1
|
Pradal I, Weckx S, De Vuyst L. The production of esters by specific sourdough lactic acid bacteria species is limited by the precursor concentrations. Appl Environ Microbiol 2025; 91:e0221624. [PMID: 40013785 PMCID: PMC11921326 DOI: 10.1128/aem.02216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/01/2025] [Indexed: 02/28/2025] Open
Abstract
The production of fruity esters by sourdough lactic acid bacteria (LAB) and yeasts has not been explored in detail. Moreover, the biosynthesis of esters by LAB species under conditions similar to those occurring during sourdough production is still questionable. Concerning yeasts, a genome mining of 75 genomes revealed a strain dependency of the presence of seven specific ester biosynthesis genes. Accordingly, PCR assays to detect these acetate (ATF1 and ATF2) and ethyl ester (EHT1 and EEB1) biosynthesis genes were developed and used to screen 91 strains of yeast species. Concerning LAB, a genome mining of 401 genomes revealed a species dependency of the presence of three esterase-encoding genes (estA, estB, and estC). A phenotypic analysis carried out with a selection of 10 strains of the LAB species Companilactobacillus crustorum, Companilactobacillus nantensis, Companilactobacillus paralimentarius, Fructilactobacillus sanfranciscensis, Lactiplantibacillus xiangfangensis, Levilactobacillus zymae, and Limosilactobacillus fermentum in a wheat sourdough simulation medium (WSSM) supplemented with ester precursor molecules ([higher] alcohols and fatty acids) revealed that their ester biosynthesis capacity was limited by the precursor concentrations. Ethyl acetate and ethyl lactate were produced by all strains, except for those of Frul. sanfranciscensis. These results suggested that one of the esterase-encoding genes considered could be implicated in the ethyl acetate and/or ethyl lactate biosynthesis. Overall, the ester biosynthesis capacity by LAB is of great interest in view of fruity flavor formation during sourdough and sourdough bread productions. IMPORTANCE The present study gave insights into the production of esters, which impart fruity flavors to fermented foods, by not only sourdough yeasts but also lactic acid bacteria. It showed that some lactic acid bacteria species can synthesize the esters ethyl acetate (sweet notes) and ethyl lactate (creamy notes) under specific conditions. The information gathered during the present study will enable sourdough bakers and companies from the bakery sector to get more information on how to produce sourdoughs that can add fruity notes to the final products after a rational screening and selection of potential starter culture strains.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Wu Q, Kan J, Cui Z, Ma Y, Liu X, Dong R, Huang D, Chen L, Du J, Fu C. Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38922612 DOI: 10.1080/10408398.2024.2369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Yuchen Ma
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Ruifang Dong
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
3
|
Di Renzo T, Trivisonno MC, Nazzaro S, Reale A, Messia MC. Effect of Different Hydrocolloids on the Qualitative Characteristics of Fermented Gluten-Free Quinoa Dough and Bread. Foods 2024; 13:1382. [PMID: 38731756 PMCID: PMC11083858 DOI: 10.3390/foods13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.
Collapse
Affiliation(s)
- Tiziana Di Renzo
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (T.D.R.); (S.N.)
| | - Maria Carmela Trivisonno
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.C.T.); (M.C.M.)
| | - Stefania Nazzaro
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (T.D.R.); (S.N.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (T.D.R.); (S.N.)
| | - Maria Cristina Messia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.C.T.); (M.C.M.)
| |
Collapse
|
4
|
Rubio-Sánchez R, Ubeda C, Ríos-Reina R. Feasibility of using volatile urine fingerprints for the differentiation of sexually transmitted infections. Appl Microbiol Biotechnol 2023; 107:6363-6376. [PMID: 37615721 PMCID: PMC10560160 DOI: 10.1007/s00253-023-12711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Sexually transmitted infections (STIs) are a public health problem worldwide, and current diagnostic methods have certain limitations. In recent years, volatile organic compounds (VOCs) have been studied as an alternative diagnostic method. Due to this, this study aimed to detect, in vaginal swabs and urine samples, VOCs emitted by highly prevalent STIs-causing bacteria (Chlamydia trachomatis, Mycoplasma genitalium, and Neisseria gonorrhoeae) to identify potential biomarkers that allow the detection of these STIs. VOCs detected in urine samples showed a better differentiation of patients with STIs due to C. trachomatis from those not infected, with 2,6-dimethyl-4-heptanone as the volatile compound most related to the presence of this bacterium. Among the VOCs most related to M. genitalium in urine, 4-methyltetradecane and 2-methylpentadecane stood out, while 3,4,4-trimethyl-2-cyclohexen-1-one was the VOC most closely related to N. gonorrhoeae infection. Moreover, C12 alcohols were the main VOC family associated with positive samples in all three bacteria, which could indicate the presence of aldehyde reductases in their metabolism. In contrast, alcohols such as 3-methyl-1-heptanol and 1-octanol, as well as dimethyl esters, were more associated with negative samples and may be useful in ruling out an STI caused by one of these three bacteria. In short, the VOCs identified as potential biomarkers in patients with infection by C. trachomatis, M. genitalium, or N. gonorrhoeae could be used in the early diagnosis of these STIs, quickly interrupting the chain of transmission, especially interesting in asymptomatic patients. KEY POINTS: • Sexually transmitted infections are a serious public health problem worldwide. • The study of VOCs in multiple infections is increasing in recent years. • The identification of volatile biomarkers could allow new diagnostic methods.
Collapse
Affiliation(s)
- Ricardo Rubio-Sánchez
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de Valme, 41014 Seville, Spain
| | - Cristina Ubeda
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Rocío Ríos-Reina
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
5
|
Ki H, Baek JS, Hawkes HJK, Kim YS, Hwang KY. Fermented Kamut Sprout Extract Decreases Cell Cytotoxicity and Increases the Anti-Oxidant and Anti-Inflammation Effect. Foods 2023; 12:foods12112107. [PMID: 37297352 DOI: 10.3390/foods12112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Kamut sprouts (KaS) contain several biologically active compounds. In this study, solid-state fermentation using Saccharomyces cerevisiae and Latilactobacillus sakei was used to ferment KaS (fKaS-ex) for 6 days. The fKaS-ex showed a 26.3 mg/g dried weight (dw) and 46.88 mg/g dw of polyphenol and the β-glucan contents, respectively. In the Raw264.7 and HaCaT cell lines, the non-fermented KaS (nfKaS-ex) decreased cell viability from 85.3% to 62.1% at concentrations of 0.63 and 2.5 mg/mL, respectively. Similarly, the fKaS-ex decreased cell viability, but showed more than 100% even at 1.25 and 5.0 mg/mL concentrations, respectively. The anti-inflammatory effect of fKaS-ex also increased. At 600 µg/mL, the fKaS-ex exhibited a significantly higher ability to reduce cytotoxicity by suppressing COX-2 and IL-6 mRNA expressions as well as that for IL-1β mRNA. In summary, fKaS-ex exhibited significantly lower cytotoxicity and increased anti-oxidant and anti-inflammatory properties, indicating that fKaS-ex is beneficial for use in food and other industries.
