1
|
Su Z, Wang X, Liu K, Chen G, Zhang K, Liu J, Pang Y, Ren T, Qin Y, Ouyang K, Yin Y, Chen Y, Huang W, Wei Z. Recombination and pathogenicity analysis of NADC30-like and QYYZ-like PRRSV strains in South China. Microb Pathog 2025; 200:107351. [PMID: 39890085 DOI: 10.1016/j.micpath.2025.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Since 2010, the Lineage 1 (NADC30-like) and Lineage 3 (QYYZ-like) strains of PRRSV-2 have become widespread in China, undergoing recombination and resulting in varying virulent and immune-evading mutants that have severely impacted the pig farming industry. In this study, we isolated one NADC30-like strain (GXHX20211106) and one QYYZ-like strain (GXGG202007) from pig serum samples collected in southern China. Comparative genomic analysis revealed that GXHX20211106 shares 90 % identity with NADC30, while GXGG202007 shows 91.4 % similarity to QYYZ. Both strains exhibit characteristic amino acids deletions or insertions in the Nsp2 region. Phylogenetic analyses further classified GXHX20211106 within Lineage 1.8 (NADC30-like) and GXGG202007 in Lineage 3 (QYYZ-like). Recombination analysis demonstrated that GXHX20211106 resulted from recombination between NADC30-like and HP-PRRSV-like strains, while GXGG202007 originated from recombination events involving QYYZ-like, VR-2332-like, and HP-PRRSV-like strains. Pathogenicity studies in piglets indicated that both isolates caused moderate clinical signs, with GXHX20211106 showing higher virulence compared to GXGG202007. No deaths were recorded in the infected piglets. These findings highlight the critical role of recombination in shaping PRRSV virulence and underscore the need for ongoing surveillance and control measures to mitigate the impact of recombinant PRRSV strains in southern China.
Collapse
Affiliation(s)
- Zhiying Su
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Xindong Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Keyi Liu
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Guochang Chen
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Kang Zhang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Jiaqi Liu
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Yanli Pang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Tongwei Ren
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, 530005, Nanning, China; Guangxi Key Laboratory of Animal Breeding and Disease Control and Prevention, 530005, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, 530005, Nanning, China; Guangxi Key Laboratory of Animal Breeding and Disease Control and Prevention, 530005, Nanning, China
| | - Yeshi Yin
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, 530005, Nanning, China; Guangxi Key Laboratory of Animal Breeding and Disease Control and Prevention, 530005, Nanning, China
| | - Ying Chen
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, 530005, Nanning, China; Guangxi Key Laboratory of Animal Breeding and Disease Control and Prevention, 530005, Nanning, China
| | - Weijian Huang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, 530005, Nanning, China; Guangxi Key Laboratory of Animal Breeding and Disease Control and Prevention, 530005, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, 530005, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, 530005, Nanning, China; Guangxi Key Laboratory of Animal Breeding and Disease Control and Prevention, 530005, Nanning, China.
| |
Collapse
|
2
|
Lv C, Yang Z, Lan X, Liang F, Kong W, Wang R, Zhao M. Research Progress on the GP3 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2025; 15:430. [PMID: 39943200 PMCID: PMC11815881 DOI: 10.3390/ani15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV) that is characterized by a highly variable gene sequence and a high rate of recombination, thereby contributing to difficulties in the clinical prevention and control of this virus. Glycosylated protein 3 (GP3) is the most glycosylated protein in PRRSV, and is closely associated with the composition of PRRSV virus particles, infection, and immune evasion. This review summarizes the structural features, genetic evolutionary patterns, glycosylation of GP3 and its interactions with other PRRSV and host proteins, associations with PRRSV infection and virulence, and immunomodulatory roles. Additionally, it provides an overview of research progress on monoclonal antibodies and vaccines targeting GP3. This study aims to provide a theoretical foundation for better understanding the structure and function of GP3, of the mechanisms of PRRSV infection, and the development of novel vaccines.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Zhiyu Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Xiaolin Lan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Fang Liang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| |
Collapse
|
3
|
Mebumroong S, Lin H, Jermsutjarit P, Tantituvanont A, Nilubol D. Field Investigation Evaluating the Efficacy of Porcine Reproductive and Respiratory Syndrome Virus Type 2 (PRRSV-2) Modified Live Vaccines in Nursery Pigs Exposed to Multiple Heterologous PRRSV Strains. Animals (Basel) 2025; 15:428. [PMID: 39943198 PMCID: PMC11815747 DOI: 10.3390/ani15030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study was conducted to evaluate the protective efficacy of modified live vaccines (MLVs) against porcine reproductive and respiratory syndrome (PRRS) in nursery pigs in a worst case scenario where MLV does not match the genetic profile of the field isolate, different MLVs are used for sows and piglets, and piglets are naturally exposed to genetically distinct heterologous PRRS virus (PRRSV) isolates. We divided 76,075, 2-week-old piglets from a seropositive sow herd vaccinated with US1-MLV into four groups. US1-MLV, US2-MLV, and US3-MLV groups were vaccinated with PRRSV-2 MLV including Ingelvac® PRRS MLV (Boehringer Ingelheim, Ingelheim am Rhein, Germany), HP-PRRSV-2 based MLV (Harbin Veterinary Research Institute, CAAS, Harbin, China), and Prime Pac® PRRS (MSD Animal Health, Rahway, NJ, USA), respectively. The NonVac group was left unvaccinated. At 0, 14, 28, and 56 days post-vaccination (DPV), sera were assayed for the presence of PRRSV-specific antibodies using ELISA and serum neutralization (SN), and PRRSV RNA using PCR. Average daily gain (ADG) and survival rates were compared between treatment groups. The results demonstrated vaccinated groups significantly improved in ADG compared to the non-vaccinated control group. Only US1-MLV and US3-MLV were able to significantly reduce mortality associated with field PRRSV infection in nursery pigs. Pigs vaccinated with US3-MLV displayed significantly lower mortality and higher ADG compared to all other groups. Field isolates were isolated and genetically compared to all three MLV vaccines at the start of the trial. The MLV with closest genetic similarity to the field isolate was US2-MLV by ORF5 gene comparison. This provided the lowest protection judging by ADG improvement and mortality reduction, as compared to US1-MLV and US3-MLV. Separately, strains of Thai PRRSV-2 isolates collected in 2017, 2019, and 2020 in the study area were investigated for evolutionary changes. Over time, we observed a shift in PRRSV-2 isolates from lineage 8.7 to lineage 1. The field isolates found shared 82.59-84.42%, 83.75-85.74%, and 84.25-85.90% nucleotide identity with the US1-MLV, US3-MLV and US2-MLV based vaccine, respectively. Our findings suggest genetic similarity between field viruses and vaccine strains should not be used as a predictor of field performance. We found that zootechnical performance of piglets was best in US3-MLV, despite sows being treated with a different vaccine The results also support that different MLVs can be used at different stages of production. Finally, we concluded that the shift from lineage 8.7 to lineage 1 was due to shifts in the worldwide prevalence of PRRSV isolates during that period of time and not due to vaccine recombination between isolates. Overall, MLV vaccine selection should be based on production performance and safety profile.
Collapse
Affiliation(s)
- Sunit Mebumroong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Perahu Road, Singapore 718847, Singapore;
| | - Patumporn Jermsutjarit
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| |
Collapse
|
4
|
Li Y, Yang C, Li XL, Sun JY, Cheng N, Wang KY, Sun YF. Etiological characterization of multiple recombinant lineages of TJ-C6 porcine reproductive and respiratory syndrome virus in Tianjin, Northern China. Vet Res Commun 2025; 49:91. [PMID: 39869226 DOI: 10.1007/s11259-025-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.8 (NADC30-like) and with similar 131 discontinuous amino acid deletion pattern (111-aa + 1-a + 19-aa) in Nsp2-coding region, but it was classified in lineage 1.5 (NADC34-like) cluster based on ORF5 sequence. Furthermore, the recombination analyses revealed that TJ-C6 was a multiple recombinant virus among lineage 1.5(NADC34- like), lineage 1.8(NADC30- like), and lineage 3(GM2-Like) strains with four recombination breakpoints in Nsp9 (nt 7298/8111), ORF2 (nt 12213) and ORF6 (nt 14628), which was different from the previously prevalent PRRSV strain. Challenge experiments with 3-week-old piglets showed that TJ-C6 could cause piglets high fever, loss of appetite and severely histopathological lung lesions. Taken altogether, multiple co-circulating lineages of PRRSV strains in the swine population are accelerating the emergence of natural recombinant strains with variations in pathogenicity and highlight the importance of surveillance of newly emerging PRRSV strains in China.
Collapse
Affiliation(s)
- Yong Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, 200040, China
| | - Cheng Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Xin-Lei Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Jiu-Ying Sun
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Ning Cheng
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Kai-Yue Wang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Ying-Feng Sun
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
| |
Collapse
|
5
|
Tao C, Zhu X, Huang Y, Yuan W, Wang Z, Zhu H, Jia H. Development of a Multiplex RT-qPCR Method for the Identification and Lineage Typing of Porcine Reproductive and Respiratory Syndrome Virus. Int J Mol Sci 2024; 25:13203. [PMID: 39684913 DOI: 10.3390/ijms252313203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen that causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion of sows and the manifestation of respiratory diseases in piglets. PRRSV strains are categorized into two distinct genotypes: PRRSV-1 and PRRSV-2. PRRSV-2 can be further classified into several lineages, including sub-lineage 1.8 (NADC30-like), sub-lineage 1.5 (NADC34-like), lineage 8 (HP-PRRSV-like), lineage 5 (VR-2332-like), and lineage 3 (QYYZ-like), all of which are prevalent in China. In order to identify PRRSV-1 and PRRSV-2, two primer-probe combinations were designed, targeting the M gene. In order to further differentiate the five lineages of PRRSV-2, another five primer-probe combinations were designed, targeting the Nsp2 gene. A TaqMan-based multiplex RT-qPCR assay was subsequently developed, integrating the aforementioned seven sets into two primer pools. Following the optimization of primer concentration and annealing temperature, a comprehensive evaluation was conducted to assess the assay's amplification efficiency, specificity, repeatability, and sensitivity. The developed multiplex RT-qPCR method exhibited excellent repeatability, with coefficients of variation (CVs) less than 2.12%. The detection limits for all seven targets were found to be less than 5 copies/μL. Ultimately, the method was utilized for the detection of a total of 1009 clinical samples, with a PRRSV-positive rate of 7.63% (77/1009). Specifically, the reference method was utilized to further confirm the status of the 77 PRRSV-positive samples and another 27 samples suspected of PRRSV infection. The sensitivity of the method was 97.40% (75/77), and the specificity was 96.30% (26/27), resulting in an overall coincidence rate of 97.12% (101/104). All the PRRSV-positive samples were typed as NADC30-like strains, and the accuracy of this typing was further confirmed by Sanger sequencing. In conclusion, A one-step multiplex RT-qPCR method was successfully constructed, evaluated, and applied to detect clinical samples. The assay provides an easy-to-operate, time-saving, and highly efficient way for the quick identification of PRRSV and simultaneous detection of five PRRSV-2 lineages prevalent in China. The method could offer guidance for PRRSV prevention and control measures.
