzyme (α-amylase, α-glucosidase, and angiotensin-converting enzyme) inhibition abilities, and anti-inflammatory activities. Food Sci Nutr 2023; 11:7638-7648. [PMID: 38107144 PMCID: PMC10724607 DOI: 10.1002/fsn3.3683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
In the present research, the impact of fermentation with two strains of Lactiplantibacillus plantarum subsp. plantarum (PTCC 1896 and PTCC 1745) on physicochemical properties, antioxidant bioactive compounds, and some health-promoting features of guava juice was investigated. Results showed a significant (p < .05) decrease in pH, total soluble solids, glucose and fructose residues, vitamin C, and total carotenoids after 32 h of fermentation. Total phenolic content, free radical scavenging abilities, and ferrous reducing power were markedly enhanced during the fermentation process. Moreover, fermented juice represented good enzyme inhibition abilities (α-amylase and α-glucosidase) and anti-inflammatory activities. The initial amount of angiotensin-converting enzyme inhibitory activity (26.5%) increased to 72.1% and 66.4% in L. plantarum subsp. plantarum 1896 and L. plantarum subsp. plantarum 1745 treatments, respectively. These findings reveal that guava juice fermentation with the studied Lactobacillus strains can be a promising strategy to augment the functional properties of the fruit-based beverage.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa BranchIslamic Azad UniversityFasaIran
| |
Collapse
|
4
|
Plavec TV, Klemenčič K, Kuchař M, Malý P, Berlec A. Secretion and surface display of binders of IL-23/IL-17 cytokines and their receptors in Lactococcus lactis as a therapeutic approach against inflammation. Eur J Pharm Sci 2023; 190:106568. [PMID: 37619953 DOI: 10.1016/j.ejps.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine IL-23 activates the IL-23 receptor (IL-23R) and stimulates the differentiation of naïve T helper (Th) cells into a Th17 cell population that secretes inflammatory cytokines and chemokines. This IL-23/Th17 proinflammatory axis drives inflammation in Crohn's disease and ulcerative colitis and represents a therapeutic target of monoclonal antibodies. Non-immunoglobulin binding proteins based on the Streptococcus albumin-binding domain (ABD) provide a small protein alternative to monoclonal antibodies. They can be readily expressed in bacteria. Lactococcus lactis is a safe lactic acid bacterium that has previously been engineered as a vector for the delivery of recombinant therapeutic proteins to mucosal surfaces. Here, L. lactis was engineered to display or secrete ABD-variants against the IL-17 receptor (IL-17R). Its expression and functionality were confirmed with flow cytometry using specific antibody and recombinant IL-17R, respectively. In addition, L. lactis were engineered into multifunctional bacteria that simultaneously express two binders from pNBBX plasmid. First, binders of IL-17R were combined with binder of IL-17. Second, binders of IL-23R were combined with binders of IL-23. The dual functionality of the bacteria was confirmed by flow cytometry using corresponding targets, namely the recombinant receptors IL-17R and IL-23R or the p19 subunit of IL-23. Binding of IL-17 was confirmed by ELISA. With the latter, 97% of IL-17 was removed from solution by 2 × 109 recombinant bacteria. Moreover, multifunctional bacteria targeting IL-17/IL-17R prevented IL-17A-mediated activation of downstream signaling pathways in HEK-Blue IL-17 cell model. Thus, we have developed several multifunctional L. lactis capable of targeting multiple factors of the IL-23/Th17 proinflammatory axis. This represents a novel therapeutic strategy with synergistic potential for the treatment of intestinal inflammations.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana SI-1000, Slovenia
| | - Kaja Klemenčič
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, v. v. i., Průmyslová 595, Vestec 252 50, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, v. v. i., Průmyslová 595, Vestec 252 50, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
5
|
Andrade MER, Trindade LM, Leocádio PCL, Leite JIA, Dos Reis DC, Cassali GD, da Silva TF, de Oliveira Carvalho RD, de Carvalho Azevedo VA, Cavalcante GG, de Oliveira JS, Fernandes SOA, Generoso SV, Cardoso VN. Association of Fructo-oligosaccharides and Arginine Improves Severity of Mucositis and Modulate the Intestinal Microbiota. Probiotics Antimicrob Proteins 2023; 15:424-440. [PMID: 36631616 DOI: 10.1007/s12602-022-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.
Collapse
Affiliation(s)
- Maria Emília Rabelo Andrade
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luisa Martins Trindade
- Departamento Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jacqueline Isaura Alvarez Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Fernando da Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gregório Grama Cavalcante
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jamil Silvano de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Vasconcelos Generoso
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Professor Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
6
|
Khablenko A, Danylenko S, Yalovenko O, Duhan O, Potemskaia O, Prykhodko D. Recombinant Probiotic Preparations: Current State, Development and Application Prospects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2023; 6:119-147. [DOI: 10.20535/ibb.2022.6.3-4.268349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The article is devoted to the latest achievements in the field of research, development, and implementation of various types of medicinal products based on recombinant probiotics. The benefits of probiotics, their modern use in medicine along with the most frequently used genera and species of probiotic microorganisms were highlighted. The medicinal and therapeutic activities of the studied probiotics were indicated. The review suggests various methods of creating recombinant probiotic microorganisms, including standard genetic engineering methods, as well as systems biology approaches and new methods of using the CRISPR-Cas system. The range of potential therapeutic applications of drugs based on recombinant probiotics was proposed. Special attention was paid to modern research on the creation of new, more effective recombinant probiotics that can be used for various therapeutic purposes. Considering the vast diversity of therapeutic applications of recombinant probiotics and ambiguous functions, their use for the potential treatment of various common human diseases (non-infectious and infectious diseases of the gastrointestinal tract, metabolic disorders, and allergic conditions) was investigated. The prospects for creating different types of vaccines based on recombinant probiotics together with the prospects for their implementation into medicine were considered. The possibilities of using recombinant probiotics in veterinary medicine, particularly for the prevention of domestic animal diseases, were reviewed. The prospects for the implementation of recombinant probiotics as vaccines and diagnostic tools for testing certain diseases as well as modeling the work of the human digestive system were highlighted. The risks of creation, application, including the issues related to the regulatory sphere regarding the use of new recombinant microorganisms, which can potentially enter the environment and cause unforeseen circumstances, were outlined.
