1
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
2
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
3
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
4
|
Abdelrady YA, Thabet HS, Sayed AM. The future of metronomic chemotherapy: experimental and computational approaches of drug repurposing. Pharmacol Rep 2025; 77:1-20. [PMID: 39432183 DOI: 10.1007/s43440-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Metronomic chemotherapy (MC), long-term continuous administration of anticancer drugs, is gaining attention as an alternative to the traditional maximum tolerated dose (MTD) chemotherapy. By combining MC with other treatments, the therapeutic efficacy is enhanced while minimizing toxicity. MC employs multiple mechanisms, making it a versatile approach against various cancers. However, drug resistance limits the long-term effectiveness of MC, necessitating ongoing development of anticancer drugs. Traditional drug discovery is lengthy and costly due to processes like target protein identification, virtual screening, lead optimization, and safety and efficacy evaluations. Drug repurposing (DR), which screens FDA-approved drugs for new uses, is emerging as a cost-effective alternative. Both experimental and computational methods, such as protein binding assays, in vitro cytotoxicity tests, structure-based screening, and several types of association analyses (Similarity-Based, Network-Based, and Target Gene), along with retrospective clinical analyses, are employed for virtual screening. This review covers the mechanisms of MC, its application in various cancers, DR strategies, examples of repurposed drugs, and the associated challenges and future directions.
Collapse
Affiliation(s)
- Yousef A Abdelrady
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Hayam S Thabet
- Microbiology Department, Faculty of Veterinary Medicine, Assiut University, Asyut, 71526, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Byrd DA, Damerell V, Gomez Morales MF, Hogue SR, Lin T, Ose J, Himbert C, Ilozumba MN, Kahlert C, Shibata D, Toriola AT, Li CI, Figueiredo J, Stephens WZ, Warby CA, Hardikar S, Siegel EM, Round J, Ulrich CM, Gigic B. The gut microbiome is associated with disease-free survival in stage I-III colorectal cancer patients. Int J Cancer 2025. [PMID: 39887373 DOI: 10.1002/ijc.35342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) is the second overall leading cause of cancer death in the United States, with recurrence being a frequent cause of mortality. Approaches to improve disease-free survival (DFS) are urgently needed. The gut microbiome, reflected in fecal samples, is likely mechanistically linked to CRC progression and may serve as a non-invasive biomarker. Accordingly, we leveraged baseline fecal samples from N = 166 stage I-III CRC patients in the ColoCare Study, a prospective cohort of newly diagnosed CRC patients. We sequenced the V3 and V4 regions of the 16S rRNA gene to characterize fecal bacteria. We calculated estimates of alpha diversity, beta diversity, and a priori- and exploratory-selected bacterial presence/absence and relative abundance. Associations of microbial metrics with DFS were estimated using multivariable Cox proportional hazards models. We found that alpha diversity was strongly associated with improved DFS, most strongly among rectal cancer patients (Shannon HRrectum = 0.40 95% CI = 0.19, 0.87; p = .02). Overall microbiome composition differences (beta diversity), as characterized by principal coordinate axes, were statistically significantly associated with DFS. Peptostreptococcus was statistically significantly associated with worse DFS (HR = 1.62, 95% CI = 1.13, 2.31; p = .01 per 1-SD) and Order Clostridiales was associated with improved DFS (HR = 0.62, 95% CI = 0.43-0.88; p = .01 per 1-SD). In exploratory analyses, Coprococcus and Roseburia were strongly associated with improved DFS. Overall, higher bacterial diversity and multiple bacteria were strongly associated with DFS. Metagenomic sequencing to elucidate species, gene, and functional level details among larger, diverse patient populations are critically needed to support the microbiome as a biomarker of CRC outcomes.
Collapse
Affiliation(s)
- Doratha A Byrd
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Victoria Damerell
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Stephanie R Hogue
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Information and Communication Faculty for Media, Information and Design University of Applied Sciences and Arts, Hannover, Germany
| | - Caroline Himbert
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mmadili N Ilozumba
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jane Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - W Zac Stephens
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Christy A Warby
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sheetal Hardikar
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Erin M Siegel
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - June Round
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Yao B, Wei W, Zhang H. Efficacy of probiotics or synbiotics supplementation on chemotherapy-induced complications and gut microbiota dysbiosis in gastrointestinal cancer: a systematic review and meta-analysis. Eur J Clin Nutr 2024:10.1038/s41430-024-01542-5. [PMID: 39562823 DOI: 10.1038/s41430-024-01542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
This study aimed to systematically review the clinical efficacy of probiotics or synbiotics supplementation in the treatment of chemotherapy-induced complications and gut microbiota dysbiosis in patients with gastrointestinal cancer. A literature search was performed systematically using PubMed, Embase, Cochrane, Web of Science, Wanfang Data, and CNKI for randomized controlled trials of probiotics or synthetic supplementation on chemotherapy-induced complications and gut microbiota dysbiosis in gastrointestinal cancer up to December 2023. The outcome measures included chemotherapy-related complications and the the incidence of gut microbiotas. Fifteen studies were finally eligible for meta-analysis, involving 1356 patients. Meta-analysis results showed that the the incidence rates of chemotherapy-related complications such as nausea and vomiting [RR = 0.61, 95% CI (0.46,0.82), P = 0.0008] and diarrhea [RR = 0.47, 95% CI (0.32,0.68), P < 0.001] were significantly reduced after probiotic intervention. The number of intestinal flora changed significantly after intervention, such as bifidobacterium [SMD = 1.33, 95% CI (0.52,2.31), P = 0.001], Escherichia coli [SMD = -0.82, 95% CI (-1.26, -0.38), P = 0.0003], and the difference was statistically significant. Probiotics or synbiotics supplementation can reduce chemotherapy-induced complications in patients with gastrointestinal cancer and regulate the number of gut microbiotas to balance the intestinal microecology of the body.
Collapse
Affiliation(s)
- Bei Yao
- First school of clinical medicine, Shandong Traditional Chinese Medicine University, Jinan Shandong, 250014, China
| | - Wei Wei
- Acupuncture rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, GuangDong, 510006, China
| | - Huiping Zhang
- Oncology department, Jinan Hospital of Traditional Chinese Medicine, Jinan Shandong, 250012, China.
| |
Collapse
|
7
|
Qin M, Huang Z, Huang Y, Huang X, Chen C, Wu Y, Wang Z, He F, Tang B, Long C, Mo X, Liu J, Tang W. Association analysis of gut microbiota with LDL-C metabolism and microbial pathogenicity in colorectal cancer patients. Lipids Health Dis 2024; 23:367. [PMID: 39516755 PMCID: PMC11546423 DOI: 10.1186/s12944-024-02333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide, with obesity-induced lipid metabolism disorders playing a crucial role in its progression. A complex connection exists between gut microbiota and the development of intestinal tumors through the microbiota metabolite pathway. Metabolic disorders frequently alter the gut microbiome, impairing immune and cellular functions and hastening cancer progression. METHODS This study thoroughly examined the gut microbiota through 16S rRNA sequencing of fecal samples from 181 CRC patients, integrating preoperative Low-density lipoprotein cholesterol (LDL-C) levels and RNA sequencing data. The study includes a comparison of microbial diversity, differential microbiological analysis, exploration of the associations between microbiota, tumor microenvironment immune cells, and immune genes, enrichment analysis of potential biological functions of microbe-related host genes, and the prediction of LDL-C status through microorganisms. RESULTS The analysis revealed that differences in α and β diversity indices of intestinal microbiota in CRC patients were not statistically significant across different LDL-C metabolic states. Patients exhibited varying LDL-C metabolic conditions, leading to a bifurcation of their gut microbiota into two distinct clusters. Patients with LDL-C metabolic irregularities had higher concentrations of twelve gut microbiota, which were linked to various immune cells and immune-related genes, influencing tumor immunity. Under normal LDL-C metabolic conditions, the protective microorganism Anaerostipes_caccae was significantly negatively correlated with the GO Biological Process pathway involved in the negative regulation of the unfolded protein response in the endoplasmic reticulum. Both XGBoost and MLP models, developed using differential gut microbiota, could forecast LDL-C levels in CRC patients biologically. CONCLUSIONS The intestinal microbiota in CRC patients influences the LDL-C metabolic status. With elevated LDL-C levels, gut microbiota can regulate the function of immune cells and gene expression within the tumor microenvironment, affecting cancer-related pathways and promoting CRC progression. LDL-C and its associated gut microbiota could provide non-invasive markers for clinical evaluation and treatment of CRC patients.
