1
|
El Khoury A, Somogyi A, Chi Fru E, Saleh F, Chraiki I, Fontaine C, Aubineau J, Rollion-Bard C, Harzhauser M, El Albani A. A battle against arsenic toxicity by Earth's earliest complex life forms. Nat Commun 2025; 16:4388. [PMID: 40389430 PMCID: PMC12089615 DOI: 10.1038/s41467-025-59760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
The toxicity of arsenic has challenged life for billions of years, but the timing of when complex organisms first evolved strategies to cope with this threat remains elusive. Here, we study 2.1-billion-year-old (Ga) Francevillian macrofossils, some of Earth's earliest complex life forms, to establish their biogenicity and to ascertain how they managed arsenic toxicity. The studied specimens thrived in low-arsenic marine waters, yet displayed strikingly high levels of arsenic, which was actively sequestered in specialized compartments in their bodies to mitigate toxicity. Upon their death, arsenic was released and incorporated into pyrite nuclei. The patterns observed in the fossils are distinct from abiotic concretions but similar to some seen in later eumetazoans, reinforcing their biological affinity. Our findings highlight that early complex life faced significant arsenic stress, even in low-concentration marine environments, which prompted the development of essential survival mechanisms.
Collapse
Affiliation(s)
- Anna El Khoury
- Université de Poitiers, IC2MP, UMR 7285, CNRS, 86073, Poitiers, France
- NANOSCOPIUM beamline, Synchrotron SOLEIL, 91190, Saint-Aubin, France
| | - Andrea Somogyi
- NANOSCOPIUM beamline, Synchrotron SOLEIL, 91190, Saint-Aubin, France
| | - Ernest Chi Fru
- Cardiff University, School of Earth and Ocean Sciences, CF10 3AT, Cardiff, UK
| | - Farid Saleh
- University of Lausanne, Institute of Earth Sciences, Géopolis, CH-1015, Lausanne, Switzerland.
| | - Ibtissam Chraiki
- Université de Poitiers, IC2MP, UMR 7285, CNRS, 86073, Poitiers, France
| | - Claude Fontaine
- Université de Poitiers, IC2MP, UMR 7285, CNRS, 86073, Poitiers, France
| | - Jérémie Aubineau
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, UR 234 IRD, UM 97 UT, CNES, Observatoire Midi-Pyrénées, 31400, Toulouse, France
| | - Claire Rollion-Bard
- Université Paris-Saclay, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CNRS, CEA, UVSQ, 91191, Gif-sur-Yvette, France
| | - Mathias Harzhauser
- Natural History Museum Vienna, Geological-Palaeontological Department, Burgring 7, 1010, Vienna, Austria
| | | |
Collapse
|
2
|
Liu R, Liu S, Bai X, Liu S, Liu Y. Biooxidation of Arsenopyrite by Acidithiobacillus ferriphilus QBS 3 Exhibits Arsenic Resistance Under Extremely Acidic Bioleaching Conditions. BIOLOGY 2025; 14:550. [PMID: 40427739 PMCID: PMC12108572 DOI: 10.3390/biology14050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025]
Abstract
As arsenopyrite is a typical arsenic-bearing sulfide ore, the biooxidation process of arsenopyrite is of great significance for the extraction of gold from arsenic-bearing gold ores and the generation of arsenic-bearing acid mine drainage. During the biooxidation of arsenopyrite, a large amount of arsenic is produced, which inhibits the growth and metabolism of microorganisms and thus affects the extraction of gold from arsenic-bearing gold ores. Therefore, the screening and enrichment of microorganisms with high arsenic resistance have become important aspects in the study of arsenopyrite biooxidation. As described in this paper, through arsenic acclimation, the maximum arsenic tolerance concentration of Acidithiobacillus ferriphilus QBS 3 isolated from arsenic-containing acid mine drainage was increased to 80 mM As(Ⅲ) and 100 mM As(V). Microorganisms with high arsenic resistance showed better bioleaching performance for arsenopyrite. After 18 days of bioleaching, the leaching rate of arsenopyrite reached 100% at a pulp concentration of 0.5%, and after 30 days of bioleaching, the leaching rate of arsenopyrite was 79.96% at a pulp concentration of 1%. Currently, research on arsenopyrite mainly focuses on the control and optimization of environmental conditions, but there have been few studies on the biooxidation process of arsenopyrite at the protein and gene levels. Therefore, combining the results of a one-month bioleaching experiment on arsenopyrite by A. ferriphilus QBS 3 and the analysis of arsenic resistance genes, a bioleaching model of arsenopyrite was constructed, which laid an experimental basis and theoretical foundation for improving the gold recovery rate from refractory arsenic-bearing ores and exploring the arsenic resistance mechanism of microorganisms during the arsenopyrite leaching process.
Collapse
Affiliation(s)
- Run Liu
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Siyu Liu
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
| | - Xiaoxuan Bai
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
| | - Shiping Liu
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
| | - Yuandong Liu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Chen M, Grégoire DS, St-Germain P, Berdugo-Clavijo C, Hug LA. Microbial diversity and capacity for arsenic biogeochemical cycling in aquifers associated with thermal mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179357. [PMID: 40239498 DOI: 10.1016/j.scitotenv.2025.179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Thermal recovery technologies for in-situ bitumen extraction can result in the heating of surrounding aquifers, potentially mobilizing arsenic naturally present in the sediments to the groundwater. The relative toxicity of dissolved arsenic is related to its speciation, with As(V) being less toxic than As(III). Microorganisms have various mechanisms of arsenic detoxification and metabolism, which include genes for efflux, methylation, and reduction/oxidation of As(V)/As(III). We characterized the microbial communities along two aquifer transects associated with thermally mobilized arsenic near Northeastern Alberta oil sands deposits. 16S rRNA amplicons and metagenomic sequencing data of biomass from filtered groundwater indicated major changes in the dominant taxa between wells, especially those currently experiencing elevated arsenic concentrations. Annotation of arsenic-related genes indicated that efflux pumps (arsB, acr3), intracellular reduction (arsC) and methylation (arsM) genes were widespread among community members but comparatively few organisms encoded genes for arsenic respiratory reductases (arrA) and oxidases (arxA, aioA). While this indicates that microbes have the capacity to exacerbate arsenic toxicity by increasing the relative concentration of As(III), some populations of iron oxidizing and sulfate reducing bacteria (including novel Gallionella and Thermodesulfovibrionia populations) show potential for indirect bioremediation through formation of insoluble iron/sulfide minerals which adsorb or coprecipitate arsenic. An unusually high proportional abundance of a single Paceibacteria population that lacked arsenic resistance genes was identified in one high‑arsenic well, and we discuss hypotheses for its ability to persist. Overall, this study describes how aquifer microbial communities respond to thermal and arsenic plumes, and predicts potential contributions of microbes to arsenic biogeochemical cycling under this disturbance.
Collapse
Affiliation(s)
- Molly Chen
- Department of Biology, University of Waterloo, 200 University Ave W, N2L 3G1 Waterloo, Ontario, Canada
| | - Daniel S Grégoire
- Department of Biology, University of Waterloo, 200 University Ave W, N2L 3G1 Waterloo, Ontario, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Dr, K1S 5B6 Ottawa, Ontario, Canada
| | - Pascale St-Germain
- Imperial Oil Resources Ltd, 505 Quarry Park Blvd SE, Calgary, Alberta, Canada
| | | | - Laura A Hug
- Department of Biology, University of Waterloo, 200 University Ave W, N2L 3G1 Waterloo, Ontario, Canada.
| |
Collapse
|
4
|
Klaysubun C, Chaichana N, Suwannasin S, Singkhamanan K, Yaikhan T, Kantachote D, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Insights and Comparative Analysis of Novel Rhodopseudomonas Species: A Purple Non-Sulfur Bacterium Isolated from Latex Rubber Sheet Wastewater. Life (Basel) 2025; 15:754. [PMID: 40430182 PMCID: PMC12113291 DOI: 10.3390/life15050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Rhodopseudomonas is recognized for its versatile metabolic capabilities that enable it to effectively degrade pollutants and survive various environmental stresses. In this study, we conducted a genome analysis of Rhodopseudomonas sp. P1 to investigate its genetic potential for wastewater treatment processes. Phylogenetic and genome-relatedness analyses confirmed that strain P1 is genetically distinct from other species within the Rhodopseudomonas genus, establishing it as a novel species. The genome sequences obtained and analyzed focused on genes related to carbon and nutrient removal, photosynthetic capabilities, nitrate and nitrite reduction, and the biodegradation of common wastewater pollutants. The identification of wastewater treatment-related genes followed an extensive review of the existing literature that helped in selecting genes involved in various wastewater treatment mechanisms. The genome of Rhodopseudomonas sp. P1 contains a diverse array of genes involved in carbon and nutrient cycling, pollutant biodegradation, and metal resistance, all of which are crucial for its survival in the complex wastewater environment. Specifically, the strain contains genes responsible for the denitrification, nitrogen fixation, sulfur cycling, and detoxification of toxic metals such as copper and arsenic. These findings highlight the potential application of Rhodopseudomonas sp. P1 in wastewater treatment, particularly in environments contaminated with organic pollutants and heavy metals. However, while the genomic features indicate significant promise, the practical implementation of Rhodopseudomonas sp. P1 in real-world wastewater treatment systems will require further investigation, optimization, and validation to fully harness its potential for sustainable and efficient wastewater treatment.