Collapse
Affiliation(s)
- Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xizhou Zhu
- Bioproducts Engineering Center, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Ren J, Tan S, Chen X, Wang X, Lin Y, Jin Y, Niu S, Wang Y, Gao X, Liang L, Li J, Zhao Y, Tian WX. Characterization of a novel recombinant NADC30‑like porcine reproductive and respiratory syndrome virus in Shanxi Province, China. Vet Res Commun 2024; 48:1879-1889. [PMID: 38349546 DOI: 10.1007/s11259-024-10319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/27/2024] [Indexed: 06/04/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens affecting the swine industry. In this report, a novel PRRSV strain SXht2012 was isolated from Shanxi province in China. To identify genetic characteristics of SXht2012, we conducted phylogenetic and homology analyses after sequencing its complete genome. The results revealed that SXht2012 belonged to NADC30-like strain and shared 91.3% nucleotide (nt) identity with strain NADC30. Notably, sequence alignment showed that a distinctive feature in the NSP2 region, where a 131-amino acid (aa) deletion was found in the hypervariable region (HVR). Additionally, variations were also detected in the GP5 protein, specifically in the decoy peptide, T cell peptide, and a potential glycosylation site (aa 32). Furthermore, we also found that SXht2012 was likely a recombination virus originating from NADC30-like and JXA1-like strains, and three recombination breakpoints were identified in the genome at nt positions 1516, 5280 and 6851, which correspond to the NSP2, NSP3, and NSP7 regions. Overall, these findings have significant implications for understanding the genetic variation and evolutionary dynamics of PRRSV strains.
Collapse
Affiliation(s)
- Jianle Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Shanshan Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd, Beijing, China
| | - Xizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yiting Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yi Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Sheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing, China
| | - Libin Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Junping Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yujun Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Wen-Xia Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.
| |
Collapse
|
7
|
Li W, Li Y, Li M, Zhang H, Feng Z, Xu H, Li C, Guo Z, Gong B, Peng J, Zhou G, Tian Z, Wang Q. Development and application of a blocking ELISA based on a N protein monoclonal antibody for the antibody detection against porcine reproductive and respiratory syndrome virus 2. Int J Biol Macromol 2024; 269:131842. [PMID: 38679249 DOI: 10.1016/j.ijbiomac.2024.131842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanwei Li
- Beijing Biomedicine Technology Center of JoFunHwa Biotechnology (Nanjing Co. Ltd.), Beijing 102600, China
| | - Minhua Li
- Beijing IDEXX Laboratories, Co., Ltd, Beijing 101318, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zixuan Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
8
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|
9
|
Kim SJ, Moon J. Narrative Review of the Safety of Using Pigs for Xenotransplantation: Characteristics and Diagnostic Methods of Vertical Transmissible Viruses. Biomedicines 2024; 12:1181. [PMID: 38927388 PMCID: PMC11200752 DOI: 10.3390/biomedicines12061181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Amid the deepening imbalance in the supply and demand of allogeneic organs, xenotransplantation can be a practical alternative because it makes an unlimited supply of organs possible. However, to perform xenotransplantation on patients, the source animals to be used must be free from infectious agents. This requires the breeding of animals using assisted reproductive techniques, such as somatic cell nuclear transfer, embryo transfer, and cesarean section, without colostrum derived in designated pathogen-free (DPF) facilities. Most infectious agents can be removed from animals produced via these methods, but several viruses known to pass through the placenta are not easy to remove, even with these methods. Therefore, in this narrative review, we examine the characteristics of several viruses that are important to consider in xenotransplantation due to their ability to cross the placenta, and investigate how these viruses can be detected. This review is intended to help maintain DPF facilities by preventing animals infected with the virus from entering DPF facilities and to help select pigs suitable for xenotransplantation.
Collapse
Affiliation(s)
- Su-Jin Kim
- Apures Co., Ltd., 44, Hansan-gil, Cheongbuk-eup, Pyeongtaek-si 17792, Gyeonggi-do, Republic of Korea;
| | - Joonho Moon
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Huang B, Deng L, Xu T, Jian Z, Lai S, Ai Y, Xu Z, Zhu L. Isolation and pathogenicity comparison of two novel natural recombinant porcine reproductive and respiratory syndrome viruses with different recombination patterns in Southwest China. Microbiol Spectr 2024; 12:e0407123. [PMID: 38511956 PMCID: PMC11064529 DOI: 10.1128/spectrum.04071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Zhang R, Li H, Xie H, Hou X, Zhou L, Cao A, Zeshan B, Zhou Y, Wang X. Comparing the molecular evolution and recombination patterns of predominant PRRSV-2 lineages co-circulating in China. Front Microbiol 2024; 15:1398470. [PMID: 38737413 PMCID: PMC11088243 DOI: 10.3389/fmicb.2024.1398470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses widespread epidemics in swine herds, yet the drivers underlying lineage replacements/fitness dynamics remain unclear. To delineate the evolutionary trajectories of PRRSV-2 lineages prevalent in China, we performed a comprehensive longitudinal phylodynamic analysis of 822 viral sequences spanning 1991-2022. The objectives encompassed evaluating lineage dynamics, genetic diversity, recombination patterns and glycosylation profiles. A significant shift in the dominance of PRRSV-2 sub-lineages has been observed over the past 3 decades, transitioning from sub-lineage 8.7 to sub-lineage 1.8, followed by extensive diversification. The analysis revealed discordant recombination patterns between the two dominant viral sub-lineages 1.8 and 8.7, underscoring that modular genetic exchanges contribute significantly to their evolutionary shaping. Additionally, a strong association was found between recombination breakpoint locations and transcriptional regulatory sequences (TRSs). Glycosylation patterns also demonstrated considerable variability across sub-lineages and temporally, providing evidence for immune-driven viral evolution. Furthermore, we quantified different evolutionary rates across sub-lineages, with sub-lineage 1.8 uniquely displaying the highest nucleotide substitution rates. Taken together, these findings provide refined insight into the evolutionary mechanisms underpinning cyclic shifts in dominance among regionally circulating PRRSV sub-lineages.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixuan Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aiqiao Cao
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, Guangdong, China
| | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Wu Z, Chang T, Wang D, Zhang H, Liu H, Huang X, Tian Z, Tian X, Liu D, An T, Yan Y. Genomic surveillance and evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus in China spanning the African swine fever outbreak. Virus Evol 2024; 10:veae016. [PMID: 38404965 PMCID: PMC10890815 DOI: 10.1093/ve/veae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a serious threat to the pig industry in China. Our previous study demonstrated that PRRSV persists with local circulations and overseas imports in China and has formed a relatively stable epidemic pattern. However, the sudden African swine fever (ASF) outbreak in 2018 caused serious damage to China's pig industry structure, which resulted in about 40 per cent of pigs being slaughtered. The pig yields recovered by the end of 2019. Thus, whether the ASF outbreak reframed PRRSV evolution with changes in pig populations and further posed new threats to the pig industry becomes a matter of concern. For this purpose, we conducted genomic surveillance and recombination, NSP2 polymorphism, population dynamics, and geographical spread analysis of PRRSV-2, which is dominant in China. The results showed that the prevalence of ASF had no significant effects on genetic diversities like lineage composition, recombination patterns, and NSP2 insertion and deletion patterns but was likely to lead to changes in PRRSV-2 recombination frequency. As for circulation of the two major sub-lineages of Lineage 1, there was no apparent transmission of NADC30-like among provinces, while NADC34-like had obvious signs of inter-provincial transmission and foreign importation during the ASF epidemic. In addition, two suspected vaccine recombinant epidemic strains suggest a slight safety issue of vaccine use. Herein, the interference of ASF to the PRRSV-2 evolutionary pattern was evaluated and vaccine safety was analyzed, in order to monitor the potential threat of PRRSV-2 to China's pig industry in the post-epidemic era of ASF.
Collapse
Affiliation(s)
- Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| |
Collapse
|
13
|
Wang J, Yan J, Wang S, Chen R, Xing Y, Liu Q, Gao S, Zhu Y, Li J, Zhou Y, Shan T, Tong W, Zheng H, Kong N, Jiang Y, Liu C, Tong G, Yu H. An Expeditious Neutralization Assay for Porcine Reproductive and Respiratory Syndrome Virus Based on a Recombinant Virus Expressing Green Fluorescent Protein. Curr Issues Mol Biol 2024; 46:1047-1063. [PMID: 38392184 PMCID: PMC10887926 DOI: 10.3390/cimb46020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed. The fluorescent protein expressions of the reporter viruses remained stable for at least five passages. Based on this reporter virus, the neutralization assay can be easily used to evaluate the level of NAbs by counting cells with green fluorescence. Compared with the classical CPE assay, the newly developed assay increases sensitivity by one- to four-fold at the early antibody response stage, thus saving 2 days of assay waiting time. By using this assay to unveil the dynamics of neutralizing antibodies against PRRSV, priming immunity through either a single virulent challenge or only vaccination could produce limited NAbs, but re-infection with PRRSV would induce a faster and stronger NAb response. Overall, the novel HuN4-F112-eGFP-based neutralization assay holds the potential to provide a highly efficient platform for evaluating the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Juan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiecong Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuaiyong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ronglin Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanru Xing
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qingyan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuolei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuxiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiannan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
14
|
Calderon-Rico F, Bravo-Patiño A, Mendieta I, Perez-Duran F, Zamora-Aviles AG, Franco-Correa LE, Ortega-Flores R, Hernandez-Morales I, Nuñez-Anita RE. Glycoprotein 5-Derived Peptides Induce a Protective T-Cell Response in Swine against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2023; 16:14. [PMID: 38275949 PMCID: PMC10819526 DOI: 10.3390/v16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences.