Collapse
Affiliation(s)
| | - Svetlana Danylenko
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | | - Olexii Duhan
- Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
| | - Oksana Potemskaia
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | |
Collapse
|
7
|
Michaels M, Madsen KL. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol 2023; 16:72-85. [PMID: 36642380 DOI: 10.1016/j.mucimm.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Margret Michaels
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Karen L Madsen
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; IMPACTT: Integrated Microbiome Platforms for Advancing Causation Testing & Translation, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Américo MF, Freitas ADS, da Silva TF, de Jesus LCL, Barroso FAL, Campos GM, Santos RCV, Gomes GC, Assis R, Ferreira Ê, Mancha-Agresti P, Laguna JG, Chatel JM, Carvalho RDDO, Azevedo V. Growth differentiation factor 11 delivered by dairy Lactococcus lactis strains modulates inflammation and prevents mucosal damage in a mice model of intestinal mucositis. Front Microbiol 2023; 14:1157544. [PMID: 37138633 PMCID: PMC10149842 DOI: 10.3389/fmicb.2023.1157544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rhayane Cristina Viegas Santos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Camargos Gomes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Assis
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ênio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- INRAE, AgroParisTech, MICALIS, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Vasco Azevedo,
| |
Collapse
|
9
|
Yadav AK, Varikuti SR, Kumar A, Kumar M, Debanth N, Rajkumar H. Expression of heterologous heparan sulphate binding protein of Helicobacter pylori on the surface of Lactobacillus rhamnosus GG. 3 Biotech 2023; 13:19. [PMID: 36568501 PMCID: PMC9768065 DOI: 10.1007/s13205-022-03428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of most commonly found pathogen in the stomach. In spite of emergence of different treatment strategies, H. pylori infection remains difficult to treat. The bioengineered probiotic lactobacilli that could displace H. pylori and simultaneously present immunogenic peptides such as heparan sulphate binding protein (Hsbp) to elicit immune response could emerge as a potential therapeutic agent. The aim of this study was to discover the anti-H. pylori activities and faster exclusion of H. pylori from host cells by the recombinant strain of Lactobacillus expressing the immunogenic Hsbp protein. The results were promising and showed a 65% reduction in H. pylori adhesion after two hours of pre-incubation with recombinant-LGG and HeLa S3 cells, followed by the adhesion of H. pylori pathogen (P < 0.002). Additionally, 36% and 39% reduction were examined in co-incubation and post-incubation with recombinant-LGG, respectively. When challenged with H. pylori, the proinflammatory cytokine expression was also down regulated in recombinant-LGG treated HeLa S3 cells. This promising result provides a new insight of bioengineered probiotic lactobacilli which could displace H. pylori and simultaneously has immunogenic properties thereby may be useful to prevent H. pylori infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03428-4.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Distt., Samba, 181143 Jammu and Kashmir India
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| | - Sudarshan Reddy Varikuti
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, 123031 Haryana India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nabendu Debanth
- Centre for Molecular Biology, Central University of Jammu, Distt., Samba, 181143 Jammu and Kashmir India
| | - Hemalatha Rajkumar
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| |
Collapse
|
10
|
Ultrasound-Assisted Lactic Acid Fermentation of Bakraei (Citrus reticulata cv. Bakraei) Juice: Physicochemical and Bioactive Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, ultrasonication (US) (50 W, 30 kHz, 1–6 min) was used to increase the efficiency of Limosilactobacillus reuteri PTCC 1655 fermentation process (37 °C; 30 h) of Bakraei juice. Total sugars, pH, Brix, organic acids, vitamin C, polyphenols, antioxidant activity, α-amylase inhibition and anti-inflammatory properties were measured during the fermentation period. The results showed that by increasing the ultrasound time up to 5 min, pH, vitamin C, citric acid, and polyphenolic compounds decreased, while lactic acid, antioxidant capacity, α-amylase inhibition and anti-inflammatory properties were increased. When the ultrasound time was increased up to 6 min, compared to the non-ultrasound-treated sample, the efficiency of the fermentation process decreased and promoted a decrease in the microbial population, lactic acid levels, antioxidant activity, α-amylase inhibition, and anti-inflammatory properties of the juices. The initial anti-inflammatory activity (11.3%) of juice reached values of 33.4% and 19.5%, after US treatments of 5 and 6 min, respectively, compared to the non-sonicated juice (21.7%), after 30 h of fermentation. As a result, the use of ultrasound in the controlled fermentation process can increase the efficiency of fermentation process.
Collapse
|
11
|
Shang Y, Zhai Z, Huang J, Li L, Zuo X. Specific alterations in mucosa-associated bacterial composition in ulcerative colitis (UC) patients with different degrees of inflammation. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yansheng Shang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhenzhen Zhai
- Department of Gastroenterology, Dezhou People’s Hospital, Dezhou, Shandong, PR China
| | - Jiaguo Huang
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
12
|
Noguès EB, Kropp C, Bétemps L, de Sousa C, Chain F, Auger S, Azevedo V, Langella P, Chatel JM. Lactococcus lactis engineered to deliver hCAP18 cDNA alleviates DNBS-induced colitis in C57BL/6 mice by promoting IL17A and IL10 cytokine expression. Sci Rep 2022; 12:15641. [PMID: 36123355 PMCID: PMC9485145 DOI: 10.1038/s41598-022-19455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
With its antimicrobial and immunomodulating properties, the cathelicidin (LL37) plays an important role in innate immune system. Here, we attempted to alleviate chemically induced colitis using a lactococci strain that either directly expressed the precursor to LL37, hCAP18 (LL-pSEC:hCAP18), or delivered hCAP18 cDNA to host cells under the control of the cytomegalovirus promoter (LL-Probi-H1:hCAP18). We also investigated whether the alleviation of symptoms could be explained through modification of the gut microbiota by hCAP18. Mice were administered daily doses of LL-pSEC:hCAP18 or LL-Probi-H1:hCAP18. On day 7, colitis was induced by DNBS. During autopsy, we assessed macroscopic tissue damage in the colon and collected tissue samples for the characterization of inflammation markers and histological analysis. Feces were collected at day 7 for 16S DNA sequencing. We also performed a fecal transplant experiment in which mice underwent colon washing and received feces from Lactococcus lactis-treated mice before DNBS-colitis induction. Treatment with LL-Probi-H1:hCAP18 reduced the severity of colitis symptoms. The protective effects were accompanied by increased levels of IL17A and IL10 in mesenteric lymph node cells. L. lactis administration altered the abundance of Lachnospiraceae and Muribaculaceae. However, fecal transplant from L. lactis-treated mice did not improve DNBS-induced symptoms in recipient mice.
Collapse
Affiliation(s)
- Esther Borras Noguès
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Camille Kropp
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Laureline Bétemps
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Cassiana de Sousa
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France ,grid.8430.f0000 0001 2181 4888Institute of Biological Sciences, Federal University of Minas Gerais, Belo-Horizonte, MG Brazil
| | - Florian Chain
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Sandrine Auger
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Vasco Azevedo
- grid.8430.f0000 0001 2181 4888Institute of Biological Sciences, Federal University of Minas Gerais, Belo-Horizonte, MG Brazil
| | - Philippe Langella
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Jean-Marc Chatel
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| |
Collapse
|
13
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
14
|
Zahirović A, Berlec A. Targeting IL-6 by engineered Lactococcus lactis via surface-displayed affibody. Microb Cell Fact 2022; 21:143. [PMID: 35842694 PMCID: PMC9287920 DOI: 10.1186/s12934-022-01873-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulated production of interleukin (IL)-6 is implicated in the pathology of inflammatory bowel disease (IBD). Neutralization of IL-6 in the gut by safe probiotic bacteria may help alleviate intestinal inflammation. Here, we developed Lactococcus lactis with potent and selective IL-6 binding activity by displaying IL-6-specific affibody on its surface. RESULTS Anti-IL-6 affibody (designated as ZIL) was expressed in fusion with lactococcal secretion peptide Usp45 and anchoring protein AcmA. A high amount of ZIL fusion protein was detected on bacterial surface, and its functionality was validated by confocal microscopy and flow cytometry. Removal of IL-6 from the surrounding medium by the engineered L. lactis was evaluated using enzyme-linked immunosorbent assay. ZIL-displaying L. lactis sequestered recombinant human IL-6 from the solution in a concentration-dependent manner by up to 99% and showed no binding to other pro-inflammatory cytokines, thus proving to be highly specific for IL-6. The removal was equally efficient across different IL-6 concentrations (150-1200 pg/mL) that were found to be clinically relevant in IBD patients. The ability of engineered bacteria to capture IL-6 from cell culture supernatant was assessed using immunostimulated human monocytic cell lines (THP-1 and U-937) differentiated into macrophage-like cells. ZIL-displaying L. lactis reduced the content of IL-6 in the supernatants of both cell lines in a concentration-dependent manner by up to 94%. Dose response analysis showed that bacterial cell concentrations of 107 and 109 CFU/mL (colony forming units per mL) were required for half-maximal removal of recombinant and macrophage-derived IL-6, respectively. CONCLUSION The ability of ZIL-displaying L. lactis to bind pathological concentrations of IL-6 at common bacterial doses suggests physiological significance.