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Hoshino S. Exploring new natural products by utilizing untapped secondary metabolic pathways in actinomycetes. J Nat Med 2025; 79:465-476. [PMID: 40180789 DOI: 10.1007/s11418-025-01903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
Actinomycetes have produced a variety of bioactive secondary metabolites; however, discovering new actinobacterial natural products using conventional approaches has become increasingly challenging. Meanwhile, genomic studies of actinomycetes have revealed that numerous secondary metabolite biosynthetic gene clusters (SM-BGCs) remain untapped. Thus, utilizing these secondary metabolic pathways is expected to facilitate the discovery of new actinomycetes-derived natural products. In this review, I primarily describe our research on the utilization of these untapped actinobacterial SM-BGCs and the discovery of new secondary metabolites. First, I introduce our studies on the activation of silent SM-BGCs through the co-cultivation of various actinomycetes with mycolic acid-containing bacteria (MACB), which led to the identification of 20 actinobacterial secondary metabolites, including 16 new compounds. In the latter part, I describe our recent findings on arsenic-related secondary metabolism, which has been overlooked in model actinomycetes, including the identification of a novel organoarsenic natural product, and the elucidation of its unique biosynthetic strategy, which is independent of S-adenosylmethionine (SAM)-dependent enzymes.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
6
|
Berestovskaya YY, Tourova TP, Grouzdev DS, Potekhina NV, Kopitsyn DS, Pimenov NV, Vasilyeva LV. Cryobacterium Inferilacus sp. nov., a Pshychrophilic Ureolitic Bacterium From Lake Untersee in Antarctica. Microorganisms 2025; 13:990. [PMID: 40431164 PMCID: PMC12113805 DOI: 10.3390/microorganisms13050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
The psychrophilic aerobic heterotrophic bacterium, strain 1639T, was isolated from the low-temperature Lake Untersee in Antarctica. The bacterium was Gram-positive, non-motile, yellow-green-pigmented, non-spore-forming, and a pleomorphic rod. Growth was observed at temperatures of 0-25 °C with an optimum at 10 °C. The strain used urea as a nitrogen source. The major fatty acids were i-C16:0 (49.69%), ai-C15:0 (17.59%), and C16:1 branched (12.03%). Identified polar lipids were phosphatidylglycerols and a glycolipid. The respiratory quinone was determined to be MK-10. The genomic DNA G+C content was 68.03 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1639T was a member of the genus Cryobacterium, with the highest sequence similarity to C. arcticum SK1T (98.4%), C. soli GCJ02T (98.4%), C. lactosi Sr59T (98.3%), C. zongtaii TMN-42T (98.2%), and C. adonitolivorans RHLS22-1T (98.1%). The ANI and the DNA-DNA hybridization estimate values between strain 1639T and all type strains of species of the genus Cryobacterium were in the range of 84.3-87.8% and 20.5-40.3%, respectively. The combined genotypic and phenotypic data indicate that strain 1639T represents a novel species within the genus Cryobacterium, for which the name Cryobacterium inferilacus sp. nov. is proposed with the type strain 1639T (=KCTC 59142T, =VKM Ac-2907T, UQM 41460T).
Collapse
Affiliation(s)
- Yulia Yu. Berestovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (T.P.T.); (N.V.P.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (T.P.T.); (N.V.P.)
| | | | | | - Dmitry S. Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, Gubkin University, 65-1, Moscow 119991, Russia;
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (T.P.T.); (N.V.P.)
| | - Lina V. Vasilyeva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (T.P.T.); (N.V.P.)
| |
Collapse
|
7
|
Hoshino S, Onaka H, Abe I. Recent advances in the biosynthetic studies of bacterial organoarsenic natural products. Nat Prod Rep 2025; 42:663-671. [PMID: 39192828 DOI: 10.1039/d4np00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Covering: 1977 to presentArsenic is widely distributed throughout terrestrial and aquatic environments, mainly in highly toxic inorganic forms. To adapt to environmental inorganic arsenic, bacteria have evolved ubiquitous arsenic metabolic strategies by combining arsenite methylation and related redox reactions, which have been extensively studied. Recent reports have shown that some bacteria have specific metabolic pathways associated with structurally and biologically unique organoarsenic natural products. In this highlight, by exemplifying the cases of oxo-arsenosugars, arsinothricin, and bisenarsan, we summarize recent advances in the identification and biosynthesis of bacterial organoarsenic natural products. We also discuss the potential discoveries of novel arsenic-containing natural products of bacterial origins.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Pila-Lacuta S, Pauccar D, Rojas-Vargas J, Rodríguez-Cruz UE, Sierra JL, Castelán-Sánchez HG, Quispe-Ricalde MA. Isolation of a potentially arsenic-resistant Halomonas elongata strain (ml10562) from hypersaline systems in the Peruvian Andes, Cusco. PLoS One 2025; 20:e0320639. [PMID: 40238807 PMCID: PMC12002479 DOI: 10.1371/journal.pone.0320639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/22/2025] [Indexed: 04/18/2025] Open
Abstract
Halomonas elongata strain ml10562, was isolated from hypersaline that was collected from Acos Peru. Average Nucleotide Identity (ANI) and dDDH (digital DNA-DNA Hybridization) values between strain ml10562 and type strains of Halomonas elongata species were 71.0-78.4% and 18.8-21.5%, respectively. The draft genome, spanning 4,075,440 base pairs, has a GC content of 64.2% and contains 3,912 genes. Functional characterization revealed the strain's ability to tolerate and resist increasing concentrations of sodium arsenate, with a minimum inhibitory concentration of 25 mM. Bioinformatic analysis revealed the presence of two operons, arsR-arsH-arsB and arsJ-gapdh-arsC, in the genome of strain ml10562, which could play a crucial role in arsenic resistance through transporter-mediated mechanisms. Overall, these results emphasize the potential adaptability of H. elongata ml10562 to arsenic-containing environments and extend our understanding of bacterial arsenic resistance mechanisms, allowing promising applications in bioremediation.
Collapse
Affiliation(s)
- Shirly Pila-Lacuta
- Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú,
| | - David Pauccar
- Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú,
| | - Jorge Rojas-Vargas
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ulises E. Rodríguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México City, Mexico
| | - José Luis Sierra
- Laboratorio de Genética y Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Hugo G. Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - María Antonieta Quispe-Ricalde
- Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú,
- Laboratorio de Genética y Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| |
Collapse
|
9
|
González-Sánchez A, Lozano-Aguirre L, Jiménez-Flores G, López-Sámano M, García-de Los Santos A, Cevallos MA, Le Borgne S. Physiology, Heavy Metal Resistance, and Genome Analysis of Two Cupriavidus gilardii Strains Isolated from the Naica Mine (Mexico). Microorganisms 2025; 13:809. [PMID: 40284645 PMCID: PMC12029693 DOI: 10.3390/microorganisms13040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Here, we report the characterization of two Cupriavidus strains, NOV2-1 and OV2-1, isolated from an iron-oxide deposit in an underground tunnel of the Naica mine in Mexico. This unique biotope, characterized by its high temperature (≈50 °C) and the presence of heavy metals, is no longer available for sampling at this time. The genomes of NOV2-1 and OV2-1 comprised two replicons: a chromosome of 3.58 and 3.53 Mb, respectively, and a chromid of 2.1 Mb in both strains. No plasmids were found. The average nucleotide identity and the core genome phylogeny showed that NOV2-1 and OV2-1 belonged to the Cupriavidus gilardii species. NOV2-1 and OV2-1 grew up to 48 °C, with an optimal temperature of 42 °C. Discrete differences were observed between C. gilardii CCUG38401T, NOV2-1, and OV2-1 in the biochemical tests. NOV2-1 and OV2-1 presented resistance to zinc, lead, copper, cadmium, nickel, and cobalt. Several complete and incomplete gene clusters related to the resistance to these heavy metals (ars, czc, cop 1, sil-cop 2, cup, mmf, and mer) were detected in the genome of these strains. Although further studies are needed to determine the origin and role of the detected gene clusters, it is suggested that the czc system may have been mobilized by horizontal gene transfer. This study expands the extreme biotopes where Cupriavidus strains can be retrieved.
Collapse
Affiliation(s)
- Antonio González-Sánchez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Guadalupe Jiménez-Flores
- Laboratorio Clínico, Área de Microbiología, Hospital Regional Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla 72570, Mexico;
| | - Mariana López-Sámano
- Programa de Ingeniería Genética, Centro de Ciencias Genómicas, Universidad Nacional Autonoma de México, Cuernavaca 62210, Mexico; (M.L.-S.); (A.G.-d.L.S.)
| | - Alejandro García-de Los Santos
- Programa de Ingeniería Genética, Centro de Ciencias Genómicas, Universidad Nacional Autonoma de México, Cuernavaca 62210, Mexico; (M.L.-S.); (A.G.-d.L.S.)
| | - Miguel A. Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| |
Collapse
|
10
|
Straková D, Sánchez-Porro C, de la Haba RR, Ventosa A. Strategies of Environmental Adaptation in the Haloarchaeal Genera Haloarcula and Natrinema. Microorganisms 2025; 13:761. [PMID: 40284598 PMCID: PMC12029414 DOI: 10.3390/microorganisms13040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
Haloarchaea, a group of extremophilic archaea, thrive in hypersaline environments characterized not only by high salinity but also by other extreme conditions, such as intense UV radiation, high osmotic pressure, heavy metal contamination, oxidative stress, and fluctuating temperatures. This study investigates the environmental adaptation strategies of species of two genera, Haloarcula and Natrinema, the second and third largest haloarchaeal genera, respectively, after Halorubrum. Comparative genomic analyses were conducted on 48 species from both genera to elucidate their genomic diversity, metabolic potential, and stress-tolerance mechanisms. The genomes revealed diverse metabolic pathways, including rhodopsin-mediated phototrophy, nitrogen assimilation, and thiamine biosynthesis, which support their survival and adaptation to extreme conditions. The analysis identified mechanisms for oxidative stress mitigation, DNA repair, "salt-in" and "salt-out" osmoregulatory strategies, adaptations to temperature shifts and heavy metal exposure, and immune defense. Experimental validation of four representative species, Haloarcula terrestris S1AR25-5AT, Haloarcula saliterrae S1CR25-12T, Haloarcula onubensis S3CR25-11T, and Natrinema salsiterrestre S1CR25-10T, isolated from the heavy-metal-rich hypersaline soils in the Odiel Saltmarshes (Huelva, Spain), demonstrated their tolerance, especially to arsenic, corroborating genomic predictions. This study advances our understanding of the resilience of haloarchaea under poly-extreme conditions and underscores their ecological significance and promise for biotechnological applications, such as the bioremediation of heavy-metal-polluted environments and the production of valuable biomolecules.