Collapse
Affiliation(s)
- Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Irasema Mendieta
- Posgrado en Ciencias Quimico-Biológicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Querétaro PC 76010, Mexico;
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Ilane Hernandez-Morales
- Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon PC 37684, Guanajuato, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| |
Collapse
|
15
|
Zhang H, Li C, Xu H, Gong B, Li W, Guo Z, Xiang L, Sun Q, Zhao J, Peng J, Wang Q, Zhou G, Tang YD, An T, Cai XH, Tian ZJ. Protective efficacy of a candidate live attenuated vaccine derived from the SD-R strain of lineage 1 porcine reproductive and respiratory syndrome virus against a lethal challenge with HP-PRRSV HuN4 in piglets. Microbiol Spectr 2023; 11:e0198423. [PMID: 37819126 PMCID: PMC10714764 DOI: 10.1128/spectrum.01984-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/19/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Both highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and NADC30-like PRRSV have caused tremendous economic losses to the Chinese pig industry. In this study, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative HP-PRRSV strain (HuN4). The control piglets in the challenge experiment displayed obvious clinical symptoms of PRRSV infection, with a mortality rate up to 40%. In contrast, all the piglets in the vaccinated challenged group survived, and only some pigs had transient fever. The daily gain of SD-R immunized group piglets was significantly increased, and the pathological changes were significantly reduced. In addition, the viral replication levels in the serum of the immunized group were significantly lower than those of the challenged control group. The live attenuated vaccine SD-R strain can provide protection against HP-PRRSV challenge, indicating that the SD-R strain is a promising vaccine candidate for use in the swine industry.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Yim-im W, Anderson TK, Paploski IAD, VanderWaal K, Gauger P, Krueger K, Shi M, Main R, Zhang J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol Spectr 2023; 11:e0291623. [PMID: 37933982 PMCID: PMC10848785 DOI: 10.1128/spectrum.02916-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.
Collapse
Affiliation(s)
- Wannarat Yim-im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
17
|
Rawal G, Almeida MN, Gauger PC, Zimmerman JJ, Ye F, Rademacher CJ, Armenta Leyva B, Munguia-Ramirez B, Tarasiuk G, Schumacher LL, Aljets EK, Thomas JT, Zhu JH, Trexel JB, Zhang J. In Vivo and In Vitro Characterization of the Recently Emergent PRRSV 1-4-4 L1C Variant (L1C.5) in Comparison with Other PRRSV-2 Lineage 1 Isolates. Viruses 2023; 15:2233. [PMID: 38005910 PMCID: PMC10674456 DOI: 10.3390/v15112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The recently emerged PRRSV 1-4-4 L1C variant (L1C.5) was in vivo and in vitro characterized in this study in comparison with three other contemporary 1-4-4 isolates (L1C.1, L1A, and L1H) and one 1-7-4 L1A isolate. Seventy-two 3-week-old PRRSV-naive pigs were divided into six groups with twelve pigs/group. Forty-eight pigs (eight/group) were for inoculation, and 24 pigs (four/group) served as contact pigs. Pigs in pen A of each room were inoculated with the corresponding virus or negative media. At two days post inoculation (DPI), contact pigs were added to pen B adjacent to pen A in each room. Pigs were necropsied at 10 and 28 DPI. Compared to other virus-inoculated groups, the L1C.5-inoculated pigs exhibited more severe anorexia and lethargy, higher mortality, a higher fraction of pigs with fever (>40 °C), higher average temperature at several DPIs, and higher viremia levels at 2 DPI. A higher percentage of the contact pigs in the L1C.5 group became viremic at two days post contact, implying the higher transmissibility of this virus strain. It was also found that some PRRSV isolates caused brain infection in inoculation pigs and/or contact pigs. The complete genome sequences and growth characteristics in ZMAC cells of five PRRSV-2 isolates were further compared. Collectively, this study confirms that the PRRSV 1-4-4 L1C variant (L1C.5) is highly virulent with potential higher transmissibility, but the genetic determinants of virulence remain to be elucidated.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Marcelo N. Almeida
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Fangshu Ye
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
| | - Christopher J. Rademacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Betsy Armenta Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Berenice Munguia-Ramirez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Grzegorz Tarasiuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Loni L. Schumacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Ethan K. Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Joseph T. Thomas
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jin-Hui Zhu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jolie B. Trexel
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| |
Collapse
|
18
|
Fang P, Xie C, Pan T, Cheng T, Chen W, Xia S, Ding T, Fang J, Zhou Y, Fang L, Wei D, Xiao S. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication. Nucleic Acids Res 2023; 51:10752-10767. [PMID: 37739415 PMCID: PMC10602871 DOI: 10.1093/nar/gkad759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Congbao Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ting Pan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junkang Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dengguo Wei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
19
|
Chae H, Roh HS, Jo YM, Kim WG, Chae JB, Shin SU, Kang JW. Development of a one-step reverse transcription-quantitative polymerase chain reaction assay for the detection of porcine reproductive and respiratory syndrome virus. PLoS One 2023; 18:e0293042. [PMID: 37844073 PMCID: PMC10578580 DOI: 10.1371/journal.pone.0293042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an important disease that severely affects the swine industry and, therefore, warrants rapid and accurate diagnosis for its control. Despite the progress in developing diagnostic tools, including polymerase chain reaction (PCR)-based methods such as reverse transcription quantitative PCR (RT-qPCR) to diagnose PRRSV infection, its diagnosis at the genetic level is challenging because of its high genetic variability. Nevertheless, RT-qPCR is the easiest and fastest method for diagnosing PRRSV. Therefore, this study aimed to develop an RT-qPCR assay for rapid and accurate diagnosis of PRRSV by encompassing all publicly available PRRSV sequences. The developed assay using highly specific primers and probes could detect up to 10 copies of PRRSV-1 and -2 subtypes. Furthermore, a comparison of the performance of the developed assay with those of two commercial kits widely used in South Korea demonstrated the higher efficiency of the developed assay in detecting PRRSV infections in field samples. For PRRSV-1 detection, the developed assay showed a diagnostic agreement of 97.7% with the results of ORF5 sequencing, while for commercial kits, it showed 95.3% and 72.1% agreement. For PRRSV-2, the developed assay showed a diagnostic agreement of 97.7%, whereas the commercial kits showed 93% and 90.7% agreement. In conclusion, we developed an assay with higher accuracy than those of the tested commercial kits, which will contribute markedly to global PRRSV control.
Collapse
Affiliation(s)
- Hansong Chae
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Hyun Soo Roh
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Young Mi Jo
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Won Gyeong Kim
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Jeong Byoung Chae
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Seung-Uk Shin
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Jung Won Kang
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| |
Collapse
|
20
|
Cha SH, Hyun BH, Lee HS, Kang SJ, You SH, Jeong J, Park CJ, Lee MS, Park C. A novel chimeric vaccine candidate for porcine reproductive and respiratory syndrome virus (PRRSV) I and II elicits neutralizing antibodies against both types. J Gen Virol 2023; 104. [PMID: 37650730 DOI: 10.1099/jgv.0.001889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important virus within the swine industry. The virus causes respiratory disease and reproductive failure. Two species of PRRSV-I and II are co-dominant, yet no effective vaccination strategy has been developed to protect against these two types. With an aim to develop a chimeric vaccine strain to protect against both types, in this study, a chimeric porcine reproductive and respiratory syndrome virus (PRRSV) type I and II was rescued using reverse genetics for the first time. Four chimeric infectious clones were designed based on the genomic arrangement of the structural proteins. However, only the clone carrying the transcriptional regulatory sequence (TRS) and ORF6 of a PRRSV-I and ORF6 of a PRRSV-II generated a viable recombinant virus, suggesting that concurrent expression of ORF6 from both parental viruses is essential for the recovery of type I and II chimeric PRRSV. The chimeric virus showed significantly lower replication ability than its parental strains in vitro, which was improved by serial passaging. In vivo, groups of pigs were inoculated with either the chimeric virus, one of the parental strains, or PBS. The chimeric virus replicated in pig tissue and was detected in serum 7 days post-inoculation. Serum neutralization tests indicated that pigs inoculated with the chimeric virus elicited neutralizing antibodies that inhibited infection with strains of both species and with greater coverage than the parental viruses. In conclusion, the application of this technique to construct a chimeric PRRSV holds promise for the development of a highly effective modified live vaccine candidate. This is particularly significant since there are currently no approved commercial divalent vaccines available to combat PRRSV-I and II co-infections.
Collapse
Affiliation(s)
- Sang-Ho Cha
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Bang-Hun Hyun
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hyang-Sim Lee
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Seok-Jin Kang
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Su-Hwa You
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Jiwoon Jeong
- Division of Animal Care, Yonam College, 313, Yeonam-ro, Seonghwan-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Chang-Joo Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Zhou X, Bian S, Kan E, Zhou L, Zhang X, Xiao M, Lu C, Hua J, Wu Y, Zhang C, Zhou Y, Dong W, Du J, Wang X, Song H. A New Porcine Reproductive and Respiratory Syndrome Virus with N-Linked Glycosylation Site Deletion in GP5 44th Amino Acid from JXA1, NADC30-Like, and JM Triparental Recombination. Transbound Emerg Dis 2023; 2023:1-10. [DOI: 10.1155/2023/4001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen causing substantial financial losses in the global swine industry. The prevention of PRRSV is hampered due to frequent gene recombination among different strains of PRRSV. In this study, a new PRRSV strain, PRRSV-HQ-2020, was identified from nursery piglets in Yunnan Province, China, in 2020. The complete genome analysis revealed that PRRSV-HQ-2020 is highly similar to JXA1-like (lineage 8.7 PRRSV, isolated from China in 2008) in the 5′UTR, nsp1–9, and nsp11 coding regions. Additionally, it has a resemblance to JM (lineage 3 PRRSV, isolated from Taiwan, China, in 2010) in the nsp12-M coding region and NADC30 (lineage 1.8 PRRSV, isolated from North American in 2008) in the nsp10, N, and 3′UTR, suggesting a natural recombination event. Furthermore, recombination analyses showed three interlineage recombination events among lineages 8.7, 1.8, and 3. Notably, the GP5 protein of PRRSV-HQ-2020 exhibited a crucial mutation at position 44, leading to the deletion of a key glycosylation site. These findings provide direct evidence for the natural occurrence of recombination events among three lineages of PRRSV-2 in Chinese swine herds, leading to the emergence of unique genetic properties of PRRSV variants, and providing a theoretical basis for developing better PRRSV prevention strategies.
