1
|
Fanai A, Bohia B, Lalremruati F, Lalhriatpuii N, Lalrokimi, Lalmuanpuii R, Singh PK, Zothanpuia. Fusarium spp. induce diseases in ginger: nature of pathogen, pathogenesis and management. Microb Pathog 2025; 205:107597. [PMID: 40246156 DOI: 10.1016/j.micpath.2025.107597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Ginger is a significant ethnobotanical and pharmacological crop consisting of potential bioactive constituents responsible for their nutraceutical value, they can have anti-inflammatory, antiobesity, antidiabetic, antinausea, antimicrobial, pain alleviation, antitumor, antioxidant and protective effects on respiratory disease, and age-related disease. Ginger possesses a substantial value, but its production and general quality are greatly harmed by various biotic and abiotic stressors, to which it is highly susceptible. Fungi are the most damaging disease-causing agents, one of the devastating fungal pathogens in ginger is Fusarium spp., a soil and seed-borne pathogen resulting in poor production, poor quality, and decreased economic returns to the farmers. It infects ginger in every stage of development and each plant part even during post-harvest storage. This review emphasizes a comprehensive understanding of the nutraceutical value of ginger compounds, and Fusarium disease in ginger with its pathogenicity. Moreover, this review elaborates on an improvement of ginger yield by the management of the Fusarium pathogen through the biological and biotechnological approach.
Collapse
Affiliation(s)
- Awmpuizeli Fanai
- Department of Biotechnology, Mizoram University, Mizoram, 796004, India
| | | | | | - Nancy Lalhriatpuii
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl, Mizoram, 796001, India
| | - Lalrokimi
- Department of Biotechnology, Mizoram University, Mizoram, 796004, India
| | | | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl, Mizoram, 796001, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl, Mizoram, 796001, India.
| |
Collapse
|
2
|
Kim M, Nguyen MH, Lee S, Han W, Kim M, Jeon H, Lee J, Seo S, Kim N, Shin K. Diversity of Endophytic Fungi Isolated from Prunus yedoensis and Their Antifungal Activity Against Wood Decay Fungi. Microorganisms 2025; 13:617. [PMID: 40142510 PMCID: PMC11946607 DOI: 10.3390/microorganisms13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Endophytic fungi play a vital role in protecting and promoting the growth of their host plants. The diversity of fungal endophytes has been documented across different host plant species and varies depending on factors such as the species of the host, ecological conditions, and the health status of the plant. We isolated endophytic fungi from Prunus yedoensis trees with different decay rates. A total of 31 species were isolated from decayed trees, while 33 species were obtained from healthy trees. The number of endophytic fungi exhibiting antifungal activities against wood decay fungi was higher in healthy trees, with 10 species showing activity compared to only 1 species from decayed trees. Endophytic fungus Fusarium acuminatum (BEN48) had the highest inhibition rates against Trametes versicolor, Ganoderma gibbosum, and Vanderbylia fraxinea. Heating conditions did not significantly affect the inhibitory ability of the culture filtrate from BEN48 on wood decay fungi. At 50% concentration, the inhibitory abilities of the culture filtrates against Trametes versicolor, Ganoderma gibbosum, and Vanderbylia fraxinea were 96.5%, 64.1%, and 92.7%, respectively. The inhibitory effects against Trametes versicolor decreased at concentrations of 30% and 10%, resulting in inhibition rates of 83.7% and 50.8%, respectively. For Ganoderma gibbosum, the inhibition rate reduced to 52.6% at 30% concentration and 24.5% at 10% concentration. For Vanderbylia fraxinea, there was no significant difference between the 30% and 10% concentrations, and the inhibition rates for both concentrations were high, measuring 89.9% and 88.8%, respectively. Hence, Fusarium acuminatum (BEN48) has promise as a biocontrol agent for managing wood decay fungi.
Collapse
Affiliation(s)
- Misong Kim
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.K.); (S.L.); (W.H.)
| | - Manh Ha Nguyen
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.H.N.); (M.K.); (H.J.)
- Forest Protection Research Center, Vietnamese Academy of Forest Sciences, Hanoi 11910, Vietnam
| | - Sanggon Lee
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.K.); (S.L.); (W.H.)
| | - Wonjong Han
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.K.); (S.L.); (W.H.)
| | - Minyoung Kim
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.H.N.); (M.K.); (H.J.)
| | - Hyeongguk Jeon
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.H.N.); (M.K.); (H.J.)
| | - Jinheung Lee
- Department of Forest Healing, College of Human Service, Catholic Kwandong University, Gangneung 25601, Republic of Korea;
| | - Sangtea Seo
- Division of Forest Diseases and Insect Pests, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Namkyu Kim
- Department of Forest Healing, College of Human Service, Catholic Kwandong University, Gangneung 25601, Republic of Korea;
| | - Keumchul Shin
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.K.); (S.L.); (W.H.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.H.N.); (M.K.); (H.J.)
| |
Collapse
|
3
|
Viviani A, Haile JK, Fernando WGD, Ceoloni C, Kuzmanović L, Lhamo D, Gu Y, Xu SS, Cai X, Buerstmayr H, Elias EM, Confortini A, Bozzoli M, Brar GS, Ruan Y, Berraies S, Hamada W, Oufensou S, Jayawardana M, Walkowiak S, Bourras S, Dayarathne M, Isidro y Sánchez J, Doohan F, Gadaleta A, Marcotuli I, He X, Singh PK, Dreisigacker S, Ammar K, Klymiuk V, Pozniak CJ, Tuberosa R, Maccaferri M, Steiner B, Mastrangelo AM, Cattivelli L. Priority actions for Fusarium head blight resistance in durum wheat: Insights from the wheat initiative. THE PLANT GENOME 2025; 18:e20539. [PMID: 39757924 PMCID: PMC11701714 DOI: 10.1002/tpg2.20539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 01/07/2025]
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum). Bread wheat has ample genetic variation for resistance breeding, which can be readily exploited, while durum wheat is characterized by higher disease susceptibility and fewer valuable resistance sources. The Wheat Initiative - Expert Working Group on Durum Wheat Genomics and Breeding has promoted a scientific discussion to define the key actions that should be prioritized for achieving resistance in durum wheat comparable to that found in bread wheat. Here, a detailed state of the art and novel tools to improve FHB resistance in durum are presented, together with a perspective on the next steps forward. A meta-analysis grouping all quantitative trait loci (QTL) associated with FHB resistance in both bread and durum wheat has been conducted to identify hotspot regions that do not overlap with Rht alleles, which are known to negatively correlate with FHB resistance. A detailed list of QTL related to FHB resistance and deoxynivalenol contamination and durum lines carrying different sources of FHB resistance are provided as a strategic resource. QTL, closely linked markers and durum wheat lines carrying the useful alleles, can be selected to design an effective breeding program. Finally, we highlight the priority actions that should be implemented to achieve satisfactory resistance to FHB in durum wheat.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Jemanesh K. Haile
- Crop Development Centre and Department of Plant Sciences University of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE)University of TusciaViterboItaly
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE)University of TusciaViterboItaly
| | - Dhondup Lhamo
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Yong‐Qiang Gu
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Steven S. Xu
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Xiwen Cai
- USDA‐ARS, Wheat, Sorghum & Forage Research UnitLincolnNebraskaUSA
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Hermann Buerstmayr
- Department of Agrobiotechnology TullnUniversity of Natural Resources and Life Sciences ViennaTullnAustria
| | - Elias M. Elias
- Department of Plant SciencesNorth Dakota State UniversityNorth DakotaFargoUSA
| | | | - Matteo Bozzoli
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Gurcharn Singh Brar
- Ag, Food & Nutr Science DepartmentUniversity of British Columbia (UBC)VancouverBritish ColumbiaCanada
| | - Yuefeng Ruan
- Swift Current Research and Development Center, Agriculture and Agri‐Food CanadaSwift CurrentSaskatchewanCanada
| | - Samia Berraies
- Swift Current Research and Development Center, Agriculture and Agri‐Food CanadaSwift CurrentSaskatchewanCanada
| | - Walid Hamada
- Institut National Agronomique de Tunisie 43TunisTunisia
| | - Safa Oufensou
- Desertification Research Center (NRD)Università degli Studi di SassariSassariItaly
| | | | | | - Salim Bourras
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Monika Dayarathne
- Department of Plant ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Julio Isidro y Sánchez
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de MadridMadridSpain
| | - Fiona Doohan
- School of Biology and Environmental ScienceUCD Earth Institute and UCD Institute for Food and Health, BelfieldDublinIreland
| | - Agata Gadaleta
- Department of Soil, Plant and Food SciencesUniversity of Bari Aldo MoroBariItaly
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food SciencesUniversity of Bari Aldo MoroBariItaly
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences University of SaskatchewanSaskatoonSaskatchewanCanada
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences University of SaskatchewanSaskatoonSaskatchewanCanada
| | - Roberto Tuberosa
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Marco Maccaferri
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Barbara Steiner
- Department of Agrobiotechnology TullnUniversity of Natural Resources and Life Sciences ViennaTullnAustria
| | | | - Luigi Cattivelli
- CREA ‐ Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda (PC)Italy
| |
Collapse
|
4
|
Lipps S, Bohn M, Rutkoski J, Butts-Wilmsmeyer C, Mideros S, Jamann T. Comparative Review of Fusarium graminearum Infection in Maize and Wheat: Similarities in Resistance Mechanisms and Future Directions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:142-159. [PMID: 39700336 DOI: 10.1094/mpmi-08-24-0083-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fusarium graminearum is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities to FHB. In this review, we synthesize existing literature on the colonization strategies, toxin accumulation, genetic architecture, and potential mechanisms of resistance to GER in maize and compare it with what is known regarding FHB in wheat. There are several similarities in the infection and colonization strategies of F. graminearum in maize and wheat. We describe multiple types of GER resistance in maize and identify distinct genetic regions for each resistance type. We discuss the potential of phenylpropanoids for biochemical resistance to F. graminearum. Phenylpropanoids are well characterized, and there are many similarities in their functional roles for resistance between wheat and maize. These insights can be utilized to improve maize germplasm for GER resistance and are also useful for FHB resistance breeding and management. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sarah Lipps
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Martin Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Jessica Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Carolyn Butts-Wilmsmeyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, U.S.A
- Center for Predictive Analytics, Southern Illinois University Edwardsville, Edwardsville, IL, U.S.A
| | - Santiago Mideros
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Tiffany Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| |
Collapse
|
5
|
Filipczak A, Sobiech Ł, Wita A, Marecik R, Białas W, Drożdżyńska A, Grzanka M, Danielewicz J, Szulc P. Efficacy of Selected Bacterial Strains in the Protection and Growth Stimulation of Winter Wheat and Maize. PLANTS (BASEL, SWITZERLAND) 2025; 14:636. [PMID: 40094526 PMCID: PMC11901665 DOI: 10.3390/plants14050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
The use of biopreparations currently plays a significant role in limiting the use of plant protection products and fertilizers. In this study, preparations based on Bacillus velezensis_KT27, Paenibacillus polymyxa, Pseudomonas synxatha, and a mixture of Bacillus subtilis, Pseudomonas simiae, and Bacillus velezensis_S103, used as seed dressings at doses of 0.5 L and 1.0 L × 100 kg-1 grain, were tested to determine their efficacy. The prothioconazole preparation was used for comparison as a synthetic fungicide. The test microorganisms were prepared as standardized preparations diluted with sterile water to obtain a final cell concentration of 5 × 108 CFU/mL for each bacterial strain. The ability of selected bacterial strains to solubilize phosphate was quantitatively evaluated as one of the factors influencing the stimulation of crop growth. The obtained results indicate that the microorganisms can reduce the infection in seedlings, and the health of those seedlings depends on the preparation used and its dose. The tested microorganisms had a positive effect on plant growth, which was confirmed by the analyses of plant height, fresh mass, and chlorophyll fluorescence. The results indicate that the selected strains of microorganisms Bacillus ssp., Paenibacillus ssp., and Pseudomonas ssp. may be used in the protection and growth stimulation of crop plants, but this needs to be verified by field tests prior to their practical application.
