1
|
Cheong YL, Mohd Ghazali S, Mat Hashim MH, Che Ibrahim MK, Amran A, Tiunh TY, Lim HL, Cheah YK, Gill BS, Lim KH. Exploring 97 Years of Aedes aegypti as the Vector for Dengue, Yellow Fever, Zika, and Chikungunya (Diptera: Culicidae): Scientometric Analysis. Interact J Med Res 2025; 14:e65844. [PMID: 40267478 DOI: 10.2196/65844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Aedes aegypti is an important vector that transmits dengue, Zika, chikungunya, and yellow fever viruses. Although research on Aedes aegypti has been conducted for decades, scientometric studies on Aedes aegypti are scarce, are limited to regions, and cover short periods. Thus, there is still a knowledge gap in the current trend, research focuses and directions, leading authors and collaboration, journal and citation impacts, countries, and worldwide collaborations. OBJECTIVE The objectives of the study are to investigate the research trend, focus and directions, citation impact, leading authors and collaboration, journals, and countries of the published works on Aedes aegypti to inform the current knowledge gaps and future direction of the control of the vector. METHODS In this study, we searched the Scopus database for articles on Aedes aegypti published from the year 1927 until April 5th, 2024, and included articles, reviews, books, and book chapters that were written in English. A total of 16,247 articles in 160 journals with 481,479 citations were included. Inconsistencies in authors' names were checked and cleaned using OpenRefine. The data were grouped into 4 periods; years 1927-1999, 2000-2009, 2010-2019, and 2020-2023. The relative growth rate and doubling time of publications were calculated. The analysis was conducted using VOSviewer, R bibliometrics, and citeSpace. RESULTS The overall RGR was 0.1. Doubling time increased from 9.3 in 1978-1998 to 12.1 in 2000-2009. The main research clusters were "using Wolbachia," "Dengue Zika," "worldwide diversity," "community support," "larvicidal activity," "mosquito genotype-dependent," and "sterile insect technique." Journal of Medical Entomology was the leading journal (758/16,247, 4.7%). The most cited articles were authored by Halstead SB and team in Science (N=1355) and Kraemer MU and team in eLife (N=1324). The United States (5806/23,538, 24.7%) and Brazil (2035/23,538, 8.6%) were the top countries. Gubler DJ was the top co-cited author (n=2892) from 2000 to 2019. The co-cited author cluster patterns informed the significant specialty research on Aedes aegypti across time. Authors from various specialized research fields tended to collaborate across countries, especially neighboring countries. Countries with more research funding on the study of Aedes aegypti published more papers. CONCLUSIONS Researchers or entomologists could understand the current knowledge gap on Aedes aegypti and plan for future research pathways. This study contributed to the public health stakeholders in improving the vector control interventions and elucidated the extent of research subject areas.
Collapse
Affiliation(s)
- Yoon Ling Cheong
- Biomedical Museum Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Sumarni Mohd Ghazali
- Biomedical Epidemiology Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Mohd Hazilas Mat Hashim
- Biomedical Museum Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Khairuddin Che Ibrahim
- Biomedical Research, Strategic & Innovation Management Unit, Institute for Medical Research, Director's Office, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Afzufira Amran
- Biomedical Museum Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Tsye Yih Tiunh
- Biomedical Museum Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Hui Li Lim
- Clinical Research Centre, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Yong Kang Cheah
- School of Economics, Finance & Banking, Universiti Utara Malaysia, Kedah, Malaysia
| | - Balvinder Singh Gill
- Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Kuang Hock Lim
- Biomedical Museum Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Leitner M, Murigneux V, Etebari K, Asgari S. Wolbachia elevates host methyltransferase expression and alters the m 6A methylation landscape in Aedes aegypti mosquito cells. BMC Microbiol 2025; 25:164. [PMID: 40128692 PMCID: PMC11934717 DOI: 10.1186/s12866-025-03898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiotic bacterium that blocks the replication of several arboviruses in transinfected Aedes aegypti mosquitoes, yet its antiviral mechanism remains unknown. For the first time, we employed Nanopore direct RNA sequencing technology to investigate the impact of wAlbB strain of Wolbachia on the host's N6-methyladenosine (m6A) machinery and post-transcriptional modification landscape. Our study revealed that Wolbachia infection elevates the expression of genes involved in the mosquito's m6A methyltransferase complex. However, knocking down these m6A-related genes did not affect Wolbachia density. Nanopore sequencing identified 1,392 differentially modified m6A DRACH motifs on mosquito transcripts, with 776 showing increased and 616 showing decreased m6A levels due to Wolbachia. These m6A sites were predominantly enriched in coding sequences and 3'-untranslated regions. Gene Ontology analysis revealed that genes with reduced m6A levels were over-represented in functional GO terms associated with purine nucleotide binding functions critical in the post-transcriptional modification process of m6A. Differential gene expression analysis of the Nanopore data uncovered that a total of 643 protein-coding genes were significantly differentially expressed, 427 were downregulated, and 216 were upregulated. Several classical and non-classical immune-related genes were amongst the downregulated DEGs. Notably, it revealed a critical host factor, transmembrane protein 41B (TMEM41B), which is required for flavivirus infection, was upregulated and methylated in the presence of Wolbachia. Indeed, there is a strong correlation between gene expression being upregulated in genes with both increased and decreased levels of m6A modification, respectively. Our findings underscore Wolbachia's ability to modulate many intracellular aspects of its mosquito host by influencing post-transcriptional m6A modifications and gene expression, and it unveils a potential link behind its antiviral properties.
Collapse
Affiliation(s)
- Michael Leitner
- School of the Environment, The University of Queensland, Brisbane, Australia
| | - Valentine Murigneux
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of the Environment, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Berger A, Chandre F, Cornelie S, Paupy C. Controlling Aedes mosquitoes using densovirus-based biolarvicides: Current status and prospects. J Invertebr Pathol 2025; 211:108314. [PMID: 40086790 DOI: 10.1016/j.jip.2025.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Aedes albopictus and Aedes aegypti are the main vectors of emerging arboviruses, such as dengue, chikungunya and Zika viruses. Entomopathogenic viruses, such as densoviruses, might represent more environmentally friendly control methods. Densoviruses are single-stranded DNA viruses belonging to the Parvoviridae family and three species are known to infect mosquitoes: Protoambidensovirus dipteran, Brevihamaparvovirus dipteran 1, and Brevihamaparvovirus dipteran 2. Densoviruses belonging to the Brevihamaparvovirus dipteran 1 and Brevihamaparvovirus dipteran 2 species could be candidates for innovative vector control strategies to limit mosquito-borne diseases. The objective of this review was to analyse the current state of knowledge on mosquito-infecting densoviruses (updated classification/taxonomy, host range, distribution, ecology, co-infection effects, unanswered questions) in view of their use as a biocontrol tool against Aedes mosquitoes.