Collapse
Affiliation(s)
- Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Sushu Bian
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Enxi Kan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lujia Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaohui Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Min Xiao
- Jiangxi Zhengbang Academy of Agricultural Sciences, Nanchang 330029, China
| | - Chang Lu
- Jiangxi Zhengbang Academy of Agricultural Sciences, Nanchang 330029, China
| | - Ji Hua
- Jiangxi Zhengbang Academy of Agricultural Sciences, Nanchang 330029, China
| | - Yuan Wu
- Jinhua Polytechnic, Jinhua 321017, China
| | - Cheng Zhang
- Hangzhou Zhengxing Animal Husbandry Co. Ltd., Hangzhou 311300, China
| | - Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Sanchez F, Galvis JA, Cardenas NC, Corzo C, Jones C, Machado G. Spatiotemporal relative risk distribution of porcine reproductive and respiratory syndrome virus in the United States. Front Vet Sci 2023; 10:1158306. [PMID: 37456959 PMCID: PMC10340085 DOI: 10.3389/fvets.2023.1158306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains widely distributed across the U.S. swine industry. Between-farm movements of animals and transportation vehicles, along with local transmission are the primary routes by which PRRSV is spread. Given the farm-to-farm proximity in high pig production areas, local transmission is an important pathway in the spread of PRRSV; however, there is limited understanding of the role local transmission plays in the dissemination of PRRSV, specifically, the distance at which there is increased risk for transmission from infected to susceptible farms. We used a spatial and spatiotemporal kernel density approach to estimate PRRSV relative risk and utilized a Bayesian spatiotemporal hierarchical model to assess the effects of environmental variables, between-farm movement data and on-farm biosecurity features on PRRSV outbreaks. The maximum spatial distance calculated through the kernel density approach was 15.3 km in 2018, 17.6 km in 2019, and 18 km in 2020. Spatiotemporal analysis revealed greater variability throughout the study period, with significant differences between the different farm types. We found that downstream farms (i.e., finisher and nursery farms) were located in areas of significant-high relative risk of PRRSV. Factors associated with PRRSV outbreaks were farms with higher number of access points to barns, higher numbers of outgoing movements of pigs, and higher number of days where temperatures were between 4°C and 10°C. Results obtained from this study may be used to guide the reinforcement of biosecurity and surveillance strategies to farms and areas within the distance threshold of PRRSV positive farms.
Collapse
Affiliation(s)
- Felipe Sanchez
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, United States
| | - Jason A. Galvis
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Nicolas C. Cardenas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Cesar Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Christopher Jones
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, United States
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Li W, Li C, Guo Z, Xu H, Gong B, Sun Q, Zhao J, Xiang L, Leng C, Peng J, Zhou G, Tang Y, Liu H, An T, Cai XH, Tian ZJ, Wang Q, Zhang H. Genomic characteristics of a novel emerging PRRSV branch in sublineage 8.7 in China. Front Microbiol 2023; 14:1186322. [PMID: 37323894 PMCID: PMC10264644 DOI: 10.3389/fmicb.2023.1186322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused serious economic losses to the pig industry worldwide. During the continuous monitoring of PRRSV, a new PRRSV strain type with novel characteristics was first identified in three different regions of Shandong Province. These strains presented a novel deletion pattern (1 + 8 + 1) in the NSP2 region and belonged to a new branch in sublineage 8.7 based on the ORF5 gene phylogenetic tree. To further study the genomic characteristics of the new-branch PRRSV, we selected a sample from each of the three farms for whole-genome sequencing and sequence analysis. Based on the phylogenetic analysis of the whole genome, these strains formed a new independent branch in sublineage 8.7, which showed a close relationship with HP-PRRSV and intermediate PRRSV according to nucleotide and amino acid homology but displayed a completely different deletion pattern in NSP2. Recombinant analysis showed that these strains presented similar recombination patterns, all of which involved recombination with QYYZ in the ORF3 region. Furthermore, we found that the new-branch PRRSV retained highly consistent nucleotides at positions 117-120 (AGTA) of a quite conserved motif in the 3'-UTR; showed similar deletion patterns in the 5'-UTR, 3'-UTR and NSP2; retained characteristics consistent with intermediate PRRSV and exhibited a gradual evolution trend. The above results showed that the new-branch PRRSV strains may have the same origin and be similar to HP-PPRSV also evolved from intermediate PRRSV, but are distinct strains that evolved simultaneously with HP-PRRSV. They persist in some parts of China through rapid evolution, recombine with other strains and have the potential to become epidemic strains. The monitoring and biological characteristics of these strains should be further studied.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yandong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
24
|
Hu R, Zhang T, Lai R, Ding Z, Zhuang Y, Liu H, Cao H, Gao X, Luo J, Chen Z, Zhang C, Liu P, Guo X, Hu G, Ding N, Deng S. PRRSV Elimination in a Farrow-to-Finish Pig Herd Using Herd Closure and Rollover Approach. Viruses 2023; 15:1239. [PMID: 37376538 DOI: 10.3390/v15061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
It is well established that PRRSV elimination is an effective strategy for PRRS control, but published reports concerning successful PRRSV elimination cases in farrow-to-finishing herds are rare. Here, we have reported a successful PRRSV elimination case in a farrow-to-finish herd by employing a "herd closure and rollover" approach with some modifications. Briefly, the introduction of pigs to the herd was stopped and normal production processes were maintained until the herd reached a PRRSV provisional negative status. During the herd closure, strict biosecurity protocols were implemented to prevent transmission between nursery pigs and sows. In the current case, introducing gilts before herd closure and live PRRSV exposure were skipped. In the 23rd week post-outbreak, the pre-weaning piglets started to show 100% PRRSV negativity in qPCR tests. In the 27th week, nursery and fattening barns fully launched depopulation. In the 28th week, nursery and fattening houses reopened and sentinel gilts were introduced into gestation barns. Sixty days post-sentinel gilt introduction, the sentinel pigs maintained being PRRSV antibody negative, manifesting that the herd matched the standard of the provisional negative status. The production performance of the herd took 5 months to bounce back to normal. Overall, the current study provided additional information for PRRSV elimination in farrow-to-finish pig herds.
Collapse
Affiliation(s)
- Ruiming Hu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiansheng Zhang
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China
| | - Rongbin Lai
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China
| | - Zhen Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| | - Huabin Cao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junrong Luo
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shunzhou Deng
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
25
|
Zhang H, Luo Q, Zheng Y, Sha H, Li G, Kong W, Huang L, Zhao M. Genetic Variability and Recombination of the NSP2 Gene of PRRSV-2 Strains in China from 1996 to 2021. Vet Sci 2023; 10:vetsci10050325. [PMID: 37235408 DOI: 10.3390/vetsci10050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious diseases that detrimentally affects the pig industry worldwide. The disease, which is typically difficult to control, is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV), the genome of which (notably the NSP2 gene) undergoes rapid mutation. In this study, we sought to determine the genetic variation in the PRRSV-2 NSP2 gene in China from 1996 to 2021. Strain information was obtained from the GenBank database and analyzed from a molecular epidemiological perspective. We compared the nucleotide and amino acid homologies of the NSP2 sequences of different PRRSV-2 lineages, and examined phylogenetic relationships based on an analysis of the NSP2 sequences of 122 strains. The results revealed that NADC-30-like strains, which are represented by lineage 1, and HP-PRRSV strains, which are represented by lineage 8, were the most prevalent in China from 1996 to 2021. Close similarities were detected in the genetic evolution of lineages 3, 5, and 8. For nucleotide and amino acid sequence comparisons, we selected representative strains from each lineage, and for the NSP2 among different PRRSV-2 strains, we accordingly detected homologies of 72.5-99.8% and 63.9-99.4% at the nucleotide and amino acid levels, respectively, thereby indicating certain differences in the degrees of NSP2 amino acid and nucleotide variation. Based on amino acid sequence comparisons, we identified deletions, insertions, and substitutions at multiple sites among the NSP2 sequences of PRRSV-2 strains. Recombination analysis revealed the occurrence of five recombinant events among the 135 selected PRRSV-2 strains, and that there is a high probability of recombination of lineage 1 strains. The findings of this study enabled us to gain an in-depth understanding of the prevalence of PRRSV in China over the past 25 years and will contribute to providing a theoretical basis for evolution and epidemiology of the spread of PRRSV.
Collapse
Affiliation(s)
- Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
26
|
Kong C, Li D, Hu Y, Gao P, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. The Genetic Variation of Porcine Reproductive and Respiratory Syndrome Virus Replicase Protein nsp2 Modulates Viral Virulence and Persistence. J Virol 2023; 97:e0168922. [PMID: 36916907 PMCID: PMC10062138 DOI: 10.1128/jvi.01689-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Fast evolution in the field of the replicase nsp2 represents a most prominent feature of porcine reproductive and respiratory syndrome virus (PRRSV). Here, we determined its biological significance in viral pathogenesis by constructing interlineage chimeric mutants between the Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 (lineage 8) and the low-virulent NADC30-like strain CHsx1401 (lineage 1). Replacement with nsp2 from JXwn06 was surprisingly lethal to the backbone virus CHsx1401, but combined substitution with the structural protein-coding region (SP) gave rise to viable virus CHsx1401-SPnsp2JX. Meanwhile, a derivative carrying only the SP region (CHsx1401-SPJX) served as a control. Subsequent animal experiments revealed that acquisition of SP alone (CHsx1401-SPJX) did not allow CHsx1401 to gain much virulence, but additional swapping of HP-PRRSV nsp2 (CHsx1401-SPnsp2JX) enabled CHsx1401 to acquire some properties of HP-PRRSV, exemplified by prolonged high fever, microscopic lung hemorrhage, and a significant increase in proinflammatory cytokines in the acute stage. Consistent with this was the transcriptomic analysis of persistently infected secondary lymphoid tissues that revealed a much stronger induction of host cellular immune responses in this group and identified several core immune genes (e.g., TLR4, IL-1β, MPO, etc.) regulated by HP-PRRSV nsp2. Interestingly, immune activation status in the individual groups correlated well with the rate of viremia clearance and viral tissue load reduction. Overall, the above results suggest that the Chinese HP-PRRSV nsp2 is a critical virulence regulator and highlight the importance of nsp2 genetic variation in modulating PRRSV virulence and persistence via immune modulation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to the world swine industry. In the field, rapid genetic variations (e.g., deletion, mutation, recombination, etc.) within the nsp2 region present an intriguing conundrum to PRRSV biology and pathogenesis. By making chimeric mutants, here, we show that the Chinese highly pathogenic PRRSV (HP-PRRSV) nsp2 is a virulence factor and a much stronger inducer of host immune responses (e.g., inflammation) than its counterpart, currently epidemic, NADC30-like strains. Differences in the ability to modulate host immunity provide insight into the mechanisms of why NADC30-like strains and their derivatives are rising to be the dominant viruses, whereas the Chinese HP-PRRSV strains gradually give away center stage in the field. Our results have important implications in understanding PRRSV evolution, interlineage recombination, and persistence.