Collapse
Affiliation(s)
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (D.S.); (C.S.-P.)
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (D.S.); (C.S.-P.)
| |
Collapse
|
11
|
Roy V, Pal MS, Pal A. Analysis of heavy metal tolerance and genomics in an indigenous Kurthia strain from Kulik River reveals multi-metal resistance and dominance of selection pressure on codon usage patterns. Arch Microbiol 2025; 207:57. [PMID: 39945867 DOI: 10.1007/s00203-025-04255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
Heavy metal(loid) contamination poses significant risks to biological entities and the ecosystem. Many metal(loid)-resistant bacteria have been isolated from different environmental sites, but still no work has described multi-metal resistant Kurthia sp. In this study, an indigenous Kurthia strain isolated from the surface water of River Kulik was studied to determine its level of tolerance to various metal(loid)s. This study aimed to isolate, characterize and determine the growth kinetics and efficiency of Kurthia gibsonii strain M6 to remove and bioaccumulate As(V), Ni and Pb in vitro. This study also aimed to sequence the whole genome of the bacterium, identify metal resistance genes and analyze the codon usage patterns and factors that affect the codon usage bias of these genes. The bacterium showed elevated resistance to As(V), Pb, Ni and Zn. Under metal(loid) stressed conditions, live cells of Kurthia strain M6 bioaccumulated 212.74, 91.51 and 40.38 mg g-1 of As(V), Pb and Ni, respectively. The removal efficiency was 97%, 69.15% and 25.88% for Pb, Ni and As(V), respectively. Genome analysis revealed the existence of different genes conferring heavy metal resistance. A comprehensive analysis of codon usage patterns for metal resistance genes depicted the predominance of selection pressure as a prime force influencing codon usage patterns. This is the first time a multi-metal resistant K. gibsonii strain has been systematically studied regarding its heavy metal resistance biology. These findings will provide insights into the metal resistance mechanisms of the genus Kurthia and assist in devising new strategies for the bioremediation of metal-polluted environments.
Collapse
Affiliation(s)
- Vivek Roy
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
12
|
Lorková Z, Cimermanová M, Piknová M, Adhvaryu S, Pristaš P, Kisková J. Environmental impact on the genome shaping of putative new Streptomyces species. BMC Microbiol 2025; 25:72. [PMID: 39939924 PMCID: PMC11816981 DOI: 10.1186/s12866-025-03779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The bacterial evolution and the emergence of new species are likely influenced by multiple forces, including long-term environmental pressure such as living in extreme conditions. In this study, the genomes of two potentially new Streptomyces species isolated from a former mine heap in Tarnowskie Góry in Poland, were analyzed. RESULTS A bioinformatic approach revealed notable phylogenetic and metabolic differences between the studied Streptomyces strains, despite originating from the same environment. While both strains are characterized by genetic features common to actinomycetes, additional unique biosynthetic gene clusters were also predicted in their genomes. The comparative genomic analysis with other Streptomyces spp. revealed a high conservation in heavy metal adaptive mechanisms, indicating a preadaptation to extreme conditions. The difference observed in the cad and mer operons could be attributed to the specific adaptations to heavy metal contamination. The high metal tolerance of examined strains was also confirmed by an agar dilution assay in the presence of several heavy metals. The confirmed siderophore production represents an additional mechanism allowing streptomycetes to survive in extreme conditions. On the other hand, both of studied genomes show significant differences in energy acquisition processes and the production of putative novel secondary metabolites. The isolates showed these differences not only among themselves but also compared to other Streptomyces species, indicating their uniqueness. CONCLUSIONS Our results demonstrate that extreme environmental conditions can lead to the development of various adaptation mechanisms in the Streptomyces spp. Furthermore, the results indicate that diverse Streptomyces species have developed conserved adaptation mechanisms against the heavy metals under extreme conditions, indicating the emergence of preadaptations that allow bacteria to respond rapidly to polluted environments and evolve their genomes accordingly up to the evolution of new species.
Collapse
Affiliation(s)
- Zuzana Lorková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Michaela Cimermanová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Mária Piknová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Shivani Adhvaryu
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia.
| |
Collapse
|
13
|
Arrieta-Gisasola A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I, Bikandi J, Laorden L. Detection of mobile genetic elements conferring resistance to heavy metals in Salmonella 4,[5],12:i:- and Salmonella Typhimurium serovars and their association with antibiotic resistance. Int J Food Microbiol 2025; 426:110890. [PMID: 39241546 DOI: 10.1016/j.ijfoodmicro.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium variant 4,[5],12:i:- (referred to as S. 4,[5],12:i:-) has emerged rapidly as the predominant Salmonella serovar in pigs, often associated with the acquisition of antibiotic resistance (ABR) and heavy metal resistance (HMR) genes. Our study analysed 78 strains of S. 4,[5],12:i:- (n = 57) and S. Typhimurium (n = 21), collected from 1999 to 2021, to investigate the evolution of mobile genetic elements (MGEs) containing HMR and ABR genes. Five MGEs harbouring HMR genes were identified: pUO-STVR2, pSTM45, pUO-STmRV1, SGI-4 and MREL. Among the strains, 91.23 % (52/57) of S. 4,[5],12:i:- carried at least one of these elements, compared to only 14.29 % (3/21) of S. Typhimurium. Since 2008, S. 4,[5],12:i:- have shifted from predominantly carrying pUO-STmRV1 to the emergence of SGI-4 and MREL, reducing ABR genes, reflecting the European Union ban on the use of antibiotics as feed additives. Increased resistance to copper and silver in S. 4,[5],12:i:-, conferred by SGI-4 and MREL, reflected that their acquisition was linked to the ongoing use of heavy metals in food-animal production. However, strains carrying SGI-4 and MREL still exhibit multidrug resistance, emphasising the need for targeted interventions to mitigate multidrug-resistant Salmonella spread in veterinary and public health settings.
Collapse
Affiliation(s)
- A Arrieta-Gisasola
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - I Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - I Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - J Bikandi
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - L Laorden
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Halema AA, Abdel-Maksoud MA, Ali MY, Malik A, Kiani BH, Henawy AR, Elarabi NI, Abdelhadi AA, Abdelhaleem HAR. New complete genome insights into Enterobacter roggenkampii FACU2: a potential player in cadmium bio-removal. World J Microbiol Biotechnol 2024; 41:2. [PMID: 39690298 DOI: 10.1007/s11274-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 12/19/2024]
Abstract
Industrial workplaces, particularly those involved in ore processing or smelting, pose a high risk of exposure to cadmium, a highly toxic metal. This study isolated and identified eight cadmium-resistant strains from industrial wastewater for their ability to resist cadmium. Enterobacter roggenkampii FACU2 demonstrated exceptional cadmium removal capabilities during our analysis, successfully eliminating 62% of the cadmium. Additionally, transmission electron microscopy (TEM) was utilized to examine the morphological change between the most and least efficient strains that responded to cadmium stress at the cellular level. Compared to the control bacteria, the treated bacteria exhibited notably higher levels of cadmium adsorption and accumulation within their cells. A complete genome analysis revealed that E. roggenkampii FACU2 has one chromosome and one plasmid with a size of 4,856,454 bp and 80,926 bp, respectively, in addition to harboring numerous heavy metal-resistant genes related to cadmium and other heavy metals. Moreover, the gene expression of four cadmium-resistant genes (czcA, cadA, czcC and czcD) showed that the high cadmium concentration led to a significant increase in czcA and cadA mRNA levels, thus indicating the activation of cadmium-resistant genes in the E. roggenkampii FACU2 compared to Enterobacter sp. strain FACU. Due to its ability to remove cadmium and other heavy metals, this strain holds promise as a source of genes for biological treatment methods. This application could contribute to environmental purification, ultimately benefiting human health.
Collapse
Affiliation(s)
- Asmaa A Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Y Ali
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October, Giza, Egypt
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Ahmed R Henawy
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nagwa I Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | | | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October, Giza, Egypt
| |
Collapse
|
15
|
Li Z, He Y, Zhang H, Qian H, Wang Y. Biotransformations of arsenic in marine sediments across marginal slope to hadal zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135955. [PMID: 39342853 DOI: 10.1016/j.jhazmat.2024.135955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Arsenic compounds are accumulating in deep ocean, but their ecological impacts on deep-sea ecosystem remain elusive. We studied 32 sediment cores (101 layers for metagenomes, along with 41 global reference sediment metagenomes) collected from the South China Sea and the Mariana Trench (MT), characterized with high arsenic accumulation in MT. In these metagenomes we revealed a significantly positive correlation between relative abundance of arsenite methyltransferase gene (arsM) and sampling depth, which suggests that arsenic methylation is the most prevalent arsenic biotransformation process in the deep sea. Lower relative abundance of arsenic efflux gene, compared with arsM, indicates that microbes in deep-sea sediments were prone to methylate arsenite and retain it rather than efflux it. Phylogenetic analysis identified seven clades of ArsM proteins, including two new clades derived primarily from deep-sea microorganisms. Five metagenome-assembled genomes containing aioA for arsenite oxidation also harbor carbon fixation genes in the deep-sea sediment layers, suggesting previously unnoticed contribution of arsenite-oxidizing autotrophic bacteria to the carbon cycle. Therefore, deep-sea microorganisms adopt different detoxification and transformation strategies in response to arsenic compounds, which renews our understanding of arsenic in their ecological impacts and potential contribution in deep ocean.