Collapse
Affiliation(s)
- Arkadiusz Filipczak
- Department of Agronomy, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (A.F.); (M.G.); (P.S.)
| | - Łukasz Sobiech
- Department of Agronomy, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (A.F.); (M.G.); (P.S.)
| | - Agnieszka Wita
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (A.W.); (R.M.); (W.B.); (A.D.)
| | - Roman Marecik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (A.W.); (R.M.); (W.B.); (A.D.)
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (A.W.); (R.M.); (W.B.); (A.D.)
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (A.W.); (R.M.); (W.B.); (A.D.)
| | - Monika Grzanka
- Department of Agronomy, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (A.F.); (M.G.); (P.S.)
| | - Jakub Danielewicz
- Department of Mycology, Institute of Plant Protection—National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland;
| | - Piotr Szulc
- Department of Agronomy, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (A.F.); (M.G.); (P.S.)
| |
Collapse
|
6
|
De Troyer L, Audenaert K, Ommeslag S, Debode J, De Gelder L, De Zutter N. The biocontrol agent Streptomyces rimosus subsp. rimosus tempers shifts in the wheat spicosphere microbiome induced by Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2025; 16:1540242. [PMID: 40051875 PMCID: PMC11882881 DOI: 10.3389/fpls.2025.1540242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Introduction Fusarium Head Blight (FHB) is a major fungal disease in wheat caused by Fusarium graminearum, inducing severe yield losses. Biological control agents (BCAs) can be an effective and sustainable approach to mitigate this phytopathogen. In this study, Streptomyces rimosus subsp. rimosus LMG19352 was used as a BCA to mitigate F. graminearum on wheat ears. Moreover, we aimed to assess the impact of BCA inoculation on non-target microorganisms present on the wheat spikes. Therefore, we evaluated shifts in the fungal and bacterial spicosphere microbiome (i) over time from flowering to mid-grain filling stage and (ii) across inoculations with F. graminearum and/or S. rimosus subsp. rimosus LMG19352. Methods FHB symptoms were determined by multispectral imaging, and Illumina MiSeq was used to amplify 16S V3-V4 rDNA for bacteria and ITS2 for fungi, whereafter a correlation network analysis was performed. Results The biocontrol potential of S. rimosus subsp. rimosus LMG19352 against F. graminearum was confirmed, as FHB symptoms were significantly reduced. Based on the microbial abundances, S. rimosus subsp. rimosus LMG19352 compensated for shifts in the spicosphere microbiome community induced by FHB. These results were supported by a network analysis, revealing a more complex and stable microbiome in the presence of the BCA compared to the infected control. Discussion To our knowledge, this study is the first to reveal the potential of a bacterial BCA to temper shifts in the wheat microbiome caused by a phytopathogen, and thereby acting as a promising BCA.
Collapse
Affiliation(s)
- Larissa De Troyer
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Ommeslag
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Dendooven L, Pérez-Hernández V, Gómez-Acata S, Verhulst N, Govaerts B, Luna-Guido ML, Navarro-Noya YE. The Fungal and Protist Community as Affected by Tillage, Crop Residue Burning and N Fertilizer Application. Curr Microbiol 2025; 82:144. [PMID: 39969625 PMCID: PMC11839885 DOI: 10.1007/s00284-025-04112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The bacterial community in soil is often affected by agricultural practices, but how they affect protists and fungi is less documented. Soil from treatments that combined different N fertilizer application rates, tillage and crop residue management was sampled from a field trial started by the International Maize and Wheat Improvement Center (CIMMYT) at the 'Campo Experimental Norman E. Borlaug' (CENEB) in the Yaqui Valley in the northwest of Mexico in the early 1990s, and the fungal and protist community determined. Tillage, residue burning, and N fertilizer application had no significant effect on the fungal and protists alpha diversity expressed as Hill numbers and no significant effect on the fungal and protist community structure considering all species. The relative abundance of plant pathogens and undefined saprotrophs as determined with FUNGuildR increased significantly with tillage, while that of dung-plant and dung-soil saprotroph, and plant pathogens by burning (P < 0.05). It was found that the protists and fungal community structures were not altered by different agricultural practices, but some fungal guilds were, i.e., plant pathogens and saprotrophs, which might affect soil organic matter decomposition, nutrient cycling and crop growth.
Collapse
Affiliation(s)
- Luc Dendooven
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico.
| | - Valentín Pérez-Hernández
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
- Cornell University, Ithaca, USA
| | - Marco L Luna-Guido
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Yendi E Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
8
|
Sun X, Yang R, Tang H, Ma M, Chen H, Chang X, Zhang M, Gong G. Diversity and pathogenicity of Fusarium species associated with Fusarium head blight in wheat and maize cropping systems in Sichuan Province. Sci Rep 2025; 15:5984. [PMID: 39966545 PMCID: PMC11836280 DOI: 10.1038/s41598-024-83402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025] Open
Abstract
Fusarium head blight (FHB) is a severe disease worldwide that leads to substantial economic losses. Wheat‒maize cropping is the dominant system in Sichuan Province, China. However, FHB has become increasingly severe in this system, and Fusarium rot disease is also becoming a severe threat to maize. To understand the composition and pathogenicity of the Fusarium species associated with FHB, samples of typical symptomatic wheat spikes were collected from wheat‒maize cropping fields in 16 administrative districts of Sichuan Province, and Fusarium perithecia were obtained from both wheat straw and maize stubble. Based on morphological and molecular identification, 175 isolates from symptomatic wheat spikes were identified as five Fusarium species: F. asiaticum, F. avenaceum, F. graminearum, F. meridionale, and F. proliferatum. Among them, F. asiaticum and F. graminearum were the dominant pathogenic species, with isolation frequencies of 75.43% and 20.57%, respectively. Additionally, 136 single-ascospore isolates from wheat straw or maize stubble were identified as F. asiaticum, F. equiseti, F. graminearum, F. meridionale, F. proliferatum, and F. temperatum. Pathogenicity assays revealed that the Fusarium strains from all sources could successfully infect wheat and maize. F. graminearum exhibited a high degree of pathogenicity towards both crops under investigation, while F. asiaticum demonstrated significantly greater pathogenicity towards wheat than maize. This work will help understand the cyclic infection caused by Fusarium species in wheat‒maize cropping systems and provide valuable data for the effectively controlling Fusarium rot disease in both wheat and maize.
Collapse
Affiliation(s)
- Xiaofang Sun
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Rui Yang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Tang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaomiao Ma
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huabao Chen
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoshu Gong
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
López-Arellanes ME, López-Pacheco LD, Elizondo-Luevano JH, González-Meza GM. Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against Fusarium sp. Microorganisms 2025; 13:439. [PMID: 40005804 PMCID: PMC11858688 DOI: 10.3390/microorganisms13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.
Collapse
Affiliation(s)
- Miguel E. López-Arellanes
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
| | - Lizbeth Denisse López-Pacheco
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| | - Joel H. Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Georgia María González-Meza
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| |
Collapse
|
10
|
Nguyen TBH, Henri-Sanvoisin A, Le Floch G, Picot A. Delving into the soil and phytomicrobiome for disease suppression: A case study for the control of Fusarium Head Blight of cereals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178655. [PMID: 39892234 DOI: 10.1016/j.scitotenv.2025.178655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Fusarium Head Blight is one of the most devastating fungal diseases of cereals worldwide, causing significant yield losses and affecting grain quality. The predominant role of the interactions within the Fusarium communities as well as with members of the phytomicrobiome in disease onset and development has gained increasing attention. Understanding the diversity and dynamics of bacterial and fungal communities across different substrates colonized by Fusarium spp. in wheat fields can provide valuable insights into disease ecology and lead to the discovery of native microorganisms with biocontrol potential. In this study, the bacterial and fungal communities associated with soil, maize residues, and wheat grains, were studied based on metabarcoding sequencing of 16S rRNA and ITS2 regions in six wheat fields over two years and characterized by different levels of FHB disease pressure and mycotoxin contamination. Overall, the diversity and composition of microbial communities were primarily influenced by substrate type followed by geographic origins of fields and sampling time, notably for grains and residues while the soil microbiome was less impacted by environmental fluctuations. Notably, our findings suggest that crop residues function as a transient substrate between soil and wheat microbiomes. In addition, we found several taxa either strongly negatively correlated to Fusarium spp. and/or to levels of Fusarium DNA or mycotoxins in grains or residues, including Cladosporium, Epicoccum, Paenibacillus, Curtobacterium, Pseudomonas, Pantoea, and Sphingomonas, which could be potential antagonistic agents against Fusarium spp. Altogether, these findings provide novel insights into the field microbiome functioning and their complex interactions with the Fusarium communities.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Amandine Henri-Sanvoisin
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Gaétan Le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France.
| |
Collapse
|
11
|
Gao Y, Zhang Z, Ji M, Ze S, Wang H, Yang B, Hu L, Zhao N. Identification and Pathogenicity of Fusarium Species from Herbaceous Plants on Grassland in Qiaojia County, China. Microorganisms 2025; 13:113. [PMID: 39858884 PMCID: PMC11767762 DOI: 10.3390/microorganisms13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The Fusarium species is an important plant pathogen that can cause plant diseases in grassland, leading to the degradation of grassland quality. However, the morphology of Fusarium is greatly affected by environmental factors, which makes it difficult to identify its species. In addition, the pathogenic ability of different Fusarium species in plants has not been fully studied. In this study, Fusarium isolates were obtained from grassland herbaceous plants via tissue separation. Through morphological means and based on ITS, RPB2, and TEF-1 gene sequences, we compared and constructed polygenic phylogenetic trees to classify and identify the Fusarium species. In addition, the pathogenicity of different Fusarium species was also analyzed. The results showed that a total of 24 Fusarium strains were successfully isolated from grassland, from which ten species were identified: F. flagelliforme, F. longifundum, F. clavum, F. scirpi, F. ipomoeae, F. oxysporum, etc. and were included in four complexes: Fusarium incarnatum-equiseti species complex (FIESC), Fusarium oxysporum species complex (FOSC), Fusarium tricinctum species complex (FTSC), and Fusarium sambucinum species complex (FSAMSC). Pathogenicity tests demonstrated that except for F. ipomoeae QJ5211, F. sambucinum QJ203, and F. acuminatum QJ1662, other Fusarium species had different degrees of pathogenic ability. This is the first study that discusses the effect of Fusarium on grassland disease control in this area. This study further provides clear pathogen information for the prevention and control of grassland diseases.