Collapse
Affiliation(s)
- Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia. .,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Phillippi DT, Daniel S, Pusadkar V, Youngblood VL, Nguyen KN, Azad RK, McFarlin BK, Lund AK. Inhaled diesel exhaust particles result in microbiome-related systemic inflammation and altered cardiovascular disease biomarkers in C57Bl/6 male mice. Part Fibre Toxicol 2022; 19:10. [PMID: 35135577 PMCID: PMC8827295 DOI: 10.1186/s12989-022-00452-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota plays a vital role in host homeostasis and is associated with inflammation and cardiovascular disease (CVD) risk. Exposure to particulate matter (PM) is a known mediator of inflammation and CVD and is reported to promote dysbiosis and decreased intestinal integrity. However, the role of inhaled traffic-generated PM on the gut microbiome and its corresponding systemic effects are not well-characterized. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) alters the gut microbiome and promotes microbial-related inflammation and CVD biomarkers. 4-6-week-old male C57Bl/6 mice on either a low-fat (LF, 10% fat) or high-fat (HF, 45% fat) diet were exposed via oropharyngeal aspiration to 35 μg DEP suspended in 35 μl saline or saline only (CON) 2x/week for 30 days. To determine whether probiotics could prevent diet or DEP exposure mediated alterations in the gut microbiome or systemic outcomes, a subset of animals on the HF diet were treated orally with 0.3 g/day (~ 7.5 × 108 CFU/day) of Winclove Ecologic® Barrier probiotics throughout the study. RESULTS Our results show that inhaled DEP exposure alters gut microbial profiles, including reducing Actinobacteria and expanding Verrucomicrobia and Proteobacteria. We observed increased circulating LPS, altered circulating cytokines (IL-1α, IL-3, IL-13, IL-15, G-CSF, LIF, MIP-2, and TNF-α), and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in DEP-exposed and/or HF diet mice. Furthermore, probiotics attenuated the observed reduction of Actinobacteria and expansion of Proteobacteria in DEP-exposed and HF-diet mice. Probiotics mitigated circulating cytokines (IL-3, IL-13, G-CSF, RANTES, and TNF- α) and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in respect to DEP-exposure and/or HF diet. CONCLUSION Key findings of this study are that inhaled DEP exposure alters small intestinal microbial profiles that play a role in systemic inflammation and early CVD biomarkers. Probiotic treatment in this study was fundamental in understanding the role of inhaled DEP on the microbiome and related systemic inflammatory and CVD biomarkers.
Collapse
Affiliation(s)
- Danielle T. Phillippi
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76203 USA
| | - Sarah Daniel
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76203 USA
| | - Vaidehi Pusadkar
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Victoria L. Youngblood
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76203 USA
| | - Kayla N. Nguyen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76203 USA
| | - Rajeev K. Azad
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
- Department of Mathematics, University of North Texas, Denton, TX 76203 USA
| | - Brian K. McFarlin
- Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
- UNT Applied Physiology Laboratory, University of North Texas, Denton, TX 76203 USA
| | - Amie K. Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76203 USA
| |
Collapse
|
16
|
de Souza da Motta A, Nespolo CR, Breyer GM. Probiotics in milk and dairy foods. PROBIOTICS 2022:103-128. [DOI: 10.1016/b978-0-323-85170-1.00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Belo GA, Cordeiro BF, Oliveira ER, Braga MP, da Silva SH, Costa BG, Martins FDS, Jan G, Le Loir Y, Gala-García A, Ferreira E, Azevedo V, do Carmo FLR. SlpB Protein Enhances the Probiotic Potential of L. lactis NCDO 2118 in Colitis Mice Model. Front Pharmacol 2021; 12:755825. [PMID: 34987390 PMCID: PMC8721164 DOI: 10.3389/fphar.2021.755825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria used in the production of fermented food products have been investigated for their potential role as modulators of inflammation in gastrointestinal tract disorders such as inflammatory bowel diseases (IBD) that cause irreversible changes in the structure and function of gut tissues. Ulcerative colitis (UC) is the most prevalent IBD in the population of Western countries, and it is marked by symptoms such as weight loss, rectal bleeding, diarrhea, shortening of the colon, and destruction of the epithelial layer. The strain Propionibacterium freudenreichii CIRM-BIA 129 recently revealed promising immunomodulatory properties that greatly rely on surface-layer proteins (Slp), notably SlpB. We, thus, cloned the sequence encoding the SlpB protein into the pXIES-SEC expression and secretion vector, and expressed the propionibacterial protein in the lactic acid bacterium Lactococcus lactis NCDO 2118. The probiotic potential of L. lactis NCDO 2118 harboring pXIES-SEC:slpB (L. lactis-SlpB) was evaluated in a UC-mice model induced by Dextran Sulfate Sodium (DSS). During colitis induction, mice receiving L. lactis-SlpB exhibited reduced severity of colitis, with lower weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score, with significant differences, compared with the DSS group and the group treated with L. lactis NCDO 2118 wild-type strain. Moreover, L. lactis-SlpB administration increased the expression of genes encoding tight junction proteins zo-1, cln-1, cln-5, ocln, and muc-2 in the colon, increased IL-10 and TGF-β, and decreased IL-17, TNF-α, and IL-12 cytokines in the colon. Therefore, this work demonstrates that SlpB recombinant protein is able to increase the probiotic potential of the L. lactis strain to alleviate DSS-induced colitis in mice. This opens perspectives for the development of new approaches to enhance the probiotic potential of strains by the addition of SlpB protein.
Collapse
Affiliation(s)
- Giovanna A. Belo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bárbara F. Cordeiro
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina P. Braga
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H. da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno G. Costa
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flaviano dos S. Martins
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Alfonso Gala-García
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Enio Ferreira
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fillipe L. R. do Carmo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Fillipe L. R. do Carmo,
| |
Collapse
|
18
|
Savassi B, Cordeiro BF, Silva SH, Oliveira ER, Belo G, Figueiroa AG, Alves Queiroz MI, Faria AMC, Alves J, da Silva TF, Campos GM, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, Vital KD, Fernandes SO, Cardoso VN, Acurcio LB, Jan G, Le Loir Y, Gala-Garcia A, do Carmo FLR, Azevedo V. Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Front Pharmacol 2021; 12:755871. [PMID: 34955828 PMCID: PMC8703075 DOI: 10.3389/fphar.2021.755871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Mucositis is an adverse effect of cancer chemotherapies using 5-Fluorouracil (5-FU). It is characterized by mucosal inflammation, pain, diarrhea, and weight loss. Some studies reported promising healing effects of probiotic strains, when associated with prebiotics, as adjuvant treatment of mucositis. We developed a lyophilized symbiotic product, containing skimmed milk, supplemented with whey protein isolate (WPI) and with fructooligosaccharides (FOS), and fermented by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and Lacticaseibacillus rhamnosus B1. In a mice 5-FU mucositis model, this symbiotic lyophilized formulation was able to reduce weight loss and intestinal permeability. This last was determined in vivo by quantifying blood radioactivity after oral administration of 99mTc-DTPA. Finally, histological damages caused by 5-FU-induced mucositis were monitored. Consumption of the symbiotic formulation caused a reduced score of inflammation in the duodenum, ileum, and colon. In addition, it decreased levels of pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in the mice ileum. The symbiotic product developed in this work thus represents a promising adjuvant treatment of mucositis.