Collapse
Affiliation(s)
- Zhuobo Li
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yinghui He
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hongxi Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
16
|
Hoque MN, Mannan ABA, Hossian A, Faisal GM, Hossain MA, Sultana M. Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BMC Microbiol 2024; 24:518. [PMID: 39627700 PMCID: PMC11616139 DOI: 10.1186/s12866-024-03676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Anamica Hossian
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Present address: One Health Laboratory, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, 1212, Bangladesh.
| |
Collapse
|
17
|
Tavoosi N, Akhavan Sepahi A, Kiarostami V, Amoozegar MA. Arsenite tolerance and removal potential of the indigenous halophilic bacterium, Halomonas elongata SEK2. Biometals 2024; 37:1393-1409. [PMID: 38822902 DOI: 10.1007/s10534-024-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
The indigenous halophilic arsenite-resistant bacterium Halomonas elongata strain SEK2 isolated from the high saline soil of Malek Mohammad hole, Lut Desert, Iran, could tolerate high concentrations of arsenate (As5+) and arsenite (As3+) up to 800 and 40 mM in the SW-10 agar medium, respectively. The isolated strain was able to tolerate considerable concentrations of other toxic heavy metals and oxyanions, including Cadmium (Cd2+), Chromate (Cr6+), lead (Pb2+), and selenite (Se4+), regarding the high salinity of the culture media (with a total salt concentration of 10% (w/v)), the tolerance potential of the isolate SEK2 was unprecedented. The bioremoval potential of the isolate SEK2 was examined through the Silver diethyldithiocarbamate (SDDC) method and demonstrated that the strain SEK2 could remove 60% of arsenite from arsenite-containing growth medium after 48 h of incubation without converting it to arsenate. The arsenite adsorption or uptake by the halophilic bacterium was investigated and substantiated through Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX) analyses. Furthermore, Transmission electron microscope (TEM) analysis revealed ultra-structural alterations in the presence of arsenite that could be attributed to intracellular accumulation of arsenite by the bacterial cell. Genome sequencing analysis revealed the presence of arsenite resistance as well as other heavy metals/oxyanion resistance genes in the genome of this bacterial strain. Therefore, Halomonas elongata strain SEK2 was identified as an arsenite-resistant halophilic bacterium for the first time that could be used for arsenite bioremediation in saline arsenite-polluted environments.
Collapse
Affiliation(s)
- Nazanin Tavoosi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Kiarostami
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Galisteo C, Puente-Sánchez F, de la Haba RR, Bertilsson S, Sánchez-Porro C, Ventosa A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175497. [PMID: 39151617 DOI: 10.1016/j.scitotenv.2024.175497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Saline soils and their microbial communities have recently been studied in response to ongoing desertification of agricultural soils caused by anthropogenic impacts and climate change. Here we describe the prokaryotic microbiota of hypersaline soils in the Odiel Saltmarshes Natural Area of Southwest Spain. This region has been strongly affected by mining and industrial activity and feature high levels of certain heavy metals. We sequenced 18 shotgun metagenomes through Illumina NovaSeq from samples obtained from three different areas in 2020 and 2021. Taxogenomic analyses demonstrate that these soils harbored equal proportions of archaea and bacteria, with Methanobacteriota, Pseudomonadota, Bacteroidota, Gemmatimonadota, and Balneolota as most abundant phyla. Functions related to the transport of heavy metal outside the cytoplasm are among the most relevant features of the community (i.e., ZntA and CopA enzymes). They seem to be indispensable to avoid the increase of zinc and copper concentration inside the cell. Besides, the archaeal phylum Methanobacteriota is the main arsenic detoxifier within the microbiota although arsenic related genes are widely distributed in the community. Regarding the osmoregulation strategies, "salt-out" mechanism was identified in part of the bacterial population, whereas "salt-in" mechanism was present in both domains, Bacteria and Archaea. De novo biosynthesis of two of the most universal compatible solutes was detected, with predominance of glycine betaine biosynthesis (betAB genes) over ectoine (ectABC genes). Furthermore, doeABCD gene cluster related to the use of ectoine as carbon and energy source was solely identified in Pseudomonadota and Methanobacteriota.
Collapse
Affiliation(s)
- Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
20
|
Yang BY, Chen C, Gao A, Xue XM, Huang K, Zhang J, Zhao FJ. Arsenic Methylation by a Sulfate-Reducing Bacterium from Paddy Soil Harboring a Novel ArsSM Fusion Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19266-19276. [PMID: 39404172 DOI: 10.1021/acs.est.4c04730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Microbial arsenic (As) methylation is an important process of As biogeochemistry. Only a few As-methylating microorganisms have been isolated from paddy soil, hindering the mechanistic understanding of the process involved. We isolated 54 anaerobic and 32 aerobic bacteria from paddy soil with a high As methylation potential. Among the 86 isolates, 14 anaerobes, including 7 sulfate-reducing bacteria (SRB), but none of the aerobes were able to methylate arsenite [As(III)] or monomethylarsenite [MMA(III)] or both, suggesting that the As-methylating ability is much more prevalent in anaerobes than in aerobes. We performed a detailed investigation on As methylation by a SRB isolate, Solidesulfovibrio sp. TC1, and identified a novel bifunctional enzyme consisting of a fusion of As(III) S-adenosylmethionine (SAM) methyltransferase (ArsM) and a radical SAM protein. The enzyme (ArsSM) can catalyze As(III) methylation to MMA and DMA and subsequent adenosylation of DMA to form 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), which is a key intermediate in the biosynthesis of arsenosugars. High concentrations of sulfide produced by SRB did not affect As(III) methylation to MMA but inhibited MMA methylation to DMA. Genes encoding ArsSM fusion proteins are widespread in anaerobes, particularly SRB, suggesting that ArsSM-carrying anaerobes may play an important role in As methylation in an anoxic environment.
Collapse
Affiliation(s)
- Bao-Yun Yang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Axiang Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Hemmat-Jou MH, Liu S, Liang Y, Chen G, Fang L, Li F. Microbial arsenic methylation in soil-water systems and its environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173873. [PMID: 38879035 DOI: 10.1016/j.scitotenv.2024.173873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed. In addition, we have tried to explain the interconnections between As transformation and carbon (C), such as microbial degradation of organic compounds and methane (CH4) emission. These processes can cause As release because of the reduction of arsenate (As(V)) to the more mobile arsenite (As(III)) as well as As methylation and the formation of toxic trivalent methylated As species in anaerobic conditions. Furthermore, the sulfur (S) transformation can form highly toxic thiolated As species owing to its interference with As biomethylation. Besides, we have focused on many other mutual interlinks that remain elusive between As and C, including As biomethylation, thiolation, and CH4 emission, in the soil-water systems. Recent developments have clarified the significant and complex interactions between the coupled microbial process in anoxic and submerged soils. These processes, performed by little-known/unknown microbial taxa or well-known members of microbial communities with unrecognized metabolic pathways, conducted several concurrent reactions that contributed to global warming on our planet and have unfavorable impacts on water quality and human food resources. Finally, some environmental implications in rice production and arsenic removal from soil-water systems are discussed. Generally, our understanding of the ecological and metabolic evidence for the coupling and synchronous processes of As, C, and S are involved in environmental contamination-caused toxicity in human food, including high As content in rice grain, water resources, and global warming through methanogenesis elucidate combating global rice safety, drinking water, and climate changes.
Collapse
Affiliation(s)
- Mohammad Hossein Hemmat-Jou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sujie Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yongmei Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
22
|
Shen J, Tang ST, Wang YN, Li XT, Chen J, Sarkarai Nadar V, Rosen BP, Zhang J, Zhao FJ. Bifunctional ArsI Dioxygenase from Acidovorax sp. ST3 with Both Methylarsenite [MAs(III)] Demethylation and MAs(III) Oxidation Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16444-16453. [PMID: 39226438 DOI: 10.1021/acs.est.4c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Methylated arsenicals, including highly toxic species, such as methylarsenite [MAs(III)], are pervasive in the environment. Certain microorganisms possess the ability to detoxify MAs(III) by ArsI-catalyzed demethylation. Here, we characterize a bifunctional enzyme encoded by the arsI gene from Acidovorax sp. ST3, which can detoxify MAs(III) through both the demethylation and oxidation pathways. Deletion of the 22 C-terminal amino acids of ArsI increased its demethylation activity while reducing the oxidation activity. Further deletion of 44 C-terminal residues enhanced the MAs(III) demethylation activity. ArsI has four vicinal cysteine pairs, with the first pair being necessary for MAs(III) demethylation, while at least one of the other three pairs contributes to MAs(III) oxidation. Molecular modeling and site-directed mutagenesis indicated that one of the C-terminal vicinal cysteine pairs is involved in modulating the switch between oxidase and demethylase activity. These findings underscore the critical role of the C-terminal region in modulating the enzymatic activities of ArsI, particularly in MAs(III) demethylation. This research reveals the structure-function relationship of the ArsI enzyme and advances our understanding of the MAs(III) metabolism in bacteria.
