1
|
Penaud V, Alahmad A, De Vrieze M, Bouteiller M, Eude M, Bernardon-Mery A, Trinsoutrot-Gattin I, Laval K, Gauthier A. In vitro biocontrol potential of plant extract-based formulation against infection structures of Phytophthora infestans along with lower non-target effects. Front Microbiol 2025; 16:1569281. [PMID: 40297289 PMCID: PMC12034721 DOI: 10.3389/fmicb.2025.1569281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Late blight, caused by Phytophthora infestans, is among the most destructive diseases affecting tomatoes and potatoes. The use of synthetic fungicides is becoming increasingly restricted due to the banning of several active ingredients for environmental and health reasons. Moreover, the rise of fungicide-resistant strains is compromising their effectiveness. Solutions for sustainable crop protection are thus urgently needed. Biocontrol products based on plant extracts appear to be a promising solution. This study aimed to evaluate in vitro inhibitory potential of a plant extract-based biocontrol product on the different stages of P. infestans lifecycle, including mycelial development and, formation and germination of infection structures (sporangia and zoospores). Non-target effects were also assessed using four fungi, three of which were isolated from the phyllosphere, and two ubiquitous bacteria. For this purpose, the formulated product (FV) and the plant extract at different concentrations (PE and CPE) were tested through bioassays. The results show that the mycelial growth of Phytophthora infestans was completely inhibited by the FV and less affected by the CPE. Infection structures were more sensitive to PE than mycelia, although FV was consistently the most effective inhibitor. Interestingly, at non-inhibitory doses, zoospore germination exhibited disturbances, such as an increase in abnormal germination phenotypes. Overall, PE showed significant inhibitory potential against the oomycete. FV exhibited a strong impact on mycelium, sporangia, and zoospores at very low concentrations (0.01-0.05%), suggesting an optimized inhibitory effect of PE. Non-target effects of FV on fungal and bacterial growth were observed only at concentrations substantially higher than those required to inhibit P. infestans in vitro. This study highlights the strong efficacy of the plant extract-based biocontrol product against the target oomycete, with minimal impact on non-target microorganisms. These findings support its potential as a promising anti-Phytophthora agent within integrated late blight management strategies.
Collapse
Affiliation(s)
- Valentin Penaud
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
- Biom InnoV, Saint-Malo, France
- Gaïago SAS, Saint-Malo, France
| | | | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Plant Production Systems, Agroscope, Nyon, Switzerland
| | | | - Miléna Eude
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| | | | | | - Karine Laval
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| | - Adrien Gauthier
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
3
|
Zhang J, Yang X, Qiu J, Zhang W, Yang J, Han J, Ni L. The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10447-5. [PMID: 39739161 DOI: 10.1007/s12602-024-10447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures. These AMPs can be categorized into classes I, Ia, IIa, IIb, IIc, and IId. The synthesis pathway of the AMPs primarily involves either ribosomally synthesized or non-ribosomally synthesized approaches. Additionally, the antimicrobial activity of these AMPs is versatile, targeting bacteria, fungi, and viruses, through disrupting intracellular DNA and the cell wall and membrane, as well as modulating immune responses. Moreover, the Bacillus-derived AMPs demonstrate promising application in the pharmaceutical industry, environmental protection, food preservation, and bio-control in agriculture. The commonly employed strategies for enhancing the production of Bacillus-derived AMPs involve optimizing cultivation conditions, implementing systems metabolic engineering, employing genome shuffling techniques, optimizing promoters, and improving expression host optimization. This review can provide a valuable reference for comprehending the current research status on advancements and sustainable production of Bacillus-derived AMPs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Xinmiao Yang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Jiajia Qiu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Wen Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Jinzhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
4
|
Yang S, Ji Y, Xue P, Li Z, Chen X, Shi J, Jiang C. Insights into the antifungal mechanism of Bacillus subtilis cyclic lipopeptide iturin A mediated by potassium ion channel. Int J Biol Macromol 2024; 277:134306. [PMID: 39094860 DOI: 10.1016/j.ijbiomac.2024.134306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Fungal infections pose severe and potentially lethal threats to plant, animal, and human health. Ergosterol has served as the primary target for developing antifungal medications. However, many antifungal drugs remain highly toxic to humans due to similarity in cell membrane composition between fungal and animal cells. Iturin A, lipopeptide produced by Bacillus subtilis, efficiently inhibit various fungi, but demonstrated safety in oral administration, indicating the existence of targets different from ergosterol. To pinpoint the exact antifungal target of iturin A, we used homologous recombination to knock out and overexpress erg3, a key gene in ergosterol synthesis. Saccharomyces cerevisiae and Aspergillus carbonarius were transformed using the LiAc/SS-DNNPEG and Agrobacterium-mediated transformation (AMT), respectively. Surprisingly, increasing ergosterol content did not augment antifungal activity. Furthermore, iturin A's antifungal activity against S. cerevisiae was reduced while it pre-incubation with voltage-gated potassium (Kv) channel inhibitor, indicating that Kv activation was responsible for cell death. Iturin A was found to activate the Kv protein, stimulating K+ efflux from cell. In vitro tests confirmed interaction between iturin A and Kv protein. This study highlights Kv as one of the precise targets of iturin A in its antifungal activity, offering a novel target for the development of antifungal medications.
