1
|
Mohammadnia S, Haghighi M, Mozafarian M, Geösel A. Impact of Mycorrhiza Inoculations and Iron Amino Chelate on Growth and Physiological Changes of Cucumber Seedlings Across Different pH Levels. PLANTS (BASEL, SWITZERLAND) 2025; 14:341. [PMID: 39942902 PMCID: PMC11819710 DOI: 10.3390/plants14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Cucumber, a vital greenhouse crop, thrives in soils with a pH range of 5.5-6.5, yet the combined effects of arbuscular mycorrhizal fungi (AMF) and iron amino chelates on its growth and physiological responses across varying pH levels remain underexplored. This study used a factorial design in a completely randomized setup with three replications and was conducted at the Horticulture Department of Isfahan University of Technology. The aim of this study was to investigate the effects of AMF inoculation (Glomus mosseae) and iron amino chelates on the growth and physiological responses of cucumber plants at various pH levels. Treatments included two levels of AMF inoculation (non-inoculated as m1 and inoculated as m2), three levels of iron concentration (f1: no iron, f2: Johnson's nutrient solution, f3: Johnson's solution with iron amino chelate), and three pH levels (pH 5 (p1), pH 7 (p2), and pH 8 (p3)). The moisture was maintained at field capacity throughout the study. The results demonstrated that mycorrhizal inoculation at pH 7 significantly improved key traits, including chlorophyll content, photosynthesis rate, stomatal conductance, phenol content, and antioxidant activity. Mycorrhizal inoculation combined with 2 ppm of Fe amino chelate at pH 7 led to the highest improvement in shoot fresh weight of cucumber and physiological traits. However, at pH 7 without mycorrhiza, stress indicators such as ABA levels and antioxidant enzyme activities (SOD, POD, CAT, and APX) increased, highlighting the protective role of AMF under neutral pH conditions. In contrast, pH 5 was most effective for enhancing root and stem fresh weight. The lower pH may have facilitated better nutrient solubility and uptake, promoting root development and overall plant health by optimizing the availability of essential nutrients and reducing competition for resources under more acidic conditions. These findings highlight the potential of combining mycorrhizal inoculation with iron amino chelates at pH 7 not only to enhance cucumber growth and resilience in nutrient-limited environments but also to contribute to sustainable agricultural practices that address global challenges in food security and soil health.
Collapse
Affiliation(s)
- Saber Mohammadnia
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Mozafarian
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| |
Collapse
|
2
|
Dhalaria R, Verma R, Sharma R, Jomova K, Nepovimova E, Kumar H, Kuca K. Assessing the potential role of arbuscular mycorrhizal fungi in improving the phytochemical content and antioxidant properties in Gomphrena globosa. Sci Rep 2024; 14:22830. [PMID: 39354027 PMCID: PMC11445267 DOI: 10.1038/s41598-024-73479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Strategies to increase the secondary metabolite production, obtained from medicinal plants has been the topic of research in recent years. The symbiotic interaction between arbuscular mycorrhizal fungi and plants allows host-fungus pairings to enhance secondary metabolite synthesis. Therefore, the current study investigated the effect of inoculating two distinct AMF species discretely as well as in conjunction on the flower-derived secondary metabolites in Gomphrena globosa. The findings showed that the plants inoculated with combined treatment exhibited higher total phenolic (50.11 mg GAE/g DW), flavonoids (29.67 mg QE/g DW), saponins (122.55 mg DE/g DW), tannins (165.71 TAE/g DW) and terpenoid (8.24 mg LE/g DW) content in the methanolic extract. HPTLC examination showed the existence of kaempferol and benzoic acid with the highest amount (0.90% and 5.83% respectively) observed in the same treatment. FTIR analysis revealed functional group peaks with increased peak intensity in the combination treatment. Higher antioxidant activities such as DPPH (IC50: 401.39 µg/mL), ABTS (IC50: 71.18 µg/mL) and FRAP (8774.73 µM Fe (II) equivalent) were observed in the methanolic extract of combined treatment. To our knowledge, this is the first study on the impact of AMF inoculation on bioactive compounds and antioxidant activities in G. globosa flowers. Moreover, this study could lead to the development of novel pharmaceuticals and herbal remedies for various diseases.