Collapse
Affiliation(s)
- Can Kong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Dan Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Peng Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Lu J, Zeng L, Holford P, Beattie GAC, Wang Y. Discovery of Brassica Yellows Virus and Porcine Reproductive and Respiratory Syndrome Virus in Diaphorina citri and Changes in Virome Due to Infection with ' Ca. L. asiaticus'. Microbiol Spectr 2023; 11:e0499622. [PMID: 36943045 PMCID: PMC10100913 DOI: 10.1128/spectrum.04996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
Detection of new viruses or new virus hosts is essential for the protection of economically important agroecosystems and human health. Increasingly, metatranscriptomic data are being used to facilitate this process. Such data were obtained from adult Asian citrus psyllids (ACP) (Diaphorina citri Kuwayama) that fed solely on mandarin (Citrus ×aurantium L.) plants grafted with buds infected with 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium associated with the severe Asian variant of huanglongbing (HLB), the most destructive disease of citrus. Brassica yellows virus (BrYV), the causative agent of yellowing or leafroll symptoms in brassicaceous plants, and its associated RNA (named as BrYVaRNA) were detected in ACP. In addition, the porcine reproductive and respiratory syndrome virus (PRRSV), which affects pigs and is economically important to pig production, was also found in ACP. These viruses were not detected in insects feeding on plants grafted with CLas-free buds. Changes in the concentrations of insect-specific viruses within the psyllid were caused by coinfection with CLas. IMPORTANCE The cross transmission of pathogenic viruses between different farming systems or plant communities is a major threat to plants and animals and, potentially, human health. The use of metagenomics is an effective approach to discover viruses and vectors. Here, we collected buds from the CLas-infected and CLas-free mandarin (Citrus ×aurantium L. [Rutaceae: Aurantioideae: Aurantieae]) trees from a commercial orchard and grafted them onto CLas-free mandarin plants under laboratory conditions. Through metatranscriptome sequencing, we first identified the Asian citrus psyllids feeding on plants grafted with CLas-infected buds carried the plant pathogen, brassica yellows virus and its associated RNA, and the swine pathogen, porcine reproductive and respiratory syndrome virus. These discoveries indicate that both viruses can be transmitted by grafting and acquired by ACP from CLas+ mandarin seedlings.
Collapse
Affiliation(s)
- Jinming Lu
- College of Forestry and Biotechnology, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, China
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lixia Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - George A. C. Beattie
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Yanjing Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Development of a Multiplex Crystal Digital RT-PCR for Differential Detection of Classical, Highly Pathogenic, and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13040594. [PMID: 36830384 PMCID: PMC9951750 DOI: 10.3390/ani13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/μL for the multiplex qRT-PCR and 3.20 × 10-1 copies/μL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.
Collapse
|
29
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
30
|
Wang S, Xu M, Yang K, Zhang Y, Li S, Tang YD, Wang J, Leng C, An T, Cai X. Streptococcus suis contributes to inguinal lymph node lesions in piglets after highly pathogenic porcine reproductive and respiratory syndrome virus infection. Front Microbiol 2023; 14:1159590. [PMID: 37180243 PMCID: PMC10172469 DOI: 10.3389/fmicb.2023.1159590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The swine pathogens porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis have both been reported to cause damage to the immune organs. Inguinal lymph node (ILN) injury has been reported in PRRSV-infected pigs with secondary S. suis infection, but not much is known about the mechanism. In this study, secondary S. suis infection after highly pathogenic (HP)-PRRSV infection caused more severe clinical symptoms, mortality, and ILN lesions. Histopathological lesions were seen in ILNs with a marked decrease in lymphocyte numbers. Terminal deoxynucleotidyl transferase (TdT)-mediated de-oxyuridine triphosphate (dUTP)-biotin nick end-labeling (TUNEL) assays revealed that HP-PRRSV strain HuN4 alone induced ILN apoptosis, but dual-infection with S. suis strain BM0806 induced greater levels of apoptosis. Besides, we found that some HP-PRRSV-infected cells underwent apoptosis. Furthermore, anti-caspase-3 antibody staining confirmed that ILN apoptosis was mainly induced by a caspase-dependent pathway. Pyroptosis was also observed in HP-PRRSV-infected cells, and there was more pyroptosis in piglets infected with HP-PRRSV alone compared with those with secondary S. suis infection, and HP-PRRSV-infected cells underwent pyroptosis. Altogether, this is the first report to identify pyroptosis in ILNs and which signaling pathway is related to ILN apoptosis in single or dual-infected piglets. These results contribute to a better understanding of the pathogenic mechanisms during secondary S. suis infection.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
- *Correspondence: Shujie Wang,
| | - Min Xu
- Sinopharm Animal Health Corporation Ltd., Wuhan, China
| | - Kongbin Yang
- Neurosurgery Department, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinliang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Xuehui Cai,
| |
Collapse
|
31
|
Jiang Y, Gao F, Li L, Zhou Y, Tong W, Yu L, Zhang Y, Zhao K, Zhu H, Liu C, Li G, Tong G. The rPRRSV-E2 strain exhibited a low level of potential risk for virulence reversion. Front Vet Sci 2023; 10:1128863. [PMID: 36960147 PMCID: PMC10027928 DOI: 10.3389/fvets.2023.1128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Classical Swine Fever Virus (CSFV) are two important pathogens, which cause serious impact on swine industry worldwide. In our previous research, rPRRSV-E2, the recombinant PRRSV expressing CSFV E2 protein, could provide sufficient protection against the lethal challenge of highly pathogenic PRRSV and CSFV, and could maintained genetically stable in vitro. Here, to evaluate the virulence reversion potential risk, rPRRSV-E2 had been continuously passaged in vivo, the stability of E2 expression and virulence of the passage viruses were analyzed. The results showed that no clinical symptoms or pathological changes could be found in the inoculated groups, and there were no significant differences of viraemia among the test groups. Sequencing and IFA analysis showed that the coding gene of exogenous CSFV E2 protein existed in the passaged viruses without any sequence mutations, deletions or insertions, and could expressed steadily. It could be concluded that the foreign CSFV E2 gene in the genome of rPRRSV-E2 could be maintained genetically stable in vivo, and rPRRSV-E2 strain had relatively low level of potential risk for virulence reversion.
Collapse
Affiliation(s)
- Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Guoxin Li
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- Guangzhi Tong
| |
Collapse
|
32
|
Xia W, Chen Y, Ding X, Liu X, Lu H, Guo C, Zhang H, Wu Z, Huang J, Fan Z, Yu S, Sun H, Zhu S, Wu Z. Rapid and Visual Detection of Type 2 Porcine Reproductive and Respiratory Syndrome Virus by Real-Time Fluorescence-Based Reverse Transcription Recombinase-Aided Amplification. Viruses 2022; 14:v14112526. [PMID: 36423135 PMCID: PMC9699348 DOI: 10.3390/v14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases that has brought significant economic losses to the swine industry worldwide. Rapid and accurate PRRS virus (PRRSV) detection is one of the key factors for PRRS prevention and control. This study developed a real-time fluorescence-based reverse transcription recombinase-aided amplification (RF-RT-RAA) method for type 2 PRRSV (PRRSV-2) detection. The RF-RT-RAA assay could be performed at 42 °C for 20 min with the optimal primers and a probe. RF-RT-RAA results could be monitored using real-time fluorescence read-out or visually observed with the naked eye using a portable blue light transilluminator. The method had a strong specificity; no cross-reaction was identified with the detected common swine viruses. Moreover, the technique yielded high sensitivity with the lowest detection limit of 101 copies/μL and exhibited good repeatability and reproductively with the coefficients of variation (CV) less than 10%. Eighty-seven clinical samples were tested using RF-RT-RAA and a commercial PRRSV-2 RT-qPCR detection kit. The coincidence rate was 100% between RF-RT-RAA (real-time fluorescence read-out) and RT-qPCR, and 97.7% between RF-RT-RAA (visually observed) and RT-qPCR. The RF-RT-RAA assay provides a new method for rapid and visual detection of PRRSV-2.
Collapse
Affiliation(s)
- Wenlong Xia
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
- Correspondence: (W.X.); (Z.W.)
| | - Yao Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xue Ding
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaoming Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huipeng Lu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Changming Guo
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hua Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
| | - Zhijun Wu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
| | - Jing Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zhongjun Fan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Shupei Yu
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
- Correspondence: (W.X.); (Z.W.)
| |
Collapse
|
33
|
Wu Q, Han Y, Wu X, Wang Y, Su Q, Shen Y, Guan K, Michal JJ, Jiang Z, Liu B, Zhou X. Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Front Immunol 2022; 13:960709. [PMID: 36341362 PMCID: PMC9631489 DOI: 10.3389/fimmu.2022.960709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious disease that affects the global pig industry. To understand mechanisms of susceptibility/resistance to PRRSV, this study profiled the time-serial white blood cells transcriptomic and serum metabolomic responses to PRRSV in piglets from a crossbred population of PRRSV-resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the expression levels of marker genes of dendritic cells, monocytes and neutrophils and inflammatory response, but down-regulated T cells, B cells and NK cells markers. CIBERSORT analysis confirmed the higher T cells proportion in resistant pigs during PRRSV infection. Resistant pigs showed a significantly higher level of T cell activation and lower expression levels of monocyte surface signatures post infection than susceptible pigs, corresponding to more severe suppression of T cell immunity and inflammatory response in susceptible pigs. Differentially expressed genes between resistant/susceptible pigs during the course of infection were significantly enriched in oxidative stress, innate immunity and humoral immunity, cell cycle, biotic stimulated cellular response, wounding response and behavior related pathways. Fourteen of these genes were distributed in 5 different QTL regions associated with PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were differentially expressed between resistant pigs and susceptible pigs and can be a promising marker for susceptibility/resistance to PRRSV. Furthermore, the metabolomics dataset indicated differences in amino acid pathways and lipid metabolism between pre-infection/post-infection and resistant/susceptible pigs. The majority of metabolites levels were also down-regulated after PRRSV infection and were significantly positively correlated to the expression levels of marker genes in adaptive immune response. The integration of transcriptome and metabolome revealed concerted molecular events triggered by the infection, notably involving inflammatory response, adaptive immunity and G protein-coupled receptor downstream signaling. This study has increased our knowledge of the immune response differences induced by PRRSV infection and susceptibility differences at the transcriptomic and metabolomic levels, providing the basis for the PRRSV resistance mechanism and effective PRRS control.