Collapse
Affiliation(s)
- Saixue Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulan Ji
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Pengyuan Xue
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhenzhu Li
- Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Xianqing Chen
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
5
|
Assena MW, Pfannstiel J, Rasche F. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f.sp. Strigae. BMC Microbiol 2024; 24:227. [PMID: 38937715 PMCID: PMC11212183 DOI: 10.1186/s12866-024-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.
Collapse
Affiliation(s)
- Mekuria Wolde Assena
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
- Department of Horticulture, Wolkite University, Wolkite, Ethiopia
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottilie-Zeller- Weg 2, 70599, Stuttgart, Germany
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany.
- International Institute of Tropical Agriculture, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
6
|
Hussain S, Tai B, Ali M, Jahan I, Sakina S, Wang G, Zhang X, Yin Y, Xing F. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum. Microbiol Spectr 2024; 12:e0400823. [PMID: 38451229 PMCID: PMC10986469 DOI: 10.1128/spectrum.04008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.
Collapse
Affiliation(s)
- Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suha Sakina
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlong Zhang
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Yixuan Yin
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang B, Wang Z, Zhang S, Zhong S, Sun Y, Liu X. N6-methyloxyadenine-mediated detoxification and ferroptosis confer a trade-off between multi-fungicide resistance and fitness. mBio 2024; 15:e0317723. [PMID: 38294217 PMCID: PMC10936191 DOI: 10.1128/mbio.03177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Multi-fungicide resistance (MFR) is a serious environmental problem, which results in the excessive use of fungicides. Fitness penalty, as a common phenomenon in MFR, can partially counteract the issue of resistance due to the weakened vigor of MFR pathogens. Their underlying mechanism and relationship remain unexplained. By Oxford Nanopore Technologies sequencing and dot blot, we found that N6-methyloxyadenine (6mA) modification, the dominate epigenetic marker in Phytophthora capsici, was significantly altered after MFR emerged. Among the differently methylated genes, PcGSTZ1 could efficiently detoxify SYP-14288, a novel uncoupler, through complexing the fungicide with glutathione and induce MFR. Interestingly, PcGSTZ1 overexpression was induced by elevated 6mA levels and chromatin accessibility to its genomic loci. Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in P. capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. In conclusion, the findings provide new insights into the biological role of 6mA as well as the mechanisms underlying the trade-off between MFR and fitness. These could also benefit disease control through the blockade of the epigenetic axis to resensitize resistant isolates.IMPORTANCEN6-methyloxyadenine (6mA) modification on DNA is correlated with tolerance under different stress in prokaryotes. However, the role of 6mA in eukaryotes remains poorly understood. Our current study reveals that DNA adenine methyltransferase 1 (DAMT1)-mediated 6mA modification at the upstream region of GST zeta 1 (GSTZ1) is elevated in the resistant strain. This elevation promotes the detoxification uncoupler and induces multifungicide resistance (MFR). Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in Phytophthora capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. Overall, our findings uncover an innovative mechanism underlying 6mA modification in regulating PcGSTZ1 transcription and the ferroptosis pathway in P. capsici.