Collapse
Affiliation(s)
- Bruna Savassi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bárbara F. Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H. Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Ana Maria Caetano Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erick A. Esmerino
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon S. Rocha
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Monica Q. Freitas
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcia C. Silva
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Adriano G. Cruz
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Simone O.A. Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Valbert N. Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Borges Acurcio
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Alfonso Gala-Garcia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Faculdade de Odontologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Fillipe Luiz R. do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Bacteria-Based Microdevices for the Oral Delivery of Macromolecules. Pharmaceutics 2021; 13:pharmaceutics13101610. [PMID: 34683903 PMCID: PMC8537518 DOI: 10.3390/pharmaceutics13101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The oral delivery of macromolecules is quite challenging due to environmental insults and biological barriers encountered along the gastrointestinal (GI) tract. Benefiting from their living characteristics, diverse bacterial species have been engineered as intelligent platforms to deliver various therapeutics. To tackle difficulties in oral delivery, innovative bacteria-based microdevices have been developed by virtue of advancements in synthetic biology and nanotechnology, with aims to overcome the instability and short half-life of macromolecules in the GI tract. In this review, we summarize the main classes of macromolecules that are produced and delivered through the oral ingestion of bacteria and bacterial derivatives. Furtherly, we discuss the engineering strategies and biomedical applications of these living microdevices in disease diagnosis, bioimaging, and treatment. Finally, we highlight the advantages as well as the limitations of these engineered bacteria used as platforms for the oral delivery of macromolecules and also propose their potential for clinical translation. The results summarized in this review article would contribute to the invention of next-generation bacteria-based systems for the oral delivery of macromolecules.
Collapse
|
20
|
Athayde LA, de Aguiar SLF, Miranda MCG, Brito RVJ, de Faria AMC, Nobre SAM, Andrade MC. Lactococcus lactis Administration Modulates IgE and IL-4 Production and Promotes Enterobacteria Growth in the Gut from Ethanol-Intake Mice. Protein Pept Lett 2021; 28:1164-1179. [PMID: 34315363 DOI: 10.2174/0929866528666210727102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that alcohol can trigger inflammatory effects in the gastrointestinal tract (GIT) interfering with mucosal homeostasis. OBJECTIVE This study evaluated the effectiveness of Lactococcus lactis treatment in controlling the increase in molecular biomarkers related to allergic inflammation, and the effect on the diversity and abundance of the Enterobacteriaceae family in the GIT after high-dose acute administration of ethanol. METHODS Mice received ethanol or saline solution by gavage for four consecutive days, and 24 h after the last administration the animals were given L. lactis or M17 broth orally ad libitum for two consecutive days. The animals were subsequently sacrificed and dissected. RESULTS L. lactis treatment was able to restore basal levels of secretory immunoglobulin A in the gastric mucosa, serum total immunoglobulin E, interleukin (IL)-4 production in gastric and intestinal tissues, and IL-10 levels in gastric tissue. L. lactis treatment encouraged the diversification of the Enterobacteriaceae population, particularly the commensal species, in the GIT. CONCLUSION This research opens a field of studies regarding the modulatory effect of L. lactis on immunological and microbial changes induced after alcohol intake.
Collapse
|
21
|
Hashemi SMB, Jafarpour D, Jouki M. Improving bioactive properties of peach juice using Lactobacillus strains fermentation: Antagonistic and anti-adhesion effects, anti-inflammatory and antioxidant properties, and Maillard reaction inhibition. Food Chem 2021; 365:130501. [PMID: 34247050 DOI: 10.1016/j.foodchem.2021.130501] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
The purpose of the current study was to evaluate the antimicrobial activity of Lactobacillus acidophilus PTCC 1643 and Lactobacillus fermentum PTCC 1744 against Shigella flexneri PTCC 1865 in fermented peach juice, as well as the anti-adhesion ability on epithelial Caco-2 cells. Moreover, the biological activities of peach juice were examined. We found that the studied Lactobacillus strains effectively inhibited the growth of S. flexneri during the peach juice fermentation. In addition, L. acidophilus revealed more anti-adhesion ability than L. fermentum. The inhibition of the Maillard reaction increased from 4.10% to 36.70% and 33.00% in L. acidophilus and L. fermentum treatments, respectively. Additionally, the ferrous reducing power, superoxide anion antiradical and anti-inflammatory activities of the beverage augmented during the fermentation period. These findings may be helpful for inhibition of foodborne pathogens by Lactobacillus strains and production of fruit-based fermented beverages with high functional and nutritional value.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa Branch, Islamic Azad University, Fasa, Iran.
| | - Mohammad Jouki
- Department of Food Science and Technology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Akgul A, Maddaloni M, Jun SM, Nelson AS, Odreman VA, Hoffman C, Bhagyaraj E, Voigt A, Abbott JR, Nguyen CQ, Pascual DW. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther 2021; 23:99. [PMID: 33823920 PMCID: PMC8022426 DOI: 10.1186/s13075-021-02475-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Sjögren's syndrome (SjS), one of the most common autoimmune diseases, impacts millions of people annually. SjS results from autoimmune attack on exocrine (salivary and lacrimal) glands, and women are nine times more likely to be affected than men. To date, no vaccine or therapeutic exists to treat SjS, and patients must rely on lifelong therapies to alleviate symptoms. METHODS Oral treatment with the adhesin from enterotoxigenic Escherichia coli colonization factor antigen I (CFA/I) fimbriae protects against several autoimmune diseases in an antigen (Ag)-independent manner. Lactococcus lactis, which was recently adapted to express CFA/I fimbriae (LL-CFA/I), effectively suppresses inflammation by the induction of infectious tolerance via Ag-specific regulatory T cells (Tregs), that produce IL-10 and TGF-β. To test the hypothesis that CFA/I fimbriae can offset the development of inflammatory T cells via Treg induction, oral treatments with LL-CFA/I were performed on the spontaneous, genetically defined model for SjS, C57BL/6.NOD-Aec1Aec2 mice to maintain salivary flow. RESULTS Six-week (wk)-old C57BL/6.NOD-Aec1Aec2 mice were orally dosed with LL-CFA/I and treated every 3 wks; control groups were given L. lactis vector or PBS. LL-CFA/I-treated mice retained salivary flow up to 28 wks of age and showed significantly reduced incidence of inflammatory infiltration into the submandibular and lacrimal glands relative to PBS-treated mice. A significant increase in Foxp3+ and IL-10- and TGF-β-producing Tregs was observed. Moreover, LL-CFA/I significantly reduced the expression of proinflammatory cytokines, IL-6, IL-17, GM-CSF, and IFN-γ. Adoptive transfer of CD4+ T cells from LL-CFA/I-treated, not LL vector-treated mice, restored salivary flow in diseased SjS mice. CONCLUSION These data demonstrate that oral LL-CFA/I reduce or halts SjS progression, and these studies will provide the basis for future testing in SjS patients.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Massimo Maddaloni
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Sang Mu Jun
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Andrew S Nelson
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Vanessa Aguilera Odreman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Ella Bhagyaraj
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Alexandria Voigt
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - Jeffrey R Abbott
- Department of Veterinary Microbiology & Pathology, Washington State University, P.O. Box 647040, Pullman, WA, 99164, United States
| | - Cuong Q Nguyen
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States
| | - David W Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL, 32611, United States.
| |
Collapse
|
23
|
Cordeiro BF, Alves JL, Belo GA, Oliveira ER, Braga MP, da Silva SH, Lemos L, Guimarães JT, Silva R, Rocha RS, Jan G, Le Loir Y, Silva MC, Freitas MQ, Esmerino EA, Gala-García A, Ferreira E, Faria AMC, Cruz AG, Azevedo V, do Carmo FLR. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front Microbiol 2021; 12:623920. [PMID: 33737918 PMCID: PMC7960676 DOI: 10.3389/fmicb.2021.623920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) constitute disturbances of gastrointestinal tract that cause irreversible changes in the structure and function of tissues. Ulcerative colitis (UC), the most frequent IBD in the population, is characterized by prominent inflammation of the human colon. Functional foods containing probiotic bacteria have been studied as adjuvants to the treatment or prevention of IBDs. The selected probiotic strain Lactococcus lactis NCDO 2118 (L. lactis NCDO 2118) exhibits immunomodulatory effects, with promising results in UC mouse model induced by dextran sodium sulfate (DSS). Additionally, cheese is a dairy food that presents high nutritional value, besides being a good delivery system that can be used to improve survival and enhance the therapeutic effects of probiotic bacteria in the host. Therefore, this work investigated the probiotic therapeutic effects of an experimental Minas Frescal cheese containing L. lactis NCDO 2118 in DSS-induced colitis in mice. During colitis induction, mice that consumed the probiotic cheese exhibited reduced in the severity of colitis, with attenuated weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score. Moreover, probiotic cheese administration increased gene expression of tight junctions’ proteins zo-1, zo-2, ocln, and cln-1 in the colon and increase IL-10 release in the spleen and lymph nodes. In this way, this work demonstrates that consumption of probiotic Minas Frescal cheese, containing L. lactis NCDO 2118, prevents the inflammatory process during DSS-induced colitis in mice, opening perspectives for the development of new probiotic functional foods for personalized nutrition in the context of IBD.