Collapse
Affiliation(s)
- Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yongqi Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yongzhi Wu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| |
Collapse
|
8
|
Zhong Y, Liu Z, Wang Y, Cai S, Qiao Z, Hu X, Wang T, Yi J. Preventive Methods for Colorectal Cancer Through Dietary Interventions: A Focus on Gut Microbiota Modulation. FOOD REVIEWS INTERNATIONAL 2024:1-29. [DOI: 10.1080/87559129.2024.2414908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
10
|
Rezasoltani S, Azizmohammad Looha M, Asadzadeh Aghdaei H, Jasemi S, Sechi LA, Gazouli M, Sadeghi A, Torkashvand S, Baniali R, Schlüter H, Zali MR, Feizabadi MM. 16S rRNA sequencing analysis of the oral and fecal microbiota in colorectal cancer positives versus colorectal cancer negatives in Iranian population. Gut Pathog 2024; 16:9. [PMID: 38378690 PMCID: PMC10880352 DOI: 10.1186/s13099-024-00604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) poses a significant healthcare challenge, accounting for nearly 6.1% of global cancer cases. Early detection, facilitated by population screening utilizing innovative biomarkers, is pivotal for mitigating CRC incidence. This study aims to scrutinize the fecal and salivary microbiomes of CRC-positive individuals (CPs) in comparison to CRC-negative counterparts (CNs) to enhance early CRC diagnosis through microbial biomarkers. MATERIAL AND METHODS A total of 80 oral and stool samples were collected from Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran, encompassing both CPs and CNs undergoing screening. Microbial profiling was conducted using 16S rRNA sequencing assays, employing the Nextera XT Index Kit on an Illumina NovaSeq platform. RESULTS Distinct microbial profiles were observed in saliva and stool samples of CPs, diverging significantly from those of CNs at various taxonomic levels, including phylum, family, and species. Saliva samples from CPs exhibited abundance of Calothrix parietina, Granulicatella adiacens, Rothia dentocariosa, and Rothia mucilaginosa, absent in CNs. Additionally, Lachnospiraceae and Prevotellaceae were markedly higher in CPs' feces, while the Fusobacteria phylum was significantly elevated in CPs' saliva. Conversely, the non-pathogenic bacterium Akkermansia muciniphila exhibited a significant decrease in CPs' fecal samples compared to CNs. CONCLUSION Through meticulous selection of saliva and stool microbes based on Mean Decrease GINI values and employing logistic regression for saliva and support vector machine models for stool, we successfully developed a microbiota test with heightened sensitivity and specificity for early CRC detection.
Collapse
Grants
- RIGLD1065 Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- RIGLD1065 Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Regione Autonoma della Sardegna, legge regionale 12 dicembre 2022, n. 22 UNISS FAR fondi ricercar 2021, 2022 and Fondazione di Sardegna 2017
- Regione Autonoma della Sardegna, legge regionale 12 dicembre 2022, n. 22 UNISS FAR fondi ricercar 2021, 2022 and Fondazione di Sardegna 2017
Collapse
Affiliation(s)
- Sama Rezasoltani
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH University Hospital, 52057 Aachen, Germany
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Seyedesomayeh Jasemi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy.
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Shirin Torkashvand
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Reyhaneh Baniali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 19835-178, Iran.
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yang Y, Han Z, Gao Z, Chen J, Song C, Xu J, Wang H, Huang A, Shi J, Gu J. Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus. Chin Med J (Engl) 2023; 136:2847-2856. [PMID: 36959686 PMCID: PMC10686596 DOI: 10.1097/cm9.0000000000002421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an independent risk factor for colorectal cancer (CRC), and the patients with CRC and T2DM have worse survival. The human gut microbiota (GM) is linked to the development of CRC and T2DM, respectively. However, the GM characteristics in patients with CRC and T2DM remain unclear. METHODS We performed fecal metagenomic and targeted metabolomics studies on 36 samples from CRC patients with T2DM (DCRC group, n = 12), CRC patients without diabetes (CRC group, n = 12), and healthy controls (Health group, n = 12). We analyzed the fecal microbiomes, characterized the composition and function based on the metagenomics of DCRC patients, and detected the short-chain fatty acids (SCFAs) and bile acids (BAs) levels in all fecal samples. Finally, we performed a correlation analysis of the differential bacteria and metabolites between different groups. RESULTS Compared with the CRC group, LefSe analysis showed that there is a specific GM community in DCRC group, including an increased abundance of Eggerthella , Hungatella , Peptostreptococcus , and Parvimonas , and decreased Butyricicoccus , Lactobacillus , and Paraprevotella . The metabolomics analysis results revealed that the butyric acid level was lower but the deoxycholic acid and 12-keto-lithocholic acid levels were higher in the DCRC group than other groups ( P < 0.05). The correlation analysis showed that the dominant bacterial abundance in the DCRC group ( Parvimonas , Desulfurispora , Sebaldella , and Veillonellales , among others) was negatively correlated with butyric acid, hyodeoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid, cholic acid and glycocholate. However, the abundance of mostly inferior bacteria was positively correlated with these metabolic acid levels, including Faecalibacterium , Thermococci , and Cellulophaga . CONCLUSIONS Unique fecal microbiome signatures exist in CRC patients with T2DM compared to those with non-diabetic CRC. Alterations in GM composition and SCFAs and secondary BAs levels may promote CRC development.
Collapse
Affiliation(s)
- Yong Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Zihan Han
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Jiajia Chen
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Can Song
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
| | - Jingxuan Xu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hanyang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - An Huang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jingyi Shi
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
| |
Collapse
|
12
|
Le D, Chambers MM, Mercado K, Gutowski CJ. Characterization of the gut microbiome in an osteosarcoma mouse model. J Orthop Res 2023; 41:2730-2739. [PMID: 37246455 DOI: 10.1002/jor.25635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Compelling evidence has mounted surrounding the relationship between the gut microbiome and many intestinal and extraintestinal cancers. Few studies exist investigating the relationship between the gut microbiome and sarcoma. We hypothesize that the presence of distant osteosarcoma induces change to the profile of flora within the mouse. Twelve mice were used for this experiment: six were sedated and received an injection of human osteosarcoma cells into the flank, while six served as controls. Baseline stool and weight were collected. Tumor size and mouse weight were recorded weekly, and stool samples were collected and stored. Fecal microbiomes of the mice were profiled by 16S rRNA gene sequencing and analyzed for alpha diversity, relative abundances of microbial taxa, and abundance of specific bacteria at different time points. Alpha diversity was increased in the osteosarcoma group compared with the control group. The family Lachnospiraceae had the second strongest negative net average change in relative abundance over time in the osteosarcoma group whereas it had a positive net average change in the control group. An increased Firmicutes/Bacteroidota (F/B) ratio was observed in the osteosarcoma group relative to the control mice. These differences suggest that there may be an interplay between the gut microbiome and osteosarcoma. Clinical significance: Due to the paucity of literature available, our work can support novel research on this relationship and the development of new, personalized treatments for osteosarcoma.
Collapse
Affiliation(s)
- David Le
- Department of Orthopaedic Surgery, Inspira Medical Center, Vineland, New Jersey, USA
| | | | - Kayla Mercado
- Department of Orthopaedic Surgery, Cooper University Healthcare, Camden, New Jersey, USA
| | - Christina J Gutowski
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Department of Orthopaedic Surgery, Cooper University Healthcare, Camden, New Jersey, USA
| |
Collapse
|
13
|
Ma Y, Su Z, Chen F, Xu C, Jiang K, An W, Zhang G, Xie D, Wang S, Dong Y, Li Y. Terrestrial Compound Protein Replacing Dietary Fishmeal Improved Digestive Enzyme Activity, Immune Response, Intestinal Microflora Composition, and Protein Metabolism of Golden Pompano ( Trachinotus ovatus). AQUACULTURE NUTRITION 2023; 2023:2716724. [PMID: 37829512 PMCID: PMC10567510 DOI: 10.1155/2023/2716724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Terrestrial compound protein (Cpro) can be potentially used to replace fishmeal (FM) in the marine carnivorous teleost, golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets named FM30, AP80, PP80, and CP80 were formulated. FM30 (control) contained 30% FM and 25% basic protein, while AP80, PP80, and CP80 only contained 6% FM, where 80% FM and 25% basic protein of control diet were completely replaced by animal protein, plant protein, and Cpro, respectively. After golden pompano juveniles (initial weight: 10.32 ± 0.09 g) were, respectively, fed the four diets in floating sea cages for 10 weeks, the growth performance, intestinal digestive enzyme activity, and immune responses, protein metabolism indices of the CP80 group were similar to or better than those of the FM30 group (P > 0.05), and significantly better than those of the AP80 and PP80 groups. Specifically, the weight gain (WG), feed conversion ratio (FCR), activity of alanine transaminase (ALT), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) contents of serum, mRNA level of interleukin-10 (il-10), zonula occludens-2 (zo-2), claudin-3, claudin-12, and eukaryotic translation initiation factor 4G (eif4g) were significantly higher, and the activity of α-amylase (AMS), lipase (LPS) in the foregut and midgut, interleukin-8 (il-8) expression in the intestine was significantly lower than that in the CP80 group, compared with those in AP80 and PP80 groups (P < 0.05). Moreover, the intestinal microflora composition of golden pompano fed with the CP80 diet was improved. Specifically, at the phylum level, the relative abundance of harmful bacterial strains cyanobacteria and TM7 of CP80 group was similar to those of FM30 group (P > 0.05), but was significantly lower than those of AP80 and PP80 groups (P < 0.05). At the genus level, the beneficial bacterial strains Agrobacterium and Blantia of CP80 group were also similar to those of FM30 group (P < 0.05), which were significantly higher than those of AP80 and PP80 groups, but the beneficial bacterial strains Bifidobacterium and Devosia of CP80 group were significantly higher than that in the other groups (P < 0.05). Besides, in diet CP80, the contents of amino acids and anti-nutritional factor, as well as the in vitro digestion rate were comparable to those of FM30, and the anti-nutritional factor content was between AP80 and PP80; total essential amino acids (EAAs) and methionine contents were higher than those in AP80, the glycine content was higher than that in PP80. Taken together, these results indicated that the CP80 diet had better amino acid composition and relatively low content of anti-nutritional factors, as well as high-digestion rate, and thus leads to the fish fed CP80 displaying improved effects in digestive enzyme activity, immune response, protein metabolism, and intestinal microbiota composition, which may be the important reasons to explain why that 80% of FM can be replaced by Cpro in the diet of golden pompano.
