1
|
Das BK, Kumar V, Samanta S, Roy S, Sahoo AK, Bisai K, Jana AK, Chakraborty R, Adhikari A, Malick RC, Rathod SK, Majumder A. Molecular characterization and virulence of fungal pathogens associated with mass mortalities in hilsa Shad (Tenualosa ilisha). Sci Rep 2025; 15:13957. [PMID: 40263475 PMCID: PMC12015364 DOI: 10.1038/s41598-025-94607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
The rising incidence of invasive microbial infections and the expanding spectrum of pathogens make early and accurate identification of the causative pathogen a daunting task. Accurate diagnosis enables the identification and characterization of microbes and offers new possibilities for the control and prevention of infectious diseases. For the first time, we isolated and characterized three fungal species, viz., Mucor circinelloides, Fusarium equiseti, and F. incarnatum from hilsa (Tenualosa ilisha). The characterization was based on fungus morphology (in vitro culture and microscopy), molecular (PCR, sequencing and phylogenetic analysis) and virulence features (survival assay, histological examination). The naturally infected fish exhibited significant histomorphology alterations in the gill, liver, kidney, spleen, and muscle tissue. Furthermore, the qPCR analysis, based on Pfaffl's relative standard curve method, exhibits significant up-regulation of Heat shock protein 70 (Hsp70), inducible nitric oxide synthase (iNOS) (except spleen) and tumour necrosis factor α (TNF-α) and Chemokine receptors (CCR) (only liver) were observed during a fungal infection in liver, kidney, and spleen tissue. In contrast, nuclear factor kappa B (NF-κB) and Interferon-gamma (IFN-γ) were significantly downregulated during infection. The fungal infection strongly influences the structures of the selected bacterial population (live bacterium)/cultivable bacterial enumeration and their abundance. Naturally infected fish were found to harbor Morganella morganii, Enterobacter cloacae, Enterococcus faecalis, and Proteus penneri. In contrast, non-infected fish contained Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Enterococcus lactis, and Enterococcus gallinarum. The gut bacteria from infected hilsa displayed significantly higher (P-values < 0.05) haemolysin and swimming motility activity and biofilm production compared to those from non-infected fish. Additional research is required to clarify the virulence traits of the isolated fungi, as well as the impact of one or several isolated fungal species on the host's health, to assess the mortality risks posed by these fungi. Insights gained from the first cellular and molecular characterization of Mucor circinelloides, Fusarium equiseti, and F. incarnatum have provided valuable insights into disease epidemiology in hilsa farming.
Collapse
Affiliation(s)
- B K Das
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India.
| | - V Kumar
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - S Samanta
- Fisheries Resource Assessment & Informatics Division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - S Roy
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - A K Sahoo
- Riverine and Estuarine Fisheries Division, ICAR-CIFRI, Kolkata, 700120, India
| | - K Bisai
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - A K Jana
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - R Chakraborty
- Fisheries Resource Assessment & Informatics Division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - A Adhikari
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - R C Malick
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| | - S K Rathod
- Riverine and Estuarine Fisheries Division, ICAR-CIFRI, Kolkata, 700120, India
| | - A Majumder
- Aquatic environmental biotechnology division, ICAR-CIFRI, Barrackpore, Kolkata, 700120, India
| |
Collapse
|
2
|
Tamai S, Okuno M, Ogura Y, Suzuki Y. Genetic diversity of dissolved free extracellular DNA compared to intracellular DNA in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178989. [PMID: 40048953 DOI: 10.1016/j.scitotenv.2025.178989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Dissolved free extracellular DNA (free-exDNA) coexists with intracellular DNA (inDNA) in aquatic environments. Free-exDNA can be taken up by bacteria through transformation, and wastewater treatment plants (WWTPs) are positioned as potential hot spots for genetic contamination. However, studies comparing the composition of free-exDNA and inDNA is limited. This study employed colloidal adsorption and foam concentration method to recover free-exDNA from different WWTP stages and compared its diversity with inDNA via metagenomic analysis. Free-exDNA concentrations were observed to increase after chlorination. Genetic analysis revealed a higher abundance of specific genes following chlorination, suggesting that free-exDNA in effluent originated from bacterial death in secondary treated water. This result indicates that free-exDNA, which increases due to chlorination, is subsequently released into the catchment. Additionally, several high-risk antibiotic-resistance genes (ARGs) were detected that colocalized with mobile genetic elements. These ARGs were expected to have a high potential for gene transfer via transformation, and the risk was highlighted. Overall, these findings deepen our understanding of horizontal gene transfer risks in WWTPs.
Collapse
Affiliation(s)
- Soichiro Tamai
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| |
Collapse
|
3
|
Obong’o BO, Ogutu FO, Hurley SK, Okiko GM, Mahony J. Exploring the Microbial Ecology of Water in Sub-Saharan Africa and the Potential of Bacteriophages in Water Quality Monitoring and Treatment to Improve Its Safety. Viruses 2024; 16:1897. [PMID: 39772204 PMCID: PMC11680409 DOI: 10.3390/v16121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region. Bacteriophages specifically infect bacteria and offer a targeted approach to reducing bacterial load, including multidrug-resistant strains, without the drawbacks of chemical disinfectants. This review also highlights the advantages of phage bioremediation, including its specificity, adaptability, and minimal environmental impact. It also discusses various case studies demonstrating its efficacy in different water systems. Additionally, we underscore the need for further research and the development of region-specific phage applications to improve water quality and public health outcomes in sub-Saharan Africa. By integrating bacteriophage strategies into water treatment and food production, the region can address critical microbial threats, mitigate the spread of antimicrobial resistance, and advance global efforts toward ensuring safe water for all.
Collapse
Affiliation(s)
- Boniface Oure Obong’o
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Fredrick Onyango Ogutu
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Shauna Kathleen Hurley
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Gertrude Maisiba Okiko
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| |
Collapse
|
4
|
Benoit T, Sajjad D, Cloutier M, Lapen DR, Craiovan E, Sykes EME, Kumar A, Khan IUH. Acinetobacter calcoaceticus-baumannii complex prevalence, spatial-temporal distribution, and contamination sources in Canadian aquatic environments. Microbiol Spectr 2024; 12:e0150924. [PMID: 39240108 PMCID: PMC11449026 DOI: 10.1128/spectrum.01509-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Acinetobacter calcoaceticus-baumannii (ACB) complex has been identified as a group of emerging opportunistic pathogens that cause nosocomial infections. The current study investigates the prevalence, distribution, and diversity of pathogenic ACB complex in various aquatic systems with different uses. Of the total 157 agricultural, raw drinking water intake, recreational beach, and wastewater treatment plant (WWTP) effluent samples, acinetobacters were isolated, quantified, and confirmed by genus- and ACB complex-specific PCR assays. Of all agricultural surface water samples, A. calcoaceticus (65%) was more frequently detected than A. pittii (14%), A. nosocomialis (9%), and A. baumannii (3%). In WWTP effluent samples, A. baumannii was more prevalent in de-chlorinated (60%) samples compared to both A. pittii and A. nosocomialis (40%). Interestingly, A. nosocomialis (43%), A. calcoaceticus (29%), and A. baumannii (14%) were detected in raw drinking water intake samples, whereas A. pittii (50%) and A. nosocomialis (25%) were detected in beach samples. Although no sampling location-specific differences were recorded, significant (P < 0.05) seasonal differences were observed when agricultural surface water samples collected in spring were compared with the summer and fall. Whereas effluent chlorination significantly impacted the degree of prevalence of Acinetobacter in WWTP effluent samples, overall, the prevalence of ACB complex in all sampling locations and seasons indicates that these water sources, containing human-associated ACB complex, may pose potential health risks as community-acquired opportunistic infections.IMPORTANCEAcinetobacter calcoaceticus-baumannii (ACB) complex is a group of organisms known to cause problematic nosocomial opportunistic infections. A member of the species complex, A. baumannii, is becoming a global threat to infection treatment as strains are increasingly develop resistance to antibiotics. The prevalence and distribution of potentially pathogenic Acinetobacter calcoaceticus-baumannii complex species remain poorly understood, and there is a need to better understand the occurrence of A. baumannii in non-nosocomial environments. Our research details the spatial-temporal distribution of ACB complex species in a regional watershed and highlights the presence of ACB complex in wastewater effluent that is discharged into a river. These findings deepen our understanding of this group of species in non-nosocomial environments and encourage the development of monitoring programs for these species in regional waters.