Collapse
Affiliation(s)
- Borui Zhang
- China Agricultural University, Beijing, China
| | - Zhiwen Wang
- China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | | | - Shan Zhong
- China Agricultural University, Beijing, China
| | - Ye Sun
- China Agricultural University, Beijing, China
| | - Xili Liu
- China Agricultural University, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Wang W, Long Y. A review of biocontrol agents in controlling late blight of potatoes and tomatoes caused by Phytophthora infestans and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:4715-4725. [PMID: 37555293 DOI: 10.1002/ps.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Lagzian A, Riseh RS, Sarikhan S, Ghorbani A, Khodaygan P, Borriss R, Guzzi PH, Veltri P. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens. Sci Rep 2023; 13:19095. [PMID: 37925555 PMCID: PMC10625545 DOI: 10.1038/s41598-023-46672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023] Open
Abstract
Biocontrol agents are safe and effective methods for controlling plant disease pathogens, such as Fusarium solani, which causes dry wilt, and Pectobacterium spp., responsible for potato soft rot disease. Discovering agents that can effectively control both fungal and bacterial pathogens in potatoes has always presented a challenge. Biological controls were investigated using 500 bacterial strains isolated from rhizospheric microbial communities, along with two promising biocontrol strains: Pseudomonas (T17-4 and VUPf5). Bacillus velezensis (Q12 and US1) and Pseudomonas chlororaphis VUPf5 exhibited the highest inhibition of fungal growth and pathogenicity in both laboratory (48%, 48%, 38%) and greenhouse (100%, 85%, 90%) settings. Q12 demonstrated better control against bacterial pathogens in vivo (approximately 50%). Whole-genome sequencing of Q12 and US1 revealed a genome size of approximately 4.1 Mb. Q12 had 4413 gene IDs and 4300 coding sequences, while US1 had 4369 gene IDs and 4255 coding sequences. Q12 exhibited a higher number of genes classified under functional subcategories related to stress response, cell wall, capsule, levansucrase synthesis, and polysaccharide metabolism. Both Q12 and US1 contained eleven secondary metabolite gene clusters as identified by the antiSMASH and RAST servers. Notably, Q12 possessed the antibacterial locillomycin and iturin A gene clusters, which were absent in US1. This genetic information suggests that Q12 may have a more pronounced control over bacterial pathogens compared to US1. Metabolic profiling of the superior strains, as determined by LC/MS/MS, validated our genetic findings. The investigated strains produced compounds such as iturin A, bacillomycin D, surfactin, fengycin, phenazine derivatives, etc. These compounds reduced spore production and caused deformation of the hyphae in F. solani. In contrast, B. velezensis UR1, which lacked the production of surfactin, fengycin, and iturin, did not affect these structures and failed to inhibit the growth of any pathogens. Our findings suggest that locillomycin and iturin A may contribute to the enhanced control of bacterial pectolytic rot by Q12.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy.
| | - Pierangelo Veltri
- Department of Informatics Modeling Electronics and System Engineering, University of Calabria, Calabria, Italy
| |
Collapse
|
10
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
11
|
Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023; 13:1515. [PMID: 37892197 PMCID: PMC10604914 DOI: 10.3390/biom13101515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review examines iturin, a cyclic lipopeptide originating from Bacillus subtilis and related bacteria. These compounds are structurally diverse and possess potent inhibitory effects against plant disease-causing bacteria and fungi. Notably, Iturin A exhibits strong antifungal properties and low toxicity, making it valuable for bio-pesticides and mycosis treatment. Emerging research reveals additional capabilities, including anticancer and hemolytic features. Iturin finds applications across industries. In food, iturin as a biosurfactant serves beyond surface tension reduction, enhancing emulsions and texture. Biosurfactants are significant in soil remediation, agriculture, wound healing, and sustainability. They also show promise in Microbial Enhanced Oil Recovery (MEOR) in the petroleum industry. The pharmaceutical and cosmetic industries recognize iturin's diverse properties, such as antibacterial, antifungal, antiviral, anticancer, and anti-obesity effects. Cosmetic applications span emulsification, anti-wrinkle, and antibacterial use. Understanding iturin's structure, synthesis, and applications gains importance as biosurfactant and lipopeptide research advances. This review focuses on emphasizing iturin's structural characteristics, production methods, biological effects, and applications across industries. It probes iturin's antibacterial, antifungal potential, antiviral efficacy, and cancer treatment capabilities. It explores diverse applications in food, petroleum, pharmaceuticals, and cosmetics, considering recent developments, challenges, and prospects.