Collapse
Affiliation(s)
- Hosam Ki
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Seok Baek
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
| | - Hye-Jin Kim Hawkes
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Soo Kim
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Reale A, Messia MC, Pulvento C, Lavini A, Nazzaro S, Di Renzo T. Microbial and Qualitative Traits of Quinoa and Amaranth Seeds from Experimental Fields in Southern Italy. Foods 2023; 12:foods12091866. [PMID: 37174403 PMCID: PMC10177794 DOI: 10.3390/foods12091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Quinoa and amaranth are of special interest since they are increasingly used for the development of new bakery products with enhanced nutritional value. The aim of the study was to evaluate the agronomic, microbiological, and nutritional characteristics of quinoa and amaranth seeds grown in Southern Italy. For this reason, quinoa Titicaca and three amaranth accessions (5, 12, and 14) were cultivated in different experimental fields in the Campania Region and analyzed for the cultivation aspects, chemical composition, and microbiological quality of the seeds. All seeds showed a good adaptability to cultivation in the experimental areas of the Mediterranean basin. Quinoa seeds were characterized by their higher protein, fat, and ash content than the amaranth seeds, which were characterized by their higher value in dietary fiber. All seeds, regardless of the geographical area of production, were contaminated with yeasts, moulds, and spore-forming bacteria, mainly Bacillus cereus, B. licheniformis, B. safensis and B. subtilis, as identified by 16S rRNA sequencing analysis. So, the detection of Bacillus spp. must be strongly monitored, as quinoa and amaranth seeds could be used in bread production, where they can cause ropiness, resulting in great economic losses for the industries.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy
| | - Maria Cristina Messia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Cataldo Pulvento
- Department of Soil, Plant and Food Science (DISSPA), University of Bari "A. Moro", Via Amendola, 165/A, 70126 Bari, Italy
| | - Antonella Lavini
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Stefania Nazzaro
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
7
|
Șerban LR, Păucean A, Chiș MS, Pop CR, Man SM, Pușcaș A, Ranga F, Socaci SA, Alexa E, Berbecea A, Semeniuc CA, Mureșan V. Metabolic Profile of Einkorn, Spelt, Emmer Ancient Wheat Species Sourdough Fermented with Strain of Lactiplantibacillus plantarum ATCC 8014. Foods 2023; 12:foods12051096. [PMID: 36900613 PMCID: PMC10001257 DOI: 10.3390/foods12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.
Collapse
Affiliation(s)
- Larisa Rebeca Șerban
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Simona Maria Man
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Krastanov A, Georgiev M, Slavchev A, Blazheva D, Goranov B, Ibrahim SA. Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation. Foods 2023; 12:foods12020379. [PMID: 36673475 PMCID: PMC9858186 DOI: 10.3390/foods12020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Stable symbiotic starter cultures were created using selected strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus with antimicrobial activity against pathogens and necessary antibiotic sensitivity, growth kinetic parameters, and metabolic profiles. The volatile compound profiles of the obtained starter cultures were determined and their specificity was proven depending on the ratio of monocultures in each combination. The influence of the freeze-drying process on the starter cultures in relation to the production of aromatic components was investigated and it was demonstrated that this process had a significant effect on the content of the aroma-forming substances in the fermented milk. However, the influence of the pre-cooling process and crude fat content from 1.5 to 3.0% did not notably affect the levels of volatile compounds synthesized by the selected starter cultures. Comprehensive data for all volatile aromatic metabolites in the fermented milk were also obtained. These designed symbiotic starter cultures can be used to produce traditional Bulgarian yogurt with increased functional and probiotic properties.
Collapse
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Marin Georgiev
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Aleksandar Slavchev
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria
- Correspondence:
| | - Bogdan Goranov
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC 27411-1064, USA
| |
Collapse
|
9
|
Tomić J, Dapčević-Hadnađev T, Škrobot D, Maravić N, Popović N, Stevanović D, Hadnađev M. Spontaneously fermented ancient wheat sourdoughs in breadmaking: Impact of flour quality on sourdough and bread physico-chemical properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Škrobot D, Dapčević-Hadnađev T, Tomić J, Maravić N, Popović N, Jovanov P, Hadnađev M. Techno-Functional Performance of Emmer, Spelt and Khorasan in Spontaneously Fermented Sourdough Bread. Foods 2022; 11:3927. [PMID: 36496735 PMCID: PMC9741205 DOI: 10.3390/foods11233927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The aim of this study was to test the suitability of three different ancient wheat varieties (emmer, spelt and khorasan) to produce spontaneously fermented sourdough bread and to evaluate the impact on the dough rheological properties, ultrastructure and baking quality. Modern wheat sourdough bread and bakery yeast fermented bread were used as controls. Sourdoughs produced from modern and ancient wheats exerted different effects on dough viscoelastic properties, bread specific volume, texture, firming rate, colour and sensory properties, while there was no influence on bread water activity. Both khorasan sourdough, being characterised with the highest dough strength and dense gluten protein matrix, and emmer sourdough, with loose and thin gluten strands of low strength, yielded breads characterised by low specific volume and hard crumb texture. Spelt and modern wheat sourdough were characterised by foam-like dough structures with entrapped gas cells leading to breads of similar specific volume and texture. Although the yeast-fermented wheat flour exerted a higher specific volume and the lowest firmness, the sourdough wheat flour bread had a lower firming rate. A comparison of sourdough bread prepared with modern and ancient wheats revealed that breads based on ancient varieties possess a less noticeable sour taste, odour and flavour, thus contributing to more sensory-appealing sourdough bread.