Collapse
Affiliation(s)
- Thomas Benoit
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Dania Sajjad
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Michel Cloutier
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - David R. Lapen
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Emilia Craiovan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Ellen M. E. Sykes
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Ayush Kumar
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Izhar U. H. Khan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| |
Collapse
|
5
|
Gunawardana W, Kalupahana RS, Kottawatta SA, Gamage A, Merah O. A Review of the Dissemination of Antibiotic Resistance through Wastewater Treatment Plants: Current Situation in Sri Lanka and Future Perspectives. Life (Basel) 2024; 14:1065. [PMID: 39337850 PMCID: PMC11433486 DOI: 10.3390/life14091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of antibiotic resistance (AR) poses a significant threat to both public health and aquatic ecosystems. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for disseminating AR in the environment. However, only a limited number of studies have been conducted on AR dissemination through WWTPs in Sri Lanka. To address this knowledge gap in AR dissemination through WWTP operations in Sri Lanka, we critically examined the global situation of WWTPs as hotspots for transmitting antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) by evaluating more than a hundred peer-reviewed international publications and available national publications. Our findings discuss the current state of operating WWTPs in the country and highlight the research needed in controlling AR dissemination. The results revealed that the impact of different wastewater types, such as clinical, veterinary, domestic, and industrial, on the dissemination of AR has not been extensively studied in Sri Lanka; furthermore, the effectiveness of various wastewater treatment techniques in removing ARGs requires further investigation to improve the technologies. Furthermore, existing studies have not explored deeply enough the potential public health and ecological risks posed by AR dissemination through WWTPs.
Collapse
Affiliation(s)
- Wasana Gunawardana
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Ashoka Gamage
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle, LCA, Institut National de la Recherche Agronomique et Environnement, Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| |
Collapse
|
6
|
Xu Q, Jiang Y, Wang J, Deng R, Yue Z. Temperature-Driven Activated Sludge Bacterial Community Assembly and Carbon Transformation Potential: A Case Study of Industrial Plants in the Yangtze River Delta. Microorganisms 2024; 12:1454. [PMID: 39065222 PMCID: PMC11278906 DOI: 10.3390/microorganisms12071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Temperature plays a critical role in the efficiency and stability of industrial wastewater treatment plants (WWTPs). This study focuses on the effects of temperature on activated sludge (AS) communities within the A2O process of 19 industrial WWTPs in the Yangtze River Delta, a key industrial region in China. The investigation aims to understand how temperature influences AS community composition, functional assembly, and carbon transformation processes, including CO2 emission potential. Our findings reveal that increased operating temperatures lead to a decrease in alpha diversity, simplifying community structure and increasing modularity. Dominant species become more prevalent, with significant decreases in the relative abundance of Chloroflexi and Actinobacteria, and increases in Bacteroidetes and Firmicutes. Moreover, higher temperatures enhance the overall carbon conversion potential of AS, particularly boosting CO2 absorption in anaerobic conditions as the potential for CO2 emission during glycolysis and TCA cycles grows and diminishes, respectively. The study highlights that temperature is a major factor affecting microbial community characteristics and CO2 fluxes, with more pronounced effects observed in anaerobic sludge. This study provides valuable insights for maintaining stable A2O system operations, understanding carbon footprints, and improving COD removal efficiency in industrial WWTPs.
Collapse
Affiliation(s)
- Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yifan Jiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Thibodeau AJ, Barret M, Mouchet F, Nguyen VX, Pinelli E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123894. [PMID: 38599270 DOI: 10.1016/j.envpol.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Collapse
Affiliation(s)
- Alexandre J Thibodeau
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France.
| | - Maialen Barret
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Florence Mouchet
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Van Xuan Nguyen
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Eric Pinelli
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| |
Collapse
|
8
|
Al-Faliti M, Wang P, Smith AL, Delgado Vela J. Phage phylogeny, molecular signaling, and auxiliary antimicrobial resistance in aerobic and anaerobic membrane bioreactors. WATER RESEARCH 2024; 256:121620. [PMID: 38677036 DOI: 10.1016/j.watres.2024.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities.
Collapse
Affiliation(s)
- Mitham Al-Faliti
- Department of Civil and Environmental Engineering, Howard University, Washington, D.C., USA
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jeseth Delgado Vela
- Department of Civil and Environmental Engineering, Howard University, Washington, D.C., USA.
| |
Collapse
|
9
|
Kumar V, Roy S, Parida SN, Bisai K, Dhar S, Jana AK, Das BK. Deciphering the impact of endoparasitic infection on immune response and gut microbial composition of Channa punctata. Front Cell Infect Microbiol 2024; 14:1296769. [PMID: 38476164 PMCID: PMC10927727 DOI: 10.3389/fcimb.2024.1296769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intestinal parasitic infections caused by helminths are globally distributed and are a major cause of morbidity worldwide. Parasites may modulate the virulence, gut microbiota diversity and host responses during infection. Despite numerous works, little is known about the complex interaction between parasites and the gut microbiota. In the present study, the complex interplay between parasites and the gut microbiota was investigated. A total of 12 bacterial strains across four major families, including Enterobacteriaceae, Morganellaceae, Flavobacteriaceae, and Pseudomonadaceae, were isolated from Channa punctata, infected with the nematode species Aporcella sp., Axonchium sp., Tylencholaimus mirabilis, and Dioctophyme renale. The findings revealed that nematode infection shaped the fish gut bacterial microbiota and significantly affected their virulence levels. Nematode-infected fish bacterial isolates are more likely to be pathogenic, with elevated hemolytic activity and biofilm formation, causing high fish mortality. In contrast, isolates recovered further from non-parasitised C. punctata were observed to be non-pathogenic and had negligible hemolytic activity and biofilm formation. Antibiogram analysis of the bacterial isolates revealed a disproportionately high percentage of bacteria that were either marginally or multidrug resistant, suggesting that parasitic infection-induced stress modulates the gut microenvironment and enables colonization by antibiotic-resistant strains. This isolation-based study provides an avenue to unravel the influence of parasitic infection on gut bacterial characteristics, which is valuable for understanding the infection mechanism and designing further studies aimed at optimizing treatment strategies. In addition, the cultured isolates can supplement future gut microbiome studies by providing wet lab specimens to compare (meta)genomic information discovered within the gut microenvironment of fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| |
Collapse
|
10
|
Patel V, Patil K, Patel D, Kikani B, Madamwar D, Desai C. Distribution of bacterial community structures and spread of antibiotic resistome at industrially polluted sites of Mini River, Vadodara, Gujarat, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:208. [PMID: 38279971 DOI: 10.1007/s10661-024-12380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The influence of anthropogenic pollution on the distribution of bacterial diversity, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) was mapped at various geo-tagged sites of Mini River, Vadodara, Gujarat, India. The high-throughput 16S rRNA gene amplicon sequencing analysis revealed a higher relative abundance of Planctomycetota at the polluted sites, compared to the pristine site. Moreover, the relative abundance of Actinobacteriota increased, whereas Chloroflexi decreased in the water samples of polluted sites than the pristine site. The annotation of functional genes in the metagenome samples of Mini River sites indicated the presence of genes involved in the defence mechanisms against bacitracin, aminoglycosides, cephalosporins, chloramphenicol, streptogramin, streptomycin, methicillin, and colicin. The analysis of antibiotic resistome at the polluted sites of Mini River revealed the abundance of sulfonamide, beta-lactam, and aminoglycoside resistance. The presence of pathogens and ARB was significantly higher in water and sediment samples of polluted sites compared to the pristine site. The highest resistance of bacterial populations in the Mini River was recorded against sulfonamide (≥ 7.943 × 103 CFU/mL) and ampicillin (≥ 8.128 × 103 CFU/mL). The real-time PCR-based quantification of ARGs revealed the highest abundance of sulfonamide resistance genes sul1 and sul2 at the polluted sites of the Mini River. Additionally, the antimicrobial resistance genes aac(6')-Ib-Cr and blaTEM were also found abundantly at polluted sites of the Mini River. The findings provide insights into how anthropogenic pollution drives the ARG and ARB distribution in the riverine ecosystem, which may help with the development of antimicrobial resistance mitigation strategies.
Collapse
Affiliation(s)
- Vandan Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Kishor Patil
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Dishant Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Bhavtosh Kikani
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India.
| | - Chirayu Desai
- Department of Environmental Biotechnology, Gujarat Biotechnology University (GBU), Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
11
|
Wang D, Shang J, Lin H, Liang J, Wang C, Sun Y, Bai Y, Qu J. Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques. WATER RESEARCH 2024; 248:120859. [PMID: 37976954 DOI: 10.1016/j.watres.2023.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
As important mobile genetic elements, phages support the spread of antibiotic resistance genes (ARGs). Previous analyses of metaviromes or metagenome-assembled genomes (MAGs) failed to assess the extent of ARGs transferred by phages, particularly in the generation of antibiotic pathogens. Therefore, we have developed a bioinformatic pipeline that utilizes deep learning techniques to identify ARG-carrying phages and predict their hosts, with a special focus on pathogens. Using this method, we discovered that the predominant types of ARGs carried by temperate phages in a typical landscape lake, which is fully replenished by reclaimed water, were related to multidrug resistance and β-lactam antibiotics. MAGs containing virulent factors (VFs) were predicted to serve as hosts for these ARG-carrying phages, which suggests that the phages may have the potential to transfer ARGs. In silico analysis showed a significant positive correlation between temperate phages and host pathogens (R = 0.503, p < 0.001), which was later confirmed by qPCR. Interestingly, these MAGs were found to be more abundant than those containing both ARGs and VFs, especially in December and March. Seasonal variations were observed in the abundance of phages harboring ARGs (from 5.62 % to 21.02 %) and chromosomes harboring ARGs (from 18.01 % to 30.94 %). In contrast, the abundance of plasmids harboring ARGs remained unchanged. In summary, this study leverages deep learning to analyze phage-transferred ARGs and demonstrates an alternative method to track the production of potential antibiotic-resistant pathogens by metagenomics that can be extended to microbiological risk assessment.