Collapse
Affiliation(s)
- Jie Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Shi-Tong Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ya-Nan Wang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xue-Ting Li
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
23
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
24
|
Liu MQ, Guo Y, Wu C, Gao CX, Liu F, Hui CY. Visual arsenic detection in environmental waters: Innovating with a naked-eye biosensor for universal application. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135398. [PMID: 39096639 DOI: 10.1016/j.jhazmat.2024.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Arsenic contamination in environmental water sources poses a significant threat to human health, necessitating the development of sensitive and accessible detection methods. This study presents a multidimensional optimization of a bacterial biosensor for the susceptible and deoxyviolacein (DV)-based visual detection of arsenic. The research involved screening six different arsenic resistance (ars) operons and optimizing the genetic circuit to minimize background noise. Introducing an arsenic-specific transport channel enhanced the sensor's sensitivity to 1 nM with a quantitative range from 0.036 to 1.171 μM. The pigment-based biosensor offers a simple colorimetric approach for arsenic detection without complex instrumentation. The preferred biosensor demonstrated characteristics of anti-chelating agent interference, consistently quantified As(III) concentrations ranging from 0.036 to 1.171 μM covering the World Health Organization (WHO) drinking water limit. Innovatively, it effectively detects arsenic in seawater within a linear regression range of 0.071 to 1.125 μM. The biosensor's selectivity for arsenic was confirmed, with minimal cross-response to group 15 metals. Our naked-eye biosensor offers a novel approach for the rapid, on-site detection of arsenic in various water sources. Its simplicity, cost-effectiveness, and versatility make it a valuable tool for environmental monitoring and public health initiatives.
Collapse
Affiliation(s)
- Ming-Qi Liu
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Can Wu
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chao-Xian Gao
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Fen Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China.
| |
Collapse
|
25
|
Nag M, Pallavi J, Chakraborty S, Roychoudhury T, Mondal S, Ghosh A, Saha C, Banerjee M, Seal A. Bacterial endosymbionts of a nitrogen-fixing yeast Rhodotorula mucilaginosa JGTA-S1 - insights into a yet unknown micro-ecosystem. Mol Omics 2024. [PMID: 39263696 DOI: 10.1039/d3mo00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rhodotorula mucilaginosa JGTA-S1 is a yeast strain capable of fixing nitrogen and improving nitrogen nutrition in rice plants because of its nitrogen-fixing endobacteria, namely Stutzerimonas (Pseudomonas) stutzeri and Bradyrhizobium sp. To gain a deeper understanding of yeast endosymbionts, we conducted a whole-genome shotgun metagenomic analysis of JGTA-S1 cells grown under conditions of nitrogen sufficiency and deficiency. Our results showed that the endosymbiont population varied depending on the nitrogen regime. Upon mechanical disruption of yeast cells, we obtained endosymbionts in culturable form viz. Bacillus velezensis and Staphylococcus sp. under nitrogen-replete conditions and Lysinibacillus telephonicus., Brevibacillus sp., and Niallia circulans under nitrogen-depleted conditions. S. stutzeri and Bradyrhizobium sp. the previously reported endosymbionts remained unculturable. The culturable endosymbionts Staphylococcus sp. and Bacillus velezensis appear to possess genes for dissimilatory nitrate reduction (DNRA), an alternative pathway for ammonia synthesis. However, our findings suggest that these endosymbionts are facultative as they survive outside the host. The fitness of the yeast was not affected by curing of these microbes. Curing the yeast diazotrophic endosymbionts took a toll on its fitness. Our results also showed that the populations of S. stutzeri and B. velezensis increased significantly under nitrogen-depleted conditions compared to nitrogen-sufficient conditions. The importance of DNRA and nitrogen fixation is also reflected in the metagenomic reads of JGTA-S1.
Collapse
Affiliation(s)
- Mayurakshi Nag
- Department of Biotechnology and Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata - 700019, India.
| | - Janardhan Pallavi
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Trina Roychoudhury
- Department of Biotechnology and Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata - 700019, India.
| | - Sangita Mondal
- Department of Biological Sciences Bose Institute, Unified Academic Campus, EN 80. Sector V, Bidhan Nagar, Kolkata - 700091, India
| | - Abhrajyoti Ghosh
- Department of Biological Sciences Bose Institute, Unified Academic Campus, EN 80. Sector V, Bidhan Nagar, Kolkata - 700091, India
| | - Chinmay Saha
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anindita Seal
- Department of Biotechnology and Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata - 700019, India.
| |
Collapse
|
26
|
Larson J, Sather B, Wang L, Westrum J, Tokmina-Lukaszewska M, Pauley J, Copié V, McDermott TR, Bothner B. Metalloproteomics Reveals Multi-Level Stress Response in Escherichia coli When Exposed to Arsenite. Int J Mol Sci 2024; 25:9528. [PMID: 39273475 PMCID: PMC11394912 DOI: 10.3390/ijms25179528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The arsRBC operon encodes a three-protein arsenic resistance system. ArsR regulates the transcription of the operon, while ArsB and ArsC are involved in exporting trivalent arsenic and reducing pentavalent arsenic, respectively. Previous research into Agrobacterium tumefaciens 5A has demonstrated that ArsR has regulatory control over a wide range of metal-related proteins and metabolic pathways. We hypothesized that ArsR has broad regulatory control in other Gram-negative bacteria and set out to test this. Here, we use differential proteomics to investigate changes caused by the presence of the arsR gene in human microbiome-relevant Escherichia coli during arsenite (AsIII) exposure. We show that ArsR has broad-ranging impacts such as the expression of TCA cycle enzymes during AsIII stress. Additionally, we found that the Isc [Fe-S] cluster and molybdenum cofactor assembly proteins are upregulated regardless of the presence of ArsR under these same conditions. An important finding from this differential proteomics analysis was the identification of response mechanisms that were strain-, ArsR-, and arsenic-specific, providing new clarity to this complex regulon. Given the widespread occurrence of the arsRBC operon, these findings should have broad applicability across microbial genera, including sensitive environments such as the human gastrointestinal tract.
Collapse
Affiliation(s)
- James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brett Sather
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Lu Wang
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Jade Westrum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | - Jordan Pauley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
27
|
Gillieatt BF, Coleman NV. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024; 48:fuae017. [PMID: 38897736 PMCID: PMC11253441 DOI: 10.1093/femsre/fuae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotics have been proposed, however, the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation has been described but more in-depth characterizations are needed, using methodologies that confirm the functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.
Collapse
Affiliation(s)
- Brodie F Gillieatt
- School of Life and Environmental Sciences, The University of Sydney, F22 - LEES Building, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, 6 Wally’s Walk, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
28
|
D'Ermo G, Audebert S, Camoin L, Planer-Friedrich B, Casiot-Marouani C, Delpoux S, Lebrun R, Guiral M, Schoepp-Cothenet B. Quantitative proteomics reveals the Sox system's role in sulphur and arsenic metabolism of phototroph Halorhodospira halophila. Environ Microbiol 2024; 26:e16655. [PMID: 38897608 DOI: 10.1111/1462-2920.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds. This analysis allowed us to reconstruct the first comprehensive sulphur-oxidative photosynthetic network for this family. Some members of the Ectothiorhodospiraceae family have been shown to use arsenite as a photosynthetic electron donor. Therefore, we analysed the proteome response of Halorhodospira halophila when grown under arsenite and sulphide conditions. Our analyses using ion chromatography-inductively coupled plasma mass spectrometry showed that thioarsenates are chemically formed under these conditions. However, they are more extensively generated and converted in the presence of bacteria, suggesting a biological process. Our quantitative proteomics revealed that the SoxAXYZB system, typically dedicated to thiosulphate oxidation, is overproduced under these growth conditions. Additionally, two electron carriers, cytochrome c551/c5 and HiPIP III, are also overproduced. Electron paramagnetic resonance spectroscopy suggested that these transporters participate in the reduction of the photosynthetic Reaction Centre. These results support the idea of a chemically and biologically formed thioarsenate being oxidized by the Sox system, with cytochrome c551/c5 and HiPIP III directing electrons towards the Reaction Centre.
Collapse
Affiliation(s)
- Giulia D'Ermo
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Centre for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | | | - Sophie Delpoux
- Laboratoire HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Régine Lebrun
- Aix-Marseille Université, CNRS, IMM-FR3479, Marseille Protéomique, Marseille, France
| | - Marianne Guiral
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | | |
Collapse
|
29
|
Kabiraj A, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Insight into the genome of an arsenic loving and plant growth-promoting strain of Micrococcus luteus isolated from arsenic contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39063-39076. [PMID: 37864703 DOI: 10.1007/s11356-023-30361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Contamination of arsenic in drinking water and foods is a threat for human beings. To achieve the goal for the reduction of arsenic availability, besides conventional technologies, arsenic bioremediation by using some potent bacteria is one of the hot topics for researchers. In this context, bacterium, AKS4c was isolated from arsenic contaminated water of Purbasthali, West Bengal, India, and through draft genome sequence; it was identified as a strain of Micrococcus luteus that comprised of 2.4 Mb genome with 73.1% GC content and 2256 protein coding genes. As the accessory genome, about 22 genomic islands (GIs) associated with many metal-resistant genes were identified. This strain was capable to tolerate more than 46,800 mg/L arsenate and 390 mg/L arsenite salts as well as found to be tolerable to multi-metals such as Fe, Pb, Mo, Mn, and Zn up to a certain limit of concentrations. Strain AKS4c was able to oxidize arsenite to less toxic arsenate, and its arsenic adsorption property was qualitatively confirmed through X-ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR) analysis. Quantitative estimation of plant growth-promoting attributes like Indole acetic acid (IAA), Gibberellic acid (GA), and proline production and enhancement of rice seedling growth in laboratory condition leads to its future applicability in arsenic bioremediation as a plant growth-promoting rhizobacteria (PGPR).