Collapse
Affiliation(s)
- Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Tamara Dapčević-Hadnađev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Tomić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Maravić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 9, 444a, 11042 Belgrade, Serbia
| | - Pavle Jovanov
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Miroslav Hadnađev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
11
|
Liquid sourdough from stone-ground soft wheat (Triticum aestivum) flour: Development and exploitation in the breadmaking process. Food Res Int 2022; 161:111796. [DOI: 10.1016/j.foodres.2022.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|
12
|
Innovative technologies optimizing the production process of “Castagne del Prete”: Impact on microstructure and volatile compounds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Jikang J, Wenxiang L, Shuping Y. The effect of inoculation Leuconostoc mesenteroides and Lactiplantibacillus planetarium on the quality of Pleurotus eryngii Jiaosu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Li R, Luo W, Liu Y, Chen C, Chen S, Yang J, Wu P, Lv X, Liu Z, Ni L, Han J. The investigation on the characteristic metabolites of Lactobacillus plantarum RLL68 during fermentation of beverage from by-products of black tea manufacture. Curr Res Food Sci 2022; 5:1320-1329. [PMID: 36072509 PMCID: PMC9441299 DOI: 10.1016/j.crfs.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
At present, lactic acid bacteria (LAB) fermentation is commonly considered as an effective strategy to remarkably drive the improvement of flavor and nutritional value, and extend shelf-life of fermented foods. In this study, the by-product of tea manufacture, including broken tea segments and tea stalk, was used to produce fermented tea beverages. In addition, the residual components of matrices and bacterial metabolites were measured, as well as the sensory quality of the beverage was evaluated. Subsequently, the determination of monosaccharides, volatile aroma profile, free amino acids, biogenic amines and organic acids, and several functional substances involving γ-aminobutyric acid (GABA), polyphenols, caffeine and L-theanine were carried out. The results revealed that glucose, fructose, mannose and xylose are principal carbon source of Lactobacillus plantarum RLL68 during the fermentation; moreover, the abundance of aromatic substances is varied dramatically and the characteristic flavors of the beverages, particularly fermentation for 48 h and 72 h, are imparted with sweet and fruity odor on the basis of initial nutty and floral odor; Meanwhile, the organoleptic qualities of fermented beverages is also enhanced. Furthermore, the levels of organic acids and GABA are elevated, while the bitter amino acids, as well as some bioactive substances including tea polyphenols and L-theanine are declined; Besides, the caffeine level almost remains constant, and quite low levels of various biogenic amines are also observed. The results of this study will provide the theoretical basis to steer and control the flavor and quality of the fermented tea beverages in the future. The dynamic variation of characteristic metabolites of the beverage was elucidated. The characteristic flavors changed from nutty and floral to sweet and fruity. L. plantarum fermentation bring both beneficial and adverse impacts.
Collapse
Affiliation(s)
- Ruili Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weibo Luo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifeng Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Research Institute of Cereal and Oil Science and Technology, Fuzhou, 350025, China
| | - Chi Chen
- Fujian Vocational College of Agriculture, College of Modern Agricultural Engineering, Fuzhou, 350303, Fujian, China
| | - Shunxian Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhibin Liu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinzhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Corresponding author.
| |
Collapse
|
15
|
Ancient Wheat Species: Biochemical Profile and Impact on Sourdough Bread Characteristics—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9112008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the attention of farmers, bakers and consumers towards ancient wheat species has been increasing. Low demands of pedo-climatic growth factors, the suitability for organic cultivation along with their high nutritional quality and their content in pro-health compounds make them extremely attractive for bakers and modern consumers, equally. On the other hand, in recent years, sourdough has gained attention due to its ability to produce new functionally active molecules with higher bioaccessibility and thus to produce bread with enhanced nutritional quality. This paper highlights the relevant nutritional profile of einkorn, spelt, emmer and Khorasan which could lead to bread with improved textural, sensorial, microbial and nutritional characteristics through sourdough fermentation. The ancient wheat species could be used as promising substitutes for common wheat flour for the design of innovative types of bread, even for special needs.
Collapse
|
16
|
Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cereal products are staple foods highly appreciated and consumed worldwide. Nonetheless, due to the presence of gluten proteins, and other co-existing compounds such as amylase-trypsin inhibitors and fermentable short-chain carbohydrates in those products, their preference by consumers has substantially decreased. Gluten affects the small gut of people with celiac disease, triggering a gut inflammation condition via auto-immune response, causing a cascade of health disorders. Amylase-trypsin inhibitors and fermentable short-chain carbohydrate compounds that co-exists with gluten in the cereal-based foods matrix have been associated with several gastrointestinal symptoms in non-celiac gluten sensitivity. Since the symptoms are somewhat overlapped, the relation between celiac disease and irritable bowel syndrome has recently received marked interest by researchers. Sourdough fermentation is one of the oldest ways of bread leavening, by lactic acid bacteria and yeasts population, converting cereal flour into attractive, tastier, and more digestible end-products. Lactic acid bacteria acidification in situ is a key factor to activate several cereal enzymes as well as the synthesis of microbial active metabolites, to positively influence the nutritional/functional and health-promoting benefits of the derived products. This review aims to explore and highlight the potential of sourdough fermentation in the Food Science and Technology field.
Collapse
|
17
|
Santagata G, Zannini D, Mallardo S, Boscaino F, Volpe MG. Nutritional and Chemical-Physical Characterization of Fresh Pasta Gnocchi Prepared with Sea Water as New Active Ingredient. Foods 2021; 10:foods10112585. [PMID: 34828864 PMCID: PMC8619524 DOI: 10.3390/foods10112585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023] Open
Abstract
This study shows the chemical-physical and nutritional results obtained using food-grade sea water for the preparation of fresh pasta Gnocchi with respect to those prepared with tap water. Gnocchi obtained by mixing the flour with seawater (GSW) were compared with traditional Gnocchi made with tap water (GTW). The contents of sodium chloride, macro and micro elements, volatile molecules profile, thermal properties, and morphological analysis were investigated in both Gnocchi types. The analysis of chlorides showed that the samples prepared with sea water had a significantly lower NaCl content after cooking in comparison with those prepared with tap water. These results were also confirmed by the inductively coupled plasma (ICP) analysis for sodium content. The profiles of the volatile molecules acquired by gas chromatography-mass spectrometry (GC-MS) evidenced significant differences between the groups of aromatic molecules of the two typologies of samples. Morphological analysis evidenced that both raw and cooked GSW Gnocchi were structurally tightened whereas GTW Gnocchi showed a labile and weak macromolecular network. In addition, GSW Gnocchi was more thermally stable than GTW Gnocchi, as evidenced by thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Gabriella Santagata
- National Research Council, Institute of Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (D.Z.); (S.M.)
| | - Domenico Zannini
- National Research Council, Institute of Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (D.Z.); (S.M.)