Collapse
Affiliation(s)
- Yanzhu Gao
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.G.); (H.W.)
| | - Zhixiao Zhang
- Yunnan Academy of Forestry, Kunming 650224, China; (Z.Z.); (M.J.)
| | - Mei Ji
- Yunnan Academy of Forestry, Kunming 650224, China; (Z.Z.); (M.J.)
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650224, China;
| | - Haodong Wang
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.G.); (H.W.)
| | - Bin Yang
- School of Biological and Chemical Science, Pu’er University, Pu’er 665000, China;
| | - Lianrong Hu
- Yunnan Academy of Forestry, Kunming 650224, China; (Z.Z.); (M.J.)
| | - Ning Zhao
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.G.); (H.W.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
12
|
Kulik T, Treder K, Rochoń M, Załuski D, Sulima P, Olszewski J, Bilska K, Elena G, Kowalski T. Measurement of the effectiveness of Clonostachys rosea in reducing Fusarium biomass on wheat straw. J Appl Genet 2024; 65:937-947. [PMID: 39276302 PMCID: PMC11561075 DOI: 10.1007/s13353-024-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
The survival and growth of plant pathogens on crop residues are key factors facilitating the dynamics of crop diseases. Spores (e.g., perithecia, and chlamydospores) and mycelium of pathogenic fungi overwinter on harvest residues, such as straw, and serve as initial inoculum infecting crops in the next growing season. Therefore, targeting overwintering fungi is essential to attaining effective disease control. Beneficial microorganisms offer advantages in controlling pathogens through their ability to colonize and exploit different environmental niches. In this study, we applied qPCR assays to explore the biocontrol performance of locally isolated strains of Clonostachys against various Fusarium pathogens. We proved that prior colonization of wheat straw by Fusarium spp. can be effectively reduced by Clonostachys rosea. We demonstrated that the efficiency of C. rosea to reduce Fusarium inoculum appears to remain at a similar level for most studied strains regardless of the target pathogen and the level of colonization of substrates by pathogens. Efficient performance of local C. rosea strains identifies possible targets for future strategies to control Fusarium diseases in cereals. Our study also highlights the challenge in sequence-based determination of C. rosea, which is crucial for the efficient selection of beneficial strains for biocontrol purposes.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-718, Olsztyn, Poland.
| | - Kinga Treder
- Department of Agroecosystems, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-718, Olsztyn, Poland
| | - Marta Rochoń
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-718, Olsztyn, Poland
| | - Dariusz Załuski
- Department of Genetics, Plant Breeding and Bioresource Engineering, Plac Lodzki 3, 10-724, Olsztyn, Poland
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, Plac Lodzki 3, 10-724, Olsztyn, Poland
| | - Jacek Olszewski
- Experimental Education Unit, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-727, Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-718, Olsztyn, Poland
| | - Georgina Elena
- Wageningen Plant Research, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| | - Tadeusz Kowalski
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Krakow, Poland
| |
Collapse
|
13
|
Ju F, Qi Z, Tan J, Dai T. Development of Green Fluorescent Protein-Tagged Strains of Fusarium acuminatum via PEG-Mediated Genetic Transformation. Microorganisms 2024; 12:2427. [PMID: 39770630 PMCID: PMC11678020 DOI: 10.3390/microorganisms12122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Fusarium acuminatum is recognized as the causative agent of root rot in many forestry and agricultural plants. In recent years, root rot and foliage blight caused by F. acuminatum have become widespread and severe in China, particularly affecting Dianthus chinensis. The infection mechanism of F. acuminatum remains a pressing area for research. A crucial approach to elucidating its pathogenic mechanisms involves the genetic modification of candidate genes, which necessitates effective transformation systems. Currently, protoplast-mediated transformation (PMT) serves as a valuable tool for studying plant-pathogen interactions and offers several advantages over conventional transformation methods. In this study, we employed the PMT technique to establish a transformation system for the F. acuminatum strain FDCY-5 due to its benefits such as ease of operation, low cost, high conversion efficiency, and broad applicability. We successfully developed a transformation system capable of producing abundant high-quality protoplasts from F. acuminatum and generating green fluorescent protein (GFP) transformants. To verify whether GFP was constitutively expressed, we utilized fluorescence microscopy alongside PCR technology. The results demonstrated that GFP was effectively transformed into the protoplasts of F. acuminatum and expressed successfully. The established protoplast transformation system for F. acuminatum provides a foundational platform for analyzing functional genes within infected host plants as well as understanding the molecular mechanisms underlying host plant infections by F. acuminatum.
Collapse
Affiliation(s)
- Fangyi Ju
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210000, China; (F.J.); (J.T.)
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Jiajin Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210000, China; (F.J.); (J.T.)
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210000, China; (F.J.); (J.T.)
| |
Collapse
|
14
|
Chaudhary S, Ricardo RMN, Dubey M, Jensen DF, Grenville-Briggs L, Karlsson M. Genotypic variation in winter wheat for fusarium foot rot and its biocontrol using Clonostachys rosea. G3 (BETHESDA, MD.) 2024; 14:jkae240. [PMID: 39373570 PMCID: PMC11631536 DOI: 10.1093/g3journal/jkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Biological control to manage plant diseases is an environmentally friendly alternative to using chemical pesticides. However, little is known about the role of genetic variation in plants affecting the efficacy of biological control agents (BCAs). The aim of this study was to explore the genetic variation in winter wheat for disease susceptibility to fusarium foot rot caused by Fusarium graminearum and variation in biocontrol efficacy of the fungal BCA Clonostachys rosea to control the disease. In total, 190 winter wheat genotypes were evaluated under controlled conditions in two treatments, i.e. (i) F. graminearum (Fg) and (ii) F. graminearum infection on C. rosea treated seeds (FgCr). Alongside disease severity, plant growth-related traits such as shoot length and root length were also measured. Comparison of genotypes between the two treatments enabled the dissection of genotypic variation for disease resistance and C. rosea efficacy. The study revealed significant variation among plant genotypes for fusarium foot rot susceptibility and other growth traits in treatment Fg. Moreover, significant variation in C. rosea efficacy was also observed in genotype contrasts between the two treatments for all traits. Using a 20K marker array, a genome-wide association study was also performed. We identified a total of 18 significant marker-trait associations for disease resistance and C. rosea efficacy for all the traits. Moreover, the markers associated with disease resistance and C. rosea efficacy were not co-localized, highlighting the independent inheritance of these traits, which can facilitate simultaneous selection for cultivar improvement.
Collapse
Affiliation(s)
- Sidhant Chaudhary
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Laura Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma SE-23422, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
15
|
Nguyen TBH, Henri-Sanvoisin A, Coton M, Le Floch G, Picot A. Shifts in Fusarium Communities and Mycotoxins in Maize Residues, Soils, and Wheat Grains throughout the Wheat Cycle: Implications for Fusarium Head Blight Epidemiology. Microorganisms 2024; 12:1783. [PMID: 39338458 PMCID: PMC11434071 DOI: 10.3390/microorganisms12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Fusarium Head Blight (FHB), predominantly caused by Fusarium species, is a devastating cereal disease worldwide. While considerable research has focused on Fusarium communities in grains, less attention has been given to residues and soil, the primary inoculum sources. Knowledge of Fusarium spp. diversity, dynamics, and mycotoxin accumulation in these substrates is crucial for assessing their contribution to wheat head infection and the complex interactions among Fusarium communities throughout the wheat cycle. We monitored six minimum-tillage wheat fields, with maize as the preceding crop, over two years. Soils, maize residues, and wheat grains were sampled at four stages. Fusarium composition was analyzed using a culture-dependent method, species-specific qPCR, and EF1α region metabarcoding sequencing, enabling species-level resolution. The Fusarium communities were primarily influenced by substrate type, accounting for 35.8% of variance, followed by sampling location (8.1%) and sampling stage (3.2%). Among the 32 identified species, F. poae and F. graminearum dominated grains, with mean relative abundances of 47% and 29%, respectively. Conversely, residues were mainly contaminated by F. graminearum, with a low presence of F. poae, as confirmed by species-specific qPCR. Notably, during periods of high FHB pressure, such as in 2021, F. graminearum was the dominant species in grains. However, in the following year, F. poae outcompeted F. graminearum, resulting in reduced disease pressure, consistent with the lower pathogenicity of F. poae. Source Tracker analysis indicated that residues were a more significant source of Fusarium contamination on wheat in 2021 compared to 2022, suggesting that F. graminearum in 2021 primarily originated from residues, whereas F. poae's sources of infection need further investigation. Additionally, multiple mycotoxins were detected and quantified in maize residues during the wheat cycle, raising the question of their ecological role and impact on the soil microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (T.B.H.N.); (A.H.-S.); (M.C.); (G.L.F.)
| |
Collapse
|
16
|
Danielewicz J, Grzanka M, Sobiech Ł, Jajor E, Horoszkiewicz J, Korbas M, Blecharczyk A, Stuper-Szablewska K, Matysiak K. Impact of Various Essential Oils on the Development of Pathogens of the Fusarium Genus and on Health and Germination Parameters of Winter Wheat and Maize. Molecules 2024; 29:2376. [PMID: 38792237 PMCID: PMC11123840 DOI: 10.3390/molecules29102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, researchers are looking for ways to replace synthetic pesticides with substances of natural origin. Essential oils are produced by plants, among other things, to protect against pathogens, which is why there is interest in their use as fungicides. This experiment assessed the composition of essential oils from a commercial source, their impact on the development of mycelium of pathogens of the Fusarium genus, and the possibility of using them as a pre-sowing treatment. Grains of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) were inoculated with a suspension of mycelium and spores of fungi of the Fusarium genus and then soaked in solutions containing oils of sage (Salvia officinalis L.), cypress (Cupressus sempervirens L.), cumin (Cuminum cyminum L.), and thyme (Thymus vulgaris L.). The obtained results indicate that thyme essential oil had the strongest effect on limiting the development of Fusarium pathogens and seedling infection, but at the same time it had an adverse effect on the level of germination and seedling development of the tested plants. The remaining essential oils influenced the mentioned parameters to varying degrees. Selected essential oils can be an alternative to synthetic fungicides, but they must be selected appropriately.