Collapse
Affiliation(s)
- Ashutosh Kabiraj
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
30
|
Hui CY, Liu MQ, Guo Y. Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation. World J Microbiol Biotechnol 2024; 40:192. [PMID: 38709285 DOI: 10.1007/s11274-024-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Ming-Qi Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
31
|
Gou J, Xia J, Li Y, Qiu Y, Jiang F. A novel sulfidogenic process via sulfur reduction to remove arsenate in acid mine drainage: Insights into the performance and microbial mechanisms. WATER RESEARCH 2024; 254:121423. [PMID: 38461598 DOI: 10.1016/j.watres.2024.121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Biological sulfidogenic processes based on sulfate-reducing bacteria (SRB) are not suitable for arsenic (As)-containing acid mine drainage (AMD) treatment because of the formation of the mobile thioarsenite during sulfate reduction. In contrast, biological sulfidogenic processes based on sulfur-reducing bacteria (S0RB) produce sulfide without pH increase, which could achieve more effective As removal than the SRB-based process. However, the reduction ability and toxicity tolerance of S0RB to As remains mysterious, which may substantially affect the practical applicability of this process when treating arsenate (As(V))-containing AMD. Thus, this study aims to develop a biological sulfur reduction process driven by S0RB, and explore its long-term performance on As(V) removal and microbial community evolution. Operating under moderately acidic conditions (pH=4.0), the presence of 10 mg/L As(V) significantly suppressed the activity of S0RB, leading to the failure of As(V) removal. Surprisingly, a drop in pH to 3.0 enhanced the tolerance of S0RB to As toxicity, allowing for efficient sulfide production (396±102 mg S/L) through sulfur reduction. Consequently, effective and stable removal of As(V) (99.9 %) was achieved, even though the sulfidogenic bacteria were exposed to high levels of As(V) (42 mg/L) in long-term trials. Spectral and spectroscopic analysis showed that As-bearing sulfide minerals were present in the bioreactor. Remarkably, the presence of As(V) induced notable changes in the microbial community composition, with Desulfurella and Clostridium identified as predominate sulfur reducers. The qPCR result further revealed an increase in the concentration of functional genes related to As transport (asrA and arsB) in the bioreactor sludge as the pH decreased from 4.0 to 3.0. This suggests the involvement of microorganisms carrying asrA and arsB in an As transport process. Furthermore, metagenomic binning demonstrated that Desulfurella contained essential genes associated with sulfur reduction and As transportation, indicating its genetic potential for sulfide production and As tolerance. In summary, this study underscores the effectiveness of the biological sulfur reduction process driven by S0RB in treating As(V)-contaminated AMD. It offers insights into the role of S0RB in remediating As contamination and provides valuable knowledge for practical applications.
Collapse
Affiliation(s)
- Jiahua Gou
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Juntao Xia
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
32
|
Wang M, Zhao J, Liu Y, Huang S, Zhao C, Jiang Z, Gu Y, Xiao J, Wu Y, Ying R, Zhang J, Tian W. Deciphering soil resistance and virulence gene risks in conventional and organic farming systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133788. [PMID: 38367443 DOI: 10.1016/j.jhazmat.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Organic farming is a sustainable agricultural practice emphasizing natural inputs and ecological balance, and has garnered significant attention for its potential health and environmental benefits. However, a comprehensive evaluation of the emergent contaminants, particularly resistance and virulence genes within organic farming system, remains elusive. Here, a total of 36 soil samples from paired conventional and organic vegetable farms were collected from Jiangsu province, China. A systematic metagenomic approach was employed to investigate the prevalence, dispersal capability, pathogenic potential, and drivers of resistance and virulence genes across both organic and conventional systems. Our findings revealed a higher abundance of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) in organic farming system, with ARGs exhibiting a particularly notable increase of 10.76% compared to the conventional one. Pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Mycobacterium tuberculosis were hosts carrying all four gene categories, highlighting their potential health implications. The neutral community model captured 77.1% and 71.9% of the variance in community dynamics within the conventional and organic farming systems, respectively, indicating that stochastic process was the predominant factor shaping gene communities. The relative smaller m value calculated in organic farming system (0.021 vs 0.023) indicated diminished gene exchange with external sources. Moreover, farming practices were observed to influence the resistance and virulence gene landscape by modifying soil properties, managing heavy metal stress, and steering mobile genetic elements (MGEs) dynamics. The study offers insights that can guide agricultural strategies to address potential health and ecological concerns.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Caiyi Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Jian Xiao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| |
Collapse
|
33
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. Crucifer Lesion-Associated Xanthomonas Strains Show Multi-Resistance to Heavy Metals and Antibiotics. Curr Microbiol 2024; 81:136. [PMID: 38598029 DOI: 10.1007/s00284-024-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.
Collapse
Affiliation(s)
- Stephen D B Jr Ramnarine
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
34
|
Majumdar A, Upadhyay MK, Giri B, Yadav P, Moulick D, Sarkar S, Thakur BK, Sahu K, Srivastava AK, Buck M, Tibbett M, Jaiswal MK, Roychowdhury T. Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133610. [PMID: 38309156 DOI: 10.1016/j.jhazmat.2024.133610] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Arsenic (As) and silicon (Si) are two structurally competitive natural elements where Si minimises As accumulation in rice plants, and based on this two-year field trial, the study proposes adopting alternating wetting and drying (AWD) irrigation as a sustainable water management strategy allowing greater Si availability. This field-based project is the first report on AWD's impact on As-Si distribution in fluvio-alluvial soils of the entire Ganga valley (24 study sites, six divisions), seasonal variance (pre-monsoon and monsoon), rice plant anatomy and productivity, soil microbial diversity, microbial gene ontology profiling and associated metabolic pathways. Under AWD to flooded and pre-monsoon to monsoon cultivations, respectively, greater Si availability was achieved and As-bioavailability was reduced by 8.7 ± 0.01-9.2 ± 0.02% and 25.7 ± 0.09-26.1 ± 0.01%. In the pre-monsoon and monsoon seasons, the physiological betterment of rice plants led to the high rice grain yield under AWD improved by 8.4 ± 0.07% and 10.0 ± 0.07%, proving the economic profitability. Compared to waterlogging, AWD evidences as an optimal soil condition for supporting soil microbial communities in rice fields, allowing diverse metabolic activities, including As-resistance, and active expression of As-responsive genes and gene products. Greater expressions of gene ontological terms and complex biochemical networking related to As metabolism under AWD proved better cellular, genetic and environmental responsiveness in microbial communities. Finally, by implementing AWD, groundwater usage can be reduced, lowering the cost of pumping and field management and generating an economic profit for farmers. These combined assessments prove the acceptability of AWD for the establishment of multiple sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Biswajit Giri
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India
| | - Barun Kumar Thakur
- Department of Economics, FLAME University, Pune, Maharashtra 412115, India
| | - Kashinath Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Martin Buck
- Department of Life Science, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK
| | - Mark Tibbett
- Department of Sustainable Land Management and Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Reading RG6 6AR, UK
| | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
35
|
Morobane DM, Tshishonga K, Serepa-Dlamini MH. Draft Genome Sequence of Pantoea sp. Strain MHSD4, a Bacterial Endophyte With Bioremediation Potential. Evol Bioinform Online 2024; 20:11769343231217908. [PMID: 38487815 PMCID: PMC10938601 DOI: 10.1177/11769343231217908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Pantoea sp. strain MHSD4 is a bacterial endophyte isolated from the leaves of the medicinal plant Pellaea calomelanos. Here, we report on strain MHSD4 draft whole genome sequence and annotation. The draft genome size of Pantoea sp. strain MHSD4 is 4 647 677 bp with a G+C content of 54.2% and 41 contigs. The National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline tool predicted a total of 4395 genes inclusive of 4235 protein-coding genes, 87 total RNA genes, 14 non-coding (nc) RNAs and 70 tRNAs, and 73 pseudogenes. Biosynthesis pathways for naphthalene and anthracene degradation were identified. Putative genes involved in bioremediation such as copA, copD, cueO, cueR, glnGm, and trxC were identified. Putative genes involved in copper homeostasis and tolerance were identified which may suggest that Pantoea sp. strain MHSD4 has biotechnological potential for bioremediation of heavy metals.
Collapse
Affiliation(s)
- Dimpho Michelle Morobane
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Khuthadzo Tshishonga
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
36
|
Roy V, Saha BK, Adhikary S, Chaki MG, Sarkar M, Pal A. Isolation, characterization, identification, genomics and analyses of bioaccumulation and biosorption potential of two arsenic-resistant bacteria obtained from natural environments. Sci Rep 2024; 14:5716. [PMID: 38459150 PMCID: PMC10924095 DOI: 10.1038/s41598-024-56082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Arsenic (As) is a significant contaminant whose unrestrained entrance into different ecosystems has created global concern. At the cellular level, As forms unsteady intermediates with genetic materials and perturbs different metabolic processes and proper folding of proteins. This study was the first in this region to explore, isolate, screen systematically, and intensively characterize potent As-tolerant bacterial strains from natural environments near Raiganj town of Uttar Dinajpur, West Bengal. In this study, two potent Gram-negative bacterial strains with high tolerance to the poisonous form of As, i.e., As(III) and As(V), were obtained. Both the isolates were identified using biochemical tests and 16S rRNA gene sequencing. These bacteria oxidized toxic As(III) into less poisonous As(V) and depicted tolerance towards other heavy metals. Comparative metabolic profiling of the isolates in control and As-exposed conditions through Fourier-transform infrared spectroscopy showed metabolic adjustments to cope with As toxicity. The metal removal efficiency of the isolates at different pH showed that one of the isolates, KG1D, could remove As efficiently irrespective of changes in the media pH. In contrast, the efficiency of metal removal by PF14 was largely pH-dependent. The cell mass of both the isolates was also found to favourably adsorb As(III). Whole genome sequence analysis of the isolates depicted the presence of the arsRBC genes of the arsenic operon conferring resistance to As. Owing to their As(III) oxidizing potential, high As bioaccumulation, and tolerance to other heavy metals, these bacteria could be used to bioremediate and reclaim As-contaminated sites.