Collapse
Affiliation(s)
- Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Ninganagouda R. Patil
- Department of Physics, B. V Bhoomaraddi College of Engineering and Technology, Hubballi 580031, Karnataka, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Wang J, Quan R, He X, Fu Q, Tian S, Zhao L, Li S, Shi L, Li R, Chen B. Hypovirus infection induces proliferation and perturbs functions of mitochondria in the chestnut blight fungus. Front Microbiol 2023; 14:1206603. [PMID: 37448575 PMCID: PMC10336323 DOI: 10.3389/fmicb.2023.1206603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The chestnut blight fungus, Cryphonectria parasitica, and hypovirus have been used as a model to probe the mechanism of virulence and regulation of traits important to the host fungus. Previous studies have indicated that mitochondria could be the primary target of the hypovirus. Methods In this study, we report a comprehensive and comparative study comprising mitochondrion quantification, reactive oxygen species (ROS) and respiratory efficiency, and quantitative mitochondrial proteomics of the wild-type and virus-infected strains of the chestnut blight fungus. Results and discussion Our data show that hypovirus infection increases the total number of mitochondria, lowers the general ROS level, and increases mitochondrial respiratory efficiency. Quantification of mitochondrial proteomes revealed that a set of proteins functioning in energy metabolism and mitochondrial morphogenesis, as well as virulence, were regulated by the virus. In addition, two viral proteins, p29 and p48, were found to co-fractionate with the mitochondrial membrane and matrix. These results suggest that hypovirus perturbs the host mitochondrial functions to result in hypovirulence.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Protection and Utilization of Marine Resources, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Rui Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xipu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Zhang Y, Yang Y, Zhang L, Zhang J, Zhou Z, Yang J, Hu Y, Gao X, Chen R, Huang Z, Xu Z, Li L. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide. Front Microbiol 2023; 14:1201624. [PMID: 37293221 PMCID: PMC10246745 DOI: 10.3389/fmicb.2023.1201624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Biological control has gradually become the dominant means of controlling fungal disease over recent years. In this study, an endophytic strain of UTF-33 was isolated from acid mold (Rumex acetosa L.) leaves. Based on 16S rDNA gene sequence comparison, and biochemical and physiological characteristics, this strain was formally identified as Bacillus mojavensis. Bacillus mojavensis UTF-33 was sensitive to most of the antibiotics tested except neomycin. Moreover, the filtrate fermentation solution of Bacillus mojavensis UTF-33 had a significant inhibitory effect on the growth of rice blast and was used in field evaluation tests, which reduced the infestation of rice blast effectively. Rice treated with filtrate fermentation broth exhibited multiple defense mechanisms in response, including the enhanced expression of disease process-related genes and transcription factor genes, and significantly upregulated the gene expression of titin, salicylic acid pathway-related genes, and H2O2 accumulation, in plants; this may directly or indirectly act as an antagonist to pathogenic infestation. Further analysis revealed that the n-butanol crude extract of Bacillus mojavensis UTF-33 could retard or even inhibit conidial germination and prevent the formation of adherent cells both in vitro and in vivo. In addition, the amplification of functional genes for biocontrol using specific primers showed that Bacillus mojavensis UTF-33 expresses genes that can direct the synthesis of bioA, bmyB, fenB, ituD, srfAA and other substances; this information can help us to determine the extraction direction and purification method for inhibitory substances at a later stage. In conclusion, this is the first study to identify Bacillus mojavensis as a potential agent for the control of rice diseases; this strain, and its bioactive substances, have the potential to be developed as biopesticides.