Collapse
Affiliation(s)
- Bárbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana L Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna A Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina P Braga
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Jonas T Guimarães
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon Silva
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Marcia Cristina Silva
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Mônica Q Freitas
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Erick A Esmerino
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Alfonso Gala-García
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Maria C Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriano G Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| |
Collapse
|
24
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Taghinezhad-S S, Keyvani H, Bermúdez-Humarán LG, Donders GGG, Fu X, Mohseni AH. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis. Cell Mol Life Sci 2020; 78:1191-1206. [PMID: 32979054 PMCID: PMC7519697 DOI: 10.1007/s00018-020-03652-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 10/27/2022]
Abstract
Most cervical cancer (CxCa) are related to persistent infection with high-risk human papillomavirus (HR-HPV) in the cervical mucosa, suggesting that an induction of mucosal cell-mediated immunity against HR-HPV oncoproteins can be a promising strategy to fight HPV-associated CxCa. From this perspective, many pre-clinical and clinical trials have proved the potential of lactic acid bacteria (LAB) genetically modified to deliver recombinant antigens to induce mucosal, humoral and cellular immunity in the host. Altogether, the outcomes of these studies suggest that there are several key factors to consider that may offer guidance on improvement protein yield and improving immune response. Overall, these findings showed that oral LAB-based mucosal HPV vaccines expressing inducible surface-anchored antigens display a higher potential to induce particularly specific systemic and mucosal cytotoxic cellular immune responses. In this review, we describe all LAB-based HPV vaccine investigations by reviewing databases from international studies between 2000 and 2020. Our aim is to promote the therapeutic HPV vaccines knowledge and to complete the gaps in this field to empower scientists worldwide to make proper decisions regarding the best strategies for the development of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | | | - Gilbert G G Donders
- Department of Obstetrics and Gynaecology, Antwerp University Hospital, Antwerp, Belgium.,Femicare Clinical Research for Women, Tienen, Belgium
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran.
| |
Collapse
|
26
|
Batista VL, da Silva TF, de Jesus LCL, Coelho-Rocha ND, Barroso FAL, Tavares LM, Azevedo V, Mancha-Agresti P, Drumond MM. Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis. Front Microbiol 2020; 11:544490. [PMID: 33042054 PMCID: PMC7527409 DOI: 10.3389/fmicb.2020.544490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis, a cytotoxic side effect of the antineoplastic drug 5-fluorouracil (5-FU), is characterized by ulceration, inflammation, diarrhea, and intense abdominal pain, making it an important issue for clinical medicine. Given the seriousness of the problem, therapeutic alternatives have been sought as a means to ameliorate, prevent, and treat this condition. Among the alternatives available to address this side effect of treatment with 5-FU, the most promising has been the use of probiotics, prebiotics, synbiotics, and paraprobiotics. This review addresses the administration of these "biotics" as a therapeutic alternative for intestinal mucositis caused by 5-FU. It describes the effects and benefits related to their use as well as their potential for patient care.
Collapse
Affiliation(s)
- Viviane Lima Batista
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Faculdade de Minas, FAMINAS-BH, Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Cho DY, Skinner D, Lim DJ, Mclemore JG, Koch CG, Zhang S, Swords WE, Hunter R, Crossman DK, Crowley MR, Grayson JW, Rowe SM, Woodworth BA. The impact of Lactococcus lactis (probiotic nasal rinse) co-culture on growth of patient-derived strains of Pseudomonas aeruginosa. Int Forum Allergy Rhinol 2020; 10:444-449. [PMID: 31922358 PMCID: PMC8058912 DOI: 10.1002/alr.22521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Lactococcus strain of bacteria has been introduced as a probiotic nasal rinse for alleged salubrious effects on the sinonasal bacterial microbiome. However, data regarding interactions with pathogenic bacteria within the sinuses are lacking. The purpose of this study is to assess the interaction between L. lactis and patient-derived Pseudomonas aeruginosa, an opportunistic pathogen in recalcitrant chronic rhinosinusitis (CRS). METHODS Commercially available probiotic suspension containing L. lactis W136 was grown in an anaerobic chamber and colonies were isolated. Colonies were co-cultured with patient-derived P. aeruginosa strains in the presence of porcine gastric mucin (mimicking human mucus) for 72 hours. P. aeruginosa cultures without L. lactis served as controls. Colony forming units (CFUs) were compared. RESULTS Six P. aeruginosa isolates collected from 5 CRS patients (3 isolates from cystic fibrosis [CF], 1 mucoid strain) and laboratory strain PAO1 were co-cultured with L. lactis. There was no statistical difference in CFUs of 5 P. aeruginosa isolates grown with L. lactis compared to CFUs without presence of L. lactis. CFU counts were much higher when the mucoid strain was co-cultured with L. lactis (CFU+L.lactis = 1.9 × 108 ± 1.44 × 107, CFU-L.lactis = 1.3 × 108 ± 8.9 × 106, p = 0.01, n = 7). L. lactis suppressed the growth of 1 P. aeruginosa strain (CFU+L.lactis = 2.15 × 108 ± 2.9 × 107, CFU-L.lactis = 3.95 × 108 ± 4.8 × 106, p = 0.03, n = 7). CONCLUSION L. lactis suppressed the growth of 1 patient P. aeruginosa isolate and induced growth of another (a mucoid strain) in in vitro co-culture setting in the presence of mucin. Further experiments are required to assess the underlying interactions between L. lactis and P. aeruginosa.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Skinner
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Dong Jin Lim
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - John G. Mclemore
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Connor G Koch
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - William E. Swords
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Ryan Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica W. Grayson
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A. Woodworth
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
28
|
Plavec TV, Berlec A. Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms 2020; 8:E297. [PMID: 32098042 PMCID: PMC7074969 DOI: 10.3390/microorganisms8020297] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Lactic acid bacteria (LAB) have a long history of use in the food industry. Some species are part of the normal human microbiota and have beneficial properties for human health. Their long-standing use and considerable biotechnological potential have led to the development of various systems for their engineering. Together with novel approaches such as CRISPR-Cas, the established systems for engineering now allow significant improvements to LAB strains. Nevertheless, genetically modified LAB (GM-LAB) still encounter disapproval and are under extensive regulatory requirements. This review presents data on the prospects for LAB to obtain 'generally recognized as safe' (GRAS) status. Genetic modification of LAB is discussed, together with problems that can arise from their engineering, including their dissemination into the environment and the spread of antibiotic resistance markers. Possible solutions that would allow the use of GM-LAB are described, such as biocontainment, alternative selection markers, and use of homologous DNA. The use of GM-LAB as cell factories in closed systems that prevent their environmental release is the least problematic aspect, and this is also discussed.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
30
|
Cordeiro BF, Lemos L, Oliveira ER, Silva SH, Savassi B, Figueiroa A, Faria AMC, Ferreira E, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, do Carmo FLR, Azevedo V. Prato cheese containing Lactobacillus casei 01 fails to prevent dextran sodium sulphate-induced colitis. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Yadav M, Mandeep, Shukla P. Probiotics of Diverse Origin and Their Therapeutic Applications: A Review. J Am Coll Nutr 2019; 39:469-479. [PMID: 31765283 DOI: 10.1080/07315724.2019.1691957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increased awareness about the harmful effects of excessive use of antibiotics has created an interest in probiotics due to its beneficial effects on gut microbiota. These advantages of probiotics have attracted researchers to find out effects on human metabolism and their role in the treatment of diverse types of diseases or disorders. Additionally, they are clinically used as biocontrol agents in the treatment of mental disorders, anticancer agents and in decreasing the threat of necrotizing enterocolitis in premature infants. In this review, we have focused on various kinds of probiotics and various nondairy substrates for their production. We have also included the importance of probiotics in the treatment of metabolic disorders, type II diabetes and infectious diseases. Furthermore, this review emphasizes applications of probiotics originated from different organisms. Their future health perspectives are discussed to gain insight into their applications.KEY TEACHING POINTSThe global market of probiotics is enormously rising day by day due to its highly beneficial effect on human microbiota.Additionally, these are used as biocontrol agents; mental disorders prevent cancer and decrease the threat of necrotizing enterocolitis (NEC) in premature infants.This review focuses on various kinds of sources of probiotics and various non-dairy substrates for the production of probiotics.The importance of probiotics in the treatment of metabolic disorders, type II diabetes control, cancer and treatment of infectious diseases are also described.It emphasizes diversified probiotics and their applications in various human health aspects and future perspectives.
