1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Patel V, Supriya G NR. Bioremediation potential of Pseudomonas aeruginosa to counteract Arsenite-induced phytotoxicity in Solanum lycopersicum cultivated within a contaminated agroecosystem. Lett Appl Microbiol 2025; 78:ovaf027. [PMID: 39999859 DOI: 10.1093/lambio/ovaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Trivalent arsenic (AsIII) is the most toxic form of arsenic, accumulates in plant systems through aquaporins, and inhibiting plant growth. This study focuses on mitigating the bioavailability of arsenite (AsIII) in agricultural soils through biological approaches. A potential AsIII tolerant bacterium Pseudomonas aeruginosa VS3 was isolated from contaminated soil. Subsequent analysis revealed that this strain can produce exopolysaccharides (EPS) and biofilms. Additionally, the strain exhibited production of plant growth promoting traits, incuding Indole-3-acetic acid (IAA), gibberellins, and silicon (Si) solubilisation. Biotransformation assay demonstrated that strain can oxidize AsIII to the less toxic arsenate (AsV) with conversion efficiency of 51%. Findings from the field trial proven that P. aeruginosa significantly reduced AsIII toxicity in Solanum lycopersicum and boosted plant growth under AsIII stress conditions. Additionally, inoculation with P. aeruginosa enhanced the activities of antioxidant enzymes (40% increase in peroxidase and a 17% increase in phenylalanine ammonia-lyase) compared to untreated controls under AsIII stress. The bacterial treatment reduced arsenic accumulation in root tissues, demonstrating P. aeruginosa VS3's potential as a bioremediation agent to alleviate arsenite stress and enhance plant growth.
Collapse
Affiliation(s)
- Vivek Patel
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat 394 350, India
| | - Naga Rathna Supriya G
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat 394 350, India
| |
Collapse
|
3
|
Thammasittirong SNR, Thammasittirong A, Saechow S. Biocontrol and Growth Promotion of Rice by Pseudomonas aeruginosa SNTKU16: Beneficial Properties and Genomic Potential. J Microbiol Biotechnol 2025; 35:e2411067. [PMID: 39947704 PMCID: PMC11876016 DOI: 10.4014/jmb.2411.11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 03/06/2025]
Abstract
Dirty panicle and sheath blight are important diseases that have the capacity to reduce rice productivity and grain quality. The bacterial strain SNTKU16 was isolated from soil in a sugarcane field and identified as Pseudomonas aeruginosa. This bacterium and its cell-free culture exhibited strong fungal antagonistic activity against a range of rice dirty panicle pathogens (Curvularia lunata, Fusarium semitectum, and Helminthosporium oryzae) and a sheath blight pathogen (Rhizoctonia solani). In addition to its role in disease control, the cell suspension and cell-free culture of this strain significantly enhanced rice seed germination and seedling growth. Furthermore, this bacterium exhibited various plant growth-promoting traits such as indole acetic acid, ammonia and siderophore productions, and phosphate solubilization. Genome analysis of SNTKU16 revealed its genetic potential for controlling plant diseases through direct antagonistic activities against pathogens, as well as indirect mechanisms, such as promoting plant growth. These capabilities suggest a multifaceted approach to disease management and plant growth promotion, making this strain an intriguing candidate for further exploration in sustainable agriculture and microbial biotechnology.