Collapse
Affiliation(s)
- Yifan Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yanmei Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Luyi Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jia Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengjian Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Xue X, Zhao H, Han S, Zhao H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium dahliae by Interfering with Multiple Functional Pathways of Fungi. BIOLOGY 2023; 12:biology12040513. [PMID: 37106714 PMCID: PMC10136297 DOI: 10.3390/biology12040513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Verticillium wilt is a kind of soil-borne plant fungal disease caused by Verticillium dahliae (Vd). Vd 991 is a strong pathogen causing cotton Verticillium wilt. Previously, we isolated a compound from the secondary metabolites of Bacillus subtilis J15 (BS J15), which showed a significant control effect on cotton Verticillium wilt and was identified as C17 mycosubtilin. However, the specific fungistatic mechanism by which C17 mycosubtilin antagonizes Vd 991 is not clear. Here, we first showed that C17 mycosubtilin inhibits the growth of Vd 991 and affects germination of spores at the minimum inhibitory concentration (MIC). Morphological observation showed that C17 mycosubtilin treatment caused shrinking, sinking, and even damage to spores; the hyphae became twisted and rough, the surface was sunken, and the contents were unevenly distributed, resulting in thinning and damage to the cell membrane and cell wall and swelling of mitochondria of fungi. Flow cytometry analysis with ANNEXINV-FITC/PI staining showed that C17 mycosubtilin induces necrosis of Vd 991 cells in a time-dependent manner. Differential transcription analysis showed that C17 mycosubtilin at a semi-inhibitory concentration (IC50) treated Vd 991 for 2 and 6 h and inhibited fungal growth mainly by destroying synthesis of the fungal cell membrane and cell wall, inhibiting its DNA replication and transcriptional translation process, blocking its cell cycle, destroying fungal energy and substance metabolism, and disrupting the redox process of fungi. These results directly showed the mechanism by which C17 mycosubtilin antagonizes Vd 991, providing clues for the mechanism of action of lipopeptides and useful information for development of more effective antimicrobials.
Collapse
|
15
|
Rosier A, Pomerleau M, Beauregard PB, Samac DA, Bais HP. Surfactin and Spo0A-Dependent Antagonism by Bacillus subtilis Strain UD1022 against Medicago sativa Phytopathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1007. [PMID: 36903868 PMCID: PMC10005099 DOI: 10.3390/plants12051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this study indicate that the PGPR UD1022 would be a good candidate for further investigations into its antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE 19713, USA
| | - Maude Pomerleau
- Département de Biologie, Bureau D8-1014, Université de Sherbrooke, 2500 boul. Université Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Pascale B. Beauregard
- Département de Biologie, Bureau D8-1014, Université de Sherbrooke, 2500 boul. Université Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Deborah A. Samac
- USDA-ARS Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Harsh P. Bais
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
16
|
Kang K, Niu Z, Zhang W, Wei S, Lv Y, Hu Y. Antagonistic Strain Bacillus halotolerans Jk-25 Mediates the Biocontrol of Wheat Common Root Rot Caused by Bipolaris sorokiniana. PLANTS (BASEL, SWITZERLAND) 2023; 12:828. [PMID: 36840176 PMCID: PMC9965128 DOI: 10.3390/plants12040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Common root rot caused by Bipolaris sorokiniana infestation in wheat is one of the main reasons for yield reduction in wheat crops worldwide. The bacterium strain JK-25 used in the current investigation was isolated from wheat rhizosphere soil and was later identified as Bacillus halotolerans based on its morphological, physiological, biochemical, and molecular properties. The strain showed significant antagonism to B. sorokiniana, Fusarium oxysporum, Fusarium graminearum, and Rhizoctonia zeae. Inhibition of B. sorokiniana mycelial dry weight and spore germination rate by JK-25 fermentation supernatant reached 60% and 88%, respectively. The crude extract of JK-25 was found, by Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), to contain the surfactin that exerted an inhibitory effect on B. sorokiniana. The disruption of mycelial cell membranes was observed under laser scanning confocal microscope (LSCM) after treatment of B. sorokiniana mycelium with the crude extract. The antioxidant enzyme activity of B. sorokiniana was significantly reduced and the oxidation product malondialdehyde (MDA) content increased after treatment with the crude extract. The incidence of root rot was significantly reduced in pot experiments with the addition of JK-25 culture fermentation supernatant, which had a significant biological control effect of 72.06%. Its ability to produce siderophores may help to promote wheat growth and the production of proteases and pectinases may also be part of the strain's role in suppressing pathogens. These results demonstrate the excellent antagonistic effect of JK-25 against B. sorokiniana and suggest that this strain has great potential as a resource for biological control of wheat root rot strains.