Collapse
Affiliation(s)
- Audric Berger
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France.
| | - Fabrice Chandre
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France
| | - Sylvie Cornelie
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France
| | - Christophe Paupy
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Qu J, Schinkel M, Chiggiato L, Rosendo Machado S, Overheul GJ, Miesen P, van Rij RP. The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells. Commun Biol 2025; 8:123. [PMID: 39863754 PMCID: PMC11762766 DOI: 10.1038/s42003-024-07435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito. This Hsf1-sHsp cascade acts as an early response against chikungunya virus infection and shows pan-antiviral activity against chikungunya, Sindbis, and dengue virus as well as the insect-specific Agua Salud alphavirus in Ae. aegypti cells and against chikungunya virus and O'nyong-nyong virus in Aedes albopictus and Anopheles gambiae cells, respectively. Our comprehensive in vitro data suggest that Hsf1 could serve as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa Chiggiato
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samara Rosendo Machado
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Liu Y, Huang Y, Li R, Miao C, He Y, Xu C, Zhu X, Li B, Wu R, Zhao Q, Wen Y, Huang X, Yan QG, Lang YF, Zhao S, Wang Y, Hu Y, Cao SJ, Du S. The Japanese encephalitis virus NS1' protein facilitates virus infection in mosquitoes. PLoS Negl Trop Dis 2025; 19:e0012823. [PMID: 39869646 PMCID: PMC11781682 DOI: 10.1371/journal.pntd.0012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/30/2025] [Accepted: 01/05/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is known for its capacity to cause severe neurological disease in Asia. Neurotropic flaviviruses within the Japanese encephalitis (JE) serogroup possess the distinctive feature of expressing a unique nonstructural protein, NS1'. The NS1' protein consists of the full NS1 protein with an additional 52 amino acid extension at the C-terminus and has been demonstrated to exhibit virulence in mammalian hosts upon infection. However, the precise role of the NS1' protein in the mosquito vectors has yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS In this study, an NS1'-defective virus (rG66A) was engineered, and its effect on the infection of mosquito cells was investigated. The results demonstrated a significant reduction in the infectivity of the rG66A virus in mosquito cells by RT-qPCR, indicating that the absence of the NS1' protein impedes JEV replication in Culex mosquitoes. Additionally, this research elucidated the underlying mechanism by which the NS1' protein enhances viral infection in mosquitoes by RNA-Seq analysis. Specifically, the NS1' protein was found to facilitate infection through the suppression of antimicrobial peptides (AMPs) regulated by the Toll pathway. CONCLUSIONS/SIGNIFICANCE Our research demonstrated that the JEV NS1' protein contributes to immune escape, thereby enhancing viral infection in mosquitoes. This finding offers new insights into the transmission mechanisms of JEV, elucidating novel aspects of viral propagation.
Collapse
Affiliation(s)
- Yuwei Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yutian Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruidong Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi He
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changhao Xu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bowen Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qi-gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi-fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yajie Hu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - San-jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
6
|
Rajendran D, Vinayagam S, Sekar K, Bhowmick IP, Sattu K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. MICROBIAL ECOLOGY 2024; 87:154. [PMID: 39681734 PMCID: PMC11649735 DOI: 10.1007/s00248-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/18/2024]
Abstract
Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.
Collapse
Affiliation(s)
- Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Ipsita Pal Bhowmick
- Department of Malariology, ICMR-RMRCNE Region, Dibrugarh, Assam, 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.
| |
Collapse
|
7
|
Wang J, Zheng X, Wang X, Zhong D, Zhou G. E2 Ubiquitin-Conjugating Enzymes Regulates Dengue Virus-2 Replication in Aedes albopictus. Microorganisms 2024; 12:2508. [PMID: 39770712 PMCID: PMC11676440 DOI: 10.3390/microorganisms12122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Aedes albopictus, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of A. albopictus essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models. The replication of DENV-2 and the knockdown efficiency of the Ubc9 gene were assessed through reverse transcription-quantitative polymerase chain reaction. The DENV-2-related protein expression was evaluated via Western blot analysis. The interaction between Ubc9 and DENV E and NS5 proteins was investigated through confocal immunofluorescence and co-immunoprecipitation. RNA interference technology was employed to silence Ubc9 expression in C6/36 cells and in A. albopictus mosquitoes. The expression level of Ubc9 in the DENV-2-infected group was 3.5-fold higher than that in the control group. The Ubc9 gene expression in the midgut tissue of the mosquito was significantly upregulated. Transfection of C6/36 and BHK-21 cells with the pAc5.1b-EGFP-Ubc9-HA vector led to the overexpression of Ubc9, which decreased the transcription levels of DENV E and NS1, NS5 proteins. The difference was statistically significant (F = 24.27, p < 0.01). The expression levels of DENV NS5 and E proteins significantly decreased after infection with DENV-2, suggesting that the depletion of Ubc9 may limit the replication of DENV-2. Ubc9 regulates DENV-2 replication through SUMOylation in the cells and A. albopictus, potentially affecting vector competence and DENV transmission. This is the first study to demonstrate that the Ubc9 of A. albopictus plays a significant role in regulating the replication of DENV in both mosquito cells and the mosquito itself. The study results may prove useful in designing appropriate therapeutic approaches for dengue and associated complications.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.W.); (X.W.)
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.W.); (X.W.)
| | - Xuexue Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.W.); (X.W.)
| | - Daibin Zhong
- Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA; (D.Z.); (G.Z.)
| | - Guofa Zhou
- Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA; (D.Z.); (G.Z.)
| |
Collapse
|
8
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
9
|
Garambois C, Boulesteix M, Fablet M. Effects of Arboviral Infections on Transposable Element Transcript Levels in Aedes aegypti. Genome Biol Evol 2024; 16:evae092. [PMID: 38695057 PMCID: PMC11110940 DOI: 10.1093/gbe/evae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.
Collapse
Affiliation(s)
- Chloé Garambois
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Matthieu Boulesteix
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Marie Fablet
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
10
|
Chang YC, Liu WL, Fang PH, Li JC, Liu KL, Huang JL, Chen HW, Kao CF, Chen CH. Effect of C-type lectin 16 on dengue virus infection in Aedes aegypti salivary glands. PNAS NEXUS 2024; 3:pgae188. [PMID: 38813522 PMCID: PMC11134184 DOI: 10.1093/pnasnexus/pgae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
C-type lectins (CTLs) are a family of carbohydrate-binding proteins and an important component of mosquito saliva. Although CTLs play key roles in immune activation and viral pathogenesis, little is known about their role in regulating dengue virus (DENV) infection and transmission. In this study, we established a homozygous CTL16 knockout Aedes aegypti mutant line using CRISPR/Cas9 to study the interaction between CTL16 and viruses in mosquito vectors. Furthermore, mouse experiments were conducted to confirm the transmission of DENV by CTL16-/- A. aegypti mutants. We found that CTL16 was mainly expressed in the medial lobe of the salivary glands (SGs) in female A. aegypti. CTL16 knockout increased DENV replication and accumulation in the SGs of female A. aegypti, suggesting that CTL16 plays an important role in DENV transmission. We also found a reduced expression of immunodeficiency and Janus kinase/signal transducer and activator of transcription pathway components correlated with increased DENV viral titer, infection rate, and transmission efficiency in the CTL16 mutant strain. The findings of this study provide insights not only for guiding future investigations on the influence of CTLs on immune responses in mosquitoes but also for developing novel mutants that can be used as vector control tools.
Collapse
Affiliation(s)
- Ya-Chen Chang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pai-Hsiang Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jau-Ling Huang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
11
|
Peng J, Zhang M, Wang G, Zhang D, Zheng X, Li Y. Biased virus transmission following sequential coinfection of Aedes aegypti with dengue and Zika viruses. PLoS Negl Trop Dis 2024; 18:e0012053. [PMID: 38557981 PMCID: PMC10984552 DOI: 10.1371/journal.pntd.0012053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.