Collapse
Affiliation(s)
- Jakub Danielewicz
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Monika Grzanka
- Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (M.G.); (A.B.)
| | - Łukasz Sobiech
- Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (M.G.); (A.B.)
| | - Ewa Jajor
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Joanna Horoszkiewicz
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Marek Korbas
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Andrzej Blecharczyk
- Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (M.G.); (A.B.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Kinga Matysiak
- Department of Herbology and Plant Protection Technology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland;
| |
Collapse
|
17
|
Mao X, Li L, Abubakar YS, Li Y, Luo Z, Chen M, Zheng W, Wang Z, Zheng H. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9637-9646. [PMID: 38642053 DOI: 10.1021/acs.jafc.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Yulong Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zenghong Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
18
|
Tardif C, Rouger C, Miranda J, Ahmed OS, Richard-Forget F, Atanasova V, Waffo-Teguo P. Targeting of Antifungal Metabolites from Grapevine Byproducts by UPLC-HRMS/MS Approaches Using Bioactivity-Based Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9621-9636. [PMID: 38648422 DOI: 10.1021/acs.jafc.3c09531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.
Collapse
Affiliation(s)
- Charles Tardif
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Caroline Rouger
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave d'Ornon, France
| | - Julie Miranda
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Omar S Ahmed
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Department of Analytical Chemistry, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Al-Motamayez District, P.O. Box 77, 3236101 6th of October City, Egypt
| | | | - Vessela Atanasova
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Pierre Waffo-Teguo
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| |
Collapse
|
19
|
Risoli S, Cotrozzi L, Pisuttu C, Nali C. Biocontrol Agents of Fusarium Head Blight in Wheat: A Meta-Analytic Approach to Elucidate Their Strengths and Weaknesses. PHYTOPATHOLOGY 2024; 114:521-537. [PMID: 37831969 DOI: 10.1094/phyto-08-23-0292-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The use of biocontrol agents (BCAs) coping with fungal pathogens causing Fusarium head blight (FHB) is a compelling strategy for disease management, but a better elucidation of their effectiveness is crucial. Meta-analysis is the analysis of the results of multiple studies, which is typically performed to synthesize evidence from many possible sources in a formal probabilistic manner. This meta-analytic study, including 30 pathometric, biometric, physiochemical, genetic, and mycotoxin response variables reported in 56 studies, evidences the BCA effects on FHB in wheat. The effectiveness of BCAs of FHB in wheat in terms of pathogen abundance and disease reductions, biomass and yield conservation, and mycotoxin prevention/control was confirmed. BCAs showed higher efficacy (i) in studies published more recently; (ii) under controlled conditions; (iii) in high susceptible wheat cultivars; (iv) when Fusarium inoculation and BCA treatment did not occur directly on the plant (i.e., at the seed and kernel levels) in terms of disease development and mycotoxin control, and vice versa in terms of biomass conservation; (v) if Fusarium inoculation and BCA treatment occurred by spraying spikes in terms of yield; (vi) at 15 to 21 days post Fusarium inoculation or BCA treatment; and (vii) if they were filamentous fungi. However, BCAs overall were less efficacious than conventional agrochemicals, especially in terms of pathogen abundance and FHB reductions, as well as of mycotoxin prevention/control, although inconsistencies were reported among the investigated moderator variables. This study also highlights the complexity of reaching a good balance among BCA effects, and the need for further research.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Italy
- University School for Advanced Studies IUSS Pavia, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| |
Collapse
|
20
|
Gozzi M, Blandino M, Bruni R, Capo L, Righetti L, Dall'Asta C. Mycotoxin occurrence in kernels and straws of wheat, barley, and tritordeum. Mycotoxin Res 2024; 40:203-210. [PMID: 38236484 PMCID: PMC10834653 DOI: 10.1007/s12550-024-00521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Thirty-two varieties of common and durum wheat, hordeum, barley, and tritordeum collected over two harvesting years (2020 and 2021) were investigated for the presence of multiple Fusarium-related mycotoxins in asymptomatic plants. DON, 3-AcDON, 15-AcDON, T-2, HT-2, and ZEN together with the emerging mycotoxin ENN B and the major modified form of DON, namely DON3Glc, were quantified by means of UHPLC-MS/MS. Overall, DON and ENN B were the most frequently detected mycotoxins, albeit large inter-year variability was observed and related to different climate and weather conditions. Straws had higher mycotoxin contents than kernels and regarding DON occurrence tritordeum was found to be the most contaminated group on average for both harvesting years, while barley was the less contaminated one. Emerging mycotoxin ENN B showed comparable contents in kernels compared to straw, with a ratio close to 1 for tritordeum and barley. Regarding the occurrence of the other evaluated mycotoxins, T-2 and HT-2 toxins have been spotted in a few tritordeum samples, while ZEN has been frequently found only in straw from the harvesting year 2020. The data collected confirms the occurrence of multiple Fusarium mycotoxins in straws also from asymptomatic plants, highlighting concerns related to feed safety and animal health. The susceptibility of Tritordeum, hereby reported for the first time, suggests that careful measures in terms of monitoring, breeding, and cultural choices should be applied when dealing with his emerging crop.
Collapse
Affiliation(s)
- Marco Gozzi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy.
| | - Massimo Blandino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy
| | - Luca Capo
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University, 6708, WE, Wageningen, The Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, The Netherlands
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy
| |
Collapse
|
21
|
Usmanova A, Brazhnikova Y, Omirbekova A, Kistaubayeva A, Savitskaya I, Ignatova L. Biopolymers as Seed-Coating Agent to Enhance Microbially Induced Tolerance of Barley to Phytopathogens. Polymers (Basel) 2024; 16:376. [PMID: 38337265 DOI: 10.3390/polym16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against phytopathogens. A microbial association of biocompatible endophytic bacteria has been created, including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone IAA (from 45.2 to 69.2 µg mL-1), antagonistic activity against Fusarium oxysporum and Fusarium solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5-15% NaCl), and PHA production (2.77-4.54 g L-1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate (from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at 8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicating that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens.
Collapse
Affiliation(s)
- Aizhamal Usmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| |
Collapse
|
22
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
23
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
24
|
Bakker MG, Whitaker BK, McCormick SP, Ainsworth EA, Vaughan MM. Manipulating atmospheric CO 2 concentration induces shifts in wheat leaf and spike microbiomes and in Fusarium pathogen communities. Front Microbiol 2023; 14:1271219. [PMID: 37881249 PMCID: PMC10595150 DOI: 10.3389/fmicb.2023.1271219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Changing atmospheric composition represents a source of uncertainty in our assessment of future disease risks, particularly in the context of mycotoxin producing fungal pathogens which are predicted to be more problematic with climate change. To address this uncertainty, we profiled microbiomes associated with wheat plants grown under ambient vs. elevated atmospheric carbon dioxide concentration [CO2] in a field setting over 2 years. We also compared the dynamics of naturally infecting versus artificially introduced Fusarium spp. We found that the well-known temporal dynamics of plant-associated microbiomes were affected by [CO2]. The abundances of many amplicon sequence variants significantly differed in response to [CO2], often in an interactive manner with date of sample collection or with tissue type. In addition, we found evidence that two strains within Fusarium - an important group of mycotoxin producing fungal pathogens of plants - responded to changes in [CO2]. The two sequence variants mapped to different phylogenetic subgroups within the genus Fusarium, and had differential [CO2] responses. This work informs our understanding of how plant-associated microbiomes and pathogens may respond to changing atmospheric compositions.
Collapse
Affiliation(s)
- Matthew G. Bakker
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Briana K. Whitaker
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Elizabeth A. Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, United States
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| |
Collapse
|
25
|
da Silva LAGA, Piacentini KC, Caramês ETDS, Silva NCC, Wawroszová S, Běláková S, Rocha LDO. Quantitative PCR (qPCR) for estimating the presence of Fusarium and its mycotoxins in barley grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1369-1387. [PMID: 37640447 DOI: 10.1080/19440049.2023.2250474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Members within the Fusarium sambucinum species complex (FSAMSC) are able to produce mycotoxins, such as deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN) and enniatins (ENNs) in food products. Consequently, alternative methods for assessing the levels of these mycotoxins are relevant for quick decision-making. In this context, qPCR based on key mycotoxin biosynthetic genes could aid in determining the toxigenic fungal biomass, and could therefore infer mycotoxin content. The aim of this study was to verify the use of qPCR as a technique for estimating DON, NIV, ENNs and ZEN, as well as Fusarium graminearum sensu lato (s.l.) and F. poae in barley grains. For this purpose, 53 barley samples were selected for mycobiota, mycotoxin and qPCR analyses. ENNs were the most frequent mycotoxins, followed by DON, ZEN and NIV. 83% of the samples were contaminated by F. graminearum s.l. and 51% by F. poae. Pearson correlation analysis showed significant correlations for TRI12/15-ADON with DON, ESYN1 with ENNs, TRI12/15-ADON and ZEB1 with F. graminearum s.l., as well as ESYN1 and TRI12/NIV with F. poae. Based on the results, qPCR could be useful for the assessment of Fusarium presence, and therefore, provide an estimation of its mycotoxins' levels from the same sample.
Collapse
Affiliation(s)
| | - Karim Cristina Piacentini
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Simona Wawroszová
- Regional Department Brno, Central Institute for Supervising and Testing in Agriculture, National Reference Laboratory, Brno, Czech Republic
| | - Sylvie Běláková
- Malting Institute Brno, Research Institute of Brewing and Malting, Brno, Czech Republic
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
26
|
Guo X, Shi Q, Liu Y, Su H, Zhang J, Wang M, Wang C, Wang J, Zhang K, Fu S, Hu X, Jing D, Wang Z, Li J, Zhang P, Liu C, Han F. Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1475-1489. [PMID: 36919201 DOI: 10.1111/tpj.16190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum) around the world. FHB causes significant yield losses and reduces grain quality. The lack of resistance resources is a major bottleneck for wheat FHB resistance breeding. As a wheat relative, Thinopyrum elongatum contains many genes that can be used for wheat improvement. Although the novel gene Fhb-7EL was mapped on chromosome 7EL of Th. elongatum, successful transfer of the FHB resistance gene into commercial wheat varieties has not been reported. In this study, we developed 836 wheat-Th. elongatum translocation lines of various types by irradiating the pollen of the wheat-Th. elongatum addition line CS-7EL at the flowering stage, among which 81 were identified as resistant to FHB. By backcrossing the FHB-resistant lines with the main cultivar Jimai 22, three wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, were successfully applied in wheat breeding without yield penalty. Combining karyotype and phenotype analyses, we mapped the Fhb-7EL gene to the distal end of chromosome 7EL. Five molecular markers linked with the FHB resistance interval were developed, which facilitates molecular marker-assisted breeding. Altogether, we successfully applied alien chromatin with FHB resistance from Th. elongatum in wheat breeding without yield penalty. These newly developed FHB-resistant wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, can be used as novel resistance resources for wheat breeding.