Collapse
Affiliation(s)
- Yongcai Ma
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zeliang Su
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Fang Chen
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chao Xu
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kunsheng Jiang
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenqiang An
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Guanrong Zhang
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- College of Animal Science and Technology of Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
14
|
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, Wen Z, He Z, Xu L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res 2023; 196:106916. [PMID: 37690533 DOI: 10.1016/j.phrs.2023.106916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, Soochow Univeristy, Jiangsu 215000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
15
|
Tsigalou C, Paraschaki A, Bragazzi NL, Aftzoglou K, Stavropoulou E, Tsakris Z, Vradelis S, Bezirtzoglou E. Alterations of gut microbiome following gastrointestinal surgical procedures and their potential complications. Front Cell Infect Microbiol 2023; 13:1191126. [PMID: 37333847 PMCID: PMC10272562 DOI: 10.3389/fcimb.2023.1191126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Intestinal microorganisms play a crucial role in shaping the host immunity and maintaining homeostasis. Nevertheless, alterations in gut bacterial composition may occur and these alterations have been linked with the pathogenesis of several diseases. In surgical practice, studies revealed that the microbiome of patients undergoing surgery changes and several post-operative complications seem to be associated with the gut microbiota composition. In this review, we aim to provide an overview of gut microbiota (GM) in surgical disease. We refer to several studies which describe alterations of GM in patients undergoing different types of surgery, we focus on the impacts of peri-operative interventions on GM and the role of GM in development of post-operative complications, such as anastomotic leak. The review aims to enhance comprehension regarding the correlation between GM and surgical procedures based in the current knowledge. However, preoperative and postoperative synthesis of GM needs to be further examined in future studies, so that GM-targeted measures could be assessed and the different surgery complications could be reduced.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Faculty of Medicine, Democritus University of Thrace, Dragana Campus, Alexandroupolis, Greece
| | - Afroditi Paraschaki
- Department of Biopathology/Microbiology, Faculty of Medicine, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - K. Aftzoglou
- Medical School, Comenius University, Bratislava, Slovakia
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, Lausanne, Switzerland
| | - Z. Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - S. Vradelis
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, Dragana Campus, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| |
Collapse
|
16
|
Hong JH, Woo IS. Metronomic chemotherapy as a potential partner of immune checkpoint inhibitors for metastatic colorectal cancer treatment. Cancer Lett 2023; 565:216236. [PMID: 37209943 DOI: 10.1016/j.canlet.2023.216236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The use of immune checkpoint inhibitors (ICIs) in clinical practice for the treatment of metastatic colorectal cancer (mCRC) is currently limited to patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), which comprise less than 5% of all mCRC cases. Combining ICIs with anti-angiogenic inhibitors, which modulate the tumor microenvironment, may reinforce and synergize the anti-tumor immune responses of ICIs. In mCRCs, combinations of pembrolizumab and lenvatinib have shown good efficacy in early phase trials. These results suggest the potential utility of immune modulators as partners in combination treatment with ICIs in immunologically cold microsatellite stable, as well as hot dMMR/MSI-H tumors. Unlike conventional pulsatile maximum tolerated dose chemotherapy, low-dose metronomic (LDM) chemotherapy recruits immune cells and normalizes vascular-immune crosstalk, similar to anti-angiogenic drugs. LDM chemotherapy mostly modulates the tumor stroma rather than directly killing tumor cells. Here, we review the mechanism of LDM chemotherapy in terms of immune modulation and its potential as a combination partner with ICIs for the treatment of patients with mCRC tumors, most of which are immunologically cold.
Collapse
Affiliation(s)
- Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, Republic of Korea.
| |
Collapse
|
17
|
Dora D, Ligeti B, Kovacs T, Revisnyei P, Galffy G, Dulka E, Krizsán D, Kalcsevszki R, Megyesfalvi Z, Dome B, Weiss GJ, Lohinai Z. Non-small cell lung cancer patients treated with Anti-PD1 immunotherapy show distinct microbial signatures and metabolic pathways according to progression-free survival and PD-L1 status. Oncoimmunology 2023; 12:2204746. [PMID: 37197440 PMCID: PMC10184596 DOI: 10.1080/2162402x.2023.2204746] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/13/2023] [Accepted: 04/16/2023] [Indexed: 05/19/2023] Open
Abstract
Due to the high variance in response rates concerning anti-PD1 immunotherapy (IT), there is an unmet need to discover innovative biomarkers to predict immune checkpoint inhibitor (ICI)-efficacy. Our study included 62 Caucasian advanced-stage non-small cell lung cancer (NSCLC) patients treated with anti-PD1 ICI. Gut bacterial signatures were evaluated by metagenomic sequencing and correlated with progression-free survival (PFS), PD-L1 expression and other clinicopathological parameters. We confirmed the predictive role of PFS-related key bacteria with multivariate statistical models (Lasso- and Cox-regression) and validated on an additional patient cohort (n = 60). We find that alpha-diversity showed no significant difference in any comparison. However, there was a significant difference in beta-diversity between patients with long- (>6 months) vs. short (≤6 months) PFS and between chemotherapy (CHT)-treated vs. CHT-naive cases. Short PFS was associated with increased abundance of Firmicutes (F) and Actinobacteria phyla, whereas elevated abundance of Euryarchaeota was specific for low PD-L1 expression. F/Bacteroides (F/B) ratio was significantly increased in patients with short PFS. Multivariate analysis revealed an association between Alistipes shahii, Alistipes finegoldii, Barnesiella visceriola, and long PFS. In contrast, Streptococcus salivarius, Streptococcus vestibularis, and Bifidobacterium breve were associated with short PFS. Using Random Forest machine learning approach, we find that taxonomic profiles performed superiorly in predicting PFS (AUC = 0.74), while metabolic pathways including Amino Acid Synthesis and Fermentation were better predictors of PD-L1 expression (AUC = 0.87). We conclude that specific metagenomic features of the gut microbiome, including bacterial taxonomy and metabolic pathways might be suggestive of ICI efficacy and PD-L1 expression in NSCLC patients.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Balazs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Revisnyei
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - Dániel Krizsán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Regina Kalcsevszki
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Translational Medicine, Lund University, Sweden
| | - Glen J. Weiss
- UMass Chan Medical School, Department of Medicine, Worcester, MA, USA
| | - Zoltan Lohinai
- County Hospital of Torokbalint, Torokbalint, Hungary
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Roggiani S, Mengoli M, Conti G, Fabbrini M, Brigidi P, Barone M, D'Amico F, Turroni S. Gut microbiota resilience and recovery after anticancer chemotherapy. MICROBIOME RESEARCH REPORTS 2023; 2:16. [PMID: 38046820 PMCID: PMC10688789 DOI: 10.20517/mrr.2022.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 12/05/2023]
Abstract
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
19
|
Kunika, Frey N, Rangrez AY. Exploring the Involvement of Gut Microbiota in Cancer Therapy-Induced Cardiotoxicity. Int J Mol Sci 2023; 24:7261. [PMID: 37108423 PMCID: PMC10138392 DOI: 10.3390/ijms24087261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Trillions of microbes in the human intestinal tract, including bacteria, viruses, fungi, and protozoa, are collectively referred to as the gut microbiome. Recent technological developments have led to a significant increase in our understanding of the human microbiome. It has been discovered that the microbiome affects both health and the progression of diseases, including cancer and heart disease. Several studies have indicated that the gut microbiota may serve as a potential target in cancer therapy modulation, by enhancing the effectiveness of chemotherapy and/or immunotherapy. Moreover, altered microbiome composition has been linked to the long-term effects of cancer therapy; for example, the deleterious effects of chemotherapy on microbial diversity can, in turn, lead to acute dysbiosis and serious gastrointestinal toxicity. Specifically, the relationship between the microbiome and cardiac diseases in cancer patients following therapy is poorly understood. In this article, we provide a summary of the role of the microbiome in cancer treatment, while also speculating on a potential connection between treatment-related microbial changes and cardiotoxicity. Through a brief review of the literature, we further explore which bacterial families or genera were differentially affected in cancer treatment and cardiac disease. A deeper understanding of the link between the gut microbiome and cardiotoxicity caused by cancer treatment may help lower the risk of this critical and potentially fatal side effect.
Collapse
Affiliation(s)
- Kunika
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Ashraf Y. Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Harrandah AM. The role of Fusobacteria in oral cancer and immune evasion. Curr Opin Oncol 2023; 35:125-131. [PMID: 36633319 DOI: 10.1097/cco.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW There is growing evidence that suggests a possible role for bacteria in the progression of cancer. Fusobacteria have been detected in different types of cancers, including colorectal and oral cancers. Fusobacteria are common opportunistic oral bacteria known to cause various infections. In this review, we focus on the association between Fusobacteria and cancer, specifically oral cancer, and provide insight into the role of Fusobacteria in carcinogenesis and immune evasion. RECENT FINDINGS Recently, it has been suggested that Fusobacteria are among the bacteria that contribute to the progression of cancer and might affect disease prognosis and treatment outcome. Moreover, Fusobacteria might alter tumor microenvironment and have an impact on tumor immune response. Thus, understanding the effect of Fusobacteria on cancer cells and tumor microenvironment is crucial to improve treatment outcome. SUMMERY Recent evidences suggest that Fusobacteria not only have an impact on tumor progression, but might also affect tumor immune response. Moreover, Fusobacteria presence in the tumor microenvironment might have an impact on treatment outcome and might be used as a prognostic factor.