Collapse
Affiliation(s)
- Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Meichun Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Gang Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
13
|
Puig-Torrents M, Díez J. Controlling arbovirus infection: high-throughput transcriptome and proteome insights. Front Microbiol 2024; 15:1330303. [PMID: 38414768 PMCID: PMC10896924 DOI: 10.3389/fmicb.2024.1330303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Arboviruses pose a significant threat to public health globally, demanding innovative approaches for their control. For this, a better understanding of the complex web of interactions established in arbovirus-infected mosquitoes is fundamental. High-throughput analyses allow a genome-wide view of arbovirus-induced alterations at different gene expression levels. This review provides a comprehensive perspective into the current literature in transcriptome and proteome landscapes in mosquitoes infected with arboviruses. It also proposes a coordinated research effort to define the critical nodes that determine arbovirus infection and transmission.
Collapse
Affiliation(s)
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Janjoter S, Kataria D, Yadav M, Dahiya N, Sehrawat N. Transovarial transmission of mosquito-borne viruses: a systematic review. Front Cell Infect Microbiol 2024; 13:1304938. [PMID: 38235494 PMCID: PMC10791847 DOI: 10.3389/fcimb.2023.1304938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Background A number of mosquito-borne viruses (MBVs), such as dengue virus (DENV), zika virus (ZIKV), chikungunya (CHIKV), West Nile virus (WNV), and yellow fever virus (YFV) exert adverse health impacts on the global population. Aedes aegypti and Aedes albopictus are the prime vectors responsible for the transmission of these viruses. The viruses have acquired a number of routes for successful transmission, including horizontal and vertical transmission. Transovarial transmission is a subset/type of vertical transmission adopted by mosquitoes for the transmission of viruses from females to their offspring through eggs/ovaries. It provides a mechanism for these MBVs to persist and maintain their lineage during adverse climatic conditions of extremely hot and cold temperatures, during the dry season, or in the absence of susceptible vertebrate host when horizontal transmission is not possible. Methods The publications discussed in this systematic review were searched for using the PubMed, Scopus, and Web of Science databases, and websites such as those of the World Health Organization (WHO) and the European Centre for Disease Prevention and Control, using the search terms "transovarial transmission" and "mosquito-borne viruses" from 16 May 2023 to 20 September 2023. Results A total of 2,391 articles were searched, of which 123 were chosen for full text evaluation, and 60 were then included in the study after screening and removing duplicates. Conclusion The present systematic review focuses on understanding the above diseases, their pathogenesis, epidemiology and host-parasite interactions. The factors affecting transovarial transmission, potential implications, mosquito antiviral defense mechanism, and the control strategies for these mosquito-borne viral diseases (MBVDs) are also be included in this review.
Collapse
Affiliation(s)
| | | | | | | | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
15
|
Yan J, Kim CH, Chesser L, Ramirez JL, Stone CM. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility. Commun Biol 2023; 6:1123. [PMID: 37932414 PMCID: PMC10628303 DOI: 10.1038/s42003-023-05516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Diet-induced nutritional stress can influence pathogen transmission potential in mosquitoes by impacting life history traits, infection susceptibility, and immunity. To investigate these effects, we manipulate mosquito diets at larval and adult stages, creating two nutritional levels (low and normal), and expose adults to dengue virus (DENV). We observe that egg number is reduced by nutritional stress at both stages and viral exposure separately and jointly, while the likelihood of laying eggs is exclusively influenced by adult nutritional stress. Adult nutritional stress alone shortens survival, while any pairwise combination between both-stage stress and viral exposure have a synergistic effect. Additionally, adult nutritional stress increases susceptibility to DENV infection, while larval nutritional stress likely has a similar effect operating via smaller body size. Furthermore, adult nutritional stress negatively impacts viral titers in infected mosquitoes; however, some survive and show increased titers over time. The immune response to DENV infection is overall suppressed by larval and adult nutritional stress, with specific genes related to Toll, JAK-STAT, and Imd immune signaling pathways, and antimicrobial peptides being downregulated. Our findings underscore the importance of nutritional stress in shaping mosquito traits, infection outcomes, and immune responses, all of which impact the vectorial capacity for DENV transmission.
Collapse
Affiliation(s)
- Jiayue Yan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Leta Chesser
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jose L Ramirez
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL, USA
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
16
|
Telleria EL, Tinoco-Nunes B, Forrest DM, Di-Blasi T, Leštinová T, Chang KP, Volf P, Pitaluga AN, Traub-Csekö YM. Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania. Front Immunol 2023; 14:1162596. [PMID: 38022562 PMCID: PMC10652419 DOI: 10.3389/fimmu.2023.1162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Bruno Tinoco-Nunes
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David M. Forrest
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Kwang Poo Chang
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Belavilas-Trovas A, Tastsoglou S, Dong S, Kefi M, Tavadia M, Mathiopoulos KD, Dimopoulos G. Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction. PLoS Pathog 2023; 19:e1011440. [PMID: 37319296 DOI: 10.1371/journal.ppat.1011440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical regulatory roles in various cellular and metabolic processes in mosquitoes and all other organisms studied thus far. In particular, their involvement in essential processes such as reproduction makes them potential targets for the development of novel pest control approaches. However, their function in mosquito biology remains largely unexplored. To elucidate the role of lncRNAs in mosquitoes' reproduction and vector competence for arboviruses, we have implemented a computational and experimental pipeline to mine, screen, and characterize lncRNAs related to these two biological processes. Through analysis of publicly available Zika virus (ZIKV) infection-regulated Aedes aegypti transcriptomes, at least six lncRNAs were identified as being significantly upregulated in response to infection in various mosquito tissues. The roles of these ZIKV-regulated lncRNAs (designated Zinc1, Zinc2, Zinc3, Zinc9, Zinc10 and Zinc22), were further investigated by dsRNA-mediated silencing studies. Our results show that silencing of Zinc1, Zinc2, and Zinc22 renders mosquitoes significantly less permissive to ZIKV infection, while silencing of Zinc22 also reduces fecundity, indicating a potential role for Zinc22 in trade-offs between vector competence and reproduction. We also found that silencing of Zinc9 significantly increases fecundity but has no effect on ZIKV infection, suggesting that Zinc9 may be a negative regulator of oviposition. Our work demonstrates that some lncRNAs play host factor roles by facilitating viral infection in mosquitoes. We also show that lncRNAs can influence both mosquito reproduction and permissiveness to virus infection, two biological systems with important roles in mosquito vectorial capacity.
Collapse
Affiliation(s)
- Alexandros Belavilas-Trovas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kostas D Mathiopoulos
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Xie X, Wang D, Li B, Li M, Xing D, Zhao T, Zhou X, Li C. Mosquito CYP4C21 knockout reduces dengue virus and Zika virus replication in Aedes aegypti cells. BIOSAFETY AND HEALTH 2023; 5:144-151. [PMID: 40078514 PMCID: PMC11894964 DOI: 10.1016/j.bsheal.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 03/14/2025] Open
Abstract
Aedes aegypti (Ae. aegypti) is a major vector of dengue virus (DENV) and Zika virus (ZIKV). Understanding the complex interaction mechanisms between mosquito vectors and arboviruses is essential to interrupt virus transmission. This study constructed CYP4C21 knockout (KO) Aag2 cells (Ae. aegypti cells) and confirmed that CYP4C21 KO reduced DENV2 and ZIKV copies in Aag2 cells, which suggests that CYP4C21 may play an important role in mosquito infection with arboviruses. Furthermore, it is the first report of the CYP4 family related to viral infection, which lays the foundation for exploring the role of the CYP4C21 in the interaction of Ae. aegypti and arbovirus and provides novel insights into the function of cytochrome family proteins.