Collapse
Affiliation(s)
- Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974, Nitra, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
- Research Institute for Biomedical Science, Antonina Dvoraka 451/1, Hradec Kralove, 500 02, Czech Republic.
| |
Collapse
|
3
|
Cameirão C, Costa D, Rufino J, Pereira JA, Lino-Neto T, Baptista P. Diversity, Composition, and Specificity of the Philaenus spumarius Bacteriome. Microorganisms 2024; 12:298. [PMID: 38399702 PMCID: PMC10893442 DOI: 10.3390/microorganisms12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae) was recently classified as a pest due to its ability to act as a vector of the phytopathogen Xylella fastidiosa. This insect has been reported to harbour several symbiotic bacteria that play essential roles in P. spumarius health and fitness. However, the factors driving bacterial assemblages remain largely unexplored. Here, the bacteriome associated with different organs (head, abdomen, and genitalia) of males and females of P. spumarius was characterized using culturally dependent and independent methods and compared in terms of diversity and composition. The bacteriome of P. spumarius is enriched in Proteobacteria, Bacteroidota, and Actinobacteria phyla, as well as in Candidatus Sulcia and Cutibacterium genera. The most frequent isolates were Curtobacterium, Pseudomonas, and Rhizobiaceae sp.1. Males display a more diverse bacterial community than females, but no differences in diversity were found in distinct organs. However, the organ shapes the bacteriome structure more than sex, with the Microbacteriaceae family revealing a high level of organ specificity and the Blattabacteriaceae family showing a high level of sex specificity. Several symbiotic bacterial genera were identified in P. spumarius for the first time, including Rhodococcus, Citrobacter, Halomonas, Streptomyces, and Providencia. Differences in the bacterial composition within P. spumarius organs and sexes suggest an adaptation of bacteria to particular insect tissues, potentially shaped by their significance in the life and overall fitness of P. spumarius. Although more research on the bacteria of P. spumarius interactions is needed, such knowledge could help to develop specific bacterial-based insect management strategies.
Collapse
Affiliation(s)
- Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Daniela Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.C.); (T.L.-N.)
| | - José Rufino
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.C.); (T.L.-N.)
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
4
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
5
|
Guigard L, Jobert L, Busset N, Moulin L, Czernic P. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1278990. [PMID: 37941658 PMCID: PMC10628536 DOI: 10.3389/fpls.2023.1278990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.
Collapse
Affiliation(s)
| | | | | | | | - Pierre Czernic
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
6
|
Faria JMS, Barrulas P, Pinto AP, Brito I, Teixeira DM. Mycorrhizal Colonization of Wheat by Intact Extraradical Mycelium of Mn-Tolerant Native Plants Induces Different Biochemical Mechanisms of Protection. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112091. [PMID: 37299071 DOI: 10.3390/plants12112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Soil with excess Mn induces toxicity and impairs crop growth. However, with the development in the soil of an intact extraradical mycelia (ERM) from arbuscular mycorrhizal fungi (AMF) symbiotic to native Mn-tolerant plants, wheat growth is promoted due to a stronger AMF colonization and subsequent increased protection against Mn toxicity. To determine the biochemical mechanisms of protection induced by this native ERM under Mn toxicity, wheat grown in soil from previously developed Lolium rigidum (LOL) or Ornithopus compressus (ORN), both strongly mycotrophic plants, was compared to wheat grown in soil from previously developed Silene gallica (SIL), a non-mycotrophic plant. Wheat grown after LOL or ORN had 60% higher dry weight, ca. two-fold lower Mn levels and almost double P contents. Mn in the shoots was preferentially translocated to the apoplast along with Mg and P. The activity of catalase increased; however, guaiacol peroxidase (GPX) and superoxide dismutase (SOD) showed lower activities. Wheat grown after ORN differed from that grown after LOL by displaying slightly higher Mn levels, higher root Mg and Ca levels and higher GPX and Mn-SOD activities. The AMF consortia established from these native plants can promote distinct biochemical mechanisms for protecting wheat against Mn toxicity.