Collapse
Affiliation(s)
- Amani M Harrandah
- Department of Basic & Clinical Oral Sciences, Umm Al-Qura University College of Dentistry, Mecca, Saudi Arabia
| |
Collapse
|
21
|
Zheng Z, Hu Y, Tang J, Xu W, Zhu W, Zhang W. The implication of gut microbiota in recovery from gastrointestinal surgery. Front Cell Infect Microbiol 2023; 13:1110787. [PMID: 36926517 PMCID: PMC10011459 DOI: 10.3389/fcimb.2023.1110787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Recovery from gastrointestinal (GI) surgery is often interrupted by the unpredictable occurrence of postoperative complications, including infections, anastomotic leak, GI dysmotility, malabsorption, cancer development, and cancer recurrence, in which the implication of gut microbiota is beginning to emerge. Gut microbiota can be imbalanced before surgery due to the underlying disease and its treatment. The immediate preparations for GI surgery, including fasting, mechanical bowel cleaning, and antibiotic intervention, disrupt gut microbiota. Surgical removal of GI segments also perturbs gut microbiota due to GI tract reconstruction and epithelial barrier destruction. In return, the altered gut microbiota contributes to the occurrence of postoperative complications. Therefore, understanding how to balance the gut microbiota during the perioperative period is important for surgeons. We aim to overview the current knowledge to investigate the role of gut microbiota in recovery from GI surgery, focusing on the crosstalk between gut microbiota and host in the pathogenesis of postoperative complications. A comprehensive understanding of the postoperative response of the GI tract to the altered gut microbiota provides valuable cues for surgeons to preserve the beneficial functions and suppress the adverse effects of gut microbiota, which will help to enhance recovery from GI surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
24
|
Huang F, Li S, Chen W, Han Y, Yao Y, Yang L, Li Q, Xiao Q, Wei J, Liu Z, Chen T, Deng X. Postoperative Probiotics Administration Attenuates Gastrointestinal Complications and Gut Microbiota Dysbiosis Caused by Chemotherapy in Colorectal Cancer Patients. Nutrients 2023; 15:nu15020356. [PMID: 36678227 PMCID: PMC9861237 DOI: 10.3390/nu15020356] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The current study aims to evaluate the potential roles of taking probiotics postoperatively in attenuating the gastrointestinal complications and disturbed gut microbiota in colorectal cancer (CRC) patients undergoing chemotherapy. One hundred eligible CRC patients who were treated with radical surgery and needed to receive chemotherapy were recruited. Half of them were randomly assigned to the Probio group to take a probiotic combination from post-operation to the end of the first chemotherapeutic course. The other half of patients taking placebo instead were classified as the Placebo group. Gastrointestinal complications such as nausea, acid reflux, abdominal pain, abdominal distention, constipation, and diarrhea were recorded during chemotherapy. Fecal samples were collected preoperatively and after the first cycle of postoperative chemotherapy for 16S rRNA high-throughput sequencing and short-chain fatty acids (SCFAs) analysis. Results showed that probiotics administration could effectively reduce chemotherapy-induced gastrointestinal complications, particularly in diarrhea (p < 0.01). Additionally, chemotherapy also reduced the bacterial diversity indexes of the gut microbiota in CRC patients, which could be significantly increased by taking probiotics. Moreover, this chemotherapy caused significant changes in the composition of the gut microbiota, as indicated by decreased phylum levels of Firmicutes and increased Bacteroidetes, Proteobacteria, and Verrucomicrobia. In particular, several bacterial genera such as Akkermansia and Clostridium were significantly increased, while Prevotella, Lactobacillus, and Roseburia were decreased (p < 0.05). However, probiotic administration could effectively restore these taxa changes both at the phylum and genus levels, and mildly increase the genus levels of Bifidobacterium, Streptococcus, and Blautia. Furthermore, probiotics could also promote the production of SCFAs, particularly increasing acetate, butyrate, and propionate (p < 0.0001). These results support the beneficial effects of the probiotic interventions as novel alternative or complementary strategies in chemoprevention.
Collapse
Affiliation(s)
- Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shengjie Li
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Wenjie Chen
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yiyang Han
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yue Yao
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Liang Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Li
- Department of Vascular Surgery, Tengzhou Central People’s Hospital, Zaozhuang 277599, China
| | - Qun Xiao
- Department of Hepatobiliary Pancreatic Splenic Surgery, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou 410208, China
| | - Jing Wei
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Correspondence: (T.C.); (X.D.); Tel.: +86-791-8382-7165 (T.C.)
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (T.C.); (X.D.); Tel.: +86-791-8382-7165 (T.C.)
| |
Collapse
|
25
|
Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, Shi C, Sun W, Song M, Wang H, Dong D, Geng J, Zhang Y, Zhu X, Cai Y, Li Y, Li B, Min Q, Wang W, Zhan Q. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell 2023; 41:124-138.e6. [PMID: 36563680 DOI: 10.1016/j.ccell.2022.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Preoperative neoadjuvant chemoradiotherapy (nCRT) is a standard treatment for locally advanced rectal cancer (LARC) patients, yet little is known about the mediators underlying the heterogeneous patient response. In this longitudinal study, we performed 16S rRNA sequencing on 353 fecal specimens and find reduced microbial diversity after nCRT. Multi-omics data integration reveals that Bacteroides vulgatus-mediated nucleotide biosynthesis associates with nCRT resistance in LARC patients, and nonresponsive tumors are characterized by the upregulation of genes related to DNA repair and nucleoside transport. Nucleosides supplementation or B. vulgatus gavage protects cancer cells from the 5-fluorouracil or irradiation treatment. An analysis of 2,205 serum samples from 735 patients suggests that uric acid is a potential prognosis marker for LARC patients receiving nCRT. Our data unravel the role of intestinal microbiota-mediated nucleotide biosynthesis in the response of rectal tumors to nCRT, and highlight the importance of deciphering the cross-talk between cancer cells and gut microorganisms during cancer therapies.
Collapse
Affiliation(s)
- Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Wang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xin Sui
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiawen Fan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuai Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiao Lei
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Maxiaowei Song
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongzhi Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dezuo Dong
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianhao Geng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yangzi Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xianggao Zhu
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Cai
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongheng Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bo Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingjie Min
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Weihu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Qimin Zhan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Liu Z, Zhao E, Li H, Lin D, Huang C, Zhou Y, Zhang Y, Pan X, Liao W, Li F. Identification and validation of a novel stress granules-related prognostic model in colorectal cancer. Front Genet 2023; 14:1105368. [PMID: 37205121 PMCID: PMC10187888 DOI: 10.3389/fgene.2023.1105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aims: A growing body of evidence demonstrates that Stress granules (SGs), a non-membrane cytoplasmic compartments, are important to colorectal development and chemoresistance. However, the clinical and pathological significance of SGs in colorectal cancer (CRC) patients is unclear. The aim of this study is to propose a new prognostic model related to SGs for CRC on the basis of transcriptional expression. Main methods: Differentially expressed SGs-related genes (DESGGs) were identified in CRC patients from TCGA dataset by limma R package. The univariate and Multivariate Cox regression model was used to construct a SGs-related prognostic prediction gene signature (SGPPGS). The CIBERSORT algorithm was used to assess cellular immune components between the two different risk groups. The mRNA expression levels of the predictive signature from 3 partial response (PR) and 6 stable disease (SD) or progress disease (PD) after neoadjuvant therapy CRC patients' specimen were examined. Key findings: By screening and identification, SGPPGS comprised of four genes (CPT2, NRG1, GAP43, and CDKN2A) from DESGGs is established. Furthermore, we find that the risk score of SGPPGS is an independent prognostic factor to overall survival. Notably, the abundance of immune response inhibitory components in tumor tissues is upregulated in the group with a high-risk score of SGPPGS. Importantly, the risk score of SGPPGS is associated with the chemotherapy response in metastatic colorectal cancer. Significance: This study reveals the association between SGs related genes and CRC prognosis and provides a novel SGs related gene signature for CRC prognosis prediction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengtian Li
- *Correspondence: Fengtian Li, ; Wenting Liao,
| |
Collapse
|
27
|
Wang Z, Dan W, Zhang N, Fang J, Yang Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023; 15:2236364. [PMID: 37482657 PMCID: PMC10364665 DOI: 10.1080/19490976.2023.2236364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide. The incidence and mortality rates of CRC have been increasing in China, possibly due to economic development, lifestyle, and dietary changes. Evidence suggests that gut microbiota plays an essential role in the tumorigenesis of CRC. Gut dysbiosis, specific pathogenic microbes, metabolites, virulence factors, and microbial carcinogenic mechanisms contribute to the initiation and progression of CRC. Gut microbiota biomarkers have potential translational applications in CRC screening and early diagnosis. Gut microbiota-related interventions could improve anti-tumor therapy's efficacy and severe intestinal toxic effects. Chinese researchers have made many achievements in the relationship between gut microbiota and CRC, although some challenges remain. This review summarizes the current evidence from China on the role of gut microbiota in CRC, mainly including the gut microbiota characteristics, especially Fusobacterium nucleatum and Parvimonas micra, which have been identified to be enriched in CRC patients; microbial pathogens such as F. nucleatum and enterotoxigenic Bacteroides fragilis, and P. micra, which Chinese scientists have extensively studied; diagnostic biomarkers especially F. nucleatum; therapeutic effects, including microecological agents represented by certain Lactobacillus strains, fecal microbiota transplantation, and traditional Chinese medicines such as Berberine and Curcumin. More efforts should be focused on exploring the underlying mechanisms of microbial pathogenesis of CRC and providing novel gut microbiota-related therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Zikai Wang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wanyue Dan
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School, Nankai University, Tianjin, China
| | - Nana Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Zhang H, Wu J, Ji D, Liu Y, Lu S, Lin Z, Chen T, Ao L. Microbiome analysis reveals universal diagnostic biomarkers for colorectal cancer across populations and technologies. Front Microbiol 2022; 13:1005201. [PMID: 36406447 PMCID: PMC9668862 DOI: 10.3389/fmicb.2022.1005201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2024] Open
Abstract
The gut microbial dysbiosis is a risk of colorectal cancer (CRC) and some bacteria have been reported as potential markers for CRC diagnosis. However, heterogeneity among studies with different populations and technologies lead to inconsistent results. Here, we investigated six metagenomic profiles of stool samples from healthy controls (HC), colorectal adenoma (CA) and CRC, and six and four genera were consistently altered between CRC and HC or CA across populations, respectively. In FengQ cohort, which composed with 61 HC, 47 CA, and 46 CRC samples, a random forest (RF) model composed of the six genera, denoted as signature-HC, distinguished CRC from HC with an area under the curve (AUC) of 0.84. Similarly, another RF model composed of the four universal genera, denoted as signature-CA, discriminated CRC from CA with an AUC of 0.73. These signatures were further validated in five metagenomic sequencing cohorts and six independent 16S rRNA gene sequencing cohorts. Interestingly, three genera overlapped in the two models (Porphyromonas, Parvimonas and Peptostreptococcus) were with very low abundance in HC and CA, but sharply increased in CRC. A concise RF model on the three genera distinguished CRC from HC or CA with AUC of 0.87 and 0.67, respectively. Functional gene family analysis revealed that Kyoto Encyclopedia of Genes and Genomes Orthogroups categories which were significantly correlated with markers in signature-HC and signature-CA were mapped into pathways related to lipopolysaccharide and sulfur metabolism, which might be vital risk factors of CRC development. Conclusively, our study identified universal bacterial markers across populations and technologies as potential aids in non-invasive diagnosis of CRC.