Collapse
Affiliation(s)
- Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunhui Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shulan Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Hu
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi, China
| | - Donglin Jing
- Xingtai Academy of Agricultural Sciences, Xingtai, China
| | - Zhen Wang
- Nanyang Academy of Agricultural Sciences, Nanyang, China
| | - Jinbang Li
- Nanyang Academy of Agricultural Sciences, Nanyang, China
| | - Pingzhi Zhang
- Institute of Crop Sciences, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Dong F, Zhu Y, Zhu X, Zhang C, Tao Y, Shao T, Wang Y, Luo X. Fungal community remediate quartz tailings soil under plant combined with urban sludge treatments. Front Microbiol 2023; 14:1160960. [PMID: 37152723 PMCID: PMC10157048 DOI: 10.3389/fmicb.2023.1160960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tailings can cause extensive damage to soil structure and microbial community. Phytoremediation is an effective strategy for remedied tailings soil due to its environmentally friendly and low-cost advantage. Fungi play a crucial role in nutrient cycling, stress resistance, stabilizing soil structure, and promoting plant growth. However, the fungal community variation in phytoremediation remains largely unexplored. Methods We analyzed soil fungal community based on high-throughput sequencing during three plant species combined with urban sludge to remediate quartz tailings soil. Results The results indicated that the fungal diversity was significantly increased with plant diversity, and the highest fungal diversity was in the three plant species combination treatments. Moreover, the fungal diversity was significantly decreased with the addition of urban sludge compared with plant treatments, while the abundance of potential beneficial fungi such as Cutaneotrichosporon, Apiotrichum, and Alternaria were increased. Notably, the fungal community composition in different plant species combination treatments were significant difference at the genus level. The addition of urban sludge increased pH, available phosphorus (AP), and available nitrogen (AN) content that were the main drivers for fungal community composition. Furthermore, the fungal networks of the plant treatments had more nodes and edges, higher connectedness, and lower modularity than plant combined with urban sludge treatments. Conclusion Our results showed that three plant species combined with urban sludge treatments improved fungal community and soil properties. Our results provide insights for quartz tailings soil remediation using plant-fungi- urban sludge.
Collapse
Affiliation(s)
- Fabao Dong
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yujia Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xunmei Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Chengzhi Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingying Tao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Taotao Shao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yue Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xia Luo
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
28
|
Chakroun Y, Snoussi Y, Chehimi MM, Abderrabba M, Savoie JM, Oueslati S. Encapsulation of Ammoides pusila Essential Oil into Mesoporous Silica Particles for the Enhancement of Their Activity against Fusarium avenaceum and Its Enniatins Production. Molecules 2023; 28:molecules28073194. [PMID: 37049956 PMCID: PMC10096032 DOI: 10.3390/molecules28073194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Essential oils (EOs) that have antifungal activity and mycotoxin reduction ability are candidates to develop bioactive alternatives and environmentally friendly treatment against Fusarium species in cereals. However, their practical use is facing limitations such as high volatility, UV sensitivity, and fast oxidation. Encapsulation techniques are supposed to provide protection to the EOs and control their release into the environment. Ammoides pusilla essential oil (AP-EO) proved to be an efficient inhibitor of Fusarium avenaceum growth and its enniatins (ENNs) production. In the present work, AP-EO was encapsulated, using the impregnation method, into mesoporous silica particles (MSPs) with narrow slit pores (average diameter = 3.1 nm) and coated with chitosan. In contact assays using an agar medium, the antifungal activity of AP-EO at 0.1 µL mL-1 improved by three times when encapsulated into MSPs without chitosan and the ENNs production was significantly inhibited both in coated and non-coated MSPs. Controls of MSPs also inhibited the ENNs production without affecting the mycelial growth. In fumigation experiments assessing the activity of the EO volatile compounds, encapsulation into MSPs improved significantly both the antifungal activity and ENNs inhibition. Moreover, coating with chitosan stopped the release of EO. Thus, encapsulation of an EO into MSPs improving its antifungal and antimycotoxin properties is a promising tool for the formulation of a natural fungicide that could be used in the agriculture or food industry to protect plant or food products from the contamination by toxigenic fungi such as Fusarium sp. and their potential mycotoxins.
Collapse
Affiliation(s)
- Yasmine Chakroun
- INRAE, UR1264 MycSA, CS2032, 33882 Villenave d'Ornon, France
- IPEST, Laboratory Molecules Materials and Applications (LMMA), University of Carthage, La Marsa, Tunis 2070, Tunisia
| | - Youssef Snoussi
- IPEST, Laboratory Molecules Materials and Applications (LMMA), University of Carthage, La Marsa, Tunis 2070, Tunisia
- CNRS, UMR 7182 ICMPE, 2-8 Rue Henri Dunant, 94320 Thiais, France
| | - Mohamed M Chehimi
- CNRS, UMR 7182 ICMPE, 2-8 Rue Henri Dunant, 94320 Thiais, France
- ITODYS, UMR 7086, Université Paris Cité & CNRS, 75013 Paris, France
| | - Manef Abderrabba
- IPEST, Laboratory Molecules Materials and Applications (LMMA), University of Carthage, La Marsa, Tunis 2070, Tunisia
| | | | - Souheib Oueslati
- IPEST, Laboratory Molecules Materials and Applications (LMMA), University of Carthage, La Marsa, Tunis 2070, Tunisia
| |
Collapse
|
29
|
Assessment of Agricultural Practices for Controlling Fusarium and Mycotoxins Contamination on Maize Grains: Exploratory Study in Maize Farms. Toxins (Basel) 2023; 15:toxins15020136. [PMID: 36828450 PMCID: PMC9964085 DOI: 10.3390/toxins15020136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Maize is a significant crop to the global economy and a key component of food and feed, although grains and whole plants can often be contaminated with mycotoxins resulting in a general exposure of the population and animals. To investigate strategies for mycotoxins control at the grain production level, a pilot study and exploratory research were conducted in 2019 and 2020 to compare levels of mycotoxins in grains of plants treated with two fertilizers, F-BAC and Nefusoil, under real agricultural environment. The 1650 grains selected from the 33 samples were assessed for the presence of both Fusarium species and mycotoxins. Only fumonisins and deoxynivalenol were detected. Fumonisin B1 ranged from 0 to 2808.4 µg/Kg, and fumonisin B2 from 0 to 1041.9 µg/Kg, while deoxynivalenol variated from 0 to 465.8 µg/Kg. Nefusoil showed to be promising in regard to fumonisin control. Concerning the control of fungal contamination rate and the diversity of Fusarium species, no significant differences were found between the two treatments in any of the years. However, a tendency for was observed Nefusoil of lower values, probably due to the guaranteed less stressful conditions to the Fusarium spp. present in the soil, which do not stimulate their fumonisins production.
Collapse
|
30
|
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. PLANTS (BASEL, SWITZERLAND) 2023; 12:627. [PMID: 36771708 PMCID: PMC9921801 DOI: 10.3390/plants12030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fusarium spp. is a well-studied pathogen with the potential to infect cereals and reduce the yield to maximum if left unchecked. For decades, different control treatments have been tested against different Fusarium spp. and for reducing the mycotoxins they produce and are well documented. Some treatments also involved integrated pest management (IPM) strategies against Fusarium spp. control and mycotoxin degradation produced by them. In this review article, we compiled different control strategies against different Fusarium spp. In addition, special focus is given to the non-thermal plasma (NTP) technique used against Fusarium spp. inactivation. In a separate group, we compiled the literature about the use of NTP in the decontamination of mycotoxins produced by Fusarium spp., and highlighted the possible mechanisms of mycotoxin degradation by NTP. In this review, we concluded that although NTP is an effective treatment, it is a nice area and needs further research. The possibility of a prospective novel IPM strategy against Fusarium spp. is also proposed.
Collapse
|
31
|
Dobbs JT, Kim MS, Reynolds GJ, Wilhelmi N, Dumroese RK, Klopfenstein NB, Fraedrich SW, Cram MM, Bronson J, Stewart JE. Fusarioid community diversity associated with conifer seedlings in forest nurseries across the contiguous USA. FRONTIERS IN PLANT SCIENCE 2023; 14:1104675. [PMID: 36818886 PMCID: PMC9930990 DOI: 10.3389/fpls.2023.1104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fusarioid fungi that cause damping-off and root diseases can result in significant losses to conifer crops produced in forest nurseries across the USA. These nurseries are vital to reforestation and forest restoration efforts. Understanding the diversity of Fusarioid fungi associated with damping-off and root diseases of conifer seedlings can provide an approach for targeted management techniques to limit seedling losses and pathogen spread to novel landscapes. METHODS This study identifies 26 Fusarium spp. (F. acuminatum, F. annulatum, F. avenaceum, F. brachygibbosum, F. clavus, F. commune, F. cugenangense, F. diversisporum, F. elaeagni, F. elaeidis, F. flocciferum, F. fredkrugeri, F. fujikuroi, F. grosmichelii, F. ipomoeae, F. lactis, F. languescens, F. luffae, F. odoratissimum, F. oxysporum, F. queenslandicum, F. redolens, F. torulosum, F. triseptatum, F. vanleeuwenii, & F. verticillioides), 15 potential species within Fusarium and Neocosmospora species complexes (two from F. fujikuroi species complex, nine from F. oxysporum species complex, three from F. tricinctum species complex, and one from Neocosmospora species complex), and four Neocosmospora spp. (N. falciforme, N. metavorans, N. pisi, & N. solani) and associated host information collected from conifer-producing nurseries across the contiguous USA. RESULTS Phylogenetic analyses identified Fusarioid fungi haplotypes that were associated with 1) host specificity, 2) localization to geographic regions, or 3) generalists found on multiple hosts across diverse geographic regions. DISCUSSION The haplotypes and novel species identified on conifer seedlings should be considered for further analysis to determine pathogenicity, pathogen spread, and assess management practices.