Collapse
Affiliation(s)
- Jorge M S Faria
- National Institute for Agrarian and Veterinary Research, I.P. (INIAV, I.P.), Quinta do Marquês, 2780-159 Oeiras, Portugal
- MED, Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Pedro Barrulas
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
- School of Science and Technology, Évora University, Rua Romão Ramalho n°59, 7000-671 Évora, Portugal
| | - Ana Paula Pinto
- MED, Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- School of Science and Technology, Évora University, Rua Romão Ramalho n°59, 7000-671 Évora, Portugal
| | - Isabel Brito
- MED, Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- School of Science and Technology, Évora University, Rua Romão Ramalho n°59, 7000-671 Évora, Portugal
| | - Dora Martins Teixeira
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
- School of Science and Technology, Évora University, Rua Romão Ramalho n°59, 7000-671 Évora, Portugal
| |
Collapse
|
7
|
Campos C, Coito JL, Cardoso H, Marques da Silva J, Pereira HS, Viegas W, Nogales A. Dynamic Regulation of Grapevine's microRNAs in Response to Mycorrhizal Symbiosis and High Temperature. PLANTS (BASEL, SWITZERLAND) 2023; 12:982. [PMID: 36903843 PMCID: PMC10005052 DOI: 10.3390/plants12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that play crucial roles in plant development and stress responses and can regulate plant interactions with beneficial soil microorganisms such as arbuscular mycorrhizal fungi (AMF). To determine if root inoculation with distinct AMF species affected miRNA expression in grapevines subjected to high temperatures, RNA-seq was conducted in leaves of grapevines inoculated with either Rhizoglomus irregulare or Funneliformis mosseae and exposed to a high-temperature treatment (HTT) of 40 °C for 4 h per day for one week. Our results showed that mycorrhizal inoculation resulted in a better plant physiological response to HTT. Amongst the 195 identified miRNAs, 83 were considered isomiRs, suggesting that isomiRs can be biologically functional in plants. The number of differentially expressed miRNAs between temperatures was higher in mycorrhizal (28) than in non-inoculated plants (17). Several miR396 family members, which target homeobox-leucine zipper proteins, were only upregulated by HTT in mycorrhizal plants. Predicted targets of HTT-induced miRNAs in mycorrhizal plants queried to STRING DB formed networks for Cox complex, and growth and stress-related transcription factors such as SQUAMOSA promoter-binding-like-proteins, homeobox-leucine zipper proteins and auxin receptors. A further cluster related to DNA polymerase was found in R. irregulare inoculated plants. The results presented herein provide new insights into miRNA regulation in mycorrhizal grapevines under heat stress and can be the basis for functional studies of plant-AMF-stress interactions.
Collapse
Affiliation(s)
- Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - João Lucas Coito
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Jorge Marques da Silva
- Department of Plant Biology/BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Helena Sofia Pereira
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Wanda Viegas
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Amaia Nogales
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
8
|
Qiao X, Sun T, Lei J, Xiao L, Xue L, Zhang H, Jia J, Bei S. Arbuscular mycorrhizal fungi contribute to wheat yield in an agroforestry system with different tree ages. Front Microbiol 2022; 13:1024128. [DOI: 10.3389/fmicb.2022.1024128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Intercropping achieved through agroforestry is increasingly being recognized as a sustainable form of land use. In agroforestry, the roots of trees and crops are intermingled, and their interactions and the production of exudates alter the soil environment and soil microbial community. Although tree–crop interactions vary depending on the stand age of the trees, how stand age affects beneficial microorganisms, including arbuscular mycorrhizal fungi (AMF), and whether changes in soil microorganisms feed back on crop growth in agroforestry systems are unknown. We therefore conducted a long-term field study to compare changes in the soil microbial and AMF communities in a jujube/wheat agroforestry system containing trees of different stand ages: 3-year-old jujube, 8-year-old jujube, and 13-year-old jujube. Our results showed that by changing soil moisture and available phosphorus content, the stand age of the trees had a significant effect on the soil microbial and AMF communities. Soil moisture altered the composition of soil bacteria, in particular the proportions of Gram-positive and Gram-negative species, and available phosphorus had significant effects on the AMF community. A network analysis showed that older stands of trees reduced both AMF diversity and network complexity. An ordinary least squares regression analysis indicated that AMF diversity, network complexity, and stability contributed to wheat yield. Finally, structural equation modeling showed that changes in edaphic factors induced by tree age brought about significant variation in the soil microbial and AMF communities, in turn, affecting crop growth. Our study highlights the crucial roles of soil microorganisms, in particular AMF, in supporting plant growth in agroforestry systems as well as the need to consider stand age in the establishment of these systems.