Collapse
Affiliation(s)
- Huarong Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Daihan Ji
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yijuan Liu
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuting Lu
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Ting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Medical Bioinformatics, Department of Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Tajima Y, Okuda S, Hanai T, Hiro J, Masumori K, Koide Y, Kamiya T, Cheong Y, Inaguma G, Shimada Y, Wakai T, Takihara H, Akimoto S, Matsuoka H, Uyama I, Suda K. Differential analysis of microbiomes in mucus and tissues obtained from colorectal cancer patients. Sci Rep 2022; 12:18193. [PMID: 36307456 PMCID: PMC9616824 DOI: 10.1038/s41598-022-21928-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
The outer mucus layer of the colorectal epithelium is easily removable and colonized by commensal microbiota, while the inner mucus layer is firmly attached to the epithelium and devoid of bacteria. Although the specific bacteria penetrating the inner mucus layer can contact epithelial cells and trigger cancer development, most studies ignore the degree of mucus adhesion at sampling. Therefore, we evaluated whether bacteria adhering to tissues could be identified by removing the outer mucus layer. Our 16S rRNA gene sequencing analysis of 18 surgical specimens of human colorectal cancer revealed that Sutterella (P = 0.045) and Enterobacteriaceae (P = 0.045) were significantly enriched in the mucus covering the mucosa relative to the mucosa. Rikenellaceae (P = 0.026) was significantly enriched in the mucus covering cancer tissues compared with those same cancer tissues. Ruminococcaceae (P = 0.015), Enterobacteriaceae (P = 0.030), and Erysipelotrichaceae (P = 0.028) were significantly enriched in the mucus covering the mucosa compared with the mucus covering cancers. Fusobacterium (P = 0.038) was significantly enriched in the mucus covering cancers compared with the mucus covering the mucosa. Comparing the microbiomes of mucus and tissues with mucus removed may facilitate identifying bacteria that genuinely invade tissues and affect tumorigenesis.
Collapse
Affiliation(s)
- Yosuke Tajima
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan ,grid.260975.f0000 0001 0671 5144Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- grid.260975.f0000 0001 0671 5144Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514 Japan
| | - Tsunekazu Hanai
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Junichiro Hiro
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Koji Masumori
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Yoshikazu Koide
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Tadahiro Kamiya
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Yeongcheol Cheong
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Gaku Inaguma
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Yoshifumi Shimada
- grid.260975.f0000 0001 0671 5144Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshifumi Wakai
- grid.260975.f0000 0001 0671 5144Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Takihara
- grid.260975.f0000 0001 0671 5144Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514 Japan
| | - Shingo Akimoto
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Hiroshi Matsuoka
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Ichiro Uyama
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Koichi Suda
- grid.256115.40000 0004 1761 798XDepartment of Gastrointestinal Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
30
|
Yin B, Wang X, Yuan F, Li Y, Lu P. Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol 2022; 13:899111. [PMID: 36212852 PMCID: PMC9538901 DOI: 10.3389/fmicb.2022.899111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy is one of the most effective methods of systemic cancer treatment. Chemotherapy drugs are delivered through the blood circulation system, and they can act at all stages of the cell cycle, and can target DNA, topoisomerase, or tubulin to prevent the growth and proliferation of cancer cells. However, due to the lack of specific targets for chemotherapeutic agents, there are still unavoidable complications of cytotoxic effects. The effect of the microbiome on human health is clear. There is growing evidence of the potential relationship between the microbiome and the efficacy of cancer therapy. Gut microbiota can regulate the metabolism of drugs in several ways. The presence of bacteria in the tumor environment can also affect the response to cancer therapy by altering the chemical structure of chemotherapeutic agents and affecting their activity and local concentration. However, the underlying mechanisms by which the gut and tumor microbiota affect cancer therapeutic response are unclear. This review provides an overview of the effects of gut and tumor microbiota on the efficacy and adverse effects of chemotherapy in cancer patients, thus facilitating personalized treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Fang Yuan
- Department of Digestive Endoscopy, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Yan Li,
| | - Ping Lu
- Department of Cardiovascular Surgery, Shandong Engineering Research Center for Health Transplant and Material, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Ping Lu,
| |
Collapse
|
31
|
Araújo MM, Montalvão-Sousa TM, Teixeira PDC, Figueiredo ACMG, Botelho PB. The effect of probiotics on postsurgical complications in patients with colorectal cancer: a systematic review and meta-analysis. Nutr Rev 2022; 81:493-510. [PMID: 36106795 DOI: 10.1093/nutrit/nuac069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Context
Clinical trials have investigated the effect of probiotics on postsurgical complications in colorectal cancer (CRC). However, so far, there are no systematic reviews evaluating the effect of probiotics and synbiotics on the clinical or infectious postsurgical complications of colorectal cancer.
Objective
The objective of this review was to synthesize the best available evidence on the effects of the use of probiotics or synbiotics on pre-, peri-, and post-operative complications of CRC surgical resection.
Data Sources
A search of the PubMed, Embase, LILACS, Scopus, Cochrane, Web of Science, ProQuest, and Google Scholar databases was conducted for clinical trials published up until January 2022.
Data Extraction
The population characteristics, period and protocol of supplementation, and postoperative complications were extracted and reported. A random-effects model was used to estimate the effect of probiotic and synbiotic treatment on these variables.
Data Synthesis
In total, 2518 studies were identified, of which 16 were included in the qualitative synthesis and 13 in the meta-analysis. Overall, probiotic supplementation reduced the incidence of ileus (odds ratio [OR] = .13, 95% confidence interval [CI]: .02, .78), diarrhea (OR = .32, 95% CI: .15, .69), abdominal collection (OR: .35, 95% CI: .13, .92), sepsis (OR = .41, 95% CI: .22, .80), pneumonia (OR = .39, 95% CI: .19, .83), and surgical site infection (OR = .53, 95% CI: .36, .78). The results of the subgroup analysis indicated that lower dose (<109 colony-forming units), higher duration of supplementation (>14 days), and being administrated ≤5 days before and >10 days after surgery was more effective at reducing the incidence of surgical site infection.
Conclusion
Probiotics and synbiotics seem to be a promising strategy for the prevention of postoperative complications after CRC surgery. Larger, high-quality randomized controlled trials are needed to establish the optimal treatment protocol for the use of probiotics and synbiotics in preventing postoperative complications for CRC surgery.