| | - Salvatore Mallardo
- National Research Council, Institute of Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (D.Z.); (S.M.)
| | - Floriana Boscaino
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy;
| | - Maria Grazia Volpe
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy;
- Correspondence: ; Tel.: +39-33885-45393
| |
Collapse
|
18
|
Zhang D, Tan B. Effects of different solid-state fermentation ratios of S. cerevisiae and L. plantarum on physico-chemical properties of wheat bran and the quality of whole wheat bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4551-4560. [PMID: 33462833 DOI: 10.1002/jsfa.11097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/06/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The addition of wheat bran (WB) could improve the nutritional quality of whole wheat bread (WWB); however, it also caused many negative effects on the quality of bread. To improve the physico-chemical properties of WB and the quality of WWB, WB was solid-state fermented with different ratios of commercially available S. cerevisiae and L. plantarum, and utilized to prepare WWB. RESULTS The physico-chemical properties of WB including dietary fiber content and its components, amino acid composition, and antioxidant activities were determined. After solid-state fermentation, the physico-chemical properties of WB were improved. WBSac:Lac = 2:1 showed higher antioxidant activity (only the total antioxidant activity was slightly lower than WBSac:Lac = 1:1 ), and greater concentration of soluble dietary fiber (9.22%) and essential amino acids / total amino acids (42.04) than the other WB samples. Whole wheat bread quality was investigated by measuring specific volume, porosity, texture, aroma, and volatile compounds. The WWB made with WBSac:Lac = 2:1 showed a higher specific volume, more uniform porosity structure, better texture, and more volatile compounds than the other samples. CONCLUSION Using a ratio of yeast and lactobacilli of 2:1, the solid-state fermentation maximally improves the processing properties of WB, and prepares WWB with the best quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duqin Zhang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, P.R. China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, P.R. China
| |
Collapse
|
19
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|
20
|
Douwenga S, Janssen P, Teusink B, Bachmann H. A centrifugation-based clearing method allows high-throughput acidification and growth-rate measurements in milk. J Dairy Sci 2021; 104:8530-8540. [PMID: 33934870 DOI: 10.3168/jds.2020-20108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
The turbidity of milk prohibits the use of optical density measurements for strain characterizations. This often limits research to laboratory media. Here, we cleared milk through centrifugation to remove insoluble milk solids. This resulted in a clear liquid phase, termed milk serum, in which optical density measurements can be used to track microbial growth until a pH of 5.2 is reached. At pH 5.2 coagulation of the soluble protein occurs, making the medium opaque again. We found that behavior in milk serum was predictive of that in milk for 39 Lactococcus lactis (R2 = 0.81) and to a lesser extent for 42 Lactiplantibacillus plantarum (formerly Lactobacillus plantarum; R2 = 0.49) strains. Hence, milk serum can be used as an optically clear alternative to milk for comparison of microbial growth and metabolic characteristics. Characterization of the growth rate, specific acidification rate for optical density at a wavelength of 600 nm, and the amount of acid produced per unit of biomass for all these strains in milk serum, showed that almost all strains could grow in milk, with higher specific acidification and growth rates of Lc. lactis strains compared with Lb. plantarum strains. Nondairy Lc. lactis isolates had a lower growth and specific acidification rate than dairy isolates. The amount of acid produced per unit biomass was relatively high and similar for Lc. lactis dairy and nondairy isolates, as opposed to Lb. plantarum isolates. Lactococcus lactis ssp. lactis showed slightly lower growth and acidification rates when compared with ssp. cremoris. For Lc. lactis strains a doubling of the specific acidification rate occurred with a doubling of the maximum growth rate. This relation was not found for Lb. plantarum strains, where the acidification rate remained relatively constant across 39 strains with growth rates ranging from 0.2 h-1 to 0.3 h-1. We conclude that milk serum is a valuable alternative to milk for high-throughput strain characterization during milk fermentation.
Collapse
Affiliation(s)
- Sieze Douwenga
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Patrick Janssen
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Health Department, NIZO Food Research, 6718 ZB, Ede, the Netherlands
| | - Bas Teusink
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Herwig Bachmann
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands; Health Department, NIZO Food Research, 6718 ZB, Ede, the Netherlands.
| |
Collapse
|
21
|
Guangsen T, Xiang L, Jiahu G. Microbial diversity and volatile metabolites of kefir prepared by different milk types. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1912190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tong Guangsen
- Culinary Institute, Sichuan Tourism University, Chengdu, China
| | - Li Xiang
- Culinary Institute, Sichuan Tourism University, Chengdu, China
| | - Guo Jiahu
- Academy of ESH, Sichuan Staff University of Science and Technology, Chengdu, China
| |
Collapse
|
22
|
Cizeikiene D, Gaide I, Basinskiene L. Effect of Lactic Acid Fermentation on Quinoa Characteristics and Quality of Quinoa-Wheat Composite Bread. Foods 2021; 10:171. [PMID: 33467006 PMCID: PMC7830237 DOI: 10.3390/foods10010171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
The application of selected starter cultures with specific properties for fermentation may determine steady lactic acid bacteria (LAB) variety and the characteristics of fermented products that influence nutritional value, the composition of biologically active compounds and quality. The aim of this research was to evaluate the influence of different LAB on the biochemical characteristics of fermented quinoa. Moreover, total phenolic content (TPC), and the antimicrobial and antioxidant activities of protein fractions isolated from quinoa previously fermented with LAB were investigated. Quinoa additives, including quinoa fermented with Lactobacillus brevis, were incorporated in a wheat bread recipe to make nutritionally fortified quinoa-wheat composite bread. The results confirmed that L. plantarum, L. brevis, and L. acidophilus were well adapted in quinoa medium, confirming its suitability for fermentation. LAB strains influenced the acidity, L/D-lactic acid content, enzyme activity, TPC and antioxidant activity of fermented quinoa. The maximum phytase activity was determined in quinoa fermented with L. brevis. The results obtained from the ABTS radical scavenging assay of protein fractions confirmed the influence of LAB strain on the antioxidant activity of protein fractions. The addition of 5 and 10% of quinoa fermented with L. brevis did not affect the total titratable acidity of wheat bread, while 10% of fermented quinoa with L. brevis resulted in a higher specific volume. Fermented quinoa additives increased the overall acceptability of bread compared with unfermented seed additives.