Collapse
|
9
|
Jindo K, Goron TL, Pizarro-Tobías P, Sánchez-Monedero MÁ, Audette Y, Deolu-Ajayi AO, van der Werf A, Goitom Teklu M, Shenker M, Pombo Sudré C, Busato JG, Ochoa-Hueso R, Nocentini M, Rippen J, Aroca R, Mesa S, Delgado MJ, Tortosa G. Application of biostimulant products and biological control agents in sustainable viticulture: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:932311. [PMID: 36330258 PMCID: PMC9623300 DOI: 10.3389/fpls.2022.932311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Current and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing. Biostimulant and biocontrol products are often applied in organic vineyards and can reduce the synthetic fertilizer, pesticide, and fungicide requirements of a vineyard. Plant growth promotion following application is also observed under a variety of challenging conditions associated with global warming. This paper reviews different groups of biostimulants and their effects on viticulture, including microorganisms, protein hydrolysates, humic acids, pyrogenic materials, and seaweed extracts. Of special interest are biostimulants with utility in protecting plants against the effects of climate change, including drought and heat stress. While many beneficial effects have been reported following the application of these materials, most studies lack a mechanistic explanation, and important parameters are often undefined (e.g., soil characteristics and nutrient availability). We recommend an increased study of the underlying mechanisms of these products to enable the selection of proper biostimulants, application methods, and dosage in viticulture. A detailed understanding of processes dictating beneficial effects in vineyards following application may allow for biostimulants with increased efficacy, uptake, and sustainability.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | - Travis L. Goron
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Paloma Pizarro-Tobías
- Faculty of Computer Sciences, Multimedia and Telecommunication, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Miguel Ángel Sánchez-Monedero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Agencia Estatal CSIC, Murcia, Spain
| | - Yuki Audette
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
- Chitose Laboratory Corp., Kawasaki, Japan
| | | | - Adrie van der Werf
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Moshe Shenker
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Brazil
| | - Jader Galba Busato
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, Agroalimentario, Campus del Rio San Pedro, University of Cádiz, Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Marco Nocentini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi Firenze, Firenze, Italy
| | | | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - María J. Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| |
Collapse
|
10
|
Manganese Uptake to Wheat Shoot Meristems Is Differentially Influenced by Arbuscular Mycorrhiza Fungal Communities Adapted to Acidic Soil. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil acidity is a strong promoter of the bioavailability of Al, Fe, and Mn, whose concentrations can sometimes reach toxic levels for plants. In agricultural soils, the use of arbuscular mycorrhizal fungi (AMF) has shown a protective influence on wheat growth under Mn toxicity. The intact extraradical mycelium (ERM) promotes faster AMF colonization, leading to a higher wheat shoot weight, lower Mn uptake, and changes in antioxidant enzyme activity. Its effect on the uptake and distribution of plant nutrients according to the developmental stage of shoot organs has seldomly been analyzed. In the present study, Mn, Mg, Ca, and K were quantified by ICP–MS in leaves and apical meristems of wheat grown in soil with two different ERM consortia, developed from the native plants Lolium rigidum (LOL) and Ornithopus compressus (ORN). The ORN treatment induced the highest wheat shoot weights and the lowest Mn levels. In the leaves, no significant differences were detected for Mg, Ca, or K, but in the apical meristems, the ORN treatment slightly lowered the Ca concentration. The AMF associated with ORN was seen to enhance wheat weight partly by protecting the zones of active growth against high Mn levels in Mn toxic soils. The use of ORN in acidic soils with Mn toxicity provides a sustainable alternative and an efficient complement to current farming practices to lower the negative impacts of farming on the environment.