Collapse
Affiliation(s)
- Monika Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
32
|
Zhao F, Song S, Ma Y, Xu X, Zhou G, Li C. A Short-Term Feeding of Dietary Casein Increases Abundance of Lactococcus lactis and Upregulates Gene Expression Involving Obesity Prevention in Cecum of Young Rats Compared With Dietary Chicken Protein. Front Microbiol 2019; 10:2411. [PMID: 31708891 PMCID: PMC6824296 DOI: 10.3389/fmicb.2019.02411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Casein and chicken are assessed to contain high quality proteins, which are essential for human health. Studies have shown that ingestion of the two dietary proteins resulted in distinct effects on physiology, liver transcriptome and gut microbiota. However, its underlying mechanism is not fully understood, in particular for a crosstalk between gut microbiota and host under a specific diet intervention. We fed young rats with a casein or a chicken protein-based diet (CHPD) for 7 days, and characterized cecal microbiota composition and cecal gene expression. We found that a short-term intervention with a casein-based diet (CAD) induced a higher relative abundance of beneficial bacterium Lactococcus lactis as well as Bifidobacterium pseudolongum, which upregulated galactose metabolism of the microbiome compared with a CHPD. The CAD also upregulated gene expression involved in obesity associated pathways (e.g., Adipoq and Irs1) in cecal tissue of rats. These genes and the bacterial taxon were reported to play an important role in protecting development of obesity. Furthermore, the differentially represented bacterial taxon L. lactis was positively associated with these differentially expressed genes in the gut tissue. Our results provide a new insight into the crosstalk between gut microbiota and host in response to dietary proteins, indicating a potential mechanism of obesity prevention function by casein.
Collapse
Affiliation(s)
- Fan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Yafang Ma
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| |
Collapse
|
33
|
Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett 2019; 366:5251984. [PMID: 30561594 PMCID: PMC6322438 DOI: 10.1093/femsle/fny291] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’ expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.
Collapse
Affiliation(s)
- Rosa A Börner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Amalie M Axelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Preventative delivery of IL-35 by Lactococcus lactis ameliorates DSS-induced colitis in mice. Appl Microbiol Biotechnol 2019; 103:7931-7941. [PMID: 31456001 DOI: 10.1007/s00253-019-10094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhea, and abdominal pain. Anti-inflammatory and immunosuppressive drugs have been used in the therapy of human UC. Interleukin (IL)-35, which functions as an anti-inflammatory cytokine, has been shown to play a potential therapeutic role in a UC-like mouse colitis induced by dextran sodium sulfate (DSS). However, the contribution of IL-35 via oral administration to colitis prevention has not been determined. In order to explore its preventative potentiality, a dairy Lactococcus lactis NZ9000 strain was engineered to express murine IL-35 (NZ9000/IL-35), and this recombinant bacteria was applied to prevent and limit the development of DSS-induced mouse colitis. We found that oral administration of NZ9000/IL-35 induced the accumulation of IL-35 in the gut lumen of normal mice. When administrated preventatively, NZ9000/IL-35-gavaged mice exhibited decreased weight loss, DAI score, colon shortening as well as colitis-associated histopathological changes in colon, indicating that the oral administration of NZ9000/35 contributed to the suppression of DSS-induced colitis progression. Moreover, much less Th17 cells and higher level of Treg cells in lamina propria, as well as increased colon and serum levels of IL-10 with a concomitant reduced pro-inflammatory cytokines, IL-6, IL-17A, IFN-γ, and TNF-α were apparently regulated by NZ9000/IL-35 in colitis mice. Together, we put forward direct evidence pinpointing the effectiveness of NZ9000/IL-35 in preventing UC-like mouse colitis, implying a potential candidate of this recombinant Lactococcus lactis that prevent the progression of IBD.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Gastrointestinal mucositis is a frequent side effect of systemic anticancer treatment and radiotherapy. The occurrence endangers body resources by decreasing food intake and absorption. This review highlights new developments in treatment and prevention. RECENT FINDINGS Recent clinical practice guidelines recommend supplying adequate amounts of energy and nutrients to cancer patients undergoing anticancer treatments. This requires repeated screening for risk of malnutrition and in at-risk patients, assessment of food intake and nutritional status, followed by nutritional interventions targeted at individual deficiencies and tolerance to oral, enteral or parenteral feeding. Recent preclinical data report beneficial effects of stimulating the sensor for cell damage signals TRPA1, blocking histamine H2 receptors or supplying probiotics. In a recent clinical trial, amifostine reduced gastrointestinal symptoms and was well tolerated. Probiotics are studied in ongoing clinical trials and glucagon-like peptide 2 analogues are considered for future trials. Due to limited options available today, it has been suggested to also consider several plant-based complementary therapies. SUMMARY Although options for prevention and treatment of chemotherapy or radiotherapy-induced gastrointestinal mucositis today are still limited, inadequate energy and nutrient intake should trigger nutritional interventions, including counselling, oral nutritional supplements, tube feeding and parenteral nutrition. To prevent gastrointestinal mucositis, several new agents have shown promising results in preclinical trials.