Collapse
|
17
|
Luan P, Yi Y, Huang Y, Cui L, Hou Z, Zhu L, Ren X, Jia S, Liu Y. Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front Microbiol 2023; 14:1149363. [PMID: 37125175 PMCID: PMC10135310 DOI: 10.3389/fmicb.2023.1149363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.
Collapse
Affiliation(s)
- Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
- *Correspondence: Yanjie Yi,
| | - Yifan Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Liuqing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lijuan Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xiujuan Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Shao Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
18
|
Miao CH, Wang XF, Qiao B, Xu QM, Cao CY, Cheng JS. Artificial consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for utilizing food waste to synthetize iturin A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72628-72638. [PMID: 35612705 DOI: 10.1007/s11356-022-21029-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Food waste is a cheap and abundant organic resource that can be used as a substrate for the production of the broad-spectrum antifungal compound iturin A. To increase the efficiency of food waste biotransformation, different artificial consortia incorporating the iturin A producer Bacillus amyloliquefaciens HM618 together with engineered Bacillus subtilis WB800N producing lipase or amylase were constructed. The results showed that recombinant B. subtilis WB-A13 had the highest amylase activity of 23406.4 U/mL, and that the lipase activity of recombinant B. subtilis WB-L01 was 57.5 U/mL. When strain HM618 was co-cultured with strain WB-A14, the higher yield of iturin A reached to 7.66 mg/L, representing a 32.9% increase compared to the pure culture of strain HM618. In the three-strain consortium comprising strains HM618, WB-L02, and WB-A14 with initial OD600 values of 0.2, 0.15, and 0.15, respectively, the yield of iturin A reached 8.12 mg/L, which was 38.6% higher than the control. Taken together, artificial consortia of B. amyloliquefaciens and recombinant B. subtilis can produce an increased yield of iturin A, which provides a new strategy for the valorization of food waste.
Collapse
Affiliation(s)
- Chang-Hao Miao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao-Feng Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
19
|
Alfiky A, L'Haridon F, Abou-Mansour E, Weisskopf L. Disease Inhibiting Effect of Strain Bacillus subtilis EG21 and Its Metabolites Against Potato Pathogens Phytophthora infestans and Rhizoctonia solani. PHYTOPATHOLOGY 2022; 112:2099-2109. [PMID: 35536116 DOI: 10.1094/phyto-12-21-0530-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potato production worldwide is plagued by several disease-causing pathogens that result in crop and economic losses estimated to billions of dollars each year. To this day, synthetic chemical applications remain the most widespread control strategy despite their negative effects on human and environmental health. Therefore, obtainment of superior biocontrol agents or their naturally produced metabolites to replace fungicides or to be integrated into practical pest management strategies has become one of the main targets in modern agriculture. Our main focus in the present study was to elucidate the antagonistic potential of a new strain identified as Bacillus subtilis EG21 against potato pathogens Phytophthora infestans and Rhizoctonia solani using several in vitro screening assays. Microscopic examination of the interaction between EG21 and R. solani showed extended damage in fungal mycelium, while EG21 metabolites displayed strong anti-oomycete and zoosporecidal effect on P. infestans. Mass spectrometry (MS) analysis revealed that EG21 produced antifungal and anti-oomycete cyclic lipopeptides surfactins (C12 to C19). Further characterization of EG21 confirmed its ability to produce siderophores and the extracellular lytic enzymes cellulase, pectinase and chitinase. The antifungal activity of EG21 cell-free culture filtrate (CF) was found to be stable at high-temperature/pressure treatment and extreme pH values and was not affected by proteinase K treatment. Disease-inhibiting effect of EG21 CF against P. infestans and R. solani infection was confirmed using potato leaves and tubers, respectively. Biotechnological applications of using microbial agents and their bioproducts for crop protection hold great promise to develop into effective, environment-friendly and sustainable biocontrol strategies. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alsayed Alfiky