Collapse
Affiliation(s)
- Sutticha Na-Ranong Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Anon Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sukanya Saechow
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
4
|
Zhao Y, Liu F, Lan X, Xu W, Dong W, Ke S, Wu H. Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from Aspergillus terreus as a Biocontrol Agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2793-2804. [PMID: 39729370 DOI: 10.1021/acs.jafc.4c09294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus Aspergillus terreus, which was successfully expressed in Bacillus subtilis, purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as Ralstonia solanacearum and Clavibacter michiganensis with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions. The Oxford Cup test indicated that AtR905 showed obvious fungicidal activity against six plant pathogenic fungi, especially Rhizoctonia solani and Botrytis cinerea. Additionally, in vivo experimental demonstrated AtR905 could effectively control the B. cinerea on tobacco leaves and R. solanacearum on tomato plants. Scanning electron microscopy revealed significant membrane disruption in bacterial cells treated with AtR905. These findings suggest that AtR905 is a promising candidate for sustainable plant disease management, potentially reducing the reliance on chemical pesticides and mitigating the issue of antibiotic resistance in agricultural settings. Further research is needed to evaluate the long-term field applicability and ecological impacts of AtR905.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xing Lan
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wenxing Xu
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wubei Dong
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongqu Wu
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
5
|
Gimranov E, Santos J, Regalado L, Teixeira C, Gomes P, Santos C, Pereira-Dias L. Synthetic peptides bioactive against phytopathogens have lower impact on some beneficial bacteria: An assessment of peptides biosafety in agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123942. [PMID: 39765060 DOI: 10.1016/j.jenvman.2024.123942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025]
Abstract
The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.1) against a collection of notorious phytopathogens, and quantified their impact on plant beneficial bacteria. Plant growth promoters (PGP) and biological control agents (BCA) were also included to study the feasibility of integrating AMPs with bio-based strategies to mitigate diseases impacts and promote crop production. Flow cytometry and fluorescence microscopy revealed that the AMPs' effects on the membrane integrity of both gram-negative and gram-positive strains were time- and concentration-dependent. Bacterial strains were separated into three groups of susceptibility to the AMPs. Group 1 was represented by the most sensitive, gram-negative phytopathogenic belonging to Xanthomonadales and Pseudomonadales and the gram-positive C. michiganensis subsp. michiganensis. Group 2 encompassed bacteria showing intermediate susceptibility, namely P. carotovorum subsp. carotovorum, P. cerasi, both phytopathogens, as well as the plant growth promoters P. fluorescens and P. putida. Finaly, Group 3 was represented by the bacteria with the lowest susceptibility to AMPs. It included beneficial bacteria (B. zhangzhouensis, B. subtilis, B. safensis, P. azotoformans), a phytopathogen (R. solanacearum), and a strain reported as able to act as both (P. aeruginosa). This work demonstrates that the minimum inhibitory concentrations (MICs) needed to act against the beneficial Bacillus and Pseudomonas strains were higher than those needed to produce bacteriostatic or bactericidal effects on the phytopathogens tested, hence supporting that these AMPs might be environmentally safe antibiotics with low likeliness of disrupting the beneficial microbial communities. The possibility of mixing these AMPs with BCA/PGP, in a combined biocontrol strategy, is also discussed.
Collapse
Affiliation(s)
- Emil Gimranov
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - João Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Cátia Teixeira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Paula Gomes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal.
| |
Collapse
|
6
|
Flores Clavo R, Suclupe-Campos DO, Castillo Rivadeneira L, Velez Chicoma RLDJ, Sánchez-Purihuamán M, Quispe Choque KG, Casado Peña FL, Binatti Ferreira M, Fantinatti Garboggini F, Carreño-Farfan C. Harnessing PGPRs from Asparagus officinalis to Increase the Growth and Yield of Zea mays L. MICROBIAL ECOLOGY 2025; 87:174. [PMID: 39836327 PMCID: PMC11750925 DOI: 10.1007/s00248-025-02490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru. This region has high soil salinity levels. Seventeen strains were isolated, four of which are major potential plant growth-promoting traits, and were characterized based on their morphological and molecular characteristics. These salt-tolerant bacteria were screened for phosphate solubilization, indole acetic acid, deaminase activity, and molecular characterization by 16S rDNA sequencing. Fifteen samples were from saline soils of A. officinalis plants in the northern coastal desert of San Jose, Lambayeque, Peru. The bacterial isolates were screened in a range of salt tolerances from 3 to 6%. Isolates 05, 08, 09, and 11 presented maximum salt tolerance, ammonium quantification, phosphate solubilization, and IAA production. The four isolates were identified by sequencing the amplified 16S rRNA gene and were found to be Enterobacter sp. 05 (OQ885483), Enterobacter sp. 08 (OQ885484), Pseudomonas sp. 09 (OR398704) and Klebsiella sp. 11 (OR398705). These microorganisms promoted the germination of Zea mays L. plants, increased the germination rates in the treatments with chemical fertilizers at 100% and 50%, and the PGPRs increased the height and length of the roots 40 days after planting. The beneficial effects of salt-tolerant PGPR isolates isolated from saline environments may lead to new species that can be used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation of the three isolates prove the potential of these strains as sources of products to develop new compounds, confirming their potential as biofertilizers for saline environments.