Collapse
Affiliation(s)
- Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Manjin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
19
|
Chen TY, Bozic J, Mathias D, Smartt CT. Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations. Parasit Vectors 2023; 16:166. [PMID: 37208697 PMCID: PMC10199558 DOI: 10.1186/s13071-023-05784-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Department of Entomology, The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| |
Collapse
|
20
|
Zhang Y, Li BX, Mao QZ, Zhuo JC, Huang HJ, Lu JB, Zhang CX, Li JM, Chen JP, Lu G. The JAK-STAT pathway promotes persistent viral infection by activating apoptosis in insect vectors. PLoS Pathog 2023; 19:e1011266. [PMID: 36928081 PMCID: PMC10069781 DOI: 10.1371/journal.ppat.1011266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/03/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.
Collapse
Affiliation(s)
- Yan Zhang
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bo-Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (J-PC); (GL)
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (J-PC); (GL)
| |
Collapse
|
21
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
22
|
Transcriptome Analysis of Response to Zika Virus Infection in Two Aedes albopictus Strains with Different Vector Competence. Int J Mol Sci 2023; 24:ijms24054257. [PMID: 36901688 PMCID: PMC10002152 DOI: 10.3390/ijms24054257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Zika virus (ZIKV), which is mainly transmitted by Aedes albopictus in temperate zones, can causes serious neurological disorders. However, the molecular mechanisms that influence the vector competence of Ae. albopictus for ZIKV are poorly understood. In this study, the vector competence of Ae. albopictus mosquitoes from Jinghong (JH) and Guangzhou (GZ) Cities of China were evaluated, and transcripts in the midgut and salivary gland tissues were sequenced on 10 days post-infection. The results showed that both Ae. albopictus JH and GZ strains were susceptible to ZIKV, but the GZ strain was more competent. The categories and functions of differentially expressed genes (DEGs) in response to ZIKV infection were quite different between tissues and strains. Through a bioinformatics analysis, a total of 59 DEGs that may affect vector competence were screened-among which, cytochrome P450 304a1 (CYP304a1) was the only gene significantly downregulated in both tissues of two strains. However, CYP304a1 did not influence ZIKV infection and replication in Ae. albopictus under the conditions set in this study. Our results demonstrated that the different vector competence of Ae. albopictus for ZIKV may be determined by the transcripts in the midgut and salivary gland, which will contribute to understanding ZIKV-mosquito interactions and develop arbovirus disease prevention strategies.
Collapse
|
23
|
Talyuli OAC, Oliveira JHM, Bottino-Rojas V, Silveira GO, Alvarenga PH, Barletta ABF, Kantor AM, Paiva-Silva GO, Barillas-Mury C, Oliveira PL. The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme-induced peroxidase. PLoS Pathog 2023; 19:e1011149. [PMID: 36780872 PMCID: PMC9956595 DOI: 10.1371/journal.ppat.1011149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/24/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme presence in a blood meal induces HPx1 transcriptional activation mediated by the E75 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing was not able to rescue bacterial population growth, as explained by increased expression of antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-fold decrease in Zika and dengue 2 midgut infection, demonstrating the essential role of the mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM connects blood digestion to midgut immunological sensing of the microbiota and viral infections.
Collapse
Affiliation(s)
- Octavio A. C. Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departments of Microbiology and Molecular Genetics and of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Gilbert O. Silveira
- Laboratório de Expressão Genica em Eucariotos, Instituto Butantan and Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia H. Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana Beatriz F. Barletta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Asher M. Kantor
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Ávila-Ramírez ML, Reyes-Reyes AL, Avila-Bonilla RG, Salas-Benito M, Cerecedo D, Ramírez-Moreno ME, Villagrán-Herrera ME, Mercado-Curiel RF, Salas-Benito JS. Differential Gene Expression Pattern of Importin β3 and NS5 in C6/36 Cells Acutely and Persistently Infected with Dengue Virus 2. Pathogens 2023; 12:pathogens12020191. [PMID: 36839463 PMCID: PMC9966734 DOI: 10.3390/pathogens12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The establishment of persistent dengue virus infection within the cells of the mosquito vector is an essential requirement for viral transmission to a new human host. The mechanisms involved in the establishment and maintenance of persistent infection are not well understood, but it has been suggested that both viral and cellular factors might play an important role. In the present work, we evaluated differential gene expression in Aedes albopictus cells acutely (C6/36-HT) and persistently infected (C6-L) with Dengue virus 2 by cDNA-AFLP. We observed that importin β3 was upregulated in noninfected cells compared with C6-L cells. Using RT-qPCR and plaque assays, we observed that Dengue virus levels in C6-L cells essentially do not vary over time, and peak viral titers in acutely infected cells are observed at 72 and 120 h postinfection. The expression level of importin β3 was higher in acutely infected cells than in persistently infected cells; this correlates with higher levels of NS5 in the nucleus of the cell. The differential pattern of importin β3 expression between acute and persistent infection with Dengue virus 2 could be a mechanism to maintain viral infection over time, reducing the antiviral response of the cell and the viral replicative rate.
Collapse
Affiliation(s)
- María Leticia Ávila-Ramírez
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Ana Laura Reyes-Reyes
- Campo Experimental Rosario Izapa, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuaria, Tuxtla Chico, Chis 30878, Mexico
| | - Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mariana Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Doris Cerecedo
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - María Esther Ramírez-Moreno
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | - Ricardo Francisco Mercado-Curiel
- Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
- Correspondence: (R.F.M.-C.); (J.S.S.-B.)
| | - Juan Santiago Salas-Benito
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Correspondence: (R.F.M.-C.); (J.S.S.-B.)
| |
Collapse
|
25
|
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2022; 15:72. [PMID: 36680112 PMCID: PMC9866606 DOI: 10.3390/v15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis svar. israelensis (Bti) larvicides are effective in controlling Aedes aegypti; however, the effects of long-term exposure need to be properly evaluated. We established an Ae. aegypti strain that has been treated with Bti for 30 generations (RecBti) and is still susceptible to Bti, but females exhibited increased susceptibility to Zika virus (ZIKV). This study compared the RecBti strain to a reference strain regarding: first, the relative transcription of selected immune genes in ZIKV-challenged females (F30) with increased susceptibility detected in a previous study; then, the whole transcriptomic profile using unchallenged females (F35). Among the genes compared by RT-qPCR in the ZIKV-infected and uninfected females from RecBti (F30) and the reference strain, hop, domeless, relish 1, defensin A, cecropin D, and gambicin showed a trend of repression in RecBti infected females. The transcriptome of RecBti (F35) unchallenged females, compared with a reference strain by RNA-seq, showed a similar profile and only 59 differentially expressed genes were found among 9202 genes analyzed. Our dataset showed that the long-term Bti exposure of the RecBti strain was associated with an alteration of the expression of genes potentially involved in the response to ZIKV infection in challenged females, which is an important feature found under this condition.