Collapse
Affiliation(s)
- Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Sudhakari PA, Ramisetty BCM. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages. MICROBIAL ECOLOGY 2023; 86:3068-3081. [PMID: 37843655 DOI: 10.1007/s00248-023-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Temperate phages integrate into the bacterial genomes propagating along with the bacterial genomes. Multiple phage elements, representing diverse prophages, are present in most bacterial genomes. The evolutionary events and the ecological dynamics underlying the accumulation of prophage elements in bacterial genomes have yet to be understood. Here, we show that the local wastewater had 7% of lysogens (hosting mitomycin C-inducible prophages), and they showed resistance to superinfection by their corresponding lysates. Genomic analysis of four lysogens and four non-lysogens revealed the presence of multiple prophages (belonging to Myoviridae and Siphoviridae) in both lysogens and non-lysogens. For large-scale comparison, 2180 Escherichia coli genomes isolated from various sources across the globe and 523 genomes specifically isolated from diverse wastewaters were analyzed. A total of 15,279 prophages were predicted among 2180 E. coli genomes and 2802 prophages among 523 global wastewater isolates, with a mean of ~ 5 prophages per genome. These observations indicate that most putative prophages are relics of past bacteria-phage conflicts; they are "grounded" prophages that cannot excise from the bacterial genome. Prophage distribution analysis based on the sequence homology suggested the random distribution of E. coli prophages within and between E. coli clades. The independent occurrence pattern of these prophages indicates extensive horizontal transfers across the genomes. We modeled the eco-evolutionary dynamics to reconstruct the events that could have resulted in the prophage accumulation accounting for infection, superinfection immunity, and grounding. In bacteria-phage conflicts, the bacteria win by grounding the prophage, which could confer superinfection immunity.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India.
| |
Collapse
|
13
|
Baraka V, Andersson T, Makenga G, Francis F, Minja DTR, Overballe-Petersen S, Tang MHE, Fuursted K, Lood R. Unveiling Rare Pathogens and Antibiotic Resistance in Tanzanian Cholera Outbreak Waters. Microorganisms 2023; 11:2490. [PMID: 37894148 PMCID: PMC10609457 DOI: 10.3390/microorganisms11102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of antibiotic resistance is a global health concern. Therefore, understanding the mechanisms of its spread is crucial for implementing evidence-based strategies to tackle resistance in the context of the One Health approach. In developing countries where sanitation systems and access to clean and safe water are still major challenges, contamination may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the environment. This contamination can increase the risk of exposure and community transmission of ARGs and infectious pathogens. However, there is a paucity of information on the mechanisms of bacteriophage-mediated spread of ARGs and patterns through the environment. Here, we deploy Droplet Digital PCR (ddPCR) and metagenomics approaches to analyze the abundance of ARGs and bacterial pathogens disseminated through clean and wastewater systems. We detected a relatively less-studied and rare human zoonotic pathogen, Vibrio metschnikovii, known to spread through fecal--oral contamination, similarly to V. cholerae. Several antibiotic resistance genes were identified in both bacterial and bacteriophage fractions from water sources. Using metagenomics, we detected several resistance genes related to tetracyclines and beta-lactams in all the samples. Environmental samples from outlet wastewater had a high diversity of ARGs and contained high levels of blaOXA-48. Other identified resistance profiles included tetA, tetM, and blaCTX-M9. Specifically, we demonstrated that blaCTX-M1 is enriched in the bacteriophage fraction from wastewater. In general, however, the bacterial community has a significantly higher abundance of resistance genes compared to the bacteriophage population. In conclusion, the study highlights the need to implement environmental monitoring of clean and wastewater to inform the risk of infectious disease outbreaks and the spread of antibiotic resistance in the context of One Health.
Collapse
Affiliation(s)
- Vito Baraka
- Tanga Centre, National Institute for Medical Research, Tanga P.O. Box 5004, Tanzania; (V.B.); (G.M.); (F.F.); (D.T.R.M.)
| | - Tilde Andersson
- Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Geofrey Makenga
- Tanga Centre, National Institute for Medical Research, Tanga P.O. Box 5004, Tanzania; (V.B.); (G.M.); (F.F.); (D.T.R.M.)
| | - Filbert Francis
- Tanga Centre, National Institute for Medical Research, Tanga P.O. Box 5004, Tanzania; (V.B.); (G.M.); (F.F.); (D.T.R.M.)
| | - Daniel T. R. Minja
- Tanga Centre, National Institute for Medical Research, Tanga P.O. Box 5004, Tanzania; (V.B.); (G.M.); (F.F.); (D.T.R.M.)
| | | | - Man-Hung Eric Tang
- Department of Bacteria, Statens Serum Institut, Parasites and Fungi, 2300 Copenhagen, Denmark;
| | - Kurt Fuursted
- Bacterial Reference Center, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.O.-P.); (K.F.)
| | - Rolf Lood
- Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| |
Collapse
|
14
|
Andersson T, Makenga G, Francis F, Minja DTR, Overballe-Petersen S, Tang MHE, Fuursted K, Baraka V, Lood R. Enrichment of antibiotic resistance genes within bacteriophage populations in saliva samples from individuals undergoing oral antibiotic treatments. Front Microbiol 2022; 13:1049110. [PMID: 36425042 PMCID: PMC9678940 DOI: 10.3389/fmicb.2022.1049110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Spread of antibiotic resistance is a significant challenge for our modern health care system, and even more so in developing countries with higher prevalence of both infections and resistant bacteria. Faulty usage of antibiotics has been pinpointed as a driving factor in spread of resistant bacteria through selective pressure. However, horizontal gene transfer mediated through bacteriophages may also play an important role in this spread. In a cohort of Tanzanian patients suffering from bacterial infections, we demonstrate significant differences in the oral microbial diversity between infected and non-infected individuals, as well as before and after oral antibiotics treatment. Further, the resistome carried both by bacteria and bacteriophages vary significantly, with blaCTX-M1 resistance genes being mobilized and enriched within phage populations. This may impact how we consider spread of resistance in a biological context, as well in terms of treatment regimes.
Collapse
Affiliation(s)
- Tilde Andersson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geofrey Makenga
- National Institute for Medical Research, Tanga Center, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Center, Tanzania
- Karolinska Institutet, Solna, Sweden
| | | | | | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Bacterial Reference Center, Statens Serum Institute, Copenhagen, Denmark
| | - Vito Baraka
- National Institute for Medical Research, Tanga Center, Tanzania
| | - Rolf Lood
- Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Rolf Lood,
| |
Collapse
|
15
|
Andersson T, Adell AD, Moreno‐Switt AI, Spégel P, Turner C, Overballe‐Petersen S, Fuursted K, Lood R. Biogeographical variation in antimicrobial resistance in rivers is influenced by agriculture and is spread through bacteriophages. Environ Microbiol 2022; 24:4869-4884. [PMID: 35799549 PMCID: PMC9796506 DOI: 10.1111/1462-2920.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/29/2022] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance is currently an extensive medical challenge worldwide, with global numbers increasing steadily. Recent data have highlighted wastewater treatment plants as a reservoir of resistance genes. The impact of these findings for human health can best be summarized using a One Health concept. However, the molecular mechanisms impacting resistance spread have not been carefully evaluated. Bacterial viruses, that is bacteriophages, have recently been shown to be important mediators of bacterial resistance genes in environmental milieus and are transferrable to human pathogens. Herein, we investigated the biogeographical impact on resistance spread through river-borne bacteriophages using amplicon deep sequencing of the microbiota, absolute quantification of resistance genes using ddPCR, and phage induction capacity within wastewater. Microbial biodiversity of the rivers is significantly affected by river site, surrounding milieu and time of sampling. Furthermore, areas of land associated with agriculture had a significantly higher ability to induce bacteriophages carrying antibiotic resistance genes, indicating their impact on resistance spread. It is imperative that we continue to analyse global antibiotic resistance problem from a One Health perspective to gain novel insights into mechanisms of resistance spread.