Collapse
Affiliation(s)
- J. T. Dobbs
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| | - M.-S. Kim
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - G. J. Reynolds
- USDA Forest Service, Forest Health Protection – Region 3, Albuquerque, NM, United States
| | - N. Wilhelmi
- USDA Forest Service, Forest Health Protection – Region 3, Flagstaff, AZ, United States
| | - R. K. Dumroese
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID, United States
| | - N. B. Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID, United States
| | - S. W. Fraedrich
- USDA Forest Service, Southern Research Station, Athens, GA, United States
| | - M. M. Cram
- USDA Forest Service, Forest Health Protection – Region 8, Athens, GA, United States
| | - J. Bronson
- USDA Forest Service, Forest Health Protection – Region 6, Medford, OR, United States
| | - J. E. Stewart
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| |
Collapse
|
32
|
Hoffmann A, Posirca AR, Lewin S, Verch G, Büttner C, Müller MEH. Environmental Filtering Drives Fungal Phyllosphere Community in Regional Agricultural Landscapes. PLANTS (BASEL, SWITZERLAND) 2023; 12:507. [PMID: 36771591 PMCID: PMC9919219 DOI: 10.3390/plants12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To adapt to climate change, several agricultural strategies are currently being explored, including a shift in land use areas. Regional differences in microbiome composition and associated phytopathogens need to be considered. However, most empirical studies on differences in the crop microbiome focused on soil communities, with insufficient attention to the phyllosphere. In this study, we focused on wheat ears in three regions in northeastern Germany (Magdeburger Börde (MBB), Müncheberger Sander (MSA), Uckermärkisches Hügelland (UKH)) with different yield potentials, soil, and climatic conditions. To gain insight into the fungal community at different sites, we used a metabarcoding approach (ITS-NGS). Further, we examined the diversity and abundance of Fusarium and Alternaria using culture-dependent and culture-independent techniques. For each region, the prevalence of different orders rich in phytopathogenic fungi was determined: Sporidiobolales in MBB, Capnodiales and Pleosporales in MSA, and Hypocreales in UKH were identified as taxonomic biomarkers. Additionally, F. graminearum was found predominantly in UKH, whereas F. poae was more abundant in the other two regions. Environmental filters seem to be strong drivers of these differences, but we also discuss the possible effects of dispersal and interaction filters. Our results can guide shifting cultivation regions to be selected in the future concerning their phytopathogenic infection potential.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Alexandra-Raluca Posirca
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- State Office for Rural Development, Agriculture and Land Reorganization (LELF) Brandenburg, Division P, 15236 Frankfurt (Oder), Germany
| | - Simon Lewin
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Carmen Büttner
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
33
|
Fungal Pathogens Associated with Crown and Root Rot in Wheat-Growing Areas of Northern Kyrgyzstan. J Fungi (Basel) 2023; 9:jof9010124. [PMID: 36675945 PMCID: PMC9867107 DOI: 10.3390/jof9010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/17/2023] Open
Abstract
Fungal species associated with crown and root rot diseases in wheat have been extensively studied in many parts of the world. However, no reports on the relative importance and distribution of pathogens associated with wheat crown and root rot in Kyrgyzstan have been published. Hence, fungal species associated with wheat crown/root rot were surveyed in three main wheat production regions in northern Kyrgyzstan. Fungal species were isolated on 1/5 strength potato-dextrose agar amended with streptomycin (0.1 g/L) and chloramphenicol (0.05 g/L). A total of 598 fungal isolates from symptomatic tissues were identified using morphological features of the cultures and conidia, as well as sequence analysis of the nuclear ribosomal internal transcribed spacer (ITS) region, the translation elongation factor 1α (TEF1), and the RNA polymerase II beta subunit (RPB2) genes. The percentage of fields from which each fungus was isolated and their relative percentage isolation levels were determined. Bipolaris sorokiniana, the causal agent of common root rot, was the most prevalent pathogenic species isolated, being isolated from 86.67% of the fields surveyed at a frequency of isolation of 40.64%. Fusarium spp. accounted for 53.01% of all isolates and consisted of 12 different species. The most common Fusarium species identified was Fusarium acuminatum, which was isolated from 70% of the sites surveyed with an isolation frequency of 21.57%, followed by Fusarium culmorum, Fusarium nygamai, Fusarium oxysporum, and Fusarium equiseti, all of which had a field incidence of more than 23%. Inoculation tests with 44 isolates representing 17 species on the susceptible Triticum aestivum cv. Seri 82 revealed that Fusarium pseudograminearum and F. culmorum isolates were equally the most virulent pathogens. The widespread distribution of moderately virulent B. sorokiniana appears to be a serious threat to wheat culture, limiting yield and quality. With the exception of F. culmorum, the remaining Fusarium species did not pose a significant threat to wheat production in the surveyed areas because common species, such as F. acuminatum, F. nygamai, F. oxysporum, and F. equiseti, were non-pathogenic but infrequent species, such as Fusarium redolens, Fusarium algeriense, and F. pseudograminearum, were highly or moderately virulent. Curvularia inaequalis, which was found in three different fields, was mildly virulent. The remaining Fusarium species, Fusarium solani, Fusarium proliferatum, Fusarium burgessii, and Fusarium tricinctum, as well as Microdochium bolleyi, Microdochium nivale, and Macrophomina phaseolina, were non-pathogenic and considered to be secondary colonizers. The implications of these findings are discussed.
Collapse
|
34
|
Matros A, Schikora A, Ordon F, Wehner G. QTL for induced resistance against leaf rust in barley. FRONTIERS IN PLANT SCIENCE 2023; 13:1069087. [PMID: 36714737 PMCID: PMC9877528 DOI: 10.3389/fpls.2022.1069087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Leaf rust caused by Puccinia hordei is one of the major diseases of barley (Hordeum vulgare L.) leading to yield losses up to 60%. Even though, resistance genes Rph1 to Rph28 are known, most of these are already overcome. In this context, priming may promote enhanced resistance to P. hordei. Several bacterial communities such as the soil bacterium Ensifer (syn. Sinorhizobium) meliloti are reported to induce resistance by priming. During quorum sensing in populations of gram negative bacteria, they produce N-acyl homoserine-lactones (AHL), which induce resistance in plants in a species- and genotype-specific manner. Therefore, the present study aims to detect genotypic differences in the response of barley to AHL, followed by the identification of genomic regions involved in priming efficiency of barley. A diverse set of 198 spring barley accessions was treated with a repaired E. meliloti natural mutant strain expR+ch producing a substantial amount of AHL and a transformed E. meliloti strain carrying the lactonase gene attM from Agrobacterium tumefaciens. For P. hordei resistance the diseased leaf area and the infection type were scored 12 dpi (days post-inoculation), and the corresponding relative infection and priming efficiency were calculated. Results revealed significant effects (p<0.001) of the bacterial treatment indicating a positive effect of priming on resistance to P. hordei. In a genome-wide association study (GWAS), based on the observed phenotypic differences and 493,846 filtered SNPs derived from the Illumina 9k iSelect chip, genotyping by sequencing (GBS), and exome capture data, 11 quantitative trait loci (QTL) were identified with a hot spot on the short arm of the barley chromosome 6H, associated to improved resistance to P. hordei after priming with E. meliloti expR+ch. Genes in these QTL regions represent promising candidates for future research on the mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Andrea Matros
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Gwendolin Wehner
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
35
|
Tsers I, Marenina E, Meshcherov A, Petrova O, Gogoleva O, Tkachenko A, Gogoleva N, Gogolev Y, Potapenko E, Muraeva O, Ponomareva M, Korzun V, Gorshkov V. First genome-scale insights into the virulence of the snow mold causal fungus Microdochium nivale. IMA Fungus 2023; 14:2. [PMID: 36627722 PMCID: PMC9830731 DOI: 10.1186/s43008-022-00107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Pink snow mold, caused by a phytopathogenic and psychrotolerant fungus, Microdochium nivale, is a severe disease of winter cereals and grasses that predominantly occurs under snow cover or shortly after its melt. Snow mold has significantly progressed during the past decade, often reaching epiphytotic levels in northern countries and resulting in dramatic yield losses. In addition, M. nivale gradually adapts to a warmer climate, spreading to less snowy territories and causing different types of plant diseases throughout the growing period. Despite its great economic importance, M. nivale is poorly investigated; its genome has not been sequenced and its crucial virulence determinants have not been identified or even predicted. In our study, we applied a hybrid assembly based on Oxford Nanopore and Illumina reads to obtain the first genome sequence of M. nivale. 11,973 genes (including 11,789 protein-encoding genes) have been revealed in the genome assembly. To better understand the genetic potential of M. nivale and to obtain a convenient reference for transcriptomic studies on this species, the identified genes were annotated and split into hierarchical three-level functional categories. A file with functionally classified M. nivale genes is presented in our study for general use. M. nivale gene products that best meet the criteria for virulence factors have been identified. The genetic potential to synthesize human-dangerous mycotoxins (fumonisin, ochratoxin B, aflatoxin, and gliotoxin) has been revealed for M. nivale. The transcriptome analysis combined with the assays for extracellular enzymatic activities (conventional virulence factors of many phytopathogens) was carried out to assess the effect of host plant (rye) metabolites on the M. nivale phenotype. In addition to disclosing plant-metabolite-upregulated M. nivale functional gene groups (including those related to host plant protein destruction and amino acid metabolism, xenobiotic detoxication (including phytoalexins benzoxazinoids), cellulose destruction (cellulose monooxygenases), iron transport, etc.), the performed analysis pointed to a crucial role of host plant lipid destruction and fungal lipid metabolism modulation in plant-M. nivale interactions.
Collapse
Affiliation(s)
- Ivan Tsers
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Ekaterina Marenina
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Azat Meshcherov
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Olga Petrova
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Olga Gogoleva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Alexander Tkachenko
- grid.35915.3b0000 0001 0413 4629Laboratory of Computer Technologies, ITMO University, Saint Petersburg, Russia 197101
| | - Natalia Gogoleva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Yuri Gogolev
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Evgenii Potapenko
- grid.18098.380000 0004 1937 0562Institute of Evolution, University of Haifa, 3498838 Haifa, Israel ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
| | - Olga Muraeva
- grid.512700.1Bioinformatics Institute, Saint Petersburg, Russia 197342
| | - Mira Ponomareva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Viktor Korzun
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111 ,grid.425691.dKWS SAAT SE & Co. KGaA, 37555 Einbeck, Germany
| | - Vladimir Gorshkov
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| |
Collapse
|
36
|
Powell AJ, Kim SH, Cordero J, Vujanovic V. Protocooperative Effect of Sphaerodes mycoparasitica Biocontrol and Crop Genotypes on FHB Mycotoxin Reduction in Bread and Durum Wheat Grains Intended for Human and Animal Consumption. Microorganisms 2023; 11:microorganisms11010159. [PMID: 36677451 PMCID: PMC9861577 DOI: 10.3390/microorganisms11010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
The occurrence of Fusarium Head Blight (FHB) mycotoxins in wheat grains is a major threat to global food safety and security. Humans and animals are continuously being exposed to Fusarium mycotoxins such as deoxynivalenol (DON) and its acetylated derivatives 3ADON and 15ADON through the ingestion of contaminated food or grain-based diet. In this study, a host-specific mycoparasite biocontrol agent (BCA), Sphaerodes mycoparasitica, significantly reduced FHB mycotoxin occurrence in harvested wheat grains from Fusarium graminearum 3ADON chemotype infected plants in greenhouse. Four genotypes of wheat, two common wheat and two durum wheat cultivars with varying FHB resistance levels were used in this study. Principal Coordinate Analysis (PCoA) using Illumina ITS sequences depicted beta diversity changes in Fusarium species indicating that both plant cultivar and BCA treatments influenced the Fusarium species structure and mycotoxin occurrence in grains. Fusarium graminearum complex (cluster A), F. avenaceum and F. acuminatum (cluster B), and F. proliferatum (cluster C) variants were associated with different FHB mycotoxins based on LC-MS/MS analyses. The predominant FHB mycotoxins measured were DON and its acetylated derivatives 3ADON and 15ADON. The BCA reduced the occurrence of DON in grains of all four cultivars (common wheat: 1000-30,000 µg·kg-1.; durum wheat: 600-1000 µg·kg-1) to levels below the Limit of Quantification (LOQ) of 16 µg·kg-1. A relatively higher concentration of DON was detected in the two common wheat genotypes when compared to the durum wheat genotype; however, the percentage reduction in the wheat genotypes was greater, reaching up to 99% with some S. mycoparasitica treatments. Similarly, a higher reduction in DON was measured in susceptible genotypes than in resistant genotypes. This study's findings underscore the potential of a Fusarium-specific S. mycoparasitica BCA as a safe and promising alternative that can be used in conjunction with other management practices to minimize FHB mycotoxins in cereal grain, food and feed intended for human and animal consumption.