Collapse
Affiliation(s)
- Karine S. Carvalho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | | | - Tatiany P. Romão
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Antônio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Marcos Chiñas
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
26
|
Garcia GA, Lord AR, Santos LMB, Kariyawasam TN, David MR, Couto-Lima D, Tátila-Ferreira A, Pavan MG, Sikulu-Lord MT, Maciel-de-Freitas R. Rapid and Non-Invasive Detection of Aedes aegypti Co-Infected with Zika and Dengue Viruses Using Near Infrared Spectroscopy. Viruses 2022; 15:11. [PMID: 36680052 PMCID: PMC9863061 DOI: 10.3390/v15010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The transmission of dengue (DENV) and Zika (ZIKV) has been continuously increasing worldwide. An efficient arbovirus surveillance system is critical to designing early-warning systems to increase preparedness of future outbreaks in endemic countries. The Near Infrared Spectroscopy (NIRS) is a promising high throughput technique to detect arbovirus infection in Ae. aegypti with remarkable advantages such as cost and time effectiveness, reagent-free, and non-invasive nature over existing molecular tools for similar purposes, enabling timely decision making through rapid detection of potential disease. Our aim was to determine whether NIRS can differentiate Ae. aegypti females infected with either ZIKV or DENV single infection, and those coinfected with ZIKV/DENV from uninfected ones. Using 200 Ae. aegypti females reared and infected in laboratory conditions, the training model differentiated mosquitoes into the four treatments with 100% accuracy. DENV-, ZIKV-, and ZIKV/DENV-coinfected mosquitoes that were used to validate the model could be correctly classified into their actual infection group with a predictive accuracy of 100%, 84%, and 80%, respectively. When compared with mosquitoes from the uninfected group, the three infected groups were predicted as belonging to the infected group with 100%, 97%, and 100% accuracy for DENV-infected, ZIKV-infected, and the co-infected group, respectively. Preliminary lab-based results are encouraging and indicate that NIRS should be tested in field settings to evaluate its potential role to monitor natural infection in field-caught mosquitoes.
Collapse
Affiliation(s)
- Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Anton R. Lord
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- Spectroscopy and Data Consultants Pty Ltd., Brisbane, QLD 4035, Australia
| | - Lilha M. B. Santos
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | | | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Aline Tátila-Ferreira
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Maggy T. Sikulu-Lord
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
27
|
Guo Y, Guo J, Li Y. Wolbachia wPip Blocks Zika Virus Transovarial Transmission in Aedes albopictus. Microbiol Spectr 2022; 10:e0263321. [PMID: 35894613 PMCID: PMC9603370 DOI: 10.1128/spectrum.02633-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/14/2022] [Indexed: 01/04/2023] Open
Abstract
Wolbachia is being developed as a biological tool to suppress mosquito populations and/or interfere with their transmitted viruses. Adult males with an artificial Wolbachia infection have been released, successfully yielding population suppression in multiple field trials. The main characteristic of the artificial Wolbachia-infected mosquitoes used in the suppression program is the lower vector competence than that in native infected/uninfected mosquitoes in horizontal and vertical transmission. Our previous studies have demonstrated that the Aedes albopictus HC line infected with a trio of Wolbachia strains exhibited almost complete blockade of dengue virus (DENV) and Zika virus (ZIKV) in horizontal and vertical transmission. However, the extent to which Wolbachia inhibits virus transovarial transmission is unknown since no studies have been performed to determine whether Wolbachia protects ovarian cells against viral infection. Here, we employed ovarian cells of the Ae. albopictus GUA (a wild-type mosquito line superinfected with two native Wolbachia strains, wAlbA and wAlbB), HC, and GT lines (tetracycline-cured, Wolbachia-uninfected mosquitoes), which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed that the infection rate of adult GT progeny was significantly higher than that of GUA progeny during the first and second gonotrophic cycles. In contrast, the infection rates of adult GT and GUA progeny were not significantly different during the third gonotrophic cycle. All examined adult HC progeny from three gonotrophic cycles were negative for ZIKV infection. A strong negative linear correlation existed between Wolbachia density and ZIKV load in the ovaries of mosquitoes. Although there is no obvious coexistence area in the ovaries for Wolbachia and ZIKV, host immune responses may play a role in Wolbachia blocking ZIKV expansion and maintenance in the ovaries of Ae. albopictus. These results will aid in understanding Wolbachia-ZIKV interactions in mosquitoes. IMPORTANCE Area-wide application of Wolbachia to suppress mosquito populations and their transmitted viruses has achieved success in multiple countries. However, the mass release of Wolbachia-infected male mosquitoes involves a potential risk of accidentally releasing fertile females. In this study, we employed ovarian cells of the Ae. albopictus GUA, HC, and GT lines, which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed an almost complete blockade of ZIKV transmission in HC female mosquitoes. Wolbachia in natively infected GUA mosquitoes negative affected ZIKV, and this interference was shown by slightly lower loads than those in HC mosquitoes. Overall, our work helps show how Wolbachia blocks ZIKV expansion and maintenance in the ovaries of Ae. albopictus and aids in understanding Wolbachia-ZIKV interactions in mosquitoes.
Collapse
Affiliation(s)
- Yan Guo
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Jiatian Guo
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Azlan A, Yunus MA, Abdul Halim M, Azzam G. Revised Annotation and Characterization of Novel Aedes albopictus miRNAs and Their Potential Functions in Dengue Virus Infection. BIOLOGY 2022; 11:biology11101536. [PMID: 36290439 PMCID: PMC9598099 DOI: 10.3390/biology11101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary Aedes albopictus (Ae. albopictus) is an important vector of the dengue virus. Genetics and molecular studies of virus infection in mosquito vectors are important to uncover the basic biology of the virus. It has been reported that miRNAs are important and possess functional roles in virus infection in Ae. albopictus. Here, we report a comprehensive catalog of miRNAs using the latest genome version of Ae. albopictus. We discovered a total of 72 novel mature miRNAs, 44 of which were differentially expressed in C6/36 cells infected with the dengue virus. Target prediction analysis revealed that the differentially expressed miRNAs were involved in lipid metabolism and protein processing in the endoplasmic reticulum. Results from this study provide a valuable resource for researchers to study miRNAs in this mosquito vector, especially in host–virus interactions. Abstract The Asian tiger mosquito, Ae. albopictus, is a highly invasive species that transmits several arboviruses including dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV). Although several studies have identified microRNAs (miRNAs) in Ae. albopictus, it is crucial to extend and improve current annotations with both the newly improved genome assembly and the increased number of small RNA-sequencing data. We combined our high-depth sequence data and 26 public datasets to re-annotate Ae. albopictus miRNAs and found a total of 72 novel mature miRNAs. We discovered that the expression of novel miRNAs was lower than known miRNAs. Furthermore, compared to known miRNAs, novel miRNAs are prone to expression in a stage-specific manner. Upon DENV infection, a total of 44 novel miRNAs were differentially expressed, and target prediction analysis revealed that miRNA-target genes were involved in lipid metabolism and protein processing in endoplasmic reticulum. Taken together, the miRNA annotation profile provided here is the most comprehensive to date. We believed that this would facilitate future research in understanding virus–host interactions, particularly in the role of miRNAs.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mardani Abdul Halim
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (M.A.H.); (G.A.)