Collapse
Affiliation(s)
- Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yu Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianmeng Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jennifer J. Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| |
Collapse
|
34
|
Zhang Z, Li Z, Li H, Yang S, Ren F, Bian T, Sun L, Zhou B, Zhou L, Qu X. The economic impact of porcine reproductive and respiratory syndrome outbreak in four Chinese farms: Based on cost and revenue analysis. Front Vet Sci 2022; 9:1024720. [PMID: 36311672 PMCID: PMC9597626 DOI: 10.3389/fvets.2022.1024720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The economic impact after the outbreak of porcine reproductive and respiratory syndrome (PRRS) has been proven to be tremendous for pig production worldwide. However, the economic impact of the disease is not well understood in China. In our previous study, we acquired and analyzed the main production data (the number of weaned piglets, health costs, delayed marketing age, etc.) from the management system before and after the PRRS outbreaks occurring in November 2014, March 2015, December 2016, and February 2017. This study aimed to analyze and quantify the economic losses of the four PRRS outbreaks in Chinese herds. A straightforward approach was used to calculate additional costs and decreased revenues based on the PRRS-induced production deficiencies by average cost-of-production indices calculated from annual estimates of costs between 2014 and 2017. The results showed that economic losses varied between ¥668.14 and ¥1004.43 per sow in breeding herds from the outbreaks to regain the basic performance, with an average of ¥822.75 per sow, and the mean costs in the fattening herds (including nursery pigs) were ¥601.62 per sow, ranging from ¥318.64 to ¥937.14. Overall, the economic impact of PRRS on the whole herd was ¥1424.37 per sow. The majority of the losses were due to the reduction in the number of weaned piglets for breeding herds, and the increased feed cost (occupying 44.88%) was the primary source of loss for fattening herds. Our study fills the gap in knowledge of PRRS economics in China, enriches the data for veterinary economics, and re-stresses the necessity for producers and veterinarians to control PRRS effectively.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China,Nanjing Dr. Vet Health Management Co., Ltd., Nanjing, China
| | - Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuqing Yang
- Nanjing Dr. Vet Health Management Co., Ltd., Nanjing, China
| | - Fubo Ren
- Nanjing Dr. Vet Health Management Co., Ltd., Nanjing, China
| | - Ting Bian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liumei Sun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyang Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China,Nanjing Dr. Vet Health Management Co., Ltd., Nanjing, China,*Correspondence: Xiangyang Qu
| |
Collapse
|
35
|
Li P, Shen Y, Wang T, Li J, Li Y, Zhao Y, Liu S, Li B, Liu M, Meng F. Epidemiological survey of PRRS and genetic variation analysis of the ORF5 gene in Shandong Province, 2020–2021. Front Vet Sci 2022; 9:987667. [PMID: 36187820 PMCID: PMC9521713 DOI: 10.3389/fvets.2022.987667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Since the rise of porcine reproductive and respiratory syndrome virus (PRRSV) in China, mutations have occurred regularly. In particular, the emergence of HP-PRRSV has significantly improved the pathogenicity of PRRSV. It has brought huge economic losses to the Chinese pig farming industry. To understand the current prevalence and evolution of PRRSV in Shandong Province, 1,344 samples suspected of having PRRSV were collected from local hog farms of different sizes. Genetic variation in the isolated PRRSV ORF5 gene was analyzed using the RT-PCR method. The results showed that the detection rate of PRRSV in the collected samples was 25.44%. The predominant strain of PRRSV in Shandong Province is still NADC30-like. However, it cannot be ignored that NADC34-like is also starting to become a prevalent strain. Mutations in ORF5 amino acids 13, 151 and neutralizing epitope (aa36-aa52) in some isolates can cause changes in virulence and ability to escape immunity. This study enriches the epidemiological data on PRRSV in Shandong Province, China. It provides an important reference for the development of new vaccines and for the prevention and control of PRRSV.
Collapse
Affiliation(s)
- Peixun Li
- College of Animal Medicine, Shandong Agricultural University, Taian, China
| | - Yesheng Shen
- College of Animal Medicine, Shandong Agricultural University, Taian, China
| | - Tailong Wang
- College of Animal Medicine, Shandong Agricultural University, Taian, China
| | - Jing Li
- College of Animal Medicine, Shandong Agricultural University, Taian, China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yiran Zhao
- College of Animal Medicine, Shandong Agricultural University, Taian, China
| | - Sidang Liu
- College of Animal Medicine, Shandong Agricultural University, Taian, China
| | - Baoquan Li
- College of Animal Medicine, Shandong Agricultural University, Taian, China
- *Correspondence: Baoquan Li
| | - Mengda Liu
- Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, China
- Mengda Liu
| | - Fanliang Meng
- College of Animal Medicine, Shandong Agricultural University, Taian, China
- Huayun (Shandong) Inspection and Quarantine Service Co., Ltd, Taian, China
- Fanliang Meng
| |
Collapse
|
36
|
Umar S, Anderson BD, Chen K, Wang G, Ma M, Gray GC. Metagenomic analysis of endemic viruses in oral secretions from Chinese pigs. Vet Med Sci 2022; 8:1982-1992. [PMID: 36047475 PMCID: PMC9514493 DOI: 10.1002/vms3.869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Pigs are unique reservoirs for virus ecology. Despite the increased use of improved biosecurity measures, pig viruses readily circulate in Chinese swine farms. Objectives The main objective of this study was to examine archived swine oral secretion samples with a panel of pan‐species viral assays such that we might better describe the viral ecology of swine endemic viruses in Chinese farms. Methodology Two hundred (n = 200) swine oral secretion samples, collected during 2015 and 2016 from healthy pigs on six swine farms in two provinces in China, were screened with molecular pan‐species assays for coronaviruses (CoVs), adenoviruses (AdVs), enteroviruses (EVs), and paramyxoviruses (PMV). Samples were also screened for porcine circovirus (PCV) 3, porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). Results Among 200 swine oral secretion samples, 152 (76.0%) were found to have at least one viral detection. Thirty‐four samples (17%) were positive for more than one virus, including 24 (70.5%) with dual detection and 10 (29.5%) with triple detection. Seventy‐eight (39.0%) samples were positive for porcine AdVs, 22 (11.0%) were positive for porcine CoVs, 21 (10.5%) were positive for IAVs, 13 (6.5%) were positive for PCV, 7 (3.5%) were positive for PMV, six (3.0%) were positive for PRRSV and five (2.5%) were positive for porcine EV. Conclusion Our findings underscore the high prevalence of numerous viruses among production pigs in China and highlight the need for routine, periodic surveillance for novel virus emergence with the goal of protecting pigs.
Collapse
Affiliation(s)
- Sajid Umar
- Global Health Research Center Duke Kunshan University Kunshan Jiangsu China
| | - Benjamin D. Anderson
- Global Health Research Center Duke Kunshan University Kunshan Jiangsu China
- Division of Natural and Applied Sciences Duke Kunshan University Kunshan Jiangsu China
| | - Kuanfu Chen
- Global Health Research Center Duke Kunshan University Kunshan Jiangsu China
| | - Guo‐Lin Wang
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Mai‐Juan Ma
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Gregory C. Gray
- Division of Infectious Diseases University of Texas Galveston USA
- Program in Emerging Infectious Diseases Duke‐NUS Medical School Singapore
| |
Collapse
|
37
|
Zhao P, Wang C, Cao W, Fang R, Zhao J. Risk Factors and Spatial-Temporal Analysis of Porcine Reproductive and Respiratory Syndrome Seroprevalence in China Before and After African Swine Fever Outbreak. Front Vet Sci 2022; 9:929596. [PMID: 35982921 PMCID: PMC9379090 DOI: 10.3389/fvets.2022.929596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious viral disease that causes great harm to the pig industry. PRRS virus (PRRSV), the causative agent of PRRS, is characterized by severe reproductive failure and respiratory confusion. This study performed a cross-sectional investigation of PRRSV seroprevalence and collected 14,134 serum samples in pig farms without PRRSV vaccination from 12 provinces and two cities in China from 2017 to 2021 to detect PRRSV antibodies by enzyme-linked immunosorbent assay (ELISA). The apparent and true PRRSV antibody prevalence was estimated and compared based on the Clopper-Pearson method and Pearson chi-square test, respectively. Risk factors associated with the PRRSV serological status of pig farms were analyzed through univariate and multivariable logistic regression analysis. An automatic autoregressive integrated moving average (ARIMA) model procedure was used for time-series analysis for PRRSV seroprevalence. Spatial clusters of high PRRSV seroprevalence were detected by SaTScan software. The total true PRRSV seroprevalence of the animal level was 62.56% (95% confidence interval [CI]: 61.74–63.37%). Additionally, 286 out of 316 pig farms were positive for PRRSV antibodies at the herd level. Pig farms without pseudorabies virus (PRV) infection were 5.413 (95% CI: 1.977–17.435) times more likely to be PRRSV antibody positive than those with PRV. Identically, the possibility of pig farms being PRRSV antibody positive before an African swine fever (ASF) outbreak was 3.104 (95% CI: 1.122–10.326) times more than after ASF. The odd ratio values of medium and large pig farms with PRRSV infection are 3.076 (95% CI: 1.005–9.498) and 6.098 (95% CI: 1.814–21.290). A fluctuant decline pattern for PRRSV prevalence was observed in the temporal analysis. Three significant clusters of high PRRSV seroprevalence were first detected in China, covering a time frame from January 2018 to September 2018, which reveals high PRRSV prevalence before the outbreak of ASF. These findings show the epidemic situation and spatial-temporal distribution of PRRSV infection in China in recent years and could help develop reasonable measures to prevent PRRSV infection.