Collapse
|
37
|
Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review. DIVERSITY 2023. [DOI: 10.3390/d15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genus Fusarium includes many pathogenic species causing a wide range of plant diseases that lead to high economic losses. In this review, we describe how the Fusarium taxonomy has changed with the development of microbiological methods. We specify the ecological traits of this genus and the methods of its identification in soils, particularly the detection of phytopathogenic representatives of Fusarium and the mycotoxins produced by them. The negative effects of soil-borne phytopathogenic Fusarium on agricultural plants and current methods for its control are discussed. Due to the high complexity and polymorphism of Fusarium species, integrated approaches for the risk assessment of Fusarium diseases are necessary.
Collapse
|
38
|
Lu Z, Chen M, Long X, Yang H, Zhu D. Biological potential of Bacillus subtilis BS45 to inhibit the growth of Fusarium graminearum through oxidative damage and perturbing related protein synthesis. Front Microbiol 2023; 14:1064838. [PMID: 36891382 PMCID: PMC9987035 DOI: 10.3389/fmicb.2023.1064838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Fusarium root rot (FRR) caused by Fusarium graminearum poses a threat to global food security. Biological control is a promising control strategy for FRR. In this study, antagonistic bacteria were obtained using an in-vitro dual culture bioassay with F. graminearum. Molecular identification of the bacteria based on the 16S rDNA gene and whole genome revealed that the species belonged to the genus Bacillus. We evaluated the strain BS45 for its mechanism against phytopathogenic fungi and its biocontrol potential against FRR caused by F. graminearum. A methanol extract of BS45 caused swelling of the hyphal cells and the inhibition of conidial germination. The cell membrane was damaged and the macromolecular material leaked out of cells. In addition, the mycelial reactive oxygen species level increased, mitochondrial membrane potential decreased, oxidative stress-related gene expression level increased and oxygen-scavenging enzyme activity changed. In conclusion, the methanol extract of BS45 induced hyphal cell death through oxidative damage. A transcriptome analysis showed that differentially expressed genes were significantly enriched in ribosome function and various amino acid transport pathways, and the protein contents in cells were affected by the methanol extract of BS45, indicating that it interfered with mycelial protein synthesis. In terms of biocontrol capacity, the biomass of wheat seedlings treated with the bacteria increased, and the BS45 strain significantly inhibited the incidence of FRR disease in greenhouse tests. Therefore, strain BS45 and its metabolites are promising candidates for the biological control of F. graminearum and its related root rot diseases.
Collapse
Affiliation(s)
- Ziyun Lu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Meiling Chen
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Xinyi Long
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Bioprocess Engineering of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
39
|
Reduced Risk of Oat Grain Contamination with Fusarium langsethiae and HT-2 and T-2 Toxins with Increasing Tillage Intensity. Pathogens 2022; 11:pathogens11111288. [DOI: 10.3390/pathogens11111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Frequent occurrences of high levels of Fusarium mycotoxins have been recorded in Norwegian oat grain. To elucidate the influence of tillage operations on the development of Fusarium and mycotoxins in oat grain, we conducted tillage trials with continuous oats at two locations in southeast Norway. We have previously presented the content of Fusarium DNA detected in straw residues and air samples from these fields. Grain harvested from ploughed plots had lower levels of Fusarium langsethiae DNA and HT-2 and T-2 toxins (HT2 + T2) compared to grain from harrowed plots. Our results indicate that the risk of F. langsethiae and HT2 + T2 contamination of oats is reduced with increasing tillage intensity. No distinct influence of tillage on the DNA concentration of Fusarium graminearum and Fusarium avenaceum in the harvested grain was observed. In contrast to F. graminearum and F. avenaceum, only limited contents of F. langsethiae DNA were observed in straw residues and air samples. Still, considerable concentrations of F. langsethiae DNA and HT2 + T2 were recorded in oat grain harvested from these fields. We speculate that the life cycle of F. langsethiae differs from those of F. graminearum and F. avenaceum with regard to survival, inoculum production and dispersal.
Collapse
|
40
|
Feng C, Cao X, Du Y, Chen Y, Xin K, Zou J, Jin Q, Xu JR, Liu H. Uncovering Cis-Regulatory Elements Important for A-to-I RNA Editing in Fusarium graminearum. mBio 2022; 13:e0187222. [PMID: 36102513 PMCID: PMC9600606 DOI: 10.1128/mbio.01872-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing independent of adenosine deaminase acting on RNA (ADAR) enzymes was discovered in fungi recently, and shown to be crucial for sexual reproduction. However, the underlying mechanism for editing is unknown. Here, we combine genome-wide comparisons, proof-of-concept experiments, and machine learning to decipher cis-regulatory elements of A-to-I editing in Fusarium graminearum. We identified plenty of RNA primary sequences and secondary structural features that affect editing specificity and efficiency. Although hairpin loop structures contribute importantly to editing, unlike in animals, the primary sequences have more profound influences on editing than secondary structures. Nucleotide preferences at adjacent positions of editing sites are the most important features, especially preferences at the -1 position. Unexpectedly, besides the number of positions with preferred nucleotides, the combination of preferred nucleotides with depleted ones at different positions are also important for editing. Some cis-sequence features have distinct importance for editing specificity and efficiency. Machine learning models built from diverse sequence and secondary structural features can accurately predict genome-wide editing sites but not editing levels, indicating that the cis-regulatory principle of editing efficiency is more complex than that of editing specificity. Nevertheless, our model interpretation provides insights into the quantitative contribution of each feature to the prediction of both editing sites and levels. We found that efficient editing of FG3G34330 transcripts depended on the full-length RNA molecule, suggesting that additional RNA structural elements may also contribute to editing efficiency. Our work uncovers multidimensional cis-regulatory elements important for A-to-I RNA editing in F. graminearum, helping to elucidate the fungal editing mechanism. IMPORTANCE A-to-I RNA editing is a new epigenetic phenomenon that is crucial for sexual reproduction in fungi. Deciphering cis-regulatory elements of A-to-I RNA editing can help us elucidate the editing mechanism and develop a model that accurately predicts RNA editing. In this study, we discovered multiple RNA sequence and secondary structure features important for A-to-I editing in Fusarium graminearum. We also identified the cis-sequence features with distinct importance for editing specificity and efficiency. The potential importance of full-length RNA molecules for editing efficiency is also revealed. This study represents the first comprehensive investigation of the cis-regulatory principles of A-to-I RNA editing in fungi.
Collapse
Affiliation(s)
- Chanjing Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Yanfei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaiyun Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwen Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Pilo P, Lawless C, Tiley AMM, Karki SJ, Burke JI, Feechan A. Comparison of microscopic and metagenomic approaches to identify cereal pathogens and track fungal spore release in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1039090. [PMID: 36340419 PMCID: PMC9630935 DOI: 10.3389/fpls.2022.1039090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the main staple food crops, and 775 million tonnes of wheat were produced worldwide in 2022. Fungal diseases such as Fusarium head blight, Septoria tritici blotch, spot blotch, tan spot, stripe rust, leaf rust, and powdery mildew cause serious yield losses in wheat and can impact quality. We aimed to investigate the incidence of spores from major fungal pathogens of cereals in the field by comparing microscopic and metagenomic based approaches for spore identification. Spore traps were set up in four geographically distinct UK wheat fields (Carnoustie, Angus; Bishop Burton, Yorkshire; Swindon, Wiltshire; and Lenham, Kent). Six major cereal fungal pathogen genera (Alternaria spp., Blumeria graminis, Cladosporium spp., Fusarium spp., Puccinia spp., and Zymoseptoria spp.) were found using these techniques at all sites. Using metagenomic and BLAST analysis, 150 cereal pathogen species (33 different genera) were recorded on the spore trap tapes. The metagenomic BLAST analysis showed a higher accuracy in terms of species-specific identification than the taxonomic tool software Kraken2 or microscopic analysis. Microscopic data from the spore traps was subsequently correlated with weather data to examine the conditions which promote ascospore release of Fusarium spp. and Zymoseptoria spp. This revealed that Zymoseptoria spp. and Fusarium spp. ascospore release show a positive correlation with relative humidity (%RH). Whereas air temperature (°C) negatively affects Zymoseptoria spp. ascospore release.
Collapse
Affiliation(s)
- Paola Pilo
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - Colleen Lawless
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - Anna M. M. Tiley
- Department of Agriculture, Food and the Marine, Celbridge, Ireland
| | - Sujit J. Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - James I. Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Gil-Serna J, Patiño B, Verheecke-Vaessen C, Vázquez C, Medina Á. Searching for the Fusarium spp. Which Are Responsible for Trichothecene Contamination in Oats Using Metataxonomy to Compare the Distribution of Toxigenic Species in Fields from Spain and the UK. Toxins (Basel) 2022; 14:toxins14090592. [PMID: 36136530 PMCID: PMC9506359 DOI: 10.3390/toxins14090592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination of oats with Fusarium toxins poses a high risk for food safety. Among them, trichothecenes are the most frequently reported in European oats, especially in northern countries. The environmental conditions related to the climate change scenario might favour a distribution shift in Fusarium species and the presence of these toxins in Southern European countries. In this paper, we present an ambitious work to determine the species responsible for trichothecene contamination in Spanish oats and to compare the results in the United Kingdom (UK) using a metataxonomic approach applied to both oat grains and soil samples collected from both countries. Regarding T-2 and HT-2 toxin producers, F. langsethiae was detected in 38% and 25% of the oat samples from the UK and Spain, respectively, and to the best of our knowledge, this is the first report of the detection of this fungus in oats from Spain. The relevant type B trichothecene producer, F. poae, was the most frequently detected Fusarium species in oats from both origins. Other important trichothecene producers, such as the Fusarium tricinctum species complex or Fusarium cerealis, were also frequently detected in oat fields. Many Fusarium toxins, including T-2 and HT-2 toxins, deoxynivalenol, or nivalenol, were detected in oat samples. The results obtained in this work revealed a clear change in the distribution of trichothecene producers and the necessity to establish the potential of these species to colonize oats and their ability to produce mycotoxins.