Collapse
Affiliation(s)
- Vivek Roy
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Barnan Kumar Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Samarpita Adhikary
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Madhumita G Chaki
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
37
|
Zhang Y, Boyanov MI, O'Loughlin EJ, Kemner KM, Sanford RA, Kim HS, Park SC, Kwon MJ. Reaction pathways and Sb(III) minerals formation during the reduction of Sb(V) by Rhodoferax ferrireducens strain YZ-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133240. [PMID: 38134691 DOI: 10.1016/j.jhazmat.2023.133240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Antimony (Sb), a non-essential metalloid, can be released into the environment through various industrial activities. Sb(III) is considered more toxic than Sb(V), but Sb(III) can be immobilized through the precipitation of insoluble Sb2S3 or Sb2O3. In the subsurface, Sb redox chemistry is largely controlled by microorganisms; however, the exact mechanisms of Sb(V) reduction to Sb(III) are still unclear. In this study, a new strain of Sb(V)-reducing bacterium, designated as strain YZ-1, that can respire Sb(V) as a terminal electron acceptor was isolated from Sb-contaminated soils. 16S-rRNA gene sequencing of YZ-1 revealed high similarity to a known Fe(III)-reducer, Rhodoferax ferrireducens. XRD and XAFS analyses revealed that bioreduction of Sb(V) to Sb(III) proceed through a transition from amorphous valentinite to crystalline senarmontite (allotropes of Sb2O3). Genomic DNA sequencing found that YZ-1 possesses arsenic (As) metabolism genes, including As(V) reductase arsC. The qPCR analysis showed that arsC was highly expressed during Sb(V)-reduction by YZ-1, and thus is proposed as the potential Sb(V) reductase in YZ-1. This study provides new insight into the pathways and products of microbial Sb(V) reduction and demonstrates the potential of a newly isolated bacterium for Sb bioremediation.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA; Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia 1113, Bulgaria
| | | | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Soo-Chan Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
38
|
Wang ZW, Yang G, Chen J, Zhou Y, Núñez Delgado A, Cui HL, Duan GL, Rosen BP, Zhu YG. Fundamentals and application in phytoremediation of an efficient arsenate reducing bacterium Pseudomonas putida ARS1. J Environ Sci (China) 2024; 137:237-244. [PMID: 37980011 DOI: 10.1016/j.jes.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.
Collapse
Affiliation(s)
- Ze-Wen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Avelino Núñez Delgado
- Department of Soil Science and Agricultura Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Spain
| | - Hui-Ling Cui
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-Lan Duan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
39
|
Ahmad I, Singh AK, Mohd S, Katari SK, Nalamolu RM, Ahmad A, Baothman OA, Hosawi SA, Altayeb H, Nadeem MS, Ahmad V. In Silico Insights into the Arsenic Binding Mechanism Deploying Application of Computational Biology-Based Toolsets. ACS OMEGA 2024; 9:7529-7544. [PMID: 38405466 PMCID: PMC10882604 DOI: 10.1021/acsomega.3c06313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
An assortment of environmental matrices includes arsenic (As) in its different oxidation states, which is often linked to concerns that pose a threat to public health worldwide. The current difficulty lies in addressing toxicological concerns and achieving sustained detoxification of As. Multiple conventional degradation methods are accessible; however, they are indeed labor-intensive, expensive, and reliant on prolonged laboratory evaluations. Molecular interaction and atomic level degradation mechanisms for enzyme-As exploration are, however, underexplored in those approaches. A feasible approach in this case for tackling this accompanying concern of As might be to cope with undertaking multivalent computational methodologies and tools. This work aimed to provide molecular-level insight into the enzyme-aided As degradation mechanism. AutoDock Vina, CABS-flex 2.0, and Desmond high-performance molecular dynamics simulation (MDS) were utilized in the current investigation to simulate multivalent molecular processes on two protein sets: arsenate reductase (ArsC) and laccase (LAC) corresponding arsenate (ART) and arsenite (AST), which served as model ligands to comprehend binding, conformational, and energy attributes. The structural configurations of both proteins exhibited variability in flexibility and structure framework within the range of 3.5-4.5 Å. The LAC-ART complex exhibited the lowest calculated binding affinity, measuring -5.82 ± 0.01 kcal/mol. Meanwhile, active site residues ILE-200 and HIS-206 were demonstrated to engage in H-bonding with the ART ligand. In contrast to ArsC, the ligand binding affinity of this bound complex was considerably greater. Additional validation of docked complexes was carried out by deploying Desmond MDS of 100 ns to capture protein and ligand conformation behavior. The system achieved stability during the 100 ns simulation run, as confirmed by the average P-L RMSD, which was ∼1 Å. As a preliminary test of the enzyme's ability to catalyze As species, corresponding computational insights might be advantageous for bridging gaps and regulatory consideration.
Collapse
Affiliation(s)
- Imran Ahmad
- Department
of Biochemistry, King George’s Medical
University, Lucknow, Uttar Pradesh 226003, India
- Environmental
Toxicology Group, CSIR-Indian Institute
of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Environmental
Toxicology Group, CSIR-Indian Institute
of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shayan Mohd
- Department
of Bioengineering, Faculty of Engineering, Integral University, Dasauli, Kursi Road, Lucknow 226026, India
| | - Sudheer Kumar Katari
- Department
of Biotechnology, Vignan’s Foundation
for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Ravina Madhulitha Nalamolu
- Department
of Biotechnology, Vignan’s Foundation
for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Abrar Ahmad
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Othman A. Baothman
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Salman A. Hosawi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Hisham Altayeb
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Varish Ahmad
- Department
of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Galisteo C, de la Haba RR, Ventosa A, Sánchez-Porro C. The Hypersaline Soils of the Odiel Saltmarshes Natural Area as a Source for Uncovering a New Taxon: Pseudidiomarina terrestris sp. nov. Microorganisms 2024; 12:375. [PMID: 38399779 PMCID: PMC10893183 DOI: 10.3390/microorganisms12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The hypersaline soils of the Odiel Saltmarshes Natural Area are an extreme environment with high levels of some heavy metals; however, it is a relevant source of prokaryotic diversity that we aim to explore. In this study, six strains related to the halophilic genus Pseudidiomarina were isolated from this habitat. The phylogenetic study based on the 16S rRNA gene sequence and the fingerprinting analysis suggested that they constituted a single new species within the genus Pseudidiomarina. Comparative genomic analysis based on the OGRIs indices and the phylogeny inferred from the core genome were performed considering all the members of the family Idiomarinaceae. Additionally, a completed phenotypic characterization, as well as the fatty acid profile, were also carried out. Due to the characteristics of the habitat, genomic functions related to salinity and high heavy metal concentrations were studied, along with the global metabolism of the six isolates. Last, the ecological distribution of the isolates was studied in different hypersaline environments by genome recruitment. To sum up, the six strains constitute a new species within the genus Pseudidiomarina, for which the name Pseudidiomarina terrestris sp. nov. is proposed. The low abundance in all the studied hypersaline habitats indicates that it belongs to the rare biosphere in these habitats. In silico genome functional analysis suggests the presence of heavy metal transporters and pathways for nitrate reduction and nitrogen assimilation in low availability, among other metabolic traits.
Collapse
Affiliation(s)
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (C.G.); (R.R.d.l.H.); (A.V.)
| |
Collapse
|
41
|
Maydaniuk DT, Martens B, Iqbal S, Hogan AM, Lorente Cobo N, Motnenko A, Truong D, Liyanage SH, Yan M, Prehna G, Cardona ST. The mechanism of action of auranofin analogs in B. cenocepacia revealed by chemogenomic profiling. Microbiol Spectr 2024; 12:e0320123. [PMID: 38206016 PMCID: PMC10846046 DOI: 10.1128/spectrum.03201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Drug repurposing efforts led to the discovery of bactericidal activity in auranofin, a gold-containing drug used to treat rheumatoid arthritis. Auranofin kills Gram-positive bacteria by inhibiting thioredoxin reductase, an enzyme that scavenges reactive oxygen species (ROS). Despite the presence of thioredoxin reductase in Gram-negative bacteria, auranofin is not always active against them. It is not clear whether the lack of activity in several Gram-negative bacteria is due to the cell envelope barrier or the presence of other ROS protective enzymes such as glutathione reductase (GOR). We previously demonstrated that chemical analogs of auranofin (MS-40 and MS-40S), but not auranofin, are bactericidal against the Gram-negative Burkholderia cepacia complex. Here, we explore the targets of auranofin, MS-40, and MS-40S in Burkholderia cenocepacia and elucidate the mechanism of action of the auranofin analogs by a genome-wide, randomly barcoded transposon screen (BarSeq). Auranofin and its analogs inhibited the B. cenocepacia thioredoxin reductase and induced ROS but did not inhibit the bacterial GOR. Genome-wide, BarSeq analysis of cells exposed to MS-40 and MS-40S compared to the ROS inducers arsenic trioxide, diamide, hydrogen peroxide, and paraquat revealed common and unique mediators of drug susceptibility. Furthermore, deletions of gshA and gshB that encode enzymes in the glutathione biosynthetic pathway led to increased susceptibility to MS-40 and MS-40S. Overall, our data suggest that the auranofin analogs kill B. cenocepacia by inducing ROS through inhibition of thioredoxin reductase and that the glutathione system has a role in protecting B. cenocepacia against these ROS-inducing compounds.IMPORTANCEThe Burkholderia cepacia complex is a group of multidrug-resistant bacteria that can cause infections in the lungs of people with the autosomal recessive disease, cystic fibrosis. Specifically, the bacterium Burkholderia cenocepacia can cause severe infections, reducing lung function and leading to a devastating type of sepsis, cepacia syndrome. This bacterium currently does not have an accepted antibiotic treatment plan because of the wide range of antibiotic resistance. Here, we further the research on auranofin analogs as antimicrobials by finding the mechanism of action of these potent bactericidal compounds, using a powerful technique called BarSeq, to find the global response of the cell when exposed to an antimicrobial.