Collapse
|
38
|
Cui XY, Xia DS, Huang XY, Tian XX, Wang T, Yang YB, Wang G, Wang HW, Sun Y, Xiao YH, Tian ZJ, Cai XH, An TQ. Recombinant characteristics, pathogenicity, and viral shedding of a novel PRRSV variant derived from twice inter-lineage recombination. Vet Microbiol 2022; 271:109476. [PMID: 35679815 DOI: 10.1016/j.vetmic.2022.109476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
39
|
Duan H, Dong H, Wu S, Ren J, Zhang M, Chen C, Du Y, Zhang G, Zhang A. Porcine reproductive and respiratory syndrome virus non-structural protein 4 cleaves guanylate-binding protein 1 via its cysteine proteinase activity to antagonize GBP1 antiviral effect. Vet Res 2022; 53:55. [PMID: 35804432 PMCID: PMC9264745 DOI: 10.1186/s13567-022-01071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly infectious disease caused by PRRS virus (PRRSV) that causes great economic losses to the swine industry worldwide. PRRSV has been recognized to modulate the host antiviral interferon (IFN) response and downstream interferon-stimulated gene expression to intercept the antiviral effect of host cells. Guanylate-binding proteins (GBPs) are IFN-inducible GTPases that exert broad antiviral activity against several DNA and RNA viruses, of which GBP1 is considered to play a pivotal role. However, the role of GBP1 in PRRSV replication remains unknown. The present study showed that overexpression of GBP1 notably inhibited PRRSV infection, while the knockdown of endogenous GBP1 promoted PRRSV infection. The K51 and R48 residues of GBP1 were essential for the suppression of PRRSV replication. Furthermore, GBP1 abrogated PRRSV replication by disrupting normal fibrous actin structures, which was indispensable for effective PRRSV replication. By using a co-immunoprecipitation assay, we found that GBP1 interacted with the non-structural protein 4 (nsp4) protein of PRRSV, and this interaction was mapped to the N-terminal globular GTPase domain of GBP1 and amino acids 1–69 of nsp4. PRRSV infection significantly downregulated GBP1 protein expression in Marc-145 cells, and nsp4, a 3C-like serine proteinase, was responsible for GBP1 cleavage, and the cleaved site was located at glutamic acid 338 of GBP1. Additionally, the anti-PRRSV activity of GBP1 was antagonized by nsp4. Taken together, these findings expand our understanding of the sophisticated interaction between PRRSV and host cells, PRRSV pathogenesis and its mechanisms of evading the host immune response.
Collapse
Affiliation(s)
- Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Haoxin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Shuya Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Jiahui Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Mingfang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Chuangwei Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China. .,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
40
|
Chen D, Xu S, Jiang R, Guo Y, Yang X, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. IL-1β induced by PRRSV co-infection inhibited CSFV C-strain proliferation via the TLR4/NF-κB/MAPK pathways and the NLRP3 inflammasome. Vet Microbiol 2022; 273:109513. [DOI: 10.1016/j.vetmic.2022.109513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
|
41
|
Porcine reproductive and respiratory syndrome virus reinfection causes the distribution of porcine interleukin-4 in close proximity to B lymphocytes within lymphoid follicles and a reduction in B and T lymphocytes. Vet Microbiol 2022; 272:109498. [PMID: 35793585 DOI: 10.1016/j.vetmic.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Interleukin 4 (IL-4) plays a major role in T-lymphocyte development and is thought to be a central regulator as a cofactor in resting B-lymphocyte proliferation. Primary infection with porcine reproductive and respiratory syndrome virus (PRRSV) induces minimal IL-4 production, whereas an IL-4 response occurs in the peripheral blood of piglets reinfected by PRRSV. The locations and interaction partners for the massive volume of IL-4 triggered by PRRSV reinfection remain unclear. This study aimed to investigate the characteristics of IL-4 secretion and location changes in peripheral immune organs induced by PRRSV infection and reinfection. Our results show that PRRSV reinfection induced higher levels of IL-4 mRNA and protein expression in the peripheral immune organs (e.g., lymph node and spleen) and peripheral blood compared with PRRSV primary infection. Importantly, we found that, following PRRSV reinfection, an obvious large-scale migration of IL-4 occurred in the lymph nodes. During PRRSV primary infection, IL-4 was mainly concentrated around the lymphoid follicles and paracortical regions of the lymph node and also located in the marginal area and periarterial lymphatic sheath region of the spleen. During PRRSV reinfection, the now abundant IL-4 gathered into the lymphoid follicles of the lymph node and spleen. Notably, IL-4 changed its location state from scattered and sparse during primary infection to clinging to B lymphocytes in the lymphoid follicles during reinfection. During reinfection, IL-4 was often co-localized with T and B lymphocytes; furthermore, the percentages of several T lymphocyte subsets, N protein-specific antibody levels, and viral load in the peripheral blood or lymph tissues underwent remarkable variation. Another important finding of this study was that the numbers of B lymphocytes and T lymphocytes in the lymphoid nodes were significantly reduced after PRRSV infection or reinfection, presumably due to PRRSV-induced acute bone marrow failure and autophagy in thymic epithelial cells. This study revealed the characteristics of IL-4 migration and distribution in the peripheral lymph organs induced by PRRSV reinfection and provides valuable clues for further exploration of the interactions between IL-4, B lymphocytes, and T lymphocytes during PRRSV infection and reinfection.
Collapse
|
42
|
Cheng TY, Campler MR, Schroeder DC, Yang M, Mor SK, Ferreira JB, Arruda AG. Detection of Multiple Lineages of PRRSV in Breeding and Growing Swine Farms. Front Vet Sci 2022; 9:884733. [PMID: 35774978 PMCID: PMC9237545 DOI: 10.3389/fvets.2022.884733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The detection and co-circulation of multiple variants of porcine reproductive and respiratory syndrome virus (PRRSV) have been observed and reported in swine. However, the potential long-term impact of multiple prevailing PRRSV variants on pig-performance is not yet fully understood. The primary objective of this study was to describe the genetic variation of PRRSV in processing fluid (PF), oral fluid (OF), and tonsil scraping (TS) specimens from five swine farms with different production types and PRRS status over a period of time (~1 year). Furthermore, the association between PRRSV prevalence and production parameters was investigated. Results showed that PRRSV was detected by RT-qPCR in 21–25% of all types of specimens. In breeding farms, PRRSV detection in PF and/or TS samples was correlated with stillborn and mummified fetuses, and pre-weaning mortality throughout the study period. Although ORF5 sequences were obtained in <16% of all sample types, simultaneous detection of PRRSV variants including field and vaccine strains within a single sampling event was identified in both breeding and growing pig farms. Phylogenetic analyses based on the ORF5 sequence classified the detected field PRRSV into L1A and L1H, two sub-lineages of lineage 1 (L1). Our study demonstrated the presence of multiple PRRSV lineages, sub-lineages, and variants in swine herds and its potential association with swine reproductive performance under field conditions.
Collapse
Affiliation(s)
- Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Magnus R. Campler
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - My Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Sunil K. Mor
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Juliana B. Ferreira
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Andréia G. Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- *Correspondence: Andréia G. Arruda
| |
Collapse
|
43
|
Phylogenetic analysis of porcine reproductive and respiratory syndrome virus in Vietnam, 2021. Virus Genes 2022; 58:361-366. [PMID: 35589912 PMCID: PMC9119219 DOI: 10.1007/s11262-022-01912-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes more economic losses in the swine industry than any other virus. This study aimed to investigate the genetic diversity of PRRSV to assist in evaluating the effectiveness of PRRS vaccines. Twenty-eight samples from clinical cases were collected from 19 farms in seven provinces of Vietnam in 2021. Full-length PRRSV ORF5 genes from the 19 samples were amplified, sequenced, and compared to the corresponding sequences of referenced PRRSV strains from Genbank. The genetic analysis showed that 12 isolates were the highly pathogenic PRRSV subtype (HP—PRRSV) lineage 8, sublineage 8.7; six isolates were the classical North American PRRSV subtype (US-PRRSV), NADC-like group, lineage 1, sublineage 1.4, which were reported in Vietnam for the first time; and the final isolate was a vaccine-like strain. The field isolates of HP-PRRSV had relatively higher genetic diversity with US-PRRSV vaccine strains (84.0–94.5%) than HP-PRRSV vaccine strains (95.3–98.6%). Meanwhile, the six NADC-like isolates had low nucleotide similarity with US-PRRSV and HP-PRRSV vaccine strains (83.4–85.4% and 83.2–84.0%, respectively). Many amino acid substitutions were found in antigenic regions of GP5 involved in response to early antibody production, neutralizing antibodies, and viral immune evasion between these field strains and PRRSV vaccine strains. These findings provide insights into the molecular characteristics, genetic diversity, antigenicity, and evolution of PRRSV strains in Vietnam and postulate a compelling explanation for the limitations of current vaccination efforts.
Collapse
|
44
|
Zhang A, Sun Y, Jing H, Liu J, Duan E, Ke W, Tao R, Li Y, Wang J, Cao S, Zhao P, Wang H, Zhang Y. Interaction of HnRNP F with the guanine-rich segments in viral antigenomic RNA enhances porcine reproductive and respiratory syndrome virus-2 replication. Virol J 2022; 19:82. [PMID: 35570267 PMCID: PMC9107676 DOI: 10.1186/s12985-022-01811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (HnRNP) F is a member of HnRNP family proteins that participate in splicing of cellular newly synthesized mRNAs by specifically recognizing tandem guanine-tracts (G-tracts) RNA sequences. Whether HnRNP F could recognize viral-derived tandem G-tracts and affect virus replication remain poorly defined. Methods The effect of HnRNP F on porcine reproductive and respiratory syndrome virus (PRRSV) propagation was evaluated by real-time PCR, western blotting, and plaque-forming unit assay. The association between HnRNP F and PRRSV guanine-rich segments (GRS) were analyzed by RNA pulldown and RNA immunoprecipitation. The expression pattern of HnRNP F was investigated by western blotting and nuclear and cytoplasmic fractionation. Results Knockdown of endogenous HnRNP F effectively blocks the synthesis of viral RNA and nucleocapsid (N) protein. Conversely, overexpression of porcine HnRNP F has the opposite effect. Moreover, RNA pulldown and RNA immunoprecipitation assays reveal that the qRMM1 and qRRM2 domains of HnRNP F recognize the GRS in PRRSV antigenomic RNA. Finally, HnRNP F is redistributed into the cytoplasm and forms a complex with guanine-quadruplex (G4) helicase DHX36 during PRRSV infection. Conclusions These findings elucidate the potential functions of HnRNP F in regulating the proliferation of PRRSV and contribute to a better molecular understanding of host-PRRSV interactions.