Collapse
Affiliation(s)
- Rene Flores Clavo
- Engineering Department, Pontificia Universidad Catolica del Peru, Lima, Peru.
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru.
| | | | | | | | | | - Kevin Gabriel Quispe Choque
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru
- Academic Department of Biology, Universidad Nacional de San Agustín, Arequipa, Peru
| | - Fanny L Casado Peña
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Catolica del Peru, Lima, Peru
| | - Milena Binatti Ferreira
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fabiana Fantinatti Garboggini
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Carmen Carreño-Farfan
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru
- Microbiology and Parasitology Department, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
| |
Collapse
|
7
|
Patil BL, Gopalkrishna AM, G M SK, R U. Molecular characterization of an endophytic strain of Bacillus subtilis with plant growth-promoting properties from a wild relative of papaya. J Appl Microbiol 2025; 136:lxaf010. [PMID: 39777499 DOI: 10.1093/jambio/lxaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
AIM Bacillus subtilis is usually found in soil, and their biocontrol and plant growth-promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic B. subtilis from seeds is limited. In the present study, B. subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing and detailed molecular and functional characterization. METHODS AND RESULTS Whole genome sequencing and sequence analysis of the endophytic bacterium from mountain papaya seed revealed that the bacterium was B. subtilis, strain EVCu15. The genomic sequence had more than 98% nucleotide similarity with two published whole genome sequences of B. subtilis strains. Some of the important secondary metabolite gene clusters involved in production of bioactive compounds such as surfactin, fengycin, plipastatin, bacillibactin, bacillaene, subtilomycin, subtilosin A, and bacilysin were identified from the whole genome sequence analysis. Genes encoding several plant growth-promoting metabolites, mostly involved in the nutrient metabolism, were identified in the bacterial genome. These included factors coding for nitrogen, phosphorus, iron, sulfur, potassium, and trehalose metabolism. Genes involved in auxin, riboflavin, acetoin biosynthesis, ACC deaminase activity, and xylan degradation were also identified. Proteomic analysis confirmed the biosynthesis and release of several bioactive secondary metabolites in the endophytic B. subtilis strain EVCu15. Liquid chromatography-mass spectrometry-based profiling for hormones and vitamins identified extracellular secretion of several important plant growth-promoting compounds such as IAA, salicylic acid, zeatin, vitamin D1, D2, E, K1, and pyridoxine. The in vitro and in vivo studies with the endophytic B. subtilis against various plant pathogenic fungi showed moderate to high levels of resistance. The B. subtilis EVCu15 compared to B. amyloliquefaciens showed better control over the root-knot nematode Meloidogyne incognita, in terms of egg hatching inhibition and the mortality of J2 juveniles. CONCLUSION Overall, this study underscores the biocontrol and plant growth-promoting potential of B. subtilis EVCu15, an endophyte isolated from mountain papaya seeds. Genomic analysis revealed a significant proportion of genes linked to biocontrol and plant growth promotion, corroborating its efficacy against M. incognita and various plant pathogens in vitro and in greenhouse studies. Furthermore, the bacterium's ability to produce diverse bioactive compounds, including proteins, hormones, and vitamins, was confirmed, highlighting its complex interactions within the plant system.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| | - Amulya M Gopalkrishna
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| | - Sandeep Kumar G M
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| | - Umamaheswari R
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| |
Collapse
|
8
|
Rodó X, Pozdniakova S, Borràs S, Matsuki A, Tanimoto H, Armengol MP, Pey I, Vila J, Muñoz L, Santamaria S, Cañas L, Morguí JA, Fontal A, Curcoll R. Microbial richness and air chemistry in aerosols above the PBL confirm 2,000-km long-distance transport of potential human pathogens. Proc Natl Acad Sci U S A 2024; 121:e2404191121. [PMID: 39250672 PMCID: PMC11420185 DOI: 10.1073/pnas.2404191121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 09/11/2024] Open
Abstract