Collapse
Affiliation(s)
| | - Brielle Martens
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Sarah Iqbal
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Dang Truong
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Sajani H. Liyanage
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
42
|
Salam LB. Diverse hydrocarbon degradation genes, heavy metal resistome, and microbiome of a fluorene-enriched animal-charcoal polluted soil. Folia Microbiol (Praha) 2024; 69:59-80. [PMID: 37450270 DOI: 10.1007/s12223-023-01077-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Environmental compartments polluted with animal charcoal from the skin and hide cottage industries are rich in toxic heavy metals and diverse hydrocarbon classes, some of which are carcinogenic, mutagenic, and genotoxic, and thus require a bio-based eco-benign decommission strategies. A shotgun metagenomic approach was used to decipher the microbiome, hydrocarbon degradation genes, and heavy metal resistome of a microbial consortium (FN8) from an animal-charcoal polluted site enriched with fluorene. Structurally, the FN8 microbial consortium consists of 26 phyla, 53 classes, 119 orders, 245 families, 620 genera, and 1021 species. The dominant phylum, class, order, family, genus, and species in the consortium are Proteobacteria (51.37%), Gammaproteobacteria (39.01%), Bacillales (18.09%), Microbulbiferaceae (11.65%), Microbulbifer (12.21%), and Microbulbifer sp. A4B17 (19.65%), respectively. The microbial consortium degraded 57.56% (28.78 mg/L) and 87.14% (43.57 mg/L) of the initial fluorene concentration in 14 and 21 days. Functional annotation of the protein sequences (ORFs) of the FN8 metagenome using the KEGG GhostKOALA, KofamKOALA, NCBI's conserved domain database, and BacMet revealed the detection of hydrocarbon degradation genes for benzoate, aminobenzoate, polycyclic aromatic hydrocarbons (PAHs), chlorocyclohexane/chlorobenzene, chloroalkane/chloroalkene, toluene, xylene, styrene, naphthalene, nitrotoluene, and several others. The annotation also revealed putative genes for the transport, uptake, efflux, and regulation of heavy metals such as arsenic, cadmium, chromium, mercury, nickel, copper, zinc, and several others. Findings from this study have established that members of the FN8 consortium are well-adapted and imbued with requisite gene sets and could be a potential bioresource for on-site depuration of animal charcoal polluted sites.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
43
|
Power JF, Carere CR, Welford HE, Hudson DT, Lee KC, Moreau JW, Ettema TJG, Reysenbach AL, Lee CK, Colman DR, Boyd ES, Morgan XC, McDonald IR, Craig Cary S, Stott MB. A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand. Nat Commun 2024; 15:179. [PMID: 38167814 PMCID: PMC10762115 DOI: 10.1038/s41467-023-43960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupō Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.
Collapse
Affiliation(s)
- Jean F Power
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Carlo R Carere
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Holly E Welford
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Daniel T Hudson
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
| | - Kevin C Lee
- Te Kura Pūtaiao | School of Science, Te Wānanga Aronui o Tāmaki Makau Rau | Auckland University of Technology, Auckland, 1010, Aotearoa New Zealand
| | - John W Moreau
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands
| | | | - Charles K Lee
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Xochitl C Morgan
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ian R McDonald
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - S Craig Cary
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand.
| | - Matthew B Stott
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand.
| |
Collapse
|
44
|
Li L, Chen S, Xue X, Chen J, Tian J, Huo L, Zhang T, Zeng X, Su S. Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes. ISME COMMUNICATIONS 2024; 4:ycae106. [PMID: 39229495 PMCID: PMC11370035 DOI: 10.1093/ismeco/ycae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Songcan Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jieyin Chen
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P.R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| |
Collapse
|
45
|
William VU, Magpantay HD. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms 2023; 12:74. [PMID: 38257901 PMCID: PMC10820871 DOI: 10.3390/microorganisms12010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Throughout history, cases of arsenic poisoning have been reported worldwide, and the highly toxic effects of arsenic to humans, plants, and animals are well documented. Continued anthropogenic activities related to arsenic contamination in soil and water, as well as its persistency and lethality, have allowed arsenic to remain a pollutant of high interest and concern. Constant scrutiny has eventually resulted in new and better techniques to mitigate it. Among these, microbial remediation has emerged as one of the most important due to its reliability, safety, and sustainability. Over the years, numerous microorganisms have been successfully shown to remove arsenic from various environmental matrices. This review provides an overview of the interactions between microorganisms and arsenic, the different mechanisms utilized by microorganisms to detoxify arsenic, as well as current trends in the field of microbial-based bioremediation of arsenic. While the potential of microbial bioremediation of arsenic is notable, further studies focusing on the field-scale applicability of this technology is warranted.
Collapse
Affiliation(s)
| | - Hilbert D. Magpantay
- Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| |
Collapse
|
46
|
Sajjad W, Ali B, Niu H, Ilahi N, Rafiq M, Bahadur A, Banerjee A, Kang S. High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. ENVIRONMENTAL RESEARCH 2023; 239:117444. [PMID: 37858689 DOI: 10.1016/j.envres.2023.117444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
47
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
48
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Mujawar SY, Shamim K, Vaigankar DC, Naik MM, Dubey SK. Rapid arsenite oxidation by Paenarthrobacter nicotinovorans strain SSBW5: unravelling the role of GlpF, aioAB and aioE genes. Arch Microbiol 2023; 205:333. [PMID: 37712976 DOI: 10.1007/s00203-023-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
A novel arsenite resistant bacterial strain SSBW5 was isolated from the battery waste site of Corlim, Goa, India. This strain interestingly exhibited rapid arsenite oxidation with an accumulation of 5 mM arsenate within 24 h and a minimum inhibitory concentration (MIC) of 18 mM. The strain SSBW5 was identified as Paenarthrobacter nicotinovorans using 16S rDNA sequence analysis. Fourier-transformed infrared (FTIR) spectroscopy of arsenite-exposed cells revealed the interaction of arsenite with several important functional groups present on the cell surface, possibly involved in the resistance mechanism. Interestingly, the whole genome sequence analysis also clearly elucidated the presence of genes, such as GlpF, aioAB and aioE encoding transporter, arsenite oxidase and oxidoreductase enzyme, respectively, conferring their role in arsenite resistance. Furthermore, this strain also revealed the presence of several other genes conferring resistance to various metals, drugs, antibiotics and disinfectants. Further suggesting the probable direct or indirect involvement of these genes in the detoxification of arsenite thereby increasing its tolerance limit. In addition, clumping of bacterial cells was observed through microscopic analysis which could also be a strategy to reduce arsenite toxicity thus indicating the existence of multiple resistance mechanisms in strain SSBW5. In the present communication, we are reporting for the first time the potential of P. nicotinovorans strain SSBW5 to be used in the bioremediation of arsenite via arsenite oxidation along with other toxic metals and metalloids.
Collapse
Affiliation(s)
- Sajiya Yusuf Mujawar
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Kashif Shamim
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
- National Centre for Natural Product Research, University of Mississippi, Oxford, MS, USA
| | - Diviya Chandrakant Vaigankar
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
- Marine Microbiology, School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Milind Mohan Naik
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Santosh Kumar Dubey
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India.
- Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, U.P., 221005, India.
| |
Collapse
|
50
|
Badhai J, Das SK. Genomic evidence and virulence properties decipher the extra-host origin of Bordetella bronchiseptica. J Appl Microbiol 2023; 134:lxad200. [PMID: 37660236 DOI: 10.1093/jambio/lxad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Until recently, members of the classical Bordetella species comprised only pathogenic bacteria that were thought to live exclusively in warm-blooded animals. The close phylogenetic relationship of Bordetella with Achromobacter and Alcaligenes, which include primarily environmental bacteria, suggests that the ancestral Bordetellae were probably free-living. Eventually, the Bordetella species evolved to infect and live within warm-blooded animals. The modern history of pathogens related to the genus Bordetella started towards the end of the 19th century when it was discovered in the infected respiratory epithelium of mammals, including humans. The first identified member was Bordetella pertussis, which causes whooping cough, a fatal disease in young children. In due course, B. bronchiseptica was recovered from the trachea and bronchi of dogs with distemper. Later, a second closely related human pathogen, B. parapertussis, was described as causing milder whooping cough. The classical Bordetellae are strictly host-associated pathogens transmitted via the host-to-host aerosol route. Recently, the B. bronchiseptica strain HT200 has been reported from a thermal spring exhibiting unique genomic features that were not previously observed in clinical strains. Therefore, it advocates that members of classical Bordetella species have evolved from environmental sources. This organism can be transmitted via environmental reservoirs as it can survive nutrient-limiting conditions and possesses a motile flagellum. This study aims to review the molecular basis of origin and virulence properties of obligate host-restricted and environmental strains of classical Bordetella.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| |
Collapse
|