Collapse
Affiliation(s)
| | | | - Loreta Basinskiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (D.C.); (I.G.)
| |
Collapse
|
23
|
Liu J, Yang Z, Hao Y, Wang Z, Han L, Li M, Zhang N, Chen H, Liu Y, Li H, Wang J. Effect of alkylresorcinols on the formation of Nε-(carboxymethyl)lysine and sensory profile of wheat bread. Food Sci Nutr 2021; 9:489-498. [PMID: 33473310 PMCID: PMC7802564 DOI: 10.1002/fsn3.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Alkylresorcinols (ARs) are important bioactive components in wheat bran which have been used as biomarkers for whole grain wheat consumption. In this study, the impact of ARs on the formation of Nε-(carboxymethyl)lysine (CML), the main component of dietary advanced glycation end products which could induce chronic disease was analyzed. Moreover, the influence of the addition of ARs on the sensory profiles of wheat bread was evaluated. ARs supplementation (0.03%, 0.1%, and 0.3% w/w) could significantly decrease the formation of CML by 21.70%, 35.11%, and 42.18%, respectively, compared with the control. Moreover, ARs-supplemented bread achieved a higher score in overall acceptability and buttery-like aroma through sensory evaluation. The volatile compounds in bread supplemented with ARs were characterized by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), among which acetoin, 2,3-butanedione, 3-methyl-1-butanol, 2-phenylethanol, and 2-methylbutanal were confirmed as the main volatile compounds through determination of odor activity value. In addition, ARs supplementation had no negative impact on the chewiness, hardness, and springiness of bread. These findings demonstrated that ARs could be applied as potential food additives to improve the quality and sensory profile of bread.
Collapse
Affiliation(s)
- Jie Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Zihui Yang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yiming Hao
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ziyuan Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Lin Han
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Meng Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ning Zhang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Haitao Chen
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yingli Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Hongyan Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Jing Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business UniversityBeijingChina
| |
Collapse
|
24
|
Biochemical characteristics and potential applications of ancient cereals - An underexploited opportunity for sustainable production and consumption. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Reale A, Zotta T, Ianniello RG, Mamone G, Di Renzo T. Selection criteria of lactic acid bacteria to be used as starter for sweet and salty leavened baked products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Probiotic Properties and Antioxidant Activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in Fermented Black Gamju. Foods 2020; 9:foods9091154. [PMID: 32825754 PMCID: PMC7554914 DOI: 10.3390/foods9091154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Black gamju is Korean traditional beverage fermented with molds. The aim of this study was to assess the probiotic properties and antioxidant activities of novel Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 to develop black gamju with bioactive properties for health. Tolerance against artificial gastric juice and bile salts, adhesion ability on HT-29 cells of strains, and antibiotics susceptibility were evaluated as probiotics, and various enzyme productions were detected. The 2,2-diphenyl-1-picrylhydrazyl assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate, and β-carotene bleaching assay were used for antioxidant activity of samples. The tolerance of both strains to artificial gastric juice and bile salts (Oxgall) was more than 90%. Additionally, both strains did not produce β-glucuronidase and were resistant to gentamicin, kanamycin, streptomycin, and ciprofloxacin. After fermentation of black gamju with each strain, the number of viable lactic acid bacteria increased to 8.25-8.95 log colony forming unit/mL, but the pH value of fermented samples decreased more (to pH 3.33-3.41) than that of control (pH 4.37). L. brevis KU15151 showed higher adhesion activity to HT-29 cells and antioxidant effects than P. pentosaceus SC28 in three antioxidant assays.
Collapse
|
27
|
Ashaolu TJ, Reale A. A Holistic Review on Euro-Asian Lactic Acid Bacteria Fermented Cereals and Vegetables. Microorganisms 2020; 8:E1176. [PMID: 32756333 PMCID: PMC7463871 DOI: 10.3390/microorganisms8081176] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Lactic acid fermentation is one of the oldest methods used worldwide to preserve cereals and vegetables. Europe and Asia have long and huge traditions in the manufacturing of lactic acid bacteria (LAB)-fermented foods. They have different cultures, religions and ethnicities with the available resources that strongly influence their food habits. Many differences and similarities exist with respect to raw substrates, products and microbes involved in the manufacture of fermented products. Many of them are produced on industrial scale with starter cultures, while others rely on spontaneous fermentation, produced homemade or in traditional events. In Europe, common LAB-fermented products made from cereals include traditional breads, leavened sweet doughs, and low and non-alcoholic cereal-based beverages, whereas among vegetable ones prevail sauerkraut, cucumber pickles and olives. In Asia, the prevailing LAB-fermented cereals include acid-leavened steamed breads or pancakes from rice and wheat, whereas LAB-fermented vegetables are more multifarious, such as kimchi, sinki, khalpi, dakguadong, jiang-gua, soidon and sauerkraut. Here, an overview of the main Euro-Asiatic LAB-fermented cereals and vegetables was proposed, underlining the relevance of fermentation as a tool for improving cereals and vegetables, and highlighting some differences and similarities among the Euro-Asiatic products. The study culminated in "omics"-based and future-oriented studies of the fermented products.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Anna Reale
- Institute of Food Science, National Research Council, ISA-CNR, 83100 Avellino, Italy
| |
Collapse
|
28
|
Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res Int 2020; 137:109369. [PMID: 33233071 DOI: 10.1016/j.foodres.2020.109369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Kefir is a well-known health-promoting beverage that can be produced by using kefir grains (traditional method) or by using natural starter cultures from kefir (backslopping method). The aim of this study was to elucidate the microbial dynamics and volatilome profile occurring during kefir production through traditional and backslopping methods by using five kefir grains that were collected in Bosnia and Herzegovina. The results from conventional pour plating techniques and amplicon-based sequencing were combined. The kefir drinks have also been characterized in terms of their physico-chemical and colorimetric parameters. A bacterial shift from Lactobacillus kefiranofaciens to Acetobacter syzygii, Lactococcus lactis and Leuconostoc pseudomesenteroides from kefir grains in traditional kefir to backslopped kefir was generally observed. Despite some differences within samples, the dominant mycobiota of backslopped kefir samples remained quite similar to that of the kefir grain samples. However, unlike the lactic acid and acetic acid bacteria, the yeast counts decreased progressively from the grains to the backslopped kefir. The backslopped kefir samples showed higher protein, lactose and ash content and lower ethanol content compared to traditional kefir samples, coupled with optimal pH values that contribute to a pleasant sensory profile. Concerning the volatilome, backslopped kefir samples were correlated with cheesy, buttery, floral and fermented odors, whereas the traditional kefir samples were correlated with alcoholic, fruity, fatty and acid odors. Overall, the data obtained in the present study provided evidence that different kefir production methods (traditional vs backslopping) affect the quality characteristics of the final product. Hence, the functional traits of backslopped kefir should be further investigated in order to verify the suitability of a potential scale-up methodology for backslopping.