Collapse
|
36
|
Marques Da Silva W, Oliveira LC, Soares SC, Sousa CS, Tavares GC, Resende CP, Pereira FL, Ghosh P, Figueiredo H, Azevedo V. Quantitative Proteomic Analysis of the Response of Probiotic Putative Lactococcus lactis NCDO 2118 Strain to Different Oxygen Availability Under Temperature Variation. Front Microbiol 2019; 10:759. [PMID: 31031733 PMCID: PMC6470185 DOI: 10.3389/fmicb.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lactococcus lactis is a gram positive facultative anaerobe widely used in the dairy industry and human health. L. lactis subsp. lactis NCDO 2118 is a strain that exhibits anti-inflammatory and immunomodulatory properties. In this study, we applied a label-free shotgun proteomic approach to characterize and quantify the NCDO 2118 proteome in response to variations of temperature and oxygen bioavailability, which constitute the environmental conditions found by this bacterium during its passage through the host gastro-intestinal tract and in other industrial processes. From this proteomic analysis, a total of 1,284 non-redundant proteins of NCDO 2118 were characterized, which correspond to approximately 54% of its predicted proteome. Comparative proteomic analysis identified 149 and 136 proteins in anaerobic (30°C and 37°C) and non-aerated (30°C and 37°C) conditions, respectively. Our label-free proteomic analysis quantified a total of 1,239 proteins amongst which 161 proteins were statistically differentially expressed. Main differences were observed in cellular metabolism, stress response, transcription and proteins associated to cell wall. In addition, we identified six strain-specific proteins of NCDO 2118. Altogether, the results obtained in our study will help to improve the understanding about the factors related to both physiology and adaptive processes of L. lactis NCDO 2118 under changing environmental conditions.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Castro Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Siomar Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Cassiana Severiano Sousa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Felipe Luis Pereira
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Henrique Figueiredo
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
37
|
Mohseni AH, Taghinezhad-S S, Keyvani H, Razavilar V. Extracellular overproduction of E7 oncoprotein of Iranian human papillomavirus type 16 by genetically engineered Lactococcus lactis. BMC Biotechnol 2019; 19:8. [PMID: 30678667 PMCID: PMC6346575 DOI: 10.1186/s12896-019-0499-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Background We aimed at constructing Lactococcus lactis strains expressing HPV-16 recombinant E7 (rE7) oncoprotein and examining its overproduction ability followed by optimizing batch and fed-batch fermentations. Thereafter, in order to assess the immunogenicity of recombinant L. lactis cells, C57BL/6 mice were immunized by oral gavage. Results The results suggested that recombinant strains harboring optiE7 and E7 genes produced a maximum of 4.84 and 1.91 μg/mL of rE7 in static flask experiments, while the corresponding strains gave a maximum yield of 35.49 and 14.24 μg/mL in batch experiments, respectively. Fed-batch study indicated that the concentration of rE7 protein significantly increased after feeding yeast extract plus GM17 medium. The rE7 production of the best performing strains was 2.09- and 1.48-fold higher than that of the strains during the batch fermentation. Furthermore, biomass levels were 1.98- and 1.92-fold higher than those in batch cultivation. Oral immunization of C57BL/6 mice with recombinant L. lactis produced significant specific IgG and IgA antibody responses in serum and vaginal fluids, respectively. Our outcomes suggest that vaccination with L. lactis expressing rE7 can generate significant protective effects against E7-expressing cell line. Also, our study provides evidence that the presence of large amounts of E7-specific CD4+ T helper and CD8+ T cell precursors was stimulated. Significantly higher frequencies of HPV-16 E7 specific IL-2- and IFN-γ-secreting T cells were detected in antigen-stimulated splenocytes and intestinal mucosal lymphocytes, when compared to the control groups. Conclusions We conclude that optimization of culture conditions along with recombinant protein expression can highly stimulate both specific humoral and cell-mediated immune responses in mice after oral immunization. These promising results represent a step towards fast-tracking a vaccine against HPV-16-associated cervical cancer.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR, Iran
| | - Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR, Iran.
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, IR, Iran.
| | - Vadood Razavilar
- Department of Food Hygiene, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR, Iran.
| |
Collapse
|
38
|
Škrlec K, Ručman R, Jarc E, Sikirić P, Švajger U, Petan T, Perišić Nanut M, Štrukelj B, Berlec A. Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities. Appl Microbiol Biotechnol 2018; 102:10103-10117. [PMID: 30191288 DOI: 10.1007/s00253-018-9333-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria (LAB) are attractive hosts for the expression of heterologous proteins and can be engineered to deliver therapeutic proteins or peptides to mucosal surfaces. The gastric stable pentadecapeptide BPC-157 is able to prevent and treat gastrointestinal inflammation by reducing the production of reactive oxygen species (ROS). In this study, we used LAB Lactococcus lactis as a vector to deliver BPC-157 by surface display and trypsin shedding or by secretion to the growth medium. Surface display of BPC-157 was achieved by fusing it with basic membrane protein A (BmpA) or with the peptidoglycan binding domain of AcmA and Usp45 secretion signal. While the expression of BmpA-fusion proteins was higher than that of AcmA/Usp45-fusion protein, the surface display ability of BPC-157 was approximately 14-fold higher with AcmA/Usp45-fusion protein. Release of BPC-157 from the bacterial surface or from isolated fusion proteins by trypsinization was demonstrated with anti-BPC-157 antibodies or by mass spectrometry. The concentration of BPC-157 delivered by surface display via AcmA/Usp45-fusion was 30 ng/ml. This increased to 117 ng/ml by Usp45 signal-mediated secretion, making the latter the most effective lactococcal delivery approach for BPC-157. Secreted BPC-157 significantly decreased ROS production in 149BR fibroblast cell model, suggesting its potential benefit in the treatment of intestinal inflammations. Additionally, a comparison of different modes of small peptide delivery by L. lactis, performed in the present study, will facilitate the future use of L. lactis as peptide delivery vehicle.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Predrag Sikirić
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Maddaloni M, Kochetkova I, Hoffman C, Pascual DW. Delivery of IL-35 by Lactococcus lactis Ameliorates Collagen-Induced Arthritis in Mice. Front Immunol 2018; 9:2691. [PMID: 30515168 PMCID: PMC6255909 DOI: 10.3389/fimmu.2018.02691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
IL-35, a relatively newly discovered cytokine belonging to the larger IL-12 family, shows unique anti-inflammatory properties, believed to be associated with dedicated receptors and signaling pathways. IL-35 plays a pivotal role in the development and the function of both regulatory B (Bregs) and T cells (Tregs). In order to further its therapeutic potential, a dairy Lactococcus lactis strain was engineered to express murine IL-35 (LL-IL35), and this recombinant strain was applied to suppress collagen-induced arthritis (CIA). Oral administration of LL-IL35 effectively reduced the incidence and disease severity of CIA. When administered therapeutically, LL-IL35 abruptly halted CIA progression with no increase in disease severity by reducing neutrophil influx into the joints. LL-IL35 treatment reduced IFN-γ and IL-17 3.7- and 8.5-fold, respectively, and increased IL-10 production compared to diseased mice. Foxp3+ and Foxp3- CD39+ CD4+ T cells were previously shown to be the Tregs responsible for conferring protection against CIA. Inquiry into their induction revealed that both CCR6+ and CCR6- Foxp3+or- CD39+ CD4+ T cells act as the source of the IL-10 induced by LL-IL35. Thus, this study demonstrates the feasibility and benefits of engineered probiotics for treating autoimmune diseases.
Collapse
Affiliation(s)
- Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Carvalho R, Vaz A, Pereira FL, Dorella F, Aguiar E, Chatel JM, Bermudez L, Langella P, Fernandes G, Figueiredo H, Goes-Neto A, Azevedo V. Gut microbiome modulation during treatment of mucositis with the dairy bacterium Lactococcus lactis and recombinant strain secreting human antimicrobial PAP. Sci Rep 2018; 8:15072. [PMID: 30305667 PMCID: PMC6180057 DOI: 10.1038/s41598-018-33469-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.
Collapse
Affiliation(s)
- Rodrigo Carvalho
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil.