Collapse
Affiliation(s)
- Maísa Miranda Araújo
- University of Brasília Graduate Program in Human Nutrition, Department of Nutrition, , Brasília, Federal District, Brazil
| | - Thaís Muniz Montalvão-Sousa
- University of Brasília Graduate Program in Human Nutrition, Department of Nutrition, , Brasília, Federal District, Brazil
| | - Patrícia da Cruz Teixeira
- University of Brasília Graduate Program in Human Nutrition, Department of Nutrition, , Brasília, Federal District, Brazil
| | | | - Patrícia Borges Botelho
- University of Brasília Graduate Program in Human Nutrition, Department of Nutrition, , Brasília, Federal District, Brazil
| |
Collapse
|
32
|
Hoang T, Kim MJ, Park JW, Jeong SY, Lee J, Shin A. Nutrition-wide association study of microbiome diversity and composition in colorectal cancer patients. BMC Cancer 2022; 22:656. [PMID: 35701733 PMCID: PMC9199192 DOI: 10.1186/s12885-022-09735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of diet on the interaction between microbes and host health have been widely studied. However, its effects on the gut microbiota of patients with colorectal cancer (CRC) have not been elucidated. This study aimed to investigate the association between diet and the overall diversity and different taxa levels of the gut microbiota in CRC patients via the nutrition-wide association approach. METHODS This hospital-based study utilized data of 115 CRC patients who underwent CRC surgery in Department of Surgery, Seoul National University Hospital. Spearman correlation analyses were conducted for 216 dietary features and three alpha-diversity indices, Firmicutes/Bacteroidetes ratio, and relative abundance of 439 gut microbial taxonomy. To identify main enterotypes of the gut microbiota, we performed the principal coordinate analysis based on the β-diversity index. Finally, we performed linear regression to examine the association between dietary intake and main microbiome features, and linear discriminant analysis effect size (LEfSe) to identify bacterial taxa phylogenetically enriched in the low and high diet consumption groups. RESULTS Several bacteria were enriched in patients with higher consumption of mature pumpkin/pumpkin juice (ρ, 0.31 to 0.41) but lower intake of eggs (ρ, -0.32 to -0.26). We observed negative correlations between Bacteroides fragilis abundance and intake of pork (belly), beef soup with vegetables, animal fat, and fatty acids (ρ, -0.34 to -0.27); an inverse correlation was also observed between Clostridium symbiosum abundance and intake of some fatty acids, amines, and amino acids (ρ, -0.30 to -0.24). Furthermore, high intake of seaweed was associated with a 6% (95% CI, 2% to 11%) and 7% (95% CI, 2% to 11%) lower abundance of Rikenellaceae and Alistipes, respectively, whereas overall beverage consumption was associated with an 10% (95% CI, 2% to 18%) higher abundance of Bacteroidetes, Bacteroidia, and Bacteroidales, compared to that in the low intake group. LEfSe analysis identified phylogenetically enriched taxa associated with the intake of sugars and sweets, legumes, mushrooms, eggs, oils and fats, plant fat, carbohydrates, and monounsaturated fatty acids. CONCLUSIONS Our data elucidates the diet-microbe interactions in CRC patients. Additional research is needed to understand the significance of these results in CRC prognosis.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeeyoo Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
33
|
Png CW, Chua YK, Law JH, Zhang Y, Tan KK. Alterations in co-abundant bacteriome in colorectal cancer and its persistence after surgery: a pilot study. Sci Rep 2022; 12:9829. [PMID: 35701595 PMCID: PMC9198081 DOI: 10.1038/s41598-022-14203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in the role of gut microbiome in colorectal cancer (CRC), ranging from screening to disease recurrence. Our study aims to identify microbial markers characteristic of CRC and to examine if changes in bacteriome persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for analysis by bacterial 16S rRNA gene sequencing. Bacterial richness and diversity were reduced, while pro-carcinogenic bacteria such as Bacteroides fragilis and Odoribacter splanchnicus were increased in CRC patients compared to NC group. These differences were no longer observed after surgery. Comparison between pre-op and post-op CRC showed increased abundance of probiotic bacteria after surgery. Concomitantly, bacteria associated with CRC progression were observed to have increased after surgery, implying persistent dysbiosis. In addition, functional pathway predictions based on the bacterial 16S rRNA gene data showed that various pathways were differentially enriched in CRC compared to NC. Microbiome signatures characteristic of CRC comprise altered bacterial composition. Elements of these dysbiotic signatures persists even after surgery, suggesting possible field-change in remnant non-diseased colon. Future studies should involve a larger sample size with microbiome data collected at multiple time points after surgery to examine if these dysbiotic patterns truly persist and also correlate with disease outcomes.
Collapse
Affiliation(s)
- Chin-Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong-Kang Chua
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jia-Hao Law
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Michire A, Anghel R, Draghia PM, Burlacu MG, Georgescu TF, Georgescu DE, Balcangiu-Stroescu AE, Vacaroiu IA, Barbu M, Gaube A. The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review. GASTROINTESTINAL DISORDERS 2022; 4:66-76. [DOI: 10.3390/gidisord4020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and represents a major global health burden. While genetics are implicated in a portion of CRC patients, most cases are sporadic. A new possibility of tumor initiation and promotion might be microbiome composition. It was recently shown that bacteria from the gut microbiome might be used as biomarkers for CRC detection, especially Fusobacterium nucleatum, Peptostreoptococcus stomatis, Parvimonas mica, Solobacterium moorei, and Peptostreptococcus anaerobius. Conversely, the healthy gut microbiome is mostly colonized by Bacterioides (Bacterioides fragilis, vulgatus, uniformis), Firmicutes (Clostridium spp., Ruminococcus faecis, Enterococcus faecium), and Actinobacteria (Bifidobacterium bifidum). Some strains of gut bacteria favor tumor promotion through DNA and RNA damage (directly or through interaction with other known food carcinogens) and through local immune inhibition. It is possible that bacteria (e.g., Bacillus polyfermenticus, Alistipes shahii, Lactobacillus casei) exist with protective functions against tumor promotion. Despite current advances in colorectal cancer treatment, especially in the medical oncology and radiotherapy domains, surgery remains the mainstay of curative treatment for colorectal cancer patients, even in the oligometastatic setting. Surgical complications like anastomotic leakage, excessive blood loss, abscess, and abdominal sepsis can reduce 1-year and 5-year overall survival and increase the recurrence rates for these patients; therefore, we reviewed currently published data focusing on the relationship between gut microbiota and postoperative complications for colorectal cancer patients.
Collapse
Affiliation(s)
- Alexandru Michire
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Rodica Anghel
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Petruta Maria Draghia
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Mihnea Gabriel Burlacu
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Teodor Florin Georgescu
- Department 10—General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Dragos Eugen Georgescu
- Department 10—General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Andra-Elena Balcangiu-Stroescu
- Department 3—Physiology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department 3—Nephrology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Maria Barbu
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Alexandra Gaube
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| |
Collapse
|
35
|
Feng W, Zhang Y, Liu W, Wang X, Lei T, Yuan Y, Chen Z, Song W. A Prognostic Model Using Immune-Related Genes for Colorectal Cancer. Front Cell Dev Biol 2022; 10:813043. [PMID: 35252182 PMCID: PMC8893267 DOI: 10.3389/fcell.2022.813043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
There is evidence suggesting that immune genes play pivotal roles in the development and progression of colorectal cancer (CRC). Colorectal carcinoma patient data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) were randomly classified into a training set, a test set, and an external validation set. Differentially expressed gene (DEG) analyses, univariate Cox regression, and the least absolute shrinkage and selection operator (LASSO) were used to identify survival-associated immune genes and develop a prognosis model. Receiver operating characteristic (ROC) analysis and principal component analysis (PCA) were used to evaluate the discrimination of the risk models. The model genes predicted were verified using the Human Protein Atlas (HPA) databases, colorectal cell lines, and fresh CRC and adjacent tissues. To understand the relationship between IRGs and immune invasion and the TME, we analyzed the content of immune cells and scored the TME using CIBERSORT and ESTIMATE algorithms. Finally, we predicted the potential sensitive chemotherapeutic drugs in different risk score groups by the Genomics of Drug Sensitivity in Cancer (GDSC). A total of 491 IRGs were screened, and 14 IRGs were identified to be significantly related to overall survival (OS) and applied to construct an immune-related gene (IRG) prognostic signature (IRGSig) for CRC patients. Calibration plots showed that nomograms have powerful predictive ability. PCA and ROC analysis further verified the predictive value of this fourteen-gene prognostic model in three independent databases. Furthermore, we discovered that the tumor microenvironment changed significantly during the tumor development process, from early to middle to late stage, which may be an essential factor for tumor deterioration. Finally, we selected six commonly used chemotherapeutic drugs that have the potential to be useful in the treatment of CRC. Altogether, immune genes were used to construct a prognosis model for CRC patients, and a variety of methods were used to test the accuracy of this model. In addition, we explored the immune mechanisms of CRC through immune cell infiltration and TME in CRC. Furthermore, we assessed the therapeutic sensitivity of many commonly used chemotherapeutic medicines in individuals with varying risk factors. Finally, the immune risk model and immune mechanism of CRC were thoroughly investigated in this paper.