Collapse
|
29
|
Scornec H, Palud A, Pédron T, Wheeler R, Petitgonnet C, Boneca IG, Cavin JF, Sansonetti PJ, Licandro H. Study of the cwaRS-ldcA Operon Coding a Two-Component System and a Putative L,D-Carboxypeptidase in Lactobacillus paracasei. Front Microbiol 2020; 11:156. [PMID: 32194510 PMCID: PMC7062640 DOI: 10.3389/fmicb.2020.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022] Open
Abstract
The cell surface is the primary recognition site between the bacterium and the host. An operon of three genes, LSEI_0219 (cwaR), LSEI_0220 (cwaS), and LSEI_0221 (ldcA), has been previously identified as required for the establishment of Lactobacillus paracasei in the gut. The genes cwaR and cwaS encode a predicted two-component system (TCS) and ldcA a predicted D-alanyl-D-alanine carboxypeptidase which is a peptidoglycan (PG) biosynthesis enzyme. We explored the functionality and the physiological role of these three genes, particularly their impact on the bacterial cell wall architecture and on the bacterial adaptation to environmental perturbations in the gut. The functionality of CwaS/R proteins as a TCS has been demonstrated by biochemical analysis. It is involved in the transcriptional regulation of several genes of the PG biosynthesis. Analysis of the muropeptides of PG in mutants allowed us to re-annotate LSEI_0221 as a putative L,D-carboxypeptidase (LdcA). The absence of this protein coincided with a decrease of two surface antigens: LSEI_0020, corresponding to p40 or msp2 whose implication in the host epithelial homeostasis has been recently studied, and LSEI_2029 which has never been functionally characterized. The inactivation of each of these three genes induces susceptibility to antimicrobial peptides (hBD1, hBD2, and CCL20), which could be the main cause of the gut establishment deficiency. Thus, this operon is necessary for the presence of two surface antigens and for a suitable cell wall architecture.
Collapse
Affiliation(s)
- Hélène Scornec
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aurore Palud
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thierry Pédron
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité INSERM, Institut Pasteur, Paris, France
| | - Richard Wheeler
- Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
- Avenir Group, INSERM, Paris, France
| | - Clément Petitgonnet
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Ivo Gomperts Boneca
- Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
- Avenir Group, INSERM, Paris, France
| | - Jean-François Cavin
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité INSERM, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Hélène Licandro
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
30
|
Chang X, Huang X, Tian X, Wang C, Aheto JH, Ernest B, Yi R. Dynamic characteristics of dough during the fermentation process of Chinese steamed bread. Food Chem 2019; 312:126050. [PMID: 31896455 DOI: 10.1016/j.foodchem.2019.126050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
The fermentation process is crucial to the production of Chinese steamed bread (CSB). In order to select suitable indicators as the basis for further research of establishing intelligent monitoring method for dough fermentation state, this study investigated the dynamic characteristics of dough during fermentation. Indicators included water mobility and distribution, starch-pasting properties, content of free amino acid (FAA), volatile organic compounds (VOCs) and electronic nose (E-nose) response value. Starch-pasting properties of dough and relaxation time (T21, T22) did not change significantly during the fermentation process (p < 0.05). The VOCs and FAAs of the dough had significant differences (p < 0.05) in different fermentation times, but no rule was established. The E-nose response value to headspace was most suitable to monitor the fermentation of dough. Principal component analysis (PCA) was performed on E-nose data from 75 samples and the results indicated that samples of different fermentation states were accurately classified.
Collapse
Affiliation(s)
- Xianhui Chang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Joshua H Aheto
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Bonah Ernest
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Ren Yi
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
31
|
Castro‐Alba V, Lazarte CE, Perez‐Rea D, Sandberg A, Carlsson N, Almgren A, Bergenståhl B, Granfeldt Y. Effect of fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa. Food Sci Nutr 2019; 7:3902-3911. [PMID: 31890168 PMCID: PMC6924334 DOI: 10.1002/fsn3.1247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/08/2019] [Accepted: 09/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Quinoa is a pseudocereal with relatively high content of proteins and minerals that also contains mineral inhibitors such as phytate. The aim of the present study was to evaluate lactic acid fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa. Various processes were evaluated, and quinoa grains were dry-roasted, milled, and fermented, either with or without the addition of wheat phytase or activated quinoa phytase (added as back-slop starter), for 10 hr. In other processes, raw quinoa flour was fermented for 10 hr or 4 hr and dry-roasted. Hedonic sensory evaluation was then performed to evaluate the acceptability of the fermented flours prepared as porridges. RESULTS The combined dry roasting and fermentation processes significantly (p < .05) degraded phytate between 30% and 73% from initial content. The most effective process was fermentation of raw quinoa flour followed by dry roasting, which improved the estimated zinc and iron bioavailability. Particularly, estimated zinc bioavailability improved from low (Phy:Zn 25.4, Phy·Zn:Ca 295) to moderate (Phy:Zn 7.14, Phy·Zn:Ca 81.5). Phytate degradation was mainly attributed to the activation of endogenous phytase during fermentation. Dry roasting was effective in improving the sensory attributes of the fermented quinoa flour. Porridge made with raw quinoa flour fermented for 4 hr and dry-roasted was more favorable to overall acceptability than that which was fermented for 10 hr and dry-roasted. CONCLUSION Fermentation of quinoa flour for 4 hr followed by dry roasting was successful in improving both nutritional and sensory attributes of the final product.