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
- Genetics Department, Faculty of Agriculture, Tanta University, Tanta, 31527 Egypt
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | - Eliane Abou-Mansour
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Papadopoulou EA, Giaki K, Angelis A, Skaltsounis AL, Aliferis KA. A Metabolomic Approach to Assess the Toxicity of the Olive Tree Endophyte Bacillus sp. PTA13 Lipopeptides to the Aquatic Macrophyte Lemna minor L. TOXICS 2022; 10:toxics10090494. [PMID: 36136459 PMCID: PMC9505422 DOI: 10.3390/toxics10090494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
Pesticides represent a major human input into the ecosystem, posing a serious risk to non-target organisms. Therefore, there is pressure toward the reduction in their use and the discovery of alternative sources of bioactivity. Endophytic microorganisms represent a source of bioactivity, whose potential for plant protection has been recently established. In this context, an olive tree endophytic Bacillus sp. was isolated, exhibiting superior antifungal activity, mainly attributed to its major surfactin, iturin, and fengycin and the minor gageotetrin and bacilotetrin groups of lipopeptides (LP). Based on the potential of LP and the lack of information on their toxicity to aquatic organisms, we have investigated the toxicity of an LP extract to the model macrophyte Lemna minor L. The extract exhibited low phytotoxicity (EC50 = 419 μg·mL-1), and for the investigation of its effect on the plant, GC/EI/MS metabolomics was applied following exposure to sub-lethal doses (EC25 and EC50). Results revealed a general disturbance of plants' biosynthetic capacity in response to LP treatments, with substantial effect on the amino acid pool and the defense mechanism regulated by jasmonate. There are no previous reports on the phytotoxicity of LP to L. minor, with evidence supporting their improved toxicological profile and potential in plant protection.
Collapse
Affiliation(s)
- Evgenia-Anna Papadopoulou
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Katerina Giaki
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
- Correspondence:
| |
Collapse
|
21
|
Potentiality of Formulated Bioagents from Lab to Field: A Sustainable Alternative for Minimizing the Use of Chemical Fungicide in Controlling Potato Late Blight. SUSTAINABILITY 2022. [DOI: 10.3390/su14084383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Late blight of potato caused by an oomycete, Phytophthora infestans (Mont.) De Bary limits the production of potato worldwide. Late blight management has been based on chemical fungicide application, and the repeated use of these fungicides introduces new and more aggressive genotypes, which can rapidly overcome host resistance. Therefore, innovative and effective control measures are needed if fungicide use is to be reduced or eliminated. Some potential formulated bacterial bioagents viz. Pseudomonas putida (BDISO64RanP) and Bacillus subtilis (BDISO36ThaR), and fungal bioagents viz. Trichoderma paraviridicens (BDISOF67R) and T. erinaceum (BDISOF91R), were evaluated for their performance in controlling late blight of potato under growth chamber and field conditions. Both artificial inoculation and field experiments revealed that eight sprays of these bacterial (P. putida and B. subtilis) and fungal (T. erinaceum) bioagents were found to be most effective at reducing late blight severity by 99% up until 60 days after planting (DAP), whereas these bioagents were found to be partially effective until 70 DAP, reducing late blight severity by 46 to 60% and 58 to 60% in the field and growth chamber conditions, respectively. However, these bioagents can reduce the spray frequencies of Curzate M8 by 50% (four sprays instead of eight) when applied together with this fungicide. Economic analysis revealed that T6 (eight sprays of formulated P. putida + B. subtilis + four sprays of Curzate M8) and T16 (eight sprays of formulated P. putida, B. subtilis, and T. erinaceum + four sprays of Curzate M8) performed better in consecutive two years, applying less fungicidal spray compared to T1 (eight sprays of Curzate M8 (Positive control)), which indicated that the return ranged, by Bangladeshi Currency (Taka), from 0.85 to 0.90 over the investment of Bangladeshi Currency (Taka) 1.00 in these treatments, and these results together highlight the possibility of using bioagents in reducing late blight of potato under a proper warning system to reduce the application frequency of chemical fungicide.