Collapse
Affiliation(s)
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB‐R)SantiagoChile
| | - Andrea I. Moreno‐Switt
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB‐R)SantiagoChile,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| | - Peter Spégel
- Department of ChemistryLund UniversityLundSweden
| | | | | | - Kurt Fuursted
- Statens Serum InstituteBacterial Reference CenterCopenhagenDenmark
| | - Rolf Lood
- Department of Clinical SciencesLund UniversityLundSweden
| |
Collapse
|
16
|
de Nies L, Busi SB, Kunath BJ, May P, Wilmes P. Mobilome-driven segregation of the resistome in biological wastewater treatment. eLife 2022; 11:81196. [PMID: 36111782 PMCID: PMC9643006 DOI: 10.7554/elife.81196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Biological wastewater treatment plants (BWWTP) are considered to be hotspots for the evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization and dissemination of antimicrobial resistance genes (ARGs) and are thereby critical mediators of AMR within the BWWTP microbial community. At present, it is unclear whether specific AMR categories are differentially disseminated via bacteriophages (phages) or plasmids. To understand the segregation of AMR in relation to MGEs, we analyzed meta-omic (metagenomic, metatranscriptomic and metaproteomic) data systematically collected over 1.5 years from a BWWTP. Our results showed a core group of 15 AMR categories which were found across all timepoints. Some of these AMR categories were disseminated exclusively (bacitracin) or primarily (aminoglycoside, MLS and sulfonamide) via plasmids or phages (fosfomycin and peptide), whereas others were disseminated equally by both. Combined and timepoint-specific analyses of gene, transcript and protein abundances further demonstrated that aminoglycoside, bacitracin and sulfonamide resistance genes were expressed more by plasmids, in contrast to fosfomycin and peptide AMR expression by phages, thereby validating our genomic findings. In the analyzed communities, the dominant taxon Candidatus Microthrix parvicella was a major contributor to several AMR categories whereby its plasmids primarily mediated aminoglycoside resistance. Importantly, we also found AMR associated with ESKAPEE pathogens within the BWWTP, and here MGEs also contributed differentially to the dissemination of the corresponding ARGs. Collectively our findings pave the way toward understanding the segmentation of AMR within MGEs, thereby shedding new light on resistome populations and their mediators, essential elements that are of immediate relevance to human health.
Collapse
Affiliation(s)
- Laura de Nies
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg
| | | | | | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg
| |
Collapse
|
17
|
Genomic Analysis of Carbapenem-Resistant Comamonas in Water Matrices: Implications for Public Health and Wastewater Treatments. Appl Environ Microbiol 2022; 88:e0064622. [PMID: 35708324 DOI: 10.1128/aem.00646-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum β-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.
Collapse
|
18
|
Tripathi S, Yadav S, Purchase D, Singh K, Al-Shwaiman HA, Chandra R. Characterization of persistent organic pollutants and culturable and non-culturable bacterial communities in pulp and paper sludge after secondary treatment. CHEMOSPHERE 2022; 295:133892. [PMID: 35134397 DOI: 10.1016/j.chemosphere.2022.133892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Due to the presence of various organic contaminants, improper disposal of pulp-paper wastewater poses harm to the environment and human health. In this work, pulp-paper sludge (PPS) after secondary treatment were collected from M/s Century Pulp-paper Mills in India, the chemical nature of the organic pollutants was determined after solvent extraction. All the isolates were able to produce lipase (6.34-3.93 U ml-1) which could account for the different fatty acids detected in the PPS. The dominant strains were in the classes of α and γ Proteobacteria followed by Firmicutes. The Shannon-Weiner diversity indexes for phylotype richness for the culturable and non-culturable bacterial community were 2.01 and 3.01, respectively, indicating the non-culturable bacterial strains has higher species richness and diversity compared to the culturable bacterial strains. However, the culturable strains had higher species evenness (0.94 vs 0.90). Results suggested only a few isolated strains were resistant to the POPs in the PPS, where as non-cultural bacteria survived by entering viable but non-cultural state. The isolated strains (Brevundimonas diminuta, Aeromonas punctata, Enterobacter hormaechei, Citrobacter braakii, Bacillus pumilus and Brevundimonas terrae) are known for their multidrug resistance but their tolerance to POPs have not previously been reported and deserved further investigation. The findings of this research established the presence of POPs which influence the microbial population. Tertiary treatment is recommended prior to the safe disposal of pulp paper mill waste into the environment.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, (U.P.), India
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, (U.P.), India.
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK
| | - Kaman Singh
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025 (U.P.), India
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O 2455, Riyadh, 11451, Saudi Arabia
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, (U.P.), India.
| |
Collapse
|
19
|
Blanco-Picazo P, Gómez-Gómez C, Morales-Cortes S, Muniesa M, Rodríguez-Rubio L. Antibiotic resistance in the viral fraction of dairy products and a nut-based milk. Int J Food Microbiol 2022; 367:109590. [PMID: 35220008 DOI: 10.1016/j.ijfoodmicro.2022.109590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Phages, the most abundant biological entities in the biosphere, can carry different bacterial genes, including those conferring antibiotic resistance. In this study, dairy products were analyzed by qPCR for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Eleven ARGs were identified in 50 samples of kefir, yogurt, milk, fresh cheese and nut-based milk (horchata), purchased from local retailers in Barcelona. Propagation experiments showed that at least some of the phages isolated from these samples infected Escherichia coli WG5, which was selected as the host strain because it does not contain prophages or ARGs in its genome. Electron microscopy revealed that the phage particles showed morphologies compatible with the Myoviridae and Siphoviridae families. Our results show that dairy products contain ARGs within infectious phage particles and may therefore serve as a reservoir of ARGs that can be mobilized to susceptible hosts, both in the food matrix and in the intestinal tract after ingestion.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Niegowska M, Sanseverino I, Navarro A, Lettieri T. Knowledge gaps in the assessment of antimicrobial resistance in surface waters. FEMS Microbiol Ecol 2021; 97:fiab140. [PMID: 34625810 PMCID: PMC8528692 DOI: 10.1093/femsec/fiab140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted.
Collapse
Affiliation(s)
- Magdalena Niegowska
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
21
|
Sivaselvam S, Selvakumar R, Viswanathan C, Ponpandian N. Rapid one-pot synthesis of PAM-GO-Ag nanocomposite hydrogel by gamma-ray irradiation for remediation of environment pollutants and pathogen inactivation. CHEMOSPHERE 2021; 275:130061. [PMID: 33677277 DOI: 10.1016/j.chemosphere.2021.130061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Designing a cost-effective, high potential and recyclable catalyst remains a challenge. In the present work, a monolithic PAM-GO-Ag hydrogel is prepared by a facile, eco-friendly method using gamma-ray irradiation. The formation of GO-Ag composite by gamma radiation is also investigated and it is authenticated by XRD, FTIR, Raman, XPS and TEM analysis. The PAM-GO-Ag hydrogel exhibits excellent catalytic activity to different catalysant like methylene blue, Rhodamine-B, and pharmaceutical compound ciprofloxacin. The high catalyst carrying capacity and rapid electron shuttling ability of GO plays a significant role in the high performance of PAM-GO-Ag hydrogel. The PAM-GO-Ag hydrogel also exhibits excellent antibacterial activity. The damaged cell membrane, protein leakage, and increased ROS level contribute to the antibacterial activity of PAM-GO-Ag. The monolithic structure of PAM-GO-Ag hydrogel makes it easy to handle, recover, and reuse for several runs without significant loss of catalytic and antibacterial activity. All these results showed the possible application of PAM-GO-Ag hydrogel as a promising catalyst for the reduction of different pollutants and antibacterial agents on a large scale with good reusability.
Collapse
Affiliation(s)
- S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - R Selvakumar
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
22
|
Raza S, Jo H, Kim J, Shin H, Hur HG, Unno T. Metagenomic exploration of antibiotic resistome in treated wastewater effluents and their receiving water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142755. [PMID: 33071135 DOI: 10.1016/j.scitotenv.2020.142755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Environmental dissemination of antimicrobial resistance is a global health problem. Antimicrobial-resistant bacteria and antibiotic-resistant genes (ARGs) are constantly released into the environment through effluents (EFs) from wastewater treatment plants (WWTPs). Thus, requiring a better understanding of the selection and fate of ARGs in wastewater treatment processes. Therefore, we investigated the impacts of urban WWTP EFs on receiving water in the context of their resistomes and mobilomes. We used a HiSeq-based short read metagenomic approach to address the dynamics and diversity of ARGs in WWTP EF as well as the upstream (UP) and downstream (DN) river waters, followed by an investigation of plasmid-mediated ARGs. The abundance of ARGs at each site varied from 7.2 × 10-2 to 7.4 × 10-1 ARG copies per 16S rRNA gene copy, and EF samples showed the highest abundance, followed by DN and UP water samples. ARG diversity ranged from 121 to 686 types per site, and EF had the most diverse ARGs. Commonly identified ARGs in the EF and DN samples were clinically important and were absent in UP samples. The abundance of ARGs, mobile genetic elements (MGEs), and plasmid contigs found only in EF and DN were positively correlated with each other, indicating the importance of mobilomes in the dissemination of ARGs in the environment. Moreover, the proportions of plasmid-mediated ARGs was highest in the EF samples, followed by the DN and UP samples. These findings suggest that WWTP EF may act as a driving factor shaping the resistomes and mobilomes of receiving waters. In particular, a higher abundance of plasmid-mediated ARGs in WWTP EF suggests higher transmissibility in the DN environment.