Collapse
|
11
|
Faria JMS, Pinto AP, Teixeira D, Brito I, Carvalho M. Diversity of Native Arbuscular Mycorrhiza Extraradical Mycelium Influences Antioxidant Enzyme Activity in Wheat Grown Under Mn Toxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:451-456. [PMID: 33891141 DOI: 10.1007/s00128-021-03240-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Sustainable agricultural practices based on the development of native arbuscular mycorrhizal fungi (AMF) can improve crop growth and stress tolerance in acidic soils with manganese toxicity. The beneficial effects are stronger when crops are colonized early in development by an intact extraradical mycelium (ERM), but are dependent on AMF assemblage. In wheat colonized by AMF associated to Lolium rigidum L. (LOL) or Ornithopus compressus (ORN), growth and stress tolerance are differently influenced. In the present study, this functional diversity was studied by evaluating the activity of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase (GPX), superoxide dismutase (SOD) and Mn-SOD. ORN treatment promoted higher wheat shoot and root dry weights, a higher root protein content, decreased root APX, GR and SOD activities but a higher proportion of MnSOD activity. ORN associated microbiota differently manage antioxidant enzyme activity of succeeding wheat to improve growth.
Collapse
Affiliation(s)
- Jorge M S Faria
- INIAV, I.P., Instituto Nacional de Investigação Agrária E Veterinária, Quinta Do Marquês, 2780-159, Oeiras, Portugal.
- MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Ana Paula Pinto
- MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Science and Technology School of Évora University, Rua Romão Ramalho nº59, 7000-671, Évora, Portugal
| | - Dora Teixeira
- Science and Technology School of Évora University, Rua Romão Ramalho nº59, 7000-671, Évora, Portugal
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809, Évora, Portugal
| | - Isabel Brito
- MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Science and Technology School of Évora University, Rua Romão Ramalho nº59, 7000-671, Évora, Portugal
| | - Mário Carvalho
- MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Science and Technology School of Évora University, Rua Romão Ramalho nº59, 7000-671, Évora, Portugal
| |
Collapse
|
12
|
Lahlali R, Ibrahim DS, Belabess Z, Kadir Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, Galvão de Melo e Mota M, Peng G. High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 2021; 7:e08142. [PMID: 34693062 PMCID: PMC8515249 DOI: 10.1016/j.heliyon.2021.e08142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.
Collapse
Affiliation(s)
- Rachid Lahlali
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
| | - Dina S.S. Ibrahim
- Department of Nematodes Diseases and Central Lab of Biotechnology, Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Egypt
| | - Zineb Belabess
- Plant Protection Laboratory. Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 60000 Oujda, Morocco
| | - Md Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Nabil Radouane
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cláudia S.L. Vicente
- MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Esther Menéndez
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Department of Microbiology and Genetics / Spanish-Portuguese Institute for Agricultural Research (CIALE). University of Salamanca, 37007, Salamanca, Spain
| | - Fouad Mokrini
- Plant Protection Laboratory, INRA, Centre Régional de la Recherche Agronomique (CRRA), Rabat, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes, EA 4707, USC, INRAe1488, Université de Reims Champagne-Ardenne, France
| | - Manuel Galvão de Melo e Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development & Department of Biology, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Peng
- Saskatoon Research Development Centre, Agriculture and Agri-Food, Saskatchewan, Canada
| |
Collapse
|
13
|
Faticov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJM. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. THE NEW PHYTOLOGIST 2021; 231:1770-1783. [PMID: 33960441 DOI: 10.1111/nph.17434] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, Uppsala, SE-756 51, Sweden
| | | | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - F Guillaume Blanchet
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département de Mathématique, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, Uppsala, SE-750 07, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| |
Collapse
|
14
|