Collapse
|
22
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
23
|
Plant Growth-Promoting Rhizobacteria as Antifungal Antibiotics Producers. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Hashemi M, Tabet D, Sandroni M, Benavent-Celma C, Seematti J, Andersen CB, Grenville-Briggs LJ. The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Yi Y, Shan Y, Liu S, Yang Y, Liu Y, Yin Y, Hou Z, Luan P, Li R. Antagonistic Strain Bacillus amyloliquefaciens XZ34-1 for Controlling Bipolaris sorokiniana and Promoting Growth in Wheat. Pathogens 2021; 10:pathogens10111526. [PMID: 34832680 PMCID: PMC8619621 DOI: 10.3390/pathogens10111526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Common root rot, caused by Bipolaris sorokiniana, is one of the most prevalent diseases of wheat and has led to major declines in wheat yield and quality worldwide. Here, strain XZ34-1 was isolated from soil and identified as Bacillus amyloliquefaciens based on the morphological, physiological, biochemical characteristics and 16S rDNA sequence. Culture filtrate (CF) of strain XZ34-1 showed a high inhibition rate against B.sorokiniana and had a broad antifungal spectrum. It also remarkably inhibited the mycelial growth and spore germination of B. sorokiniana. In pot control experiments, the incidence and disease index of common root rot in wheat seedlings were decreased after treatment with CF, and the biological control efficacy was significant, up to 78.24%. Further studies showed XZ34-1 could produce antifungal bioactive substances and had the potential of promoting plant growth. Lipopeptide genes detection with PCR indicated that strain XZ34-1 may produce lipopeptides. Furthermore, activities of defense-related enzymes were enhanced in wheat seedlings after inoculation with B.sorokiniana and treatment with CF, which showed induced resistance could be produced in wheat to resist pathogens. These results reveal that strain XZ34-1 is a promising candidate for application as a biological control agent against B.sorokiniana.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
- Correspondence: (Y.Y.); (R.L.); Tel.: +86-371-67756513 (Y.Y. & R.L.)
| | - Youtian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Shifei Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
| | - Yanhui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yanan Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
- Correspondence: (Y.Y.); (R.L.); Tel.: +86-371-67756513 (Y.Y. & R.L.)
| |
Collapse
|
26
|
Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes. PLANTS 2021; 10:plants10081716. [PMID: 34451760 PMCID: PMC8400388 DOI: 10.3390/plants10081716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Botrytis bunch rot caused by Botrytis cinerea is one of the most economically significant post-harvest diseases of grapes. In the present study, we showed that the bacterial strain Bvel1 is phylogenetically affiliated to Bacillus velezensis species. The strain Bvel1 and its secreted metabolites exerted an antifungal activity, under in vitro conditions, against B. cinerea. UHPLC-HRMS chemical analysis revealed that iturin A2, surfactin-C13 and -C15, oxydifficidin, bacillibactin, L-dihydroanticapsin, and azelaic acid were among the metabolites secreted by Bvel1. Treatment of wounded grape berries with Bacillus sp. Bvel1 cell culture was effective for controlling grey mold ingress and expansion in vivo. The effectiveness of this biological control agent was a function of the cell culture concentration of the antagonist applied, while preventive treatment proved to be more effective compared to curative. The strain Bvel1 exhibited an adequate colonization efficiency in wounded grapes. The whole-genome phylogeny, combined with ANI and dDDH analyses, provided compelling evidence that the strain Bvel1 should be taxonomically classified as Bacillus velezensis. Genome mining approaches showed that the strain Bvel1 harbors 13 antimicrobial biosynthetic gene clusters, including iturin A, fengycin, surfactin, bacilysin, difficidin, bacillaene, and bacillibactin. The results provide new insights into the understanding of the endophytic Bacillus velezensis Bvel1 biocontrol mechanism against post-harvest fungal pathogens, including bunch rot disease in grape berries.
Collapse
|
27
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|