Collapse
Affiliation(s)
- Shahbaz Raza
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyejun Jo
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Jungman Kim
- Research Institute for Basic Sciences (RIBS), Jeju National University, Jeju 63243, Republic of Korea
| | - Hanseob Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
23
|
Heffron J, Bork M, Mayer BK, Skwor T. A Comparison of Porphyrin Photosensitizers in Photodynamic Inactivation of RNA and DNA Bacteriophages. Viruses 2021; 13:v13030530. [PMID: 33807067 PMCID: PMC8005208 DOI: 10.3390/v13030530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Effective broad-spectrum antiviral treatments are in dire need as disinfectants and therapeutic alternatives. One such method of disinfection is photodynamic inactivation, which involves the production of reactive oxygen species from dissolved oxygen in response to light-stimulated photosensitizers. This study evaluated the efficacy of functionalized porphyrin compounds for photodynamic inactivation of bacteriophages as human virus surrogates. A blue-light light emitting diode (LED) lamp was used to activate porphyrin compounds in aqueous solution (phosphate buffer). The DNA bacteriophages ΦX174 and P22 were more resistant to porphyrin TMPyP photodynamic inactivation than RNA bacteriophage fr, with increasing rates of inactivation in the order: ΦX174 << P22 << fr. Bacteriophage ΦX174 was therefore considered a resistant virus suitable for the evaluation of three additional porphyrins. These porphyrins were synthesized from TMPyP by inclusion of a central palladium ion (PdT4) and/or the addition of a hydrophobic C14 chain (PdC14 or C14). While the inactivation rate of bacteriophage ΦX174 via TMPyP was similar to previous reports of resistant viruses, ΦX174 inactivation increased by a factor of approximately 2.5 using the metalloporphyrins PdT4 and PdC14. The order of porphyrin effectiveness was TMPyP < C14 < PdT4 < PdC14, indicating that both Pd2+ ligation and C14 functionalization aided virus inactivation.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA; (J.H.); (B.K.M.)
| | - Matthew Bork
- Department of Chemical and Biological Sciences, Rockford University, 5050 E. State St., Rockford, IL 61108, USA;
| | - Brooke K. Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA; (J.H.); (B.K.M.)
| | - Troy Skwor
- Department of Biomedical Sciences, University of Wisconsin–Milwaukee, 2400 E. Hartford Ave., Milwaukee, WI 53211, USA
- Correspondence:
| |
Collapse
|
24
|
Sharma P, Tripathi S, Chandra R. Metagenomic analysis for profiling of microbial communities and tolerance in metal-polluted pulp and paper industry wastewater. BIORESOURCE TECHNOLOGY 2021; 324:124681. [PMID: 33454444 DOI: 10.1016/j.biortech.2021.124681] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to study the profiling and efficiency of microbial communities and their abundance in the pulp and paper industry wastewater, which contained toxic metals, high biological oxygen demands, chemical oxygen demand, and ions contents. Sequence alignment of the 16S rRNA V3-V4 variable region zone with the Illumina MiSeq framework revealed 25356 operating taxonomical units (OTUs) derived from the wastewater sample. The major phyla identified in wastewater were Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Actinobacteria, Spirochetes, Patesibacteria, Acidobacteria, and others including unknown microbes. The study showed the function of microbial communities essential for the oxidation and detoxifying of complex contaminants and design of effective remediation techniques for the re-use of polluted wastewater. Findings demonstrated that the ability of different classes of microbes to adapt and survive in metal-polluted wastewater irrespective of their relative distribution, as well as further attention can be provided to its use in the bioremediation process.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India.
| |
Collapse
|
25
|
Mbanga J, Abia ALK, Amoako DG, Essack SY. Longitudinal Surveillance of Antibiotic Resistance in Escherichia coli and Enterococcus spp. from a Wastewater Treatment Plant and Its Associated Waters in KwaZulu-Natal, South Africa. Microb Drug Resist 2021; 27:904-918. [PMID: 33512279 DOI: 10.1089/mdr.2020.0380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We assessed the prevalence, distribution, and antibiotic resistance patterns of Escherichia coli and Enterococcus spp. isolated from raw and treated wastewater of a major wastewater treatment plant (WWTP) in KwaZulu-Natal, South Africa and the receiving river water upstream and downstream from the WWTP discharge point. Escherichia coli and enterococci were isolated and counted using the Colilert®-18 Quanti-Tray® 2000 and Enterolert®-18 Quanti-Tray 2000 systems, respectively. A total of 580 quantitative PCR-confirmed E. coli and 579 enterococci were randomly chosen from positive samples and tested for in vitro antibiotic susceptibility using the disk diffusion assay against 20 and 16 antibiotics, respectively. The removal success of the bacterial species through the treatment procedure at the WWTP was expressed as log removal values (LRVs). Most E. coli were susceptible to meropenem (94.8%) and piperacillin-tazobactam (92.9%), with most Enterococcus susceptible to ampicillin (97.8%) and vancomycin (96.7%). In total, 376 (64.8%) E. coli and 468 (80.8%) Enterococcus isolates showed multidrug resistance (MDR). A total of 42.4% (246/580) E. coli and 65.1% (377/579) enterococci isolates had multiple antibiotic resistance indices >0.2. The LRV for E. coli ranged from 2.97 to 3.99, and for enterococci the range was observed from 1.83 to 3.98. A high proportion of MDR E. coli and enterococci were present at all sampled sites, indicating insufficient removal during wastewater treatment. There is a need to appraise the public health risks associated with bacterial contamination of environmental waters arising from such WWTPs to protect the health of users of the receiving water bodies.
Collapse
Affiliation(s)
- Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Maganha de Almeida Kumlien AC, Borrego CM, Balcázar JL. Antimicrobial Resistance and Bacteriophages: An Overlooked Intersection in Water Disinfection. Trends Microbiol 2021; 29:517-527. [PMID: 33500192 DOI: 10.1016/j.tim.2020.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022]
Abstract
This article focuses on how bacteriophages (phages), antibiotic-resistance genes (ARGs), and disinfection practices intersect. Phages are considered to be the most abundant biological entities on Earth and they have the potential to transfer genes (including ARGs) among their bacterial hosts. In the urban water cycle, phages are used as indicators of fecal pollution and surrogates for human viral pathogens but they are also known to withstand common disinfection treatments deployed to produce safe drinking/reclaimed water. Recent studies also suggest that phages have the potential to become an additional footprint to monitor water safety. A precautionary approach should therefore include phages in surveillance programs aimed at monitoring antimicrobial resistance (AMR) in the urban water cycle. This article argues that phages ought to be used to assess the efficiency of disinfection treatments (both classical and novel) on reducing the risk associated with antibiotic resistance. Finally, this article discusses contributions to the advancement of AMR stewardship in aquatic settings and is relevant for researchers and water industry practitioners.
Collapse
Affiliation(s)
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain; University of Girona, 17004 Girona, Spain
| |
Collapse
|
27
|
Assress HA, Selvarajan R, Nyoni H, Ogola HJO, Mamba BB, Msagati TAM. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3217-3229. [PMID: 32914303 DOI: 10.1007/s11356-020-10688-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) can be significant sources of antifungal resistant fungi, which can disseminate further in the environment by getting into rivers together with effluents discharged from WWTPs and pose a risk for human health. In this study, the presence of azole resistance was determined in fungal isolates from treated effluents of two WWTPs using the standard microdilution method from Clinical and Laboratory Standards Institute (CLSI). A total of 41 fungal isolates representing 23 fungal species and 16 fungal genera were obtained. Fungal genera related to the known human and/or plant pathogens such as Aspergillus, Fusarium, and Candida were detected. Among the observed species, the susceptibility of Aspergillus fumigatus and Fusarium oxysporum was tested against fluconazole (FCZ), ketoconazole (KTZ), itraconazole (ITZ), and voriconazole (VCZ). The isolate A. fumigatus was susceptible to KTZ, ITZ, and VCZ, while it showed resistance against FCZ. On the contrast, the isolate F. oxysporum showed resistance to KTZ, ITZ, and VCZ. Comparatively, VCZ showed highest activity against both A. fumigatus and F. oxysporum. Analysis of the gene Cyp51A for the A. fumigatus isolate showed no evidence of drug resistance that could be related to point mutations and/or tandem repeats in the gene. To the best of our knowledge, this is the first susceptibility test study on A. fumigatus and F. oxysporum isolates from the WWTPs of South Africa. In conclusion, this study indicated an urgent need for thorough investigation with larger group of fungal isolates from different regions of South Africa to broadly understand the role of WWTPs in the dissemination of azole antifungal drug resistance.