Roy J, van Duijnen R, Leifheit EF, Mbedi S, Temperton VM, Rillig MC. Legacy effects of pre-crop plant functional group on fungal root symbionts of barley. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02378. [PMID: 33988274 DOI: 10.1002/eap.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, a group of widespread fungal symbionts of crops, could be important in driving crop yield across crop rotations through plant-soil feedbacks (PSF). However, whether preceding crops have a legacy effect on the AM fungi of the subsequent crop is poorly known. We set up an outdoor mesocosm crop rotation experiment that consisted of a first phase growing either one of four pre-crops establishing AM and/or rhizobial symbiosis or not (spring barley, faba bean, lupine, canola), followed by an AM crop, winter barley. After the pre-crop harvest, carbon-rich organic substrates were applied to test whether it attenuated, accentuated or modified the effect of pre-crops. The pre-crop mycorrhizal status, but not its rhizobial status, affected the richness and composition of AM fungi, and this difference, in particular community composition, persisted and increased in the roots of winter barley. The effect of a pre-crop was driven by its single symbiotic group, not its mixed symbiotic group and/or by a crop-species-specific effect. This demonstrates that the pre-crop symbiotic group has lasting legacy effects on the AM fungal communities and may steer the AM fungal community succession across rotation phases. This effect was accentuated by sawdust amendment, but not wheat straw. Based on the previous observation of decreased crop yield after AM pre-crops, our findings suggest negative PSF at the level of the plant symbiotic group driven by a legacy effect of crop rotation history on AM fungal communities, and that a focus on crop symbiotic group offers additional understanding of PSF.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | | | - Eva F Leifheit
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Susan Mbedi
- Naturkundemuseum Berlin, Berlin, 10115, Germany
- Berlin Center for Genomics in Biodiversity Reseach, Berlin, 14195, Germany
| | - Vicky M Temperton
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
15
|
Tchiechoua YH, Kinyua J, Ngumi VW, Odee DW. Effect of Indigenous and Introduced Arbuscular Mycorrhizal Fungi on Growth and Phytochemical Content of Vegetatively Propagated Prunus Africana (Hook. f.) Kalkman Provenances. PLANTS (BASEL, SWITZERLAND) 2019; 9:E37. [PMID: 31881729 PMCID: PMC7020206 DOI: 10.3390/plants9010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
Prunus africana bark contains phytochemical compounds used in the treatment of benign prostatic hyperplasia and prostate cancer. It has been shown that this plant establishes association with arbuscular mycorrhizal fungi (AMF). AMF are involved in nutrient uptake, which may also affect plant growth and secondary metabolites composition. However, there is no information regarding the role of AMF in the growth and phytochemical content of P. africana. A pot experiment was carried out to assess the response of 8 months old vegetatively propagated P. africana seedlings inoculated with indigenous AMF collected from Mount Cameroon (MC) and Mount Manengumba (MM) in Cameroon, Malava near Kakamega (MK) and Chuka Tharaka-Nithi (CT) in Kenya. Mycorrhizal (frequency, abundance and intensity), growth (height, shoot weight, total weight, number of leaf, leaf surface) and phytochemical (total phenol, tannin and flavonoids) parameters were measured three months after growth of seedlings from two provenances (Muguga and Chuka) with the following inoculation treatments: MK, CT, MC, MM, non-sterilized soil (NS) and sterilized sand as non-inoculated control. Results showed that seedling heights were significantly increased by inoculation and associated with high root colonization (>80%) compared to non-inoculated seedlings. We also found that AMF promoted leaf formation, whereas inoculation did not have any effect on the seedling total weight. AMF inoculum from MM had a higher tannin content, while no significant difference was observed on the total phenol and flavonoid contents due to AMF inoculation. Pearson's correlation was positive between mycorrhizal parameters and the growth parameters, and negative with phytochemical parameters. This study is the first report on the effect of AMF on the growth and phytochemical in P. africana. Further investigations are necessary to determine the effect of single AMF strains to provide better understanding of the role of AMF on the growth performance and physiology of this important medicinal plant species.