Collapse
Affiliation(s)
- Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Imai H, Saijo K, Komine K, Ueta R, Numakura R, Wakayama S, Umegaki S, Hiraide S, Kawamura Y, Kasahara Y, Ohuchi K, Takahashi M, Takahashi S, Shirota H, Takahashi M, Ishioka C. Antibiotic Treatment Improves the Efficacy of Oxaliplatin-Based Therapy as First-Line Chemotherapy for Patients with Advanced Gastric Cancer: A Retrospective Study. Cancer Manag Res 2022; 14:1259-1266. [PMID: 35370421 PMCID: PMC8964666 DOI: 10.2147/cmar.s353432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose One of the first-line treatment for gastric cancer patients is oxaliplatin, and the efficacy of this chemotherapeutic can be attenuated by the microbiome. In this study, we retrospectively evaluated whether treatment with antibiotics improved the efficacy of oxaliplatin-based chemotherapy in patients with advanced gastric cancer. Patients and Methods Fifty-four patients were assigned to the antibiotic-treated group and 35 to the antibiotic-untreated group. Results The response rate of oxaliplatin-based chemotherapy in the antibiotic-treated and antibiotic-untreated groups was 66.7% and 41.4%, respectively (p = 0.038). The median progression-free survival after oxaliplatin-based chemotherapy in the antibiotic-treated and antibiotic-untreated groups was 8.8 and 5.2 months, respectively (hazard ratio = 0.456, 95% confidence interval = 0.254–0.819; p = 0.007, Log rank test). Univariate and multivariate analyses revealed that antibiotic treatment was the only clinical parameter that correlated with the response to oxaliplatin. Conclusion Antibiotic treatment could be used therapeutically to enhance the efficacy of oxaliplatin-based chemotherapy in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Reio Ueta
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Ryunosuke Numakura
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Shonosuke Wakayama
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Sho Umegaki
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Sakura Hiraide
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Yoshufumi Kawamura
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Yuki Kasahara
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Kota Ohuchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Masahiro Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, 980-8575, Japan
- Correspondence: Chikashi Ishioka, Department of Medical Oncology, Tohoku University Hospital, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan, Tel +81 227178543, Fax +81 227178548, Email
| |
Collapse
|
37
|
Li Z, Deng X, Luo J, Lei Y, Jin X, Zhu J, Lv G. Metabolomic Comparison of Patients With Colorectal Cancer at Different Anticancer Treatment Stages. Front Oncol 2022; 11:574318. [PMID: 35186705 PMCID: PMC8855116 DOI: 10.3389/fonc.2021.574318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The difficulties of early diagnosis of colorectal cancer (CRC) result in a high mortality rate. The ability to predict the response of a patient to surgical resection or chemotherapy may be of great value for clinicians when planning CRC treatments. Metabolomics is an emerging tool for biomarker discovery in cancer research. Previous reports have indicated that the metabolic profile of individuals can be significantly altered between CRC patients and healthy controls. However, metabolic changes in CRC patients at different treatment stages have not been explored. METHODS To this end, we performed nuclear magnetic resonance (NMR)-based metabolomic analysis to determine metabolite aberrations in CRC patients before and after surgical resection or chemotherapy. In general, a total of 106 urine samples from four clinical groups, namely, healthy volunteers (n = 31), presurgery CRC patients (n = 25), postsurgery CRC patients (n = 25), and postchemotherapy CRC patients (n = 25), were collected and subjected to further analysis. RESULTS In the present study, we identified five candidate metabolites, namely, N-phenylacetylglycine, succinate, 4-hydroxyphenylacetate, acetate, and arabinose, in CRC patients compared with healthy individuals, three of which were reported for the first time. Furthermore, approximately ten metabolites were uniquely identified at each stage of CRC treatment, serving as good candidates for biomarker panel selection. CONCLUSION In summary, these potential metabolite candidates may provide promising early diagnostic and monitoring approaches for CRC patients at different anticancer treatment stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guoqing Lv
- Department of Gastroinerstinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
38
|
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S, Mego M. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci 2022; 23:ijms23010488. [PMID: 35008915 PMCID: PMC8745082 DOI: 10.3390/ijms23010488] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Nikola Izoldova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Barbora Kasperova
- Department of Oncohematology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| |
Collapse
|
39
|
Giudice E, Salutari V, Ricci C, Nero C, Carbone MV, Ghizzoni V, Musacchio L, Landolfo C, Perri MT, Camarda F, Scambia G, Lorusso D. Gut microbiota and its influence on ovarian cancer carcinogenesis, anticancer therapy and surgical treatment: A literature review. Crit Rev Oncol Hematol 2021; 168:103542. [PMID: 34801701 DOI: 10.1016/j.critrevonc.2021.103542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and very little is known about the underlying tumorigenesis mechanisms. For other tumors, like colorectal cancer, a relationship between several opportunistic pathogens and cancer development and progression has been proven. Recent researches also underline a possible correlation between gut microbiota dysbiosis and cancer treatment efficacy and adverse effects. Several studies have also demonstrated a link between abdominal surgery and gut microbiota modifications. In this paper, we aim to review the available evidences of this issue in OC to understand if there is a relationship between gut microbiota modifications and efficacy and adverse effects of cancer therapies, either surgical and medical treatments. Well-designed clinical studies, with a robust translational component, are required to better understand the modulation of gut microbiota during OC treatment. The microbiota/microbiome composition analysis, in the near future, could represent a novel instrument to personalize anticancer therapies.
Collapse
Affiliation(s)
- Elena Giudice
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Vanda Salutari
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Caterina Ricci
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Camilla Nero
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Maria Vittoria Carbone
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Viola Ghizzoni
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Lucia Musacchio
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Chiara Landolfo
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Maria Teresa Perri
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Floriana Camarda
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy; Medical Oncology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Domenica Lorusso
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
40
|
The baseline oral microbiota predicts the response of locally advanced oral squamous cell carcinoma patients to induction chemotherapy: A prospective longitudinal study. Radiother Oncol 2021; 164:83-91. [PMID: 34571091 DOI: 10.1016/j.radonc.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Among oral squamous cell carcinoma (OSCC) patients who receive docetaxel, cisplatin, and 5-fluorouracil (TPF) induction chemotherapy, those with a favorable pathological response tend to obtain satisfactory clinical outcomes, while the total population exhibit no survival benefit. Thus, there is an urgent need to improve the therapeutic effect of TPF by applying personalized treatment according to distinct biomarkers. METHODS AND MATERIALS In the present study, we collected oral rinse samples from 44 OSCC patients enrolled in our prospective multicenter random phase II trial before TPF induction chemotherapy to conduct 16S rRNA gene sequencing and metagenomic analysis. Patients were administrated with two cycles of TPF induction chemotherapy (75 mg/m2 cisplatin and 75 mg/m2 docetaxel on day 1 and 750 mg/m2 fluorouracil from the first to the fifth day), and then divided into responsive and nonresponsive groups according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. RESULTS In the 16S rRNA gene sequence analysis, Fusobacterium and Mycoplasma were more enriched in the nonresponsive group, while Slackia was more enriched in the responder group at the genus level. In the metagenomic shotgun sequencing analysis, Fusobacterium nucleatum was more enriched in the nonresponsive group. Functional analysis showed that the platinum drug resistance pathway and microRNAs in cancer and RNA degradation pathways were remarkably associated with patient sensitivity to induction chemotherapy. CONCLUSIONS Our data suggest that the oral microbiome may play an important role in the OSCC patient sensitivity to TPF induction chemotherapy and offer novel potential biomarkers for predicting the response to TPF induction chemotherapy.
Collapse
|
41
|
The Association of Gut Microbiota and Complications in Gastrointestinal-Cancer Therapies. Biomedicines 2021; 9:biomedicines9101305. [PMID: 34680424 PMCID: PMC8533200 DOI: 10.3390/biomedicines9101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
The therapy of gastrointestinal carcinomas includes surgery, chemo- or immunotherapy, and radiation with diverse complications such as surgical-site infection and enteritis. In recent years, the microbiome’s influence on different diseases and complications has been studied in more detail using methods such as next-generation sequencing. Due to the relatively simple collectivisation, the gut microbiome is the best-studied so far. While certain bacteria are sometimes associated with one particular complication, it is often just the loss of alpha diversity linked together. Among others, a strong influence of Fusobacterium nucleatum on the effectiveness of chemotherapies is demonstrated. External factors such as diet or specific medications can also predispose to dysbiosis and lead to complications. In addition, there are attempts to treat developed dysbiosis, such as faecal microbiota transplant or probiotics. In the future, the underlying microbiome should be investigated in more detail for a better understanding of the precipitating factors of a complication with specific therapeutic options.
Collapse
|
42
|
Oh B, Boyle F, Pavlakis N, Clarke S, Guminski A, Eade T, Lamoury G, Carroll S, Morgia M, Kneebone A, Hruby G, Stevens M, Liu W, Corless B, Molloy M, Libermann T, Rosenthal D, Back M. Emerging Evidence of the Gut Microbiome in Chemotherapy: A Clinical Review. Front Oncol 2021; 11:706331. [PMID: 34604043 PMCID: PMC8481611 DOI: 10.3389/fonc.2021.706331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/25/2021] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence suggests that the gut microbiome is associated with both cancer chemotherapy (CTX) outcomes and adverse events (AEs). This review examines the relationship between the gut microbiome and CTX as well as the impact of CTX on the gut microbiome. A literature search was conducted in electronic databases Medline, PubMed and ScienceDirect, with searches for "cancer" and "chemotherapy" and "microbiome/microbiota". The relevant literature was selected for use in this article. Seventeen studies were selected on participants with colorectal cancer (CRC; n=5), Acute Myeloid Leukemia (AML; n=3), Non-Hodgkin's lymphoma (n=2), breast cancer (BCa; n=1), lung cancer (n=1), ovarian cancer (n=1), liver cancer (n=1), and various other types of cancers (n=3). Seven studies assessed the relationship between the gut microbiome and CTX with faecal samples collected prior to (n=3) and following CTX (n=4) showing that the gut microbiome is associated with both CTX efficacy and toxicity. Ten other prospective studies assessed the impact of CTX during treatment and found that CTX modulates the gut microbiome of people with cancer and that dysbiosis induced by the CTX is related to AEs. CTX adversely impacts the gut microbiome, inducing dysbiosis and is associated with CTX outcomes and AEs. Current evidence provides insights into the gut microbiome for clinicians, cancer survivors and the general public. More research is required to better understand and modify the impact of CTX on the gut microbiome.