Collapse
Affiliation(s)
- Hailemariam Abrha Assress
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
| | - Ramganesh Selvarajan
- College of Agriculture and Environmental Sciences, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida, Johannesburg, 1709, South Africa
| | - Hlengilizwe Nyoni
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
| | - Henry Joseph Oduor Ogola
- College of Agriculture and Environmental Sciences, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida, Johannesburg, 1709, South Africa
| | - Bhekie B Mamba
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
- State Key Laboratory of Separation Membranes and Membrane Process/National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus A M Msagati
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa.
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P O Box 447, Tengeru, Arusha, United Republic of Tanzania.
| |
Collapse
|
28
|
Janousek S, Vlkova A, Jirova G, Kejlova K, Krsek D, Jirova D, Kandarova H, Wittlingerova Z, Heinonen T, Mannerstrom M, Maly M. Qualitative and Quantitative Analysis of Certain Aspects of the Cytotoxic and Genotoxic Hazard of Hospital Wastewaters by Using a Range of In Vitro Assays. Altern Lab Anim 2021; 49:33-48. [PMID: 33910377 DOI: 10.1177/02611929211004956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Health care facilities and hospitals generate significant amounts of wastewater which are released into the sewage system, either after a preliminary treatment or without any further treatment. Hospital wastewater may contain large amounts of hazardous chemicals and pharmaceuticals, some of which cannot be eliminated entirely by wastewater treatment plants. Moreover, hospital effluents may be loaded with a plethora of pathogenic microorganisms or other microbiota and microbiome residues. The need to monitor hospital effluents for their genotoxic hazard is of high importance, as detailed information is scarce. DNA-based information can be acquired directly from samples through the application of various molecular methods, while cell-based biomonitoring assays can provide important information about impaired cellular pathways or mechanisms of toxicity without prior knowledge of the identity of each toxicant. In our study, we evaluated samples of chlorinated hospital wastewater discharged into the sewage system after this disinfection process. The assessment of cytotoxicity, genotoxicity and mutagenicity of the hospital effluents was performed in vitro by using a broad battery of biomonitoring assays that are relevant for human health effects. All the tested hospital wastewater samples could be classified as potentially genotoxic, and it is concluded that the microbiota present in hospital wastewater might contribute to this genotoxic potential.
Collapse
Affiliation(s)
- Stanislav Janousek
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| | - Alena Vlkova
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
- Faculty of Environmental Sciences, 48371Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Gabriela Jirova
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
- Faculty of Environmental Sciences, 48371Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kristina Kejlova
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| | - Daniel Krsek
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| | - Dagmar Jirova
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zdenka Wittlingerova
- Faculty of Environmental Sciences, 48371Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tuula Heinonen
- FICAM, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marika Mannerstrom
- FICAM, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marek Maly
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
29
|
Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111234. [PMID: 32866924 DOI: 10.1016/j.jenvman.2020.111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
Effective and efficient utilization of antimicrobial drugs has been one of the important cornerstone of modern medicine. However, since antibiotics were first discovered by Alexander Fleming about a century ago, the time clock of antimicrobial resistance (AMR) started ticking somewhat leading to a global fear of a possible "post-antimicrobial era". Antibiotic resistance (AR) remains a serious challenge causing global outcry in both the clinical setting and the environment. The huge influence of municipal wastewater effluent discharges on the aquatic environment has made the niche a hotspot of research interest in the study of emergence and spread of AMR microbes and their resistance determinants/genes. The current review adopted a holistic approach in studying the proliferation of antibiotic resistance determinants (ARDs) as well as their impacts and fate in municipal wastewater effluents and the receiving aquatic environments. The various strategies deployed hitherto for the removal of resistance determinants in municipal effluents were carefully reviewed, while the potential for the use of nanotechnology as a viable alternative is explicitly explored. Also, highlighted in this review are the knowledge gaps to be filled in order to curtail the spread of AMR in aquatic environment and lastly, suggestions on the applicability of nanotechnology in eliminating AMR determinants in municipal wastewater treatment facilities are proffered.
Collapse
Affiliation(s)
- Mike O Ojemaye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Martins A Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| |
Collapse
|
30
|
Adesoji TO, Egyir B, Shittu AO. Antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Ile-Ife, Nigeria. JOURNAL OF WATER AND HEALTH 2020; 18:890-898. [PMID: 33328361 DOI: 10.2166/wh.2020.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study examined the occurrence and molecular basis for antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Nigeria. Standard microbiological techniques and molecular methods were utilized. The species identified (MALDI score >1.7) comprised S. saprophyticus (19), S. cohnii (8), S. sciuri (7), S. aureus (4), S. epidermidis (3), S. warneri (2), S. equorum (1), S. haemolyticus (1), S. nepalensis (1), S. condimenti (1), and S. pasteuri (1). Resistance to trimethoprim, tetracycline and cefoxitin were observed in 78.3% (47/60), 36.7% (22/60) and 25% (15/60) of the isolates, respectively. The rate of multidrug resistance was 53.3% (32/60) and observed in eight species from different sampling sites. Seven (S. sciuri; n = 5; S. aureus; n = 1; S. warneri; n = 1) of the 20 selected (representing the various staphylococcal species and antibiotypes) isolates were mecA-positive. Furthermore, the tetK gene was detected in nine isolates, six with dfrA, and four were positive for the dfrG gene. One S. aureus was mecA, tetK and dfrG gene positive. The study provides insights on antibiotic-resistant staphylococci from a non-clinical setting and highlights the need for active surveillance to understand the burden of antimicrobial resistance in Nigeria. This is key to improve synergy across the human, animal and environmental health sectors in Nigeria.
Collapse
Affiliation(s)
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria; †Current address: Institute of Medical Microbiology, University Hospital Münster, Domagkstrasse 10, 48149 Münster, Germany
| |
Collapse
|
31
|
Mahadhy A, Ståhl-Wernersson E, Mattiasson B, Hedström M. Rapid detection of mecA gene of methicillin-resistant Staphylococcus aureus by a novel, label-free real-time capacitive biosensor. ACTA ACUST UNITED AC 2020; 28:e00568. [PMID: 33318966 PMCID: PMC7724158 DOI: 10.1016/j.btre.2020.e00568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/03/2022]
Abstract
Rapid detection of mecA gene from methicillinresistant Staphylococcus aureus. High sensitivity assay down to 10−13M of the target molecule. High resolution to detect mismatching DNA probes. Reusable sensor chip for repeated assays.
This work presents a rapid, selective and sensitive automated sequential injection flow system with a capacitive biosensor for detection of the mecA gene (the model chosen for this study), which emerges from methicillin-resistant Staphylococcus aureus. A DNA-based 25-mer capture probe was immobilized on the surface of a gold electrode which was integrated in the capacitive sensor system. A constant current pulse was applied and the resulting capacitance was measured. Injection of the target DNA sample to the sensor surface induced hybridization to occur between the target and the complementary sequence, which resulted in a shift in the measured capacitance (ΔC). The ΔC was directly proportional to the concentrations of the applied target probe with linearity ranging from 10−12 to 10−7 M. The biosensor had a detection limit of 6.0 × 10−13 M and a recovery of 95 % of the mecA gene when spiked in human saliva. The biosensor showed a promising selectivity. It could clearly discriminate single-base, two-base and twelve-base mismatch probes with a decrease in the signal strength by 13 %, 26 %, and 89 %, respectively relative to the signal strength of the complementary target probe. There was no significant signal observed for the non-complementary probe. The biosensor-chip could be re-used for more than 12 cycles with residual capacity of 94.5 ± 4.3 % and a RSD of 4.6 % by regenerating the biosensor-chip with a solution of 50 mM NaOH.
Collapse
Affiliation(s)
- Ally Mahadhy
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100, Lund, Sweden.,Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania
| | - Eva Ståhl-Wernersson
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100, Lund, Sweden.,CapSenze Biosystems AB Billeberga, Sweden
| | - Martin Hedström
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100, Lund, Sweden.,CapSenze Biosystems AB Billeberga, Sweden
| |
Collapse
|
32
|
Arya S, Todman H, Baker M, Hooton S, Millard A, Kreft JU, Hobman JL, Stekel DJ. A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer. FEMS Microbiol Ecol 2020; 96:5850753. [PMID: 32490523 DOI: 10.1093/femsec/fiaa100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/02/2020] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a major global challenge. Of particular concern are mobilizable elements that can transfer resistance genes between bacteria, leading to pathogens with new combinations of resistance. To date, mathematical models have largely focussed on transfer of resistance by plasmids, with fewer studies on transfer by bacteriophages. We aim to understand how best to model transfer of resistance by transduction by lytic phages. We show that models of lytic bacteriophage infection with empirically derived realistic phage parameters lead to low numbers of bacteria, which, in low population or localised environments, lead to extinction of bacteria and phage. Models that include antagonistic co-evolution of phage and bacteria produce more realistic results. Furthermore, because of these low numbers, stochastic dynamics are shown to be important, especially to spread of resistance. When resistance is introduced, resistance can sometimes be fixed, and at other times die out, with the probability of each outcome sensitive to bacterial and phage parameters. Specifically, that outcome most strongly depends on the baseline death rate of bacteria, with phage-mediated spread favoured in benign environments with low mortality over more hostile environments. We conclude that larger-scale models should consider spatial compartmentalisation and heterogeneous microenviroments, while encompassing stochasticity and co-evolution.