Collapse
Affiliation(s)
- Vanesa Castro‐Alba
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
- Food and Natural Products CenterSan Simón UniversityCochabambaBolivia
| | | | - Daysi Perez‐Rea
- Food and Natural Products CenterSan Simón UniversityCochabambaBolivia
| | - Ann‐Sofie Sandberg
- Department of Chemical and Biological Engineering Food ScienceChalmers University of TechnologyGothenburgSweden
| | - Nils‐Gunnar Carlsson
- Department of Chemical and Biological Engineering Food ScienceChalmers University of TechnologyGothenburgSweden
| | - Annette Almgren
- Department of Chemical and Biological Engineering Food ScienceChalmers University of TechnologyGothenburgSweden
| | - Björn Bergenståhl
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Yvonne Granfeldt
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| |
Collapse
|
32
|
Carrizo SL, de Moreno de LeBlanc A, LeBlanc JG, Rollán GC. Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res Int 2019; 127:108735. [PMID: 31882084 DOI: 10.1016/j.foodres.2019.108735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
In recent years, quinoa (Chenopodium quinoa Willd), an ancestral crop of the Andean region of South America, has gained worldwide attention due to its high nutritional value. This grain is a good source of several vitamins and minerals; however, their bioavailability is decreased by the presence of antinutritional factors such as phytic acid. These compounds can be reduced using lactic acid bacteria (LAB), that have a GRAS (Generally Recognized as Safe) status and have traditionally been associated with food fermentation due to their biosynthetic capacity and metabolic versatility. The objective of this study was to evaluate the effectiveness of a pasta made with quinoa sourdough fermented by L. plantarum strains producing vitamins B2 and B9 and phytase to prevent vitamins and minerals deficiency using an in vivo mouse model. The results showed that the pasta fermented with the mixed culture containing L. plantarum CRL 2107 + L. plantarum CRL 1964 present increased B2 and B9 levels in mice blood. Likewise, higher concentrations of P, Ca+2, Fe+2, Mg+2 (18.75, 10.70, 0.37, 4.85 mg/dL, respectively) were determined with respect to the deficient group (DG) (9.85, 9.90, 0.26, 3.34 mg/dL, respectively). Hematological studies showed an increase in hemoglobin (14.4 ± 0.6 g/dL), and hematocrit (Htc, 47.0 ± 0.6%) values, compared to the DG (Hb: 12.6 ± 0.5 g/dL, Hto: 39.9 ± 1.1%). Furthermore, histological evaluations of the intestines showed an increase of the small intestine villi length in this latter group. The results allow us to conclude that bio-enrichment of quinoa pasta using LAB could be a novel strategy to increase vitamin and minerals bioavailability in cereal/pseudocereal - derived foods.
Collapse
Affiliation(s)
- Silvana L Carrizo
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000), San Miguel de Tucumán, Argentina
| | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000), San Miguel de Tucumán, Argentina
| | - Graciela C Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000), San Miguel de Tucumán, Argentina.
| |
Collapse
|
33
|
Sánchez-Reséndiz AI, Escalante-Aburto A, Andía-Ayme V, Chuck-Hernández C. Structural prope rties, functional evaluation, and in vitro protein digestibility of black and yellow quinoa (Chenopodium petiolare) protein isolates. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1669714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Vidalina Andía-Ayme
- Food Microbiology Laboratory, Universidad Nacional San Cristóbal de Huamanga, Ayacucho, Perú
| | | |
Collapse
|
34
|
Dan T, Ren W, Liu Y, Tian J, Chen H, Li T, Liu W. Volatile Flavor Compounds Profile and Fermentation Characteristics of Milk Fermented by Lactobacillus delbrueckii subsp. bulgaricus. Front Microbiol 2019; 10:2183. [PMID: 31620117 PMCID: PMC6759748 DOI: 10.3389/fmicb.2019.02183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is one of the predominant lactic acid bacterial species used as starter cultures in industrial fermented dairy manufacturing, as it strongly affects the quality of the products. Volatile flavor compound profiles and fermentation characteristics are considered to be the most important indicators for starter culture screening. In the present study, volatile compounds in milk fermented by 17 test strains of L. delbrueckii subsp. bulgaricus and a commercial strain used as a control were identified using solid-phase microextraction (SPME) methods coupled with gas chromatography mass spectrometry (GC-MS). In total, 86 volatile flavor compounds were identified in the fermented milk upon completion of fermentation, including 17 carboxylic acids, 14 aldehydes, 13 ketones, 29 alcohols, 8 esters, and 5 aromatic hydrocarbon compounds. Various volatile flavor compounds (acetaldehyde, 3-methyl-butanal, (E)-2-pentenal, hexanal, (E)-2-octenal, nonanal, 2,3-butanedione, acetoin, 2-heptanone, 2-non-anone, formic acid ethenyl ester) were identified due to their higher odor activity values (>1). In addition, of the 17 test strains of L. delbrueckii subsp. bulgaricus, IMAU20312 (B14) and IMAU62081 (B16) strains exhibited good fermentation characteristics in milk compared with the control strain. The combination of the volatile flavor compound profile and fermentation characteristics in this work could be useful when selecting lactic acid bacteria that may serve as important resources in the development of novel fermented milk products.
Collapse
Affiliation(s)
- Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiyi Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Yang Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiale Tian
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Ting Li
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
35
|
Xu D, Zhang Y, Tang K, Hu Y, Xu X, Gänzle MG. Effect of Mixed Cultures of Yeast and Lactobacilli on the Quality of Wheat Sourdough Bread. Front Microbiol 2019; 10:2113. [PMID: 31552010 PMCID: PMC6746982 DOI: 10.3389/fmicb.2019.02113] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, mixed starter cultures of yeast and lactobacilli were used for type I sourdough bread making to evaluate their ability to improve bread quality and increase the amount of flavor volatiles. Kazachstania humilis, Saccharomyces cerevisiae, Wickerhamomyces anomalus, and Lactobacillus sanfranciscensis DSM20451T and Lactobacillus sakei LS8 were used in different combinations to ferment wheat sourdough. S. cerevisiae produced the highest amount of CO2 among all strains and thus enhanced bread volume and crumb texture. S. cerevisiae also increased the free thiol level in bread dough, and this study confirms that thiol accumulation was not strongly related to the content of the glutenin macropolymer (GMP) or bread volume. The role of thiol exchange reactions on bread quality differs between long fermentation sourdough and straight dough with baker's yeast only. The influence of different starter cultures on wheat sourdough bread volatiles was established by using head space solid-phase microextraction and gas chromatography/mass spectrometry analysis (SPME-GC/MS). The sourdough breads fermented with a combination of lactobacilli and yeast had a more complex profile of volatiles, particularly with respect to esters.