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia
- Correspondence: (M.A.H.); (G.A.)
| |
Collapse
|
29
|
Avila-Bonilla RG, Salas-Benito JS. Interactions of host miRNAs in the flavivirus 3´UTR genome: From bioinformatics predictions to practical approaches. Front Cell Infect Microbiol 2022; 12:976843. [PMID: 36310869 PMCID: PMC9606609 DOI: 10.3389/fcimb.2022.976843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Flavivirus of the Flaviviridae family includes important viruses, such as Dengue, Zika, West Nile, Japanese encephalitis, Murray Valley encephalitis, tick-borne encephalitis, Yellow fever, Saint Louis encephalitis, and Usutu viruses. They are transmitted by mosquitoes or ticks, and they can infect humans, causing fever, encephalitis, or haemorrhagic fever. The treatment resources for these diseases and the number of vaccines available are limited. It has been discovered that eukaryotic cells synthesize small RNA molecules that can bind specifically to sequences present in messenger RNAs to inhibit the translation process, thus regulating gene expression. These small RNAs have been named microRNAs, and they have an important impact on viral infections. In this review, we compiled the available information on miRNAs that can interact with the 3’ untranslated region (3’UTR) of the flavivirus genome, a conserved region that is important for viral replication and translation.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Moleculart 3, Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| |
Collapse
|
30
|
Screening and analysis of immune-related genes of Aedes aegypti infected with DENV2. Acta Trop 2022; 236:106698. [PMID: 36162456 DOI: 10.1016/j.actatropica.2022.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 01/08/2023]
Abstract
Dengue virus type Ⅱ (DENV2) is a primary serotype responsible for the dengue fever epidemic, and Aedes aegypti is the main DENV2 vector. Understanding the Aedes aegypti immune mechanism against DENV2 is the basis for research on immune blockade in mosquitoes. Some preliminary studies lack validation in the literature, so this study was performed to further study and validate the potential target genes to provide a further basis for screening key target genes. We screened 51 genes possibly related to Aedes aegypti infection and immunity from the literature for further verification. First, bioinformatic methods such as GO, KEGG and PPI analysis were used, and then RT-qPCR was used to detect the changes in mRNA expression in the midguts and salivary glands of Aedes aegypti infected with DENV2.Bioinformatic analysis showed that mostly genes of the glucose metabolism pathway and myoprotein were influenced. In salivary glands, the Gst (xa) and Toll (xb) expression levels were significantly correlated with DENV2 load (y, lg[DENV2 RNA copies]), y = -3436xa+0.2287xb+3.8194 (adjusted R2 = 0.5563, F = 9.148, PF = 0.0045). In midguts, DENV2 load was significantly correlated with the relative Fba(R2 = 0.4381, t = 2.497, p < 0.05, df = 8), UcCr(R2 = 0.4072, t = 2.344, p < 0.05, df = 8) and Gbps1(R2 = 0.4678, t = 2.652, p < 0.05, df = 8) expression levels, but multiple regression did not yield significant results. This study shows that genes related to glucose metabolism and muscle proteins contribute to the interaction between Aedes aegypti and dengue virus. It was confirmed that SAAG-4, histone H4, endoplasmin, catalase and other genes are involved in the regulation of DENV2 infection in Aedes aegypti. It was revealed that GST and Toll in salivary glands may have antagonistic effects on the regulation of DENV2 load. Fba, UcCr and Gbps1 in the midgut may increase DENV2 load. These study results further condensed the potential target gene range of the Aedes aegypti immune mechanism against DENV2 infection and provided basic information for research on the Aedes aegypti in vivo blockade strategy against DENV2.
Collapse
|
31
|
Venkatesan A, Barik A, Paul D, Muthaiyan M, Das R. Identification of novel lncRNA by reanalysis of RNA-seq data in Zika Virus Infected hiNPCs. Virusdisease 2022; 33:185-193. [DOI: 10.1007/s13337-022-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
|
32
|
Amarante ADM, da Silva ICDA, Carneiro VC, Vicentino ARR, Pinto MDA, Higa LM, Moharana KC, Talyuli OAC, Venancio TM, de Oliveira PL, Fantappié MR. Zika virus infection drives epigenetic modulation of immunity by the histone acetyltransferase CBP of Aedes aegypti. PLoS Negl Trop Dis 2022; 16:e0010559. [PMID: 35759510 PMCID: PMC9269902 DOI: 10.1371/journal.pntd.0010559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/08/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms are responsible for a wide range of biological phenomena in insects, controlling embryonic development, growth, aging and nutrition. Despite this, the role of epigenetics in shaping insect-pathogen interactions has received little attention. Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, we explored the role of the Aedes aegypti histone acetyltransferase CBP (AaCBP) after infection with Zika virus (ZIKV), focusing on the two main immune tissues, the midgut and fat body. We showed that the expression and activity of AaCBP could be positively modulated by blood meal and ZIKV infection. Nevertheless, Zika-infected mosquitoes that were silenced for AaCBP revealed a significant reduction in the acetylation of H3K27 (CBP target marker), followed by downmodulation of the expression of immune genes, higher titers of ZIKV and lower survival rates. Importantly, in Zika-infected mosquitoes that were treated with sodium butyrate, a histone deacetylase inhibitor, their capacity to fight virus infection was rescued. Our data point to a direct correlation among histone hyperacetylation by AaCBP, upregulation of antimicrobial peptide genes and increased survival of Zika-infected-A. aegypti.
Collapse
Affiliation(s)
- Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vitor Coutinho Carneiro
- Division of Epigenetics, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcia de Amorim Pinto
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luiza Mendonça Higa
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Kanhu Charan Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Octavio A. C. Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Thiago Motta Venancio
- Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Pedro Lagerblad de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
33
|
Antiviral RNAi Mechanisms to Arboviruses in Mosquitoes: microRNA Profile of Aedes aegypti and Culex quinquefasciatus from Grenada, West Indies. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mosquito-borne arboviruses, such as dengue virus, West Nile virus, Zika virus and yellow fever virus, impose a tremendous cost on the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses on human infections. Comparatively less effort, however, has been made to study the way these viruses interact with mosquitoes themselves. As ingested arboviruses infect their midgut and subsequently other tissue, the mosquito mounts a multifaceted innate immune response. RNA interference, the central intracellular antiviral defense mechanism in mosquitoes and other invertebrates can be induced and modulated through outside triggers (small RNAs) and treatments (transgenesis or viral-vector delivery). Accordingly, modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. However, this requires a detailed understanding of mosquitoes’ endogenous small RNAs and their effects on the mosquito and viral proliferation. This paper provides an up-to-date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Collapse
|
34
|
Dong Y, Dong S, Dizaji NB, Rutkowski N, Pohlenz T, Myles K, Dimopoulos G. The Aedes aegypti siRNA pathway mediates broad-spectrum defense against human pathogenic viruses and modulates antibacterial and antifungal defenses. PLoS Biol 2022; 20:e3001668. [PMID: 35679279 PMCID: PMC9182253 DOI: 10.1371/journal.pbio.3001668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
The mosquito's innate immune system defends against a variety of pathogens, and the conserved siRNA pathway plays a central role in the control of viral infections. Here, we show that transgenic overexpression of Dicer2 (Dcr2) or R2d2 resulted in an accumulation of 21-nucleotide viral sequences that was accompanied by a significant suppression of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) replication, thus indicating the broad-spectrum antiviral response mediated by the siRNA pathway that can be applied for the development of novel arbovirus control strategies. Interestingly, overexpression of Dcr2 or R2d2 regulated the mRNA abundance of a variety of antimicrobial immune genes, pointing to additional functions of DCR2 and R2D2 as well as cross-talk between the siRNA pathway and other immune pathways. Accordingly, transgenic overexpression of Dcr2 or R2d2 resulted in a lesser proliferation of the midgut microbiota and increased resistance to bacterial and fungal infections.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nahid Borhani Dizaji
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tyler Pohlenz
- Texas A & M University, Department of Entomology, TAMU College Station, Texas, United States of America
| | - Kevin Myles
- Texas A & M University, Department of Entomology, TAMU College Station, Texas, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
35
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
36
|
Hixson B, Bing XL, Yang X, Bonfini A, Nagy P, Buchon N. A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. eLife 2022; 11:76132. [PMID: 35471187 PMCID: PMC9113746 DOI: 10.7554/elife.76132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.