Collapse
Affiliation(s)
- Sankalp Arya
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Henry Todman
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michelle Baker
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Steven Hooton
- Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jon L Hobman
- Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Dov J Stekel
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
33
|
Assessment of bacterial diversity and their antibiotic resistance profiles in wastewater treatment plants and their receiving Ganges River in Prayagraj (Allahabad), India. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42535-020-00157-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Desvars-Larrive A, Ruppitsch W, Lepuschitz S, Szostak MP, Spergser J, Feßler AT, Schwarz S, Monecke S, Ehricht R, Walzer C, Loncaric I. Urban brown rats ( Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 31411133 PMCID: PMC6693289 DOI: 10.2807/1560-7917.es.2019.24.32.1900149] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Brown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria. Aim We intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum β-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS). Methods We surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We characterised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids. Results Eight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-β-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the blaCTX-M gene and one carried a plasmid-encoded ampC gene (blaCMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleurettii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus. Conclusion Our findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefan Monecke
- InfectoGnostics Research Campus, Jena, Germany.,Technische Universität, Dresden, Germany.,Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Ralf Ehricht
- InfectoGnostics Research Campus, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Chris Walzer
- Wildlife Conservation Society, Bronx, New York, United States.,University of Veterinary Medicine, Vienna, Austria
| | | |
Collapse
|
35
|
Adator EH, Narvaez-Bravo C, Zaheer R, Cook SR, Tymensen L, Hannon SJ, Booker CW, Church D, Read RR, McAllister TA. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020; 8:microorganisms8060885. [PMID: 32545206 PMCID: PMC7355928 DOI: 10.3390/microorganisms8060885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Shaun R. Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Calvin W. Booker
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Deirdre Church
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Ron R. Read
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|
36
|
Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front Microbiol 2020; 11:662. [PMID: 32351487 PMCID: PMC7174725 DOI: 10.3389/fmicb.2020.00662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tilde Andersson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ewa Bukowska-Faniband
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Wei T, Yao H, Sun P, Cai W, Li X, Fan L, Wei Q, Lai C, Guo J. Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. CHEMOSPHERE 2020; 245:125484. [PMID: 31864053 DOI: 10.1016/j.chemosphere.2019.125484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m3/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, blaNDM-1, and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, blaNDM-1, and qnrA) and intI1 were identified (R2 of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source.
Collapse
Affiliation(s)
- Ting Wei
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Peizhe Sun
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Weiwei Cai
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Xinyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Liru Fan
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Qingchao Wei
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Cai Lai
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
38
|
Adegoke AA, Madu CE, Aiyegoro OA, Stenström TA, Okoh AI. Antibiogram and beta-lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Antimicrob Resist Infect Control 2020; 9:46. [PMID: 32164766 PMCID: PMC7068970 DOI: 10.1186/s13756-020-0702-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) recently classified Enterobacteriaceae resistance to third-generation cephalosporin into the group of pathogens with critical criteria for future research. METHODS A study to assess the antibiogram and beta-lactamase genes among the cefotaxime resistant E. coli (CREc) from a South African wastewater treatment plant (WWTP) was conducted using standard phenotypic and molecular biology characterization methods. RESULTS Approximate total E. coli (TEc) concentration (log10 CFU/mL) ranged between 5.7 and 6.8 among which cefotaxime resistant E. coli were between 1.8 and 4.8 (log10 CFU/mL) for cefotaxime antibiotic concentration of 4 and 8 mg/L in the influent samples. Effluent samples, heavily influenced by the chlorination had only 0.3 log10 CFU/mL of TEc. Fifty-one cefotaxime resistant isolates were selected out of an overall of 75 isolates, and subjected to a new round of testing, with a follow up of 36 and 48 isolates for both colistin and gentamicin, respectively as guided by initial results. Selected CREc exhibited resistance to amoxicillin-clavulanic acid (35.3%; n = 51), colistin sulphate (76.5%; n = 36), ciprofloxacin (47.1%; n = 51), gentamicin (87.5%; n = 48) and intermediate-resistance to meropenem (11.8%; n = 51). Extended spectrum-beta-lactamase genes detected, viz.: blaCTX-M (52.6%; n = 38) and blaTEM (84.2%; n = 38) and concurrent blaCTX-M + blaTEM (36.8%; n = 38), but no blaSHV was detected. Carbapenem resistance genes, blaKPC-2 (15.8%; n = 38), blaOXA-1 (57.9%; n = 38), blaNDM-1 (15.8%; n = 38) were also detected. Approximately, 10.5 - 36.8% (n = 38) co-occurrence of two or more beta-lactamase genes was detected in some isolates. Out of the selected number (n = 30), 7(23.3%) were enterotoxigenic E. coli (ETEC), 14 (46.7%) were Enteroaggregative E. coli (EAEC), but no enteropathogenic E. coli (EPEC) was detected. CONCLUSION Resistance to cefotaxime and the presence of a wide range of beta-lactamase genes exposed the potential risks associated with these pathogens via occupational and domestic exposure during the reuse of treated wastewater.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa. .,Department of Microbiology, Faculty of Science, University of Uyo, PMB 1018, Uyo, Akwa Ibom State, Nigeria. .,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Chibuzor Ezinne Madu
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,GI Microbiology and Biotechnology Unit, Agricultural Research Council- Animal Production, Irene, 0062, South Africa
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Anthony Ifeanyi Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
39
|
Petrovich ML, Zilberman A, Kaplan A, Eliraz GR, Wang Y, Langenfeld K, Duhaime M, Wigginton K, Poretsky R, Avisar D, Wells GF. Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Front Microbiol 2020; 11:153. [PMID: 32140141 PMCID: PMC7042388 DOI: 10.3389/fmicb.2020.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.
Collapse
Affiliation(s)
- Morgan L. Petrovich
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Adi Zilberman
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Kaplan
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gefen R. Eliraz
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Kathryn Langenfeld
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rachel Poretsky
- Department of Biological Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Dror Avisar
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - George F. Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
40
|
Occurrence and Characteristics of Mobile Colistin Resistance ( mcr) Gene-Containing Isolates from the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031028. [PMID: 32041167 PMCID: PMC7036836 DOI: 10.3390/ijerph17031028] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.
Collapse
|
41
|
Abstract
The discovery of bacteria in the female urinary bladder has fundamentally changed current dogma regarding the urinary tract and related urinary disorders. Previous research characterized many of the bacterial components of the female urinary tract, but the viral fraction of this community is largely unknown. Viruses within the human microbiota far outnumber bacterial cells, with the most abundant viruses being those that infect bacteria (bacteriophages). Similar to observations within the microbiota of the gut and oral cavity, preliminary surveys of the urinary tract and bladder microbiota indicate a rich diversity of uncharacterized bacteriophage (phage) species. Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections.
Collapse
|
42
|
Andleeb S, Majid M, Sardar S. Environmental and public health effects of antibiotics and AMR/ARGs. ANTIBIOTICS AND ANTIMICROBIAL RESISTANCE GENES IN THE ENVIRONMENT 2020:269-291. [DOI: 10.1016/b978-0-12-818882-8.00018-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Petrovich ML, Ben Maamar S, Hartmann EM, Murphy BT, Poretsky RS, Wells GF. Viral composition and context in metagenomes from biofilm and suspended growth municipal wastewater treatment plants. Microb Biotechnol 2019; 12:1324-1336. [PMID: 31410982 PMCID: PMC6801142 DOI: 10.1111/1751-7915.13464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022] Open
Abstract
Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.