Collapse
Affiliation(s)
- Yves H. Tchiechoua
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 62000, Nairobi 00200, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya;
| | - Victoria Wambui Ngumi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya;
| | - David Warambo Odee
- Biotechnology Laboratory, Kenya Forestry Research Institute (KEFRI), P.O. Box 20412, Nairobi 00200, Kenya;
- Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK
| |
Collapse
|
16
|
Campos C, Nobre T, Goss MJ, Faria J, Barrulas P, Carvalho M. Transcriptome Analysis of Wheat Roots Reveals a Differential Regulation of Stress Responses Related to Arbuscular Mycorrhizal Fungi and Soil Disturbance. BIOLOGY 2019; 8:biology8040093. [PMID: 31835704 PMCID: PMC6956056 DOI: 10.3390/biology8040093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Symbioses with soil microorganisms are central in shaping the diversity and productivity of land plants and provide protection against a diversity of stresses, including metal toxicity. Arbuscular mycorrhizal fungi (AMF) can form extensive extraradical mycelial networks (ERM), which are very efficient in colonizing a new host. We quantified the responses of transcriptomes of wheat and one AMF partner, Rhizoglomus irregulare, to soil disturbance (Undisturbed vs. Disturbed) and to two different preceding mycotrophic species (Ornithopus compressus and Lolium rigidum). Soil disturbance and preceding plant species engender different AMF communities in wheat roots, resulting in a differential tolerance to soil manganese (Mn) toxicity. Soil disturbance negatively impacted wheat growth under manganese toxicity, probably due to the disruption of the ERM, and activated a large number of stress and starvation-related genes. The O. compressus treatment, which induces a greater Mn protection in wheat than L. rigidum, activated processes related to cellular division and growth, and very few related to stress. The L. rigidum treatment mostly induced genes that were related to oxidative stress, disease protection, and metal ion binding. R. irregulare cell division and molecular exchange between nucleus and cytoplasm were increased by O. compressus. These findings are highly relevant for sustainable agricultural systems, when considering a fit-for-purpose symbiosis.
Collapse
Affiliation(s)
- Catarina Campos
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
- Correspondence: ; Tel.: +351-266-760-885
| | - Tânia Nobre
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
| | - Michael J. Goss
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jorge Faria
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
| | - Pedro Barrulas
- Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal;
| | - Mário Carvalho
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
| |
Collapse
|
17
|
Stoian V, Vidican R, Crişan I, Puia C, Şandor M, Stoian VA, Păcurar F, Vaida I. Sensitive approach and future perspectives in microscopic patterns of mycorrhizal roots. Sci Rep 2019; 9:10233. [PMID: 31308444 PMCID: PMC6629619 DOI: 10.1038/s41598-019-46743-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
The harmonization of methodologies for the assessment of radicular endophytic colonization is a current necessity, especially for the arbuscular mycorrhizas. The functionality of mycorrhizal symbionts for plants can be described only by indicators obtained based on microscopic analysis. That is the reason for which a unifying methodology will lead to the achievement of highly correlated indicators comparable from one research to another. Our proposed methodology can further digitize the microscopic observations of colonization. The MycoPatt system is developed as a methodological framework for obtaining objective and comparable microscopic observations. The horizontal, vertical and transversal indicators are highly adaptable and allow the tracking of mycorrhizal colonization in root length. All structures developed by symbionts can be traced and the obtained metadata can be compared without any transformation. Mycorrhizal maps have a high degree of applicability in evaluating soil inoculum efficiency. In the future, the application of this method will lead to digital maps with a high degree of accuracy. MycoPatt allows the mathematical expression of colonization patterns, being a complex model that converts biological data into statistically comparable indicators. This will further allow obtaining inferences with applicative importance and similarity spectra for the colonizing fungi and host plants.
Collapse
Affiliation(s)
- Vlad Stoian
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Microbiology, Cluj-Napoca, 400372, Romania.
| | - Roxana Vidican
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Microbiology, Cluj-Napoca, 400372, Romania.
| | - Ioana Crişan
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Microbiology, Cluj-Napoca, 400372, Romania
| | - Carmen Puia
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Plant pathology, Cluj-Napoca, 400372, Romania
| | - Mignon Şandor
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Soil ecology, Cluj-Napoca, 400372, Romania
| | - Valentina A Stoian
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Soil ecology, Cluj-Napoca, 400372, Romania
| | - Florin Păcurar
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Grasslands and forage crops, Cluj-Napoca, 400372, Romania
| | - Ioana Vaida
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Department of Grasslands and forage crops, Cluj-Napoca, 400372, Romania
| |
Collapse
|