Collapse
Affiliation(s)
- Bretta Hixson
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiao-Li Bing
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiaowei Yang
- Department of Entomology, Cornell University, Ithaca, United States
| | | | - Peter Nagy
- Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
37
|
Trammell CE, Ramirez G, Sanchez-Vargas I, St Clair LA, Ratnayake OC, Luckhart S, Perera R, Goodman AG. Coupled small molecules target RNA interference and JAK/STAT signaling to reduce Zika virus infection in Aedes aegypti. PLoS Pathog 2022; 18:e1010411. [PMID: 35377915 PMCID: PMC9017935 DOI: 10.1371/journal.ppat.1010411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/19/2022] [Accepted: 03/01/2022] [Indexed: 01/16/2023] Open
Abstract
The recent global Zika epidemics have revealed the significant threat that mosquito-borne viruses pose. There are currently no effective vaccines or prophylactics to prevent Zika virus (ZIKV) infection. Limiting exposure to infected mosquitoes is the best way to reduce disease incidence. Recent studies have focused on targeting mosquito reproduction and immune responses to reduce transmission. Previous work has evaluated the effect of insulin signaling on antiviral JAK/STAT and RNAi in vector mosquitoes. Specifically, insulin-fed mosquitoes resulted in reduced virus replication in an RNAi-independent, ERK-mediated JAK/STAT-dependent mechanism. In this work, we demonstrate that targeting insulin signaling through the repurposing of small molecule drugs results in the activation of both RNAi and JAK/STAT antiviral pathways. ZIKV-infected Aedes aegypti were fed blood containing demethylasterriquinone B1 (DMAQ-B1), a potent insulin mimetic, in combination with AKT inhibitor VIII. Activation of this coordinated response additively reduced ZIKV levels in Aedes aegypti. This effect included a quantitatively greater reduction in salivary gland ZIKV levels up to 11 d post-bloodmeal ingestion, relative to single pathway activation. Together, our study indicates the potential for field delivery of these small molecules to substantially reduce virus transmission from mosquito to human. As infections like Zika virus are becoming more burdensome and prevalent, understanding how to control this family of viruses in the insect vector is an important issue in public health.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Gabriela Ramirez
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Irma Sanchez-Vargas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laura A. St Clair
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, United States of America
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (RP); (AGG)
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail: (RP); (AGG)
| |
Collapse
|
38
|
Abduljalil JM, Abd Al Galil FM. Molecular pathogenesis of dengue virus infection in Aedes mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104367. [PMID: 35131236 DOI: 10.1016/j.jinsphys.2022.104367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Aedes mosquitoes are implicated in the transmission of several viruses, including Dengue virus (DENV) to millions of people worldwide. The global expansion of Aedes mosquitos'habitats creates a desperate need for control mechanisms with minimum negative effects. Deciphering the molecular interactions between DENV and its vector is a promising field to develop such efficient control strategies. As soon as the viremic blood is ingested by the mosquito, DENV is encountered by different innate immunity responses. During the past three decades, different pathways of innate immunity have been identified in Aedes spp. Recognition of viral molecular patterns, including viral RNA, and vector attempts to resist DENV infection are the most important defense mechanisms. Crosstalk between innate immune pathways and redundancy of anti-DENV responses become more evident as research progresses. The viral evasion and repression of vector immune response are increasingly being discovered. Such viral strategies are potential targets to be disrupted in order to limit DENV infection and spread. Vector-related non-immune factors such as gut microbiota can also be tapped for efficient control of DENV infection in Aedes mosquito's populations without affecting their fitness. Current trends in controlling DENV in its vector are exploring the potentials of using genetically engineered mosquitoes via RNA-based systems to degrade DENV genome once released into the midgut cells cytoplasm at the early phase of the infection.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, B.O. Box: 87246, Yemen.
| | - Fahd M Abd Al Galil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, B.O. Box: 87246, Yemen; Department of Biology, Faculty of Sciences, University of Bisha, B.O. Box: 551, Bisha, Saudi Arabia.
| |
Collapse
|
39
|
Wu S, He Y, Wei Y, Fan P, Ni W, Zhong D, Zhou G, Zheng X. Effects of Guangzhou seasonal climate change on the development of Aedes albopictus and its susceptibility to DENV-2. PLoS One 2022; 17:e0266128. [PMID: 35363810 PMCID: PMC8975156 DOI: 10.1371/journal.pone.0266128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
The susceptibility of Asian tiger mosquitoes to DENV-2 in different seasons was observed in simulated field environments as a reference to design dengue fever control strategies in Guangzhou. The life table experiments of mosquitoes in four seasons were carried out in the field. The susceptibility of Ae. albopictus to dengue virus was observed in both environments in Guangzhou in summer and winter. Ae. albopictus was infected with dengue virus by oral feeding. On day 7 and 14 after infection, the viral load in the head, ovary, and midgut of the mosquito was detected using real-time fluorescent quantitative PCR. Immune-associated gene expression in infected mosquitoes was performed using quantitative real-time reverse transcriptase PCR. The hatching rate and pupation rate of Ae. albopictus larvae in different seasons differed significantly. The winter hatching rate of larvae was lower than that in summer, and the incubation time was longer than in summer. In the winter field environment, Ae. albopictus still underwent basic growth and development processes. Mosquitoes in the simulated field environment were more susceptible to DENV-2 than those in the simulated laboratory environment. In the midgut, viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 14.459, P = 0.01); ovarian viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 8.656, P < 0.001), but there was no significant difference in the viral load at other time points (P > 0.05). Dicer-2 mRNA expression on day 7 in winter was 4.071 times than that on day 7 in summer: the viral load and Dicer-2 expression correlated moderately. Ae. albopictus could still develop and transmit dengue virus in winter in Guangzhou. Mosquitoes under simulated field conditions were more susceptible to DENV-2 than those under simulated laboratory conditions.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weigui Ni
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Leitner M, Etebari K, Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection. J Gen Virol 2022; 103:001694. [PMID: 35006065 PMCID: PMC8895618 DOI: 10.1099/jgv.0.001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus-host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia-transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia-transinfected Ae. aegypti's initial virus recognition and transcriptional response to DENV infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
41
|
Chowdhury A, Modahl CM, Missé D, Kini RM, Pompon J. High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep 2021; 11:23696. [PMID: 34880409 PMCID: PMC8654903 DOI: 10.1038/s41598-021-03211-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.
Collapse
Affiliation(s)
- Avisha Chowdhury
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Present Address: Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Cassandra M. Modahl
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.48004.380000 0004 1936 9764Present Address: Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Dorothée Missé
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - R. Manjunatha Kini
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
42
|
Telleria EL, Azevedo-Brito DA, Kykalová B, Tinoco-Nunes B, Pitaluga AN, Volf P, Traub-Csekö YM. Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.747820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.
Collapse
|
43
|
Stephenson CJ, Coatsworth H, Waits CM, Nazario-Maldonado NM, Mathias DK, Dinglasan RR, Lednicky JA. Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses 2021; 13:v13112232. [PMID: 34835038 PMCID: PMC8622774 DOI: 10.3390/v13112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.