Collapse
Affiliation(s)
- Morgan L. Petrovich
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Brian T. Murphy
- Department of Medicinal Chemistry and PharmacognosyUniversity of Illinois at Chicago900 S. Ashland Ave, MBRB Room 3120; MC 870ChicagoIL60607USA
| | - Rachel S. Poretsky
- Department of Biological SciencesUniversity of Illinois at Chicago950 S. Halsted Street, SEL 4100ChicagoIL60607USA
| | - George F. Wells
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| |
Collapse
|
44
|
Zhang A, Call DR, Besser TE, Liu J, Jones L, Wang H, Davis MA. β-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. WATER RESEARCH 2019; 161:335-340. [PMID: 31212239 DOI: 10.1016/j.watres.2019.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 05/04/2023]
Abstract
Our objective was to determine whether β-lactamase genes are carried within bacteriophage capsids, as a first step towards exploring the possible role of bacteriophages as vehicles for dispersal of antimicrobial resistance genes through an agricultural region of Washington State. Water samples (n = 178) from municipal wastewater treatment plants, river and irrigation canals were collected over a period of eight months. The occurrence of four β-lactam resistance gene groups (blaTEM, blaCTX-M, blaPSE and blaCMY-2) and three carbapenem resistance genes (blaKPC, blaOXA-48-like, and blaNDM) in bacterial and phage fractions of water samples was evaluated by PCR. All of the seven targeted resistance genes were detected both in wastewater and river water samples. Relatively high proportions of samples (7.3%-64.9%) positive for resistance genes were found in bacteriophage fractions of water samples compared to the bacterial fractions (5.4%-36.8%). blaOXA-48-like (57.3%) and blaTEM (64.0%) were the most prevalent antimicrobial resistance genes detected at all the sampling points. Resistance genes are commonly present in treated wastewater flowing through municipal and agricultural environments, indicating a plausible role for this water in the dissemination of antimicrobial resistance traits, including blaCTX-M.
Collapse
Affiliation(s)
- Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Thomas E Besser
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jinxin Liu
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Lisa Jones
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Margaret A Davis
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
45
|
Blumensaat F, Leitão JP, Ort C, Rieckermann J, Scheidegger A, Vanrolleghem PA, Villez K. How Urban Storm- and Wastewater Management Prepares for Emerging Opportunities and Threats: Digital Transformation, Ubiquitous Sensing, New Data Sources, and Beyond - A Horizon Scan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8488-8498. [PMID: 31291095 DOI: 10.1021/acs.est.8b06481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ubiquitous sensing will create many opportunities and threats for urban water management, which are only poorly understood today. To identify the most relevant trends, we conducted a horizon scan regarding how ubiquitous sensing will shape the future of urban drainage and wastewater management. Our survey of the international urban water community received an active response from both the academics and the professionals from the water industry. The analysis of the responses demonstrates that emerging topics for urban water will often involve experts from different communities, including aquatic ecologists, urban water system engineers and managers, as well as information and communications technology professionals and computer scientists. Activities in topics that are identified as novel will either require (i) cross-disciplinary training, such as importing new developments from the IT sector, or (ii) research in new areas for urban water specialists, for example, to help solve open questions in aquatic ecology. These results are, therefore, a call for interdisciplinary research beyond our own discipline. They also demonstrate that the water management community is not yet prepared for the digital transformation, where we will experience a data demand, i.e. a "pull" of urban water data into external services. The results suggest that a lot remains to be done to harvest the upcoming opportunities. Horizon scanning should be repeated on a routine basis, under the umbrella of an experienced polling organization.
Collapse
Affiliation(s)
- Frank Blumensaat
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- Institute of Environmental Engineering, Chair of Urban Water Systems , ETH Zurich , Stefano-Franscini-Platz 5 , 8093 Zurich , Switzerland
| | - João P Leitão
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
| | - Christoph Ort
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
| | - Jörg Rieckermann
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
| | - Andreas Scheidegger
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
| | - Peter A Vanrolleghem
- modelEAU, Université Laval , Département de génie civil et de génie des eaux , 1065 av. de la Médecine , Québec , Québec G1 V 0A6 , Canada
- CentrEau , Université Laval , 1065 av. de la Médecine , Québec , Québec G1 V 0A6 , Canada
| | - Kris Villez
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
| |
Collapse
|
46
|
Lerner A, Ramesh A, Matthias T. The Revival of the Battle between David and Goliath in the Enteric Viruses and Microbiota Struggle: Potential Implication for Celiac Disease. Microorganisms 2019; 7:173. [PMID: 31207872 PMCID: PMC6616392 DOI: 10.3390/microorganisms7060173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The human gut is inhabited by overcrowded prokaryotic communities, a major component of which is the virome, comprised of viruses, bacteriophages, archaea, eukaryotes and bacteria. The virome is required for luminal homeostasis and, by their lytic or synergic capacities, they can regulate the microbial community structure and activity. Dysbiosis is associated with numerous chronic human diseases. Since the virome can impact microbial genetics and behavior, understanding its biology, composition, cellular cycle, regulation, mode of action and potential beneficial or hostile activities can change the present paradigm of the cross-talks in the luminal gut compartment. Celiac disease is a frequent autoimmune disease in which viruses can play a role in disease development. Based on the current knowledge on the enteric virome, in relation to celiac disease pathophysiological evolvement, the current review summarizes the potential interphases between the two. Exploring and understanding the role of the enteric virome in gluten-dependent enteropathy might bring new therapeutic strategies to change the luminal eco-event for the patient's benefit.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Ajay Ramesh
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
47
|
Lerner A, Ramesh A, Matthias T. The Revival of the Battle between David and Goliath in the Enteric Viruses and Microbiota Struggle: Potential Implication for Celiac Disease. Microorganisms 2019; 7:173. [PMID: 31207872 DOI: 10.3390/microorganisms7060173.pmid:31207872;pmcid:pmc6616392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 05/12/2023] Open
Abstract
The human gut is inhabited by overcrowded prokaryotic communities, a major component of which is the virome, comprised of viruses, bacteriophages, archaea, eukaryotes and bacteria. The virome is required for luminal homeostasis and, by their lytic or synergic capacities, they can regulate the microbial community structure and activity. Dysbiosis is associated with numerous chronic human diseases. Since the virome can impact microbial genetics and behavior, understanding its biology, composition, cellular cycle, regulation, mode of action and potential beneficial or hostile activities can change the present paradigm of the cross-talks in the luminal gut compartment. Celiac disease is a frequent autoimmune disease in which viruses can play a role in disease development. Based on the current knowledge on the enteric virome, in relation to celiac disease pathophysiological evolvement, the current review summarizes the potential interphases between the two. Exploring and understanding the role of the enteric virome in gluten-dependent enteropathy might bring new therapeutic strategies to change the luminal eco-event for the patient's benefit.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Ajay Ramesh
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
48
|
Affiliation(s)
- Colin Barras
- Colin Barras is a freelance science writer and editor in Michigan, .
| |
Collapse
|
49
|
Lerner A, Shoenfeld Y, Matthias T. Probiotics: If It Does Not Help It Does Not Do Any Harm. Really? Microorganisms 2019; 7:104. [PMID: 30979072 PMCID: PMC6517882 DOI: 10.3390/microorganisms7040104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- AESKU.KIPP Institute, 55234 Wendelsheim, Germany.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 5262000, Israel.
| | | |
Collapse
|
50
|
Ng C, Tan B, Jiang XT, Gu X, Chen H, Schmitz BW, Haller L, Charles FR, Zhang T, Gin K. Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Front Microbiol 2019; 10:172. [PMID: 30833934 PMCID: PMC6387931 DOI: 10.3389/fmicb.2019.00172] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/22/2019] [Indexed: 11/23/2022] Open
Abstract
Reclaimed water provides a water supply alternative to address problems of scarcity in urbanized cities with high living densities and limited natural water resources. In this study, wastewater metagenomes from 6 stages of a wastewater treatment plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and relative abundance of class 1 integron integrases (intl1). ARGs confering resistance to 12 classes of antibiotics (ARG types) persisted through the treatment stages, which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I, aph(3')-I, aac(6')-I, aac(6')-II, ant(2″)-I], beta-lactams [class A, class C, class D beta-lactamases (bla OXA)], chloramphenicol (acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB), multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS), rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39, tetR, tet43, tetQ, tetX). Although the ARG subtypes in sludge and MBR effluents reduced in diversity relative to the influent, clinically relevant beta lactamases (i.e., bla KPC, bla OXA) were detected, casting light on other potential point sources of ARG dissemination within the wastewater treatment process. To gain a deeper insight into the types of bacteria that may survive the MBR removal process, genome bins were recovered from metagenomic data of MBR effluents. A total of 101 close to complete draft genomes were assembled and annotated to reveal a variety of bacteria bearing metal resistance genes and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired ARGs aac(2')-Ib, bla OXA-278, and tet36 respectively. In terms of indicator organisms, cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa from influent to conventional treated effluent was lower (0-2.4), compared to MBR effluent (5.3-7.4). We conclude that MBR is an effective treatment method for reducing fecal indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated effluents (<8 MPN/100 mL) and the presence of ARGs and intl1 underscores the need to establish if further treatment should be applied prior to reuse.
Collapse
Affiliation(s)
- Charmaine Ng
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Boonfei Tan
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Tao Jiang
- Environmental Biotechnology Lab, Department of Civil and Environmental Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoqiong Gu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Hongjie Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Bradley William Schmitz
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Laurence Haller
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Francis Rathinam Charles
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil and Environmental Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, Singapore, Singapore
| |
Collapse
|