| | - Aline Vaz
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | - Fernanda Dorella
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Eric Aguiar
- Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis Bermudez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gabriel Fernandes
- Fiocruz - Centro de Pesquisa Renê Rachou, Belo Horizonte, MG, Brazil
| | | | | | - Vasco Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| |
Collapse
|
41
|
Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front Immunol 2018; 9:2223. [PMID: 30319660 PMCID: PMC6170637 DOI: 10.3389/fimmu.2018.02223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
Modern animal and crop production practices are associated with the regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Alternative approaches are needed in order to satisfy the demands of the growing human population without the indiscriminate use of antimicrobials. Researchers have brought a different perspective to solve this problem and have emphasized the exploitation of animal- and plant-associated microorganisms that are beneficial to their hosts through the modulation of the innate immune system. There is increasing evidence that plants and animals employ microbial perception and defense pathways that closely resemble each other. Formation of pattern recognition receptor (PRR) complexes involving leucine-rich repeat (LRR)-containing proteins, mitogen-activated protein kinase (MAPK)-mediated activation of immune response genes, and subsequent production of antimicrobial products and reactive oxygen species (ROS) and nitric oxide (NO) to improve defenses against pathogens, add to the list of similarities between both systems. Recent pioneering work has identified that animal and plant cells use similar receptors for sensing beneficial commensal microbes that are important for the maintenance of the host's health. Here, we reviewed the current knowledge about the molecular mechanisms involved in the recognition of pathogenic and commensal microbes by the innate immune systems of animal and plants highlighting their differences and similarities. In addition, we discuss the idea of using beneficial microbes to modulate animal and plant immune systems in order to improve the resistance to infections and reduce the use of antimicrobial compounds.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Cordeiro BF, Oliveira ER, da Silva SH, Savassi BM, Acurcio LB, Lemos L, Alves JDL, Carvalho Assis H, Vieira AT, Faria AMC, Ferreira E, Le Loir Y, Jan G, Goulart LR, Azevedo V, Carvalho RDDO, do Carmo FLR. Whey Protein Isolate-Supplemented Beverage, Fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the Prevention of Mucositis in Mice. Front Microbiol 2018; 9:2035. [PMID: 30258413 PMCID: PMC6143704 DOI: 10.3389/fmicb.2018.02035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a clinically important gastrointestinal inflammatory infirmity, generated by antineoplastic drugs cytotoxic effects. The inflammatory process caused by this disease frequently leads to derangements in the alimentary tract and great malaise for the patient. Novel strategies are necessary for its prevention or treatment, as currently available treatments of mucositis have several limitations in relieving its symptoms. In this context, several research groups have investigated the use of probiotic bacteria, and in particular dairy bacterial strains. Compelling evidences reveal that milk fermented by certain probiotic bacteria has the capacity to ameliorate intestinal inflammatory disorders. In addition, innovative probiotic delivery strategies, based on probiotics incorporation into protective matrices, such as whey proteins, were able to increase the therapeutic effect of probiotic strains by providing extra protection for bacteria against environmental stresses. Therefore, in this study, we evaluated the role of the whey protein isolate (WPI), when added to skim milk fermented by Lactobacillus casei BL23 (L. casei BL23) or by Propionibacterium freudenreichii CIRM-BIA138 (P. freudenreichii 138), as a protective matrix against in vitro stress challenges. In addition, we investigated the therapeutic effect of these fermented beverages in a murine model of mucositis induced by 5-Fluorouracil (5-FU). Our results demonstrated that milk supplementation with 30% (w/v) of WPI increases the survival rate of both strains when challenged with acid, bile salts, high temperature and cold storage stresses, compared to fermented skim milk without the addition of WPI. Moreover, treatment with the probiotic beverages prevented weight loss and intestinal damages in mice receiving 5-FU. We conclude that the presence of WPI maximizes the anti-inflammatory effects of L. casei BL23, but not for P. freudenreichii 138, suggesting that whey protein enhancement of probiotic activity might be strain-dependent.
Collapse
Affiliation(s)
- Bárbara F. Cordeiro
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Sara H. da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Bruna M. Savassi
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Leonardo B. Acurcio
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Juliana de L. Alves
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Helder Carvalho Assis
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Angélica T. Vieira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Ana M. C. Faria
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | | | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | - Luiz R. Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Rodrigo D. de O. Carvalho
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Fillipe L. R. do Carmo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
- STLO, INRA, Agrocampus Ouest, Rennes, France
| |
Collapse
|
43
|
Kang JE, Kim HD, Park SY, Pan JG, Kim JH, Yum DY. Dietary Supplementation With a Bacillus Superoxide Dismutase Protects Against γ-Radiation-induced Oxidative Stress and Ameliorates Dextran Sulphate Sodium-induced Ulcerative Colitis in Mice. J Crohns Colitis 2018; 12:860-869. [PMID: 29547907 DOI: 10.1093/ecco-jcc/jjy034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Commercial superoxide dismutase [SOD] is derived from melon extract and has a potential as a dietary supplement due to its beneficial antioxidative effects. We aimed to improve the productivity of SOD compared with plant SOD by using a generally regarded as safe [GRAS] microorganism, Bacillus amyloliquefaciens, and assess its antioxidative effect using γ-radiation- and dextransulphate sodium [DSS]-induced oxidative models in mice. METHODS We identified the sodA gene encoding manganese-containing SODs [Mn-SOD] in B. amyloliquefaciens, constructed a Mn-SOD deficient mutant, and screened a high-SOD-producing strain. We compared the antioxidative effect of orally administered enteric-coated SOD protein partially purified from B. amyloliquefaciens with wild-type and high-SOD-producing strain spores. The effect of SOD on DSS-induced colitis was also investigated. Colonic inflammation was assessed using disease activity index, macroscopic and histological damage scores, antioxidant enzyme activities, and inflammatory cytokines. RESULTS The SOD activity of B. amyloliquefaciens is derived from secreted Mn-SOD encoded by the sodA gene, as shown by comparing sodA knock-out mutant spores with wild-type and high-SOD-producing spores. Enteric-coated SOD of B. amyloliquefaciens appears to be effective in reducing oxidative stress in γ-radiation- and DSS-induced mouse models. Co-administration of SOD with wild-type B. amyloliquefaciens or high-SOD-producer strain spores showed a synergistic effect. SOD enzyme and B. amyloliquefaciens spores contribute to the reduction of oxidative stress and inflammatory response in DSS-induced colitis. CONCLUSIONS Mn-SOD of B. amyloliquefaciens could be another source of SOD supplement and may be useful to prevent and treat ulcerative colitis.
Collapse
Affiliation(s)
- Ji-Eun Kang
- GenoFocus, Inc., Techno 1-ro, Yuseong-gu, Daejeon, Korea
| | - Hyun-Do Kim
- GenoFocus, Inc., Techno 1-ro, Yuseong-gu, Daejeon, Korea
| | - Soo-Young Park
- GenoFocus, Inc., Techno 1-ro, Yuseong-gu, Daejeon, Korea
| | - Jae-Gu Pan
- GenoFocus, Inc., Techno 1-ro, Yuseong-gu, Daejeon, Korea
| | - Jeong Hyun Kim
- GenoFocus, Inc., Techno 1-ro, Yuseong-gu, Daejeon, Korea
| | - Do-Young Yum
- GenoFocus, Inc., Techno 1-ro, Yuseong-gu, Daejeon, Korea
| |
Collapse
|
44
|
Kobayashi T, Andoh A. Numerical analyses of intestinal microbiota by data mining. J Clin Biochem Nutr 2018; 62:124-131. [PMID: 29610551 PMCID: PMC5874238 DOI: 10.3164/jcbn.17-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The human intestinal microbiota has a close relationship with health control and causes of diseases, and a vast number of scientific papers on this topic have been published recently. Some progress has been made in identifying the causes or species of related microbiota, and successful results of data mining are reviewed here. Humans who are targets of a disease have their own individual characteristics, including various types of noise because of their individual life style and history. The quantitatively dominant bacterial species are not always deeply connected with a target disease. Instead of conventional simple comparisons of the statistical record, here the Gini-coefficient (i.e., evaluation of the uniformity of a group) was applied to minimize the effects of various types of noise in the data. A series of results were reviewed comparatively for normal daily life, disease and technical aspects of data mining. Some representative cases (i.e., heavy smokers, Crohn’s disease, coronary artery disease and prediction accuracy of diagnosis) are discussed in detail. In conclusion, data mining is useful for general diagnostic applications with reasonable cost and reproducibility.
Collapse
Affiliation(s)
- Toshio Kobayashi
- Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai-Shi, Miyagi 982-0215, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
45
|
Mercier-Bonin M, Chapot-Chartier MP. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract. Front Microbiol 2017; 8:2247. [PMID: 29218032 PMCID: PMC5703838 DOI: 10.3389/fmicb.2017.02247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/13/2023] Open
Abstract
Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.
Collapse
Affiliation(s)
- Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | |
Collapse
|