Collapse
Affiliation(s)
- Byeongsang Oh
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- University of Kansas Medical Center, Kansas City, KS, United States
| | - Frances Boyle
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nick Pavlakis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stephen Clarke
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alex Guminski
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gillian Lamoury
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan Carroll
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marita Morgia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark Stevens
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
| | - Wen Liu
- University of Kansas Medical Center, Kansas City, KS, United States
| | - Brian Corless
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mark Molloy
- Bowel Cancer and Biomarker Laboratory, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Towia Libermann
- Beth Israel Deaconess Medical Center (BIDMC) Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Michael Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Smet A, Kupcinskas J, Link A, Hold GL, Bornschein J. The Role of Microbiota in Gastrointestinal Cancer and Cancer Treatment: Chance or Curse? Cell Mol Gastroenterol Hepatol 2021; 13:857-874. [PMID: 34506954 PMCID: PMC8803618 DOI: 10.1016/j.jcmgh.2021.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The gastrointestinal (GI) tract is home to a complex and dynamic community of microorganisms, comprising bacteria, archaea, viruses, yeast, and fungi. It is widely accepted that human health is shaped by these microbes and their collective microbial genome. This so-called second genome plays an important role in normal functioning of the host, contributing to processes involved in metabolism and immune modulation. Furthermore, the gut microbiota also is capable of generating energy and nutrients (eg, short-chain fatty acids and vitamins) that are otherwise inaccessible to the host and are essential for mucosal barrier homeostasis. In recent years, numerous studies have pointed toward microbial dysbiosis as a key driver in many GI conditions, including cancers. However, comprehensive mechanistic insights on how collectively gut microbes influence carcinogenesis remain limited. In addition to their role in carcinogenesis, the gut microbiota now has been shown to play a key role in influencing clinical outcomes to cancer immunotherapy, making them valuable targets in the treatment of cancer. It also is becoming apparent that, besides the gut microbiota's impact on therapeutic outcomes, cancer treatment may in turn influence GI microbiota composition. This review provides a comprehensive overview of microbial dysbiosis in GI cancers, specifically esophageal, gastric, and colorectal cancers, potential mechanisms of microbiota in carcinogenesis, and their implications in diagnostics and cancer treatment.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences,Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Juozas Kupcinskas
- Institute for Digestive Research, Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Georgina L. Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Jan Bornschein
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Correspondence Address correspondence to: Jan Bornschein, MD, Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
44
|
Que Y, Cao M, He J, Zhang Q, Chen Q, Yan C, Lin A, Yang L, Wu Z, Zhu D, Chen F, Chen Z, Xiao C, Hou K, Zhang B. Gut Bacterial Characteristics of Patients With Type 2 Diabetes Mellitus and the Application Potential. Front Immunol 2021; 12:722206. [PMID: 34484230 PMCID: PMC8415158 DOI: 10.3389/fimmu.2021.722206] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disorder comprehensively influenced by genetic and environmental risk, and research increasingly has indicated the role of microbial dysbiosis in T2DM pathogenesis. However, studies comparing the microbiome characteristics between T2DM and healthy controls have reported inconsistent results. To further identify and describe the characteristics of the intestinal flora of T2DM patients, we performed a systematic review and meta-analysis of stool microbial profiles to discern and describe microbial dysbiosis in T2DM and to explore heterogeneity among 7 studies (600 T2DM cases, 543 controls, 1143 samples in total). Using a random effects model and a fixed effects model, we observed significant differences in beta diversity, but not alpha diversity, between individuals with T2DM and controls. We identified various operational taxonomic unit (OTUs) and bacterial genera with significant odds ratios for T2DM. The T2DM signatures derived from a single study by stepwise feature selection could be applied in other studies. By training on multiple studies, we improved the detection accuracy and disease specificity for T2DM. We also discuss the relationship between T2DM-enriched or T2DM-depleted genera and probiotics and provide new ideas for diabetes prevention and improvement.
Collapse
Affiliation(s)
- Yanyan Que
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Man Cao
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Aiqiang Lin
- Department of Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Luxi Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China.,Graduate School, Medical College of Shantou University, Shantou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Khan S, Vahdani Y, Hussain A, Haghighat S, Heidari F, Nouri M, Haj Bloukh S, Edis Z, Mahdi Nejadi Babadaei M, Ale-Ebrahim M, Hasan A, Sharifi M, Bai Q, Hassan M, Falahati M. Polymeric micelles functionalized with cell penetrating peptides as potential pH-sensitive platforms in drug delivery for cancer therapy: A review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
46
|
Taghinezhad-S S, Mohseni AH, Fu X. Intervention on gut microbiota may change the strategy for management of colorectal cancer. J Gastroenterol Hepatol 2021; 36:1508-1517. [PMID: 33295040 DOI: 10.1111/jgh.15369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Dysbiosis in the gut microbiota composition due to environmental or genetic variations can disrupt the immune system and may promote several diseases such as colorectal cancer (CRC). Gut microbiota can alter the toxicity and efficiency of an extensive range of CRC treatment methods, especially surgery, chemotherapy, radiotherapy, and immunotherapy. The recent scientific evidence suggested that gut microbiota modulation exhibits an essential positive influence on inhibition and treatment of CRC. The literature survey revealed that modulating the gut microbiota composition by probiotics, prebiotics, and diets protects CRC patients from treatment-associated adverse effects. This review summarizes the recent advancements in the association between interventions on gut microbiota and CRC to provide innovative strategies for enhancing the safety and efficiency of CRC therapy.
Collapse
Affiliation(s)
- Sedigheh Taghinezhad-S
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Amir Hossein Mohseni
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiangsheng Fu
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
47
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
48
|
The alterations of microbiota and pathological conditions in the gut of patients with colorectal cancer undergoing chemotherapy. Anaerobe 2021; 68:102361. [PMID: 33781900 DOI: 10.1016/j.anaerobe.2021.102361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) has become a serious threat to human life and health. Most patients are diagnosed at the late stage of advanced CRC, resulting in losing their best opportunity for surgical treatment. Chemotherapy plays a crucial role in the control and treatment of advanced CRC. However, the cytotoxicity of chemotherapeutic drugs can easily cause the imbalance of gut flora, damage the barrier of the gastrointestinal mucosa, and mediate mucosal inflammation of the digestive tract, which is called "gastrointestinal mucositis." This mucositis can affect the quality of life of the host and even threaten their lives. Several studies reported the association between chemotherapy-mediated gastrointestinal mucositis in CRC and gut dysbiosis. However, the underlying mechanisms of this association are still unclear. The alternative or complementary treatments to reshape gut microbiota and slow down the side effects of chemotherapy have shown the improvement of gastrointestinal mucositis following chemotherapy in the CRC condition. This review will summarize and discuss the evidence of the association between chemotherapy-mediated gastrointestinal mucositis in CRC and altered gut microbiota from in vivo and clinical studies. The possible mechanisms of gastrointestinal mucositis, including the destruction of the gastrointestinal mucosal barrier, the induction of gut dysbiosis, and histopathological changes in the gut of CRC with chemotherapy will be illustrated. In addition, the nonpharmacological interventions and phytochemical extracts by using the manipulation of the microbial population for therapeutic purposes for relieving side effects of chemotherapy as well as a cancer treatment would be summarized and discussed in this review.
Collapse
|
49
|
Yi Y, Shen L, Shi W, Xia F, Zhang H, Wang Y, Zhang J, Wang Y, Sun X, Zhang Z, Zou W, Yang W, Zhang L, Zhu J, Goel A, Ma Y, Zhang Z. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study. Clin Cancer Res 2021; 27:1329-1340. [PMID: 33298472 DOI: 10.1158/1078-0432.ccr-20-3445] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The gut microbiome is involved in antitumor immunotherapy and chemotherapy responses; however, evidence-based research on the role of gut microbiome in predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) remains scarce. This prospective, longitudinal study aimed to evaluate the feasibility of the gut microbiome in predicting nCRT responses. EXPERIMENTAL DESIGN We collected 167 fecal samples from 84 patients with LARC before and after nCRT and 31 specimens from healthy individuals for 16S rRNA sequencing. Patients were divided into responders and nonresponders according to pathologic response to nCRT. After identifying microbial biomarkers related to nCRT responses, we constructed a random forest classifier for nCRT response prediction of a training cohort of baseline samples from 37 patients and validated the classifier in another cohort of 47 patients. RESULTS We observed significant microbiome alterations represented by a decrease in LARC-related pathogens and an increase in Lactobacillus and Streptococcus during nCRT. Furthermore, a prominent microbiota difference between responders and nonresponders was noticed in the baseline samples. Microbes related with butyrate production, including Roseburia, Dorea, and Anaerostipes, were overrepresented in responders, whereas Coriobacteriaceae and Fusobacterium were overrepresented in nonresponders. Ten biomarkers were selected for the response-prediction classifier, including Dorea, Anaerostipes, and Streptococcus, which yielded an area under the curve value of 93.57% [95% confidence interval (CI), 85.76%-100%] in the training cohort and 73.53% (95% CI, 58.96%-88.11%) in the validation cohort. CONCLUSIONS The gut microbiome offers novel potential biomarkers for predicting nCRT responses, which has important manifestations in the clinical management of these patients.
Collapse
Affiliation(s)
- Yuxi Yi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jing Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiaoyang Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Zhiyuan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wei Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wang Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Lingyi Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Yanlei Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
50
|
Gonzalez-Mercado VJ, Marrero S, Pérez-Santiago J, Tirado-Gómez M, Marrero-Falcón MA, Pedro E, Saligan LN. Association of Radiotherapy-Related Intestinal Injury and Cancer-related Fatigue: A Brief Review and Commentary. PUERTO RICO HEALTH SCIENCES JOURNAL 2021; 40:6-11. [PMID: 33876912 PMCID: PMC9109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radiotherapy treatment-induced intestinal injury and gut microbial perturbation/dysbiosis have been implicated in the pathobiology of cancer-related fatigue. The objective of this brief review was to explore the available evidence of the relationship between intestinal injury and self-reported fatigue, especially among cancer patients. The scientific evidence-including our own-linking gut mucosal barrier dysfunction and gut microbial perturbation/dysbiosis induced by cancer treatment with worsening of cancer related fatigue (perhaps through the gut-brain axis) is limited but promising. Emerging data suggest that lifestyle interventions and the administration of specific probiotics may favorably modulate the gut microbiota and potentially mediate beneficial effects leading to improvements in fatigue.
Collapse
Affiliation(s)
| | - Sara Marrero
- College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | - Josué Pérez-Santiago
- Assistant Professor of Computational Biology and Bioinformatics Director, Puerto Rico Omics Center Comprehensive Cancer Center, University of Puerto Rico San Juan, PR
| | - Maribel Tirado-Gómez
- Assistant Professor of Medicine, Department of Hematology and Oncology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | | | - Elsa Pedro
- Assistant Professor, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | - Leorey N Saligan
- Tenure-Track Investigator and Chief of Symptom Biology Unit NINR/NIH, Bethesda, MD, United States
| |
Collapse
|