Collapse
Affiliation(s)
- Jéssica Gil-Serna
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
- Correspondence:
| | - Belén Patiño
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield MK43 0AL, UK
| | - Covadonga Vázquez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Ángel Medina
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
43
|
Cai H, Yu N, Liu Y, Wei X, Guo C. Meta-analysis of fungal plant pathogen Fusarium oxysporum infection-related gene profiles using transcriptome datasets. Front Microbiol 2022; 13:970477. [PMID: 36090060 PMCID: PMC9449528 DOI: 10.3389/fmicb.2022.970477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium oxysporum is a serious soil-borne fungal pathogen that affects the production of many economically important crops worldwide. Recent reports suggest that this fungus is becoming the dominant species in soil and could become the main infectious fungus in the future. However, the infection mechanisms employed by F. oxysporum are poorly understood. In the present study, using a network meta-analysis technique and public transcriptome datasets for different F. oxysporum and plant interactions, we aimed to explore the common molecular infection strategy used by this fungus and to identify vital genes involved in this process. Principle component analysis showed that all the fungal culture samples from different datasets were clustered together, and were clearly separated from the infection samples, suggesting the feasibility of an integrated analysis of heterogeneous datasets. A total of 335 common differentially expressed genes (DEGs) were identified among these samples, of which 262 were upregulated and 73 were downregulated significantly across the datasets. The most enriched functional categories of the common DEGs were carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Nine co-expression modules were identified, and two modules, the turquoise module and the blue module, correlated positively and negatively with all the infection processes, respectively. Co-expression networks were constructed for these two modules and hub genes were identified and validated. Our results comprise a cross fungal-host interaction resource, highlighting the use of a network biology approach to gain molecular insights.
Collapse
Affiliation(s)
| | | | | | | | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
44
|
Wang YF, Hao FM, Zhou HH, Chen JB, Su HC, Yang F, Cai YY, Li GL, Zhang M, Zhou F. Exploring Potential Mechanisms of Fludioxonil Resistance in Fusarium oxysporum f. sp. melonis. J Fungi (Basel) 2022; 8:jof8080839. [PMID: 36012827 PMCID: PMC9409840 DOI: 10.3390/jof8080839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Melon Fusarium wilt (MFW), which is caused by Fusarium oxysporum f. sp. melonis (FOM), is a soil-borne disease that commonly impacts melon cultivation worldwide. In the absence of any disease-resistant melon cultivars, the control of MFW relies heavily on the application of chemical fungicides. Fludioxonil, a phenylpyrrole fungicide, has been shown to have broad-spectrum activity against many crop pathogens. Sensitivity analysis experiments suggest that fludioxonil has a strong inhibitory effect on the mycelial growth of FOM isolates. Five fludioxonil-resistant FOM mutants were successfully generated by repeated exposure to fludioxonil under laboratory conditions. Although the mutants exhibited significantly reduced mycelial growth in the presence of the fungicide, there initially appeared to be little fitness cost, with no significant difference (p < 0.05) in the growth rates of the mutants and wild-type isolates. However, further investigation revealed that the sporulation of the fludioxonil-resistant mutants was affected, and mutants exhibited significantly (p < 0.05) reduced growth rates in response to KCl, NaCl, glucose, and mannitol. Meanwhile, molecular analysis of the mutants strongly suggested that the observed fludioxonil resistance was related to changes in the sequence and expression of the FoOs1 gene. In addition, the current study found no evidence of cross-resistance between fludioxonil and any of the other fungicides tested. These results indicate that fludioxonil has great potential as an alternative method of control for FOM in melon crops.
Collapse
Affiliation(s)
- Yan-Fen Wang
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Fang-Min Hao
- Institute of Vegetables and the Key Lab of Cucurbitaceous Vegetables Breeding in Ningbo City, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Huan-Huan Zhou
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiang-Bo Chen
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hai-Chuan Su
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fang Yang
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuan-Yuan Cai
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Guan-Long Li
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (M.Z.); (F.Z.)
| | - Feng Zhou
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: (M.Z.); (F.Z.)
| |
Collapse
|
45
|
Vorob’eva IG, Toropova EY. Ecological Niches of Fusarium poae (Peck) Wollenw. in Western Siberia. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Wang Q, Song R, Fan S, Coleman JJ, Xu X, Hu X. Diversity of Fusarium community assembly shapes mycotoxin accumulation of diseased wheat heads. Mol Ecol 2022; 32:2504-2518. [PMID: 35844052 DOI: 10.1111/mec.16618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Fusarium head blight (FHB) is a major disease worldwide on cultivated cereals, caused by several Fusarium species. FHB can cause not only yield reduction but also accumulation of mycotoxins in the grain contaminating the food supply. Much of the earlier research has focused on Fusarium pathogenesis, conditions required for disease development and toxin accumulation, and FHB management. However, the Fusarium community composition within the micro-habitat of a single diseased wheat head in the field has had limited investigation. Similarly, the relationship between the Fusarium community structure and mycotoxin accumulation within diseased heads remains unclear. In the present study, we investigated the Fusarium community in diseased heads sampled from different geographical sites in China. Several sites in Shandong province formed a transitional region which contained highly variable profiles of Fusarium OTUs, where a single diseased head could contain more than 10 Fusarium OTUs. Mycotoxin accumulation was independent of geographical properties, however, deoxynivalenol, 15-acetyldeoxynivalenol and zearalenone concentrations showed a significant negative correlation with Fusarium diversity on diseased heads while a significant positive correlation between nivalenol concentration and Fusarium diversity was observed. Taken together, the Fusarium OTU diversity within diseased heads in the field significantly influences mycotoxin accumulation, providing an important point to consider in FHB disease management and mycotoxin research.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Sanhong Fan
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Xiangming Xu
- NIAB East Malling Research (EMR), West Malling, Kent, UK
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
47
|
New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J Fungi (Basel) 2022; 8:jof8070737. [PMID: 35887492 PMCID: PMC9320658 DOI: 10.3390/jof8070737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The fast and continued progress of high-throughput sequencing (HTS) and the drastic reduction of its costs have boosted new and unpredictable developments in the field of plant pathology. The cost of whole-genome sequencing, which, until few years ago, was prohibitive for many projects, is now so affordable that a new branch, phylogenomics, is being developed. Fungal taxonomy is being deeply influenced by genome comparison, too. It is now easier to discover new genes as potential targets for an accurate diagnosis of new or emerging pathogens, notably those of quarantine concern. Similarly, with the development of metabarcoding and metagenomics techniques, it is now possible to unravel complex diseases or answer crucial questions, such as "What's in my soil?", to a good approximation, including fungi, bacteria, nematodes, etc. The new technologies allow to redraw the approach for disease control strategies considering the pathogens within their environment and deciphering the complex interactions between microorganisms and the cultivated crops. This kind of analysis usually generates big data that need sophisticated bioinformatic tools (machine learning, artificial intelligence) for their management. Herein, examples of the use of new technologies for research in fungal diversity and diagnosis of some fungal pathogens are reported.
Collapse
|
48
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
49
|
Fungal Pathogens Associated with Crown and Root Rot of Wheat in Central, Eastern, and Southeastern Kazakhstan. J Fungi (Basel) 2022; 8:jof8050417. [PMID: 35628673 PMCID: PMC9143578 DOI: 10.3390/jof8050417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Kazakhstan is the fourteenth largest wheat producer in the world. Despite this fact, there has not been a comprehensive survey of wheat root and crown rot. A quantitative survey was conducted for the purpose of establishing the distribution of fungi associated with root and crown rot on wheat (Triticum spp.). During the 2019 growing season, samples were taken from the affected plants’ roots and stem bases. A total of 1221 fungal isolates were acquired from 65 sites across the central (Karagandy region), eastern (East Kazakhstan region), and southeastern (Almaty region) parts of the country and identified using morphological and molecular tools. The internal transcribed spacer (ITS), translation elongation factor 1-alpha (EF1-α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequences were successfully used to identify the species of fungal isolates. It was found that Bipolaris sorokiniana (44.80%) and Fusarium acuminatum (20.39%) were the most predominant fungal species isolated, which were present in 86.15 and 66.15% of the fields surveyed, respectively, followed by F. equiseti (10.16%), Curvularia spicifera (7.62%), F. culmorum (4.75%), F. oxysporum (4.10%), F. redolens (2.38%), Rhizoctonia solani AG2-1 (1.06%), Nigrospora oryzae (0.98%), C. inaequalis (0.90%), F. pseudograminearum (0.74%), F. flocciferum (0.74%), Macrophomina phaseolina (0.66%), F. cf. incarnatum (0.33%), Fusarium sp. (0.25%), and F. torulosum (0.16%). A total of 74 isolates representing 16 species were tested via inoculation tests on the susceptible Triticum aestivum cv. Seri 82 and the results revealed that F. culmorum and F. pseudograminearum, B. sorokiniana, Fusarium sp., R. solani, F. redolens, C. spicifera, C. inaequalis, and N. oryzae were virulent, whereas others were non-pathogenic. The findings of this investigation demonstrate the presence of a diverse spectrum of pathogenic fungal species relevant to wheat crown and root rot in Kazakhstan. To the best of our knowledge, this is the first report of F. pseudograminearum, Fusarium sp., C. spicifera, and C. inaequalis as pathogens on wheat in Kazakhstan.
Collapse
|
50
|
Shang G, Li S, Yu H, Yang J, Li S, Yu Y, Wang J, Wang Y, Zeng Z, Zhang J, Hu Z. An Efficient Strategy Combining Immunoassays and Molecular Identification for the Investigation of Fusarium Infections in Ear Rot of Maize in Guizhou Province, China. Front Microbiol 2022; 13:849698. [PMID: 35369506 PMCID: PMC8964309 DOI: 10.3389/fmicb.2022.849698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium is one of the most important phytopathogenic and mycotoxigenic fungi that caused huge losses worldwide due to the decline of crop yield and quality. To systematically investigate the infections of Fusarium species in ear rot of maize in the Guizhou Province of China and analyze its population structure, 175 samples of rotted maize ears from 76 counties were tested by combining immunoassays and molecular identification. Immunoassay based on single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein was first employed to analyze these samples. Fusarium pathogens were isolated and purified from Fusarium-infected samples. Molecular identification was performed using the partial internal transcribed spacer (ITS) and translation elongation factor 1α (TEF-1α) sequences. Specific primers were used to detect toxigenic chemotypes, and verification was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). One-hundred and sixty three samples were characterized to be positive, and the infection rate was 93.14%. Sixteen species of Fusarium belonging to six species complexes were detected and Fusarium meridionale belonging to the Fusarium graminearum species complex (FGSC) was the dominant species. Polymerase chain reaction (PCR) identification illustrated that 69 isolates (56.10%) were potential mycotoxin-producing Fusarium pathogens. The key synthetic genes of NIV, NIV + ZEN, DON + ZEN, and FBs were detected in 3, 35, 7, and 24 isolates, respectively. A total of 86.11% of F. meridionale isolates carried both NIV- and ZEN-specific segments, while Fusarium verticillioides isolates mainly represented FBs chemotype. All the isolates carrying DON-producing fragments were FGSC. These results showed that there are different degrees of Fusarium infections in Guizhou Province and their species and toxigenic genotypes display regional distribution patterns. Therefore, scFv-AP fusion-based immunoassays could be conducted to efficiently investigate Fusarium infections and more attention and measures should be taken for mycotoxin contamination in this region.
Collapse
Affiliation(s)
- Guofu Shang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shuqin Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Huan Yu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shimei Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yanqin Yu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jianman Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jingbo Zhang
- Wheat Anti-toxin Breeding Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|