Collapse
Affiliation(s)
- Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Christy M. Waits
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL 32212, USA
| | - Nicole M. Nazario-Maldonado
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Derrick K. Mathias
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| |
Collapse
|
44
|
Godoy RSM, Felix LDS, Orfanó ADS, Chaves BA, Nogueira PM, Costa BDA, Soares AS, Oliveira CCA, Nacif-Pimenta R, Silva BM, Duarte AP, de Lacerda MVG, Monteiro WM, Secundino NFC, Pimenta PFP. Dengue and Zika virus infection patterns vary among Aedes aegypti field populations from Belo Horizonte, a Brazilian endemic city. PLoS Negl Trop Dis 2021; 15:e0009839. [PMID: 34727099 PMCID: PMC8562804 DOI: 10.1371/journal.pntd.0009839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections. Dengue and Zika are neglected diseases caused by viruses transmitted to humans by mosquitoes (vector-borne diseases). The primary vector of both diseases is Aedes aegypti, a highly abundant mosquito in tropical countries and adapted to the urban habitat. The viral cycle in the vector starts when the mosquito bites an infected person and acquires the viruses through the blood meal. When the infected blood reaches the mosquito’s midgut, the viruses invade the epithelial cells and disseminate in several organs until they reach the salivary glands, enabling viral transmission to the next person. However, the mosquitoes have developed strategies to combat the viral invasion and dissemination in their body, making this journey a challenge to the viruses. Herein, we show that the mosquito responses against dengue and Zika viruses are distinct. In addition, mosquitoes from separate populations of the same city have different abilities to deal with the viruses in both cases, dengue and Zika infections. Our results show the diversity of responses that the mosquitoes may present to viral infections. These findings may better direct disease control strategies to combat dengue and Zika outbreaks in endemic regions.
Collapse
Affiliation(s)
| | - Luiza dos Santos Felix
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Bárbara Aparecida Chaves
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Breno dos Anjos Costa
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Silva Soares
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Mello Silva
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Paula Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Nágila Francinete Costa Secundino
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
45
|
Soo TCC, Bhassu S. Differential STAT gene expressions of Penaeus monodon and Macrobrachium rosenbergii in response to white spot syndrome virus (WSSV) and bacterial infections: Additional insight into genetic variations and transcriptomic highlights. PLoS One 2021; 16:e0258655. [PMID: 34653229 PMCID: PMC8519450 DOI: 10.1371/journal.pone.0258655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathog 2021; 17:e1009870. [PMID: 34473801 PMCID: PMC8412342 DOI: 10.1371/journal.ppat.1009870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.
Collapse
|
47
|
Angleró-Rodríguez YI, Tikhe CV, Kang S, Dimopoulos G. Aedes aegypti Toll pathway is induced through dsRNA sensing in endosomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104138. [PMID: 34022257 DOI: 10.1016/j.dci.2021.104138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Mosquito anti-pathogen immune responses, including those controlling infection with arboviruses are regulated by multiple signal transduction pathways. While the Toll pathway is critical in the defense against arboviruses such as dengue and Zika viruses, the factors and mechanisms involved in virus recognition leading to the activation of the Toll pathway are not fully understood. In this study we evaluated the role of virus-produced double-stranded RNA (dsRNA) intermediates in mosquito immune activation by utilizing the synthetic dsRNA analog polyinosinic-polycytidylic acid (poly I:C). Poly I:C treatment of Aedes aegypti mosquitoes and Aag2 cells reduced DENV infection. Transcriptomic analyses of Aag2 cell responses to poly I:C indicated putative activation of the Toll pathway. We found that poly I:C is translocated to the endosomal compartment of Aag2 cells, and that the A. aegypti Toll 6 receptor is a putative dsRNA recognition receptor. This study elucidates the role of dsRNAs in the immune activation of non-RNAi pathways in mosquitoes.
Collapse
Affiliation(s)
| | - Chinmay V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, United States
| | - Seokyoung Kang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, United States
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, United States.
| |
Collapse
|
48
|
Chen TY, Lee Y, Wang X, Mathias D, Caragata EP, Smartt CT. Profiling Transcriptional Response of Dengue-2 Virus Infection in Midgut Tissue of Aedes aegypti. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.708817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Understanding the mosquito antiviral response could reveal target pathways or genes of interest that could form the basis of new disease control applications. However, there is a paucity of data in the current literature in understanding antiviral response during the replication period. To illuminate the gene expression patterns in the replication stage, we collected gene expression data at 2.5 days after Dengue-2 virus (DENV-2) infection. We sequenced the whole transcriptome of the midgut tissue and compared gene expression levels between the control and virus-infected group. We identified 31 differentially expressed genes. Based on their function, we identified that those genes fell into two major functional categories - (1) nucleic acid/protein process and (2) immunity/oxidative stress response. Our study has identified candidate genes that can be followed up for gene overexpression/inhibition experiments to examine if the perturbed gene interaction may impact the mosquito’s immune response against DENV. This is an important step to understanding how mosquitoes eliminate the virus and provides an important foundation for further research in developing novel dengue control strategies.
Collapse
|
49
|
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha MHNL. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021; 14:379. [PMID: 34321098 PMCID: PMC8317411 DOI: 10.1186/s13071-021-04880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain. Methods The biological parameters of individuals reared under controlled conditions were compared. Also, the viral susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 14 or 21 days post-infection (dpi). Results RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and ZIKV viral particles produced statistically similar results for females from both strains. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parameters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the primary larvicidal effect elicited by this control agent. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04880-6.
Collapse
Affiliation(s)
| | | | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
50
|
Rodrigues NB, Godoy RSM, Orfano AS, Chaves BA, Campolina TB, Costa BDA, Félix LDS, Silva BM, Norris DE, Pimenta PFP, Secundino NFC. Brazilian Aedes aegypti as a Competent Vector for Multiple Complex Arboviral Coinfections. J Infect Dis 2021; 224:101-108. [PMID: 33544850 DOI: 10.1093/infdis/jiab066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aedes aegypti is a highly competent vector in the transmission of arboviruses, such as chikungunya, dengue, Zika, and yellow fever viruses, and causes single and coinfections in the populations of tropical countries. METHODS The infection rate, viral abundance (VA), vector competence (VC), disseminated infection, and survival rate were recorded after single and multiple infections of the vector with 15 combinations of chikungunya, dengue, Zika, and yellow fever arboviruses. RESULTS Infection rates were 100% in all single and multiple infection experiments, except in 1 triple coinfection that presented a rate of 50%. The VC and disseminated infection rate varied from 100% (in single and quadruple infections) to 40% (in dual and triple infections). The dual and triple coinfections altered the VC and/or VA of ≥1 arbovirus. The highest viral VAs were detected for a single infection with chikungunya. The VAs in quadruple infections were similar when compared with each respective single infection. A decrease in survival rates was observed in a few combinations. CONCLUSIONS A. aegypti was able to host all single and multiple arboviral coinfections. The interference of the chikungunya virus suggests that distinct arbovirus families may have a significant role in complex coinfections.
Collapse
Affiliation(s)
- Nilton Barnabé Rodrigues
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Soares Maia Godoy
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Silva Orfano
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Aparecida Chaves
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Thais Bonifácio Campolina
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Dos Anjos Costa
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luíza Dos Santos Félix
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Melo Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Douglas Eric Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paulo Filemon Paolucci Pimenta
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Nagila Francinete Costa Secundino
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|