Collapse
Affiliation(s)
- Dan Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yao Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kaixing Tang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ying Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xueming Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
36
|
Ballester-Sánchez J, Yalcin E, Fernández-Espinar MT, Haros CM. Rheological and thermal properties of royal quinoa and wheat flour blends for breadmaking. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03265-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Reale A, Di Renzo T, Boscaino F, Nazzaro F, Fratianni F, Aponte M. Lactic Acid Bacteria Biota and Aroma Profile of Italian Traditional Sourdoughs From the Irpinian Area in Italy. Front Microbiol 2019; 10:1621. [PMID: 31396170 PMCID: PMC6667676 DOI: 10.3389/fmicb.2019.01621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
This study identified the lactic acid bacteria (LAB) biota and the volatilome profile of 28 typical sourdoughs of Irpinia—a large area of the Campania region of Southern Italy where numerous breads are produced, even today, following the ancient procedures of sourdough fermentation and for which information on the microbiological and sensory profile is lacking in literature. For this purpose, microbial quality, LAB biodiversity, chemical, and technological characteristics, as well as aroma profile by solid-phase microextraction technique (SPME)–gas chromatography/mass spectrometry (GC/MS) of Irpinian sourdoughs were investigated. The dominant LAB microbiota was examined by both culture-dependent and culture-independent methods Polymerase Chain Reaction/Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results showed a high biodiversity in LAB community whereas the most frequent lactobacilli species recognized were Lactobacillus plantarum (ca. 22% of total LAB isolates), Lactobacillus sanfranciscensis (11%), Lactobacillus paralimentarius (8%), and Lactobacillus rossiae (6.5%), whereas LAB cocci could be mainly referred to Pediococcus pentosaceus (9.5% of total LAB isolates), Leuconostoc spp. (7.8%), and Weissella cibaria (7.7%). Sourdoughs were characterized by the dominance of one or two LAB species, thus proving that the environment influences the selection and the establishment of few key LAB species and that no specific correlation can be traced between microbial composition and geographical origin of the samples. Furthermore, although sourdoughs were characterized by different qualitative and quantitative volatile organic compound (VOC) compositions, no noticeable correlation between volatilome profile and geographical origin was found. However, it emerged that for more isolated locations, it was possible to find the existence of microbial biotypes and sensory profiles with a strong identity, thus revealing the existence of highly traditional and evocative bread recipes in those geographical contexts.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Floriana Boscaino
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Maria Aponte
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
38
|
Zhang G, Tu J, Sadiq FA, Zhang W, Wang W. Prevalence, Genetic Diversity, and Technological Functions of theLactobacillus sanfranciscensisin Sourdough: A Review. Compr Rev Food Sci Food Saf 2019; 18:1209-1226. [DOI: 10.1111/1541-4337.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Guohua Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Jian Tu
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | | | - Weizhen Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Wei Wang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| |
Collapse
|
39
|
Barbarisi C, De Vito V, Pellicano MP, Boscaino F, Balsamo S, Laurino C, Sorrentino G, Volpe MG. Bread chemical and nutritional characteristics as influenced by food grade sea water. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1579837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Valentina De Vito
- Institute of Food Science, National Council of Research, Avellino, Italy
| | | | - Floriana Boscaino
- Institute of Food Science, National Council of Research, Avellino, Italy
| | | | - Carmine Laurino
- Institute of Food Science, National Council of Research, Avellino, Italy
| | - Giuseppe Sorrentino
- Institute for Agricultural and Forestry Systems of the Mediterranean, National Council of Research, Ercolano, Italy
| | - Maria Grazia Volpe
- Institute of Food Science, National Council of Research, Avellino, Italy
| |
Collapse
|
40
|
Saa DLT, Nissen L, Gianotti A. Metabolomic approach to study the impact of flour type and fermentation process on volatile profile of bakery products. Food Res Int 2019; 119:510-516. [PMID: 30884683 DOI: 10.1016/j.foodres.2019.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Metabolomic approaches applied to fermented foods are at the state of the science and represent a robust and reliable approach to identify, quantify and characterise the biochemical profiles of raw materials and transformed products. The outcomes so far obtained are cornerstones to understand mainly nutritional and sensorial inherent features. Formulations of new bakery products with increased nutritional values is trending the market, but sensorial attributes still need to be improved to reach a wider audience. The present work describes the application of gas chromatography-mass spectrometry (GC-MS) and electronic nose analyses, to investigate over the volatilome of different bakery products, obtained from mature and immature grains (KAMUT® khorasan and durum wheat) and transformed by a sourdough made of Lactobacillus spp. and Saccharomyces cerevisiae. From the recipient results has emerged that the sensors used can distinguish the KAMUT® khorasan doughs fermented industrially at the fully ripe stage, the same doughs at the milky stage and KAMUT® khorasan sourdough at the fully ripe stage. Electronic nose allowed discriminating between different types of flours and GC-MS indicated the volatilome of sourdough KAMUT® khorasan case as the most promising. Thus, the combination of different independent variables in the bread process to improve the sensorial quality of the product, when is backed by metabolomics, represents an effective approach to study, characterise and exploit the sensorial quality of breads.
Collapse
Affiliation(s)
- Danielle Laure Taneyo Saa
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Via Fanin, 50, 40127 Bologna, Italy.
| | - Lorenzo Nissen
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Via Fanin, 50, 40127 Bologna, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Via Fanin, 50, 40127 Bologna, Italy
| |
Collapse
|
41
|
Ma X, Wang G, Zhai Z, Zhou P, Hao Y. Global Transcriptomic Analysis and Function Identification of Malolactic Enzyme Pathway of Lactobacillus paracasei L9 in Response to Bile Stress. Front Microbiol 2018; 9:1978. [PMID: 30210466 PMCID: PMC6119781 DOI: 10.3389/fmicb.2018.01978] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Tolerance to bile stress is crucial for Lactobacillus paracasei to survive in the intestinal tract and exert beneficial actions. In this work, global transcriptomic analysis revealed that 104 genes were significantly changed (log2FoldChange > 1.5, P < 0.05) in detected transcripts of L. paracasei L9 when exposed to 0.13% Ox-bile. The different expressed genes involved in various biological processes, including carbon source utilization, amino acids and peptide metabolism processes, transmembrane transport, transcription factors, and membrane proteins. It is noteworthy that gene mleS encoding malolactic enzyme (MLE) was 2.60-fold up-regulated. Meanwhile, L-malic acid was proved to enhance bile tolerance, which could be attributed to the intracellular alkalinization caused by MLE pathway. In addition, membrane vesicles were observed under bile stress, suggesting a disturbance in membrane charge without L-malic acid. Then, genetic and physiological experiments revealed that MLE pathway enhanced the bile tolerance by maintaining a membrane balance in L. paracasei L9, which will provide new insight into the molecular basis of MLE pathway involved in bile stress response in Lactic acid bacteria.
Collapse
Affiliation(s)
- Xiayin Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, China Agricultural University, Beijing, China
| | - Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, China Agricultural University, Beijing, China
| | - Pengyu Zhou
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, China Agricultural University, Beijing, China
| |
Collapse
|