Collapse
|
45
|
Zhang H, Cao Z, Sun P, Khan A, Guo J, Sun Y, Yu X, Fan K, Yin W, Li E, Sun N, Li H. A novel strategy for optimal component formula of anti-PRRSV from natural compounds using tandem mass tag labeled proteomic analyses. BMC Vet Res 2022; 18:179. [PMID: 35568854 PMCID: PMC9106989 DOI: 10.1186/s12917-022-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most important porcine viral diseases which have been threatening the pig industry in China. At present, most commercial vaccines fail to provide complete protection because of highly genetic diversity of PRRSV strains. This study aimed to optimize a component formula from traditional Chinese medicine(TCM)compounds with defined chemical characteristics and clear mechanism of action against PRRSV. METHODS A total of 13 natural compounds were screened for the anti-PRRSV activity using porcine alveolar macrophages (PAMs). Three compounds with strong anti-PRRSV activity were selected to identify their potential protein targets by proteomic analysis. The optimal compound formula was determined by orthogonal design based on the results of proteomics. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each compound using PAMs. QPCR and western blot were used to investigate the PRRSV N gene and protein expression, respectively. The Tandem Mass Tag (TMT) technique of relative quantitative proteomics was used to detect the differential protein expression of PAMs treated with PRRSV, matrine (MT), glycyrrhizic acid (GA) and tea saponin (TS), respectively. The three concentrations of these compounds with anti-PRRSV activity were used for orthogonal design. Four formulas with high safety were screened by MTT assay and their anti-PRRSV effects were evaluated. RESULTS MT, GA and TS inhibited PRRSV replication in a dose-dependent manner. CCL8, IFIT3, IFIH1 and ISG15 were the top four proteins in expression level change in cells treated with MT, GA or TS. The relative expression of IFIT3, IFIH1, ISG15 and IFN-β mRNAs were consistent with the results of proteomics. The component formula (0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS) showed synergistic anti-PRRSV effect. CONCLUSIONS The component formula possessed anti-PRRSV activity in vitro, in which the optimal dosage on PAMs was 0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS. Compatibility of the formula was superposition of the same target with GA and TS, while different targets of MT. IFN-β may be one of the targets of the component formula possessed anti-PRRSV activity.
Collapse
Affiliation(s)
- Hua Zhang
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Zhigang Cao
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Panpan Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.,Laboratory Animal Center, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Ajab Khan
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, TX, 77843, College Station, USA
| | - Yaogui Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Xiuju Yu
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Kuohai Fan
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.,Laboratory Animal Center, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Wei Yin
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - E Li
- Haowei Biotechnology Co., Ltd, Tianjin, 300000, China
| | - Na Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Hongquan Li
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.
| |
Collapse
|
46
|
Li W, Li M, Zhang H, Li C, Xu H, Gong B, Fu J, Guo Z, Peng J, Zhou G, Tian Z, Wang Q. A Novel Immunochromatographic Strip Based on Latex Microspheres for the Rapid Detection of North American-Type Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2022; 13:882112. [PMID: 35572691 PMCID: PMC9100670 DOI: 10.3389/fmicb.2022.882112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
A latex microsphere-based immunochromatographic strip (ICS) test was successfully developed for the rapid and sensitive detection of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV N protein-specific monoclonal antibody (mAb) 1H4 labeled with latex microspheres was dispensed on a conjugate pad for use as the detector. The same mAb and goat anti-mouse antibody were blotted on a nitrocellulose membrane to generate test and control lines, respectively. The limit of virus detection was approximately 5 × 102.0 median tissue culture infectious dose (TCID50)/ml, and the limit of N protein detection was approximately 15 ng/ml. Other common porcine viruses were tested to evaluate the specificity of the ICS, and positive results were observed for only North American-type PRRSV. A comparison of the strip with a standard diagnostic test (reverse transcriptase polymerase chain reaction, RT-PCR) was also performed, and the results showed that the ICS test exhibited relatively high specificity and sensitivity (90.32 and 73.91%, respectively) and relatively high positive predictive value (PPV) and negative predictive value (NPV; 85 and 82.35%, respectively). These results suggest that the ICS test can be used to rapidly and accurately detect PRRSV and can be suitable for diagnostic applications in the field.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Minhua Li
- Beijing IDEXX Yuanheng Laboratories, Co., Ltd., Beijing, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Qian Wang,
| |
Collapse
|
47
|
Zhao J, Zhu L, Xu L, Li F, Deng H, Huang Y, Gu S, Sun X, Zhou Y, Xu Z. The Construction and Immunogenicity Analyses of Recombinant Pseudorabies Virus With NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus-Like Particles Co-expression. Front Microbiol 2022; 13:846079. [PMID: 35308386 PMCID: PMC8924499 DOI: 10.3389/fmicb.2022.846079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and pseudorabies (PR) are highly infectious swine diseases and cause significant financial loss in China. The respiratory system and reproductive system are the main target systems. Previous studies showed that the existing PR virus (PRV) and PRRS virus (PRRSV) commercial vaccines could not provide complete protection against PRV variant strains and NADC30-like PRRSV strains in China. In this study, the PRV variant strain XJ and NADC30-like PRRSV strain CHSCDJY-2019 are used as the parent for constructing a recombinant pseudorabies virus (rPRV)-NC56 with gE/gI/TK gene deletion and co-expressing NADC30-like PRRSV GP5 and M protein. The rPRV-NC56 proliferated stably in BHK-21 cells, and it could stably express GP5 and M protein. Due to the introduction of the self-cleaving 2A peptide, GP5 and M protein were able to express independently and form virus-like particles (VLPs) of PRRSV in rPRV-NC56-infected BHK-21 cells. The rPRV-NC56 is safe for use in mice; it can colonize and express the target protein in mouse lungs for a long time. Vaccination with rPRV-NC56 induces PRV and NADC30-like PRRSV specific humoral and cellular immune responses in mice, and protects 100% of mice from virulent PRV XJ strain. Furthermore, the virus-neutralizing antibody (VNA) elicited by rPRV-NC56 showed significantly lower titer against SCNJ-2016 (HP-PRRSV) than that against CHSCDJY-2019 (NADC30-like PRRSV). Thus, rPRV-NC56 appears to be a promising candidate vaccine against NADC30-like PRRSV and PRV for the control and eradication of the variant PRV and NADC30-like PRRSV.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianggang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
48
|
Li Y, Jiao D, Jing Y, He Y, Han W, Li Z, Ma Z, Feng Y, Xiao S. Genetic characterization and pathogenicity of a novel recombinant PRRSV from lineage 1, 8 and 3 in China failed to infect MARC-145 cells. Microb Pathog 2022; 165:105469. [PMID: 35271985 DOI: 10.1016/j.micpath.2022.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023]
Abstract
The diversity of porcine reproductive and respiratory syndrome virus (PRRSV) in China is increasing rapidly along with mutation and recombination. Recombination could occur between inter- and intra-lineage of PRRSV, which accelerated the complexity of pathogenicity and cell tropism of the recombinant strain. In the present study, a novel PRRSV strain named HN-YL1711 was isolated from a pig farm suffering from severe respiratory difficulty in Henan province, China. The whole genomic sequence analysis indicated that the genome of HN-YL1711 was 15018 nt. It shared 86%, 87.3%, 88.1%, 91.1%, 84.2%, and 84.1% nucleotide similarities with PRRSVs VR2332, CH1a, JXA1, NADC30, QYYZ, and GM2, respectively. Based on phylogenetic analysis of Nsp2, ORF5 and complete genomes, HN-YL1711 was classified into lineage 1 of PRRSV. However, seven genomic break points were detected in recombination analysis, which indicated that the HN-YL1711 originated from multiple recombination among NADC30-like (major parent, lineage 1), JXA1-like (minor parent, lineage 8), and QYYZ-like (minor parent, lineage 3) PRRSV. Porcine alveolar macrophages (PAMs), 3D4/21-CD163 and MARC-145 cells were used to explore the viral adaptation of HN-YL1711. The results indicated that it could infect the PAMs but failed to infect MARC-145 cells. Challenge experiments showed that HN-YL1711 exhibits intermediate virulence in pigs, compared with HP-PRRSV JXA1 and LP-PRRSV CH1a. Taken together, our findings suggest that recombination remains an important factor in PRRSV evolution and that recombination further complicates the cell tropism and pathogenicity of PRRSV.
Collapse
Affiliation(s)
- Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dian Jiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiguo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
49
|
Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022; 14:401. [PMID: 35215994 PMCID: PMC8877136 DOI: 10.3390/v14020401] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine's potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field.
Collapse
Affiliation(s)
- Ting Le
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Jitao Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Guijie Zhang
- Departments of Animal Science, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| |
Collapse
|
50
|
Tian XX, Wang T, Cui XY, Huang XY, Sun Y, Xia DS, Yang YB, Cai XH, An TQ. Rapid visual detection of porcine reproductive and respiratory syndrome virus via recombinase polymerase amplification combined with a lateral flow dipstick. Arch Virol 2022; 167:493-499. [PMID: 34997320 PMCID: PMC8741141 DOI: 10.1007/s00705-021-05349-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases in the global swine industry. A rapid and sensitive on-site detection method for PRRS virus (PRRSV) is critically important for diagnosing PRRS. In this study, we established a method that combines reverse transcription recombinase polymerase amplification (RT-RPA) with a lateral flow dipstick (LFD) for detecting North American PRRSV (PRRSV-2). The primers and probe were designed based on the conserved region of all complete PRRSV-2 genomic sequences available in China (n = 512) from 1996 to 2020. The detection limit of the assay was 5.6 × 10-1 median tissue culture infection dose (TCID50) per reaction within 30 min at 42 °C, which was more sensitive than that of reverse transcription polymerase chain reaction (RT-PCR) (5.6 TCID50 per reaction). The assay was highly specific for the epidemic lineages of PRRSV-2 in China and did not cross-react with pseudorabies virus, porcine circovirus 2, classical swine fever virus, or porcine epidemic diarrhea virus. The assay performance was evaluated by testing 179 samples and comparing the results with those of quantitative RT-PCR (RT-qPCR). The results showed that the detection coincidence rate of RT-RPA and RT-qPCR was 100% when the cycle threshold values of RT-qPCR were < 32. The assay provides a new alternative for simple and reliable detection of PRRSV-2 and has great potential for application in the field.
Collapse
Affiliation(s)
- Xiao-Xiao Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xing-Yang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xin-Yi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Da-Song Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|