The existence of viable human pathogens in bioaerosols which can cause infection or affect human health has been the subject of little research. In this study, data provided by 10 tropospheric aircraft surveys over Japan in 2014 confirm the existence of a vast diversity of microbial species up to 3,000 m height, which can be dispersed above the planetary boundary layer over distances of up to 2,000 km, thanks to strong winds from an area covered with massive cereal croplands in Northeast (NE) Asia. Microbes attached to aerosols reveal the presence of diverse bacterial and fungal taxa, including potential human pathogens, originating from sewage, pesticides, or fertilizers. Over 266 different fungal and 305 bacterial genera appeared in the 10 aircraft transects. Actinobacteria, Bacillota, Proteobacteria, and Bacteroidetes phyla dominated the bacteria composition and, for fungi, Ascomycota prevailed over Basidiomycota. Among the pathogenic species identified, human pathogens include bacteria such as Escherichia coli, Serratia marcescens, Prevotella melaninogenica, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus, Cutibacterium acnes, Clostridium difficile, Clostridium botulinum, Stenotrophomonas maltophilia, Shigella sonnei, Haemophillus parainfluenzae and Acinetobacter baumannii and health-relevant fungi such as Malassezia restricta, Malassezia globosa, Candida parapsilosis and Candida zeylanoides, Sarocladium kiliense, Cladosporium halotolerans, and Cladosporium herbarum. Diversity estimates were similar at heights and surface when entrainment of air from high altitudes occurred. Natural antimicrobial-resistant bacteria (ARB) cultured from air samples were found indicating long-distance spread of ARB and microbial viability. This would represent a novel way to disperse both viable human pathogens and resistance genes among distant geographical regions.
Collapse
Affiliation(s)
- Xavier Rodó
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona08010, Spain
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Sofya Pozdniakova
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Sílvia Borràs
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Atsushi Matsuki
- Division of Atmospheric Environmental Studies, Kanazawa University, Kanazawa920-1164, Japan
| | - Hiroshi Tanimoto
- Earth System Division, National Institute for Environmental Studies, Tsukuba305-8506, Japan
| | - Maria-Pilar Armengol
- Translational Genomics Facility, Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona08916, Spain
| | - Irina Pey
- Translational Genomics Facility, Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona08916, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic School of Medicine, University of Barcelona, Barcelona08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Laura Muñoz
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic School of Medicine, University of Barcelona, Barcelona08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Samuel Santamaria
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Lidia Cañas
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Josep-Anton Morguí
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Alejandro Fontal
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
- Department of Microbiology, Genetics and Statistics, Faculty of Biology, University of Barcelona, Barcelona08028, Spain
| | - Roger Curcoll
- Ionising Radiation, Health and Environment, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona08028, Spain
| |
Collapse
|
9
|
Si T, Wang A, Yan H, Kong L, Guan L, He C, Ma Y, Zhang H, Ma H. Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa. Molecules 2024; 29:4400. [PMID: 39339396 PMCID: PMC11434294 DOI: 10.3390/molecules29184400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in the prevention and treatment of infectious diseases caused by pathogens such as bacteria, fungi, and viruses. Microbial secondary metabolites have been recognized as important sources for new drug discovery and development, yielding a wide range of structurally novel and functionally diverse antimicrobial drugs for the treatment of a variety of diseases that are considered good producers of novel antimicrobial drugs. Bacteria produce a wide variety of antimicrobial compounds, and thus, antibiotics derived from natural products still dominate over purely synthetic antibiotics among the antimicrobial drugs developed and introduced over the last four decades. Among them, Pseudomonas aeruginosa secondary metabolites constitute a richly diverse source of antimicrobial substances with good antimicrobial activity. Therefore, they are regarded as an outstanding resource for finding novel bioactive compounds. The exploration of antimicrobial compounds among Pseudomonas aeruginosa metabolites plays an important role in drug development and biomedical research. Reports on the secondary metabolites of Pseudomonas aeruginosa, many of which are of pharmacological importance, hold great promise for the development of effective antimicrobial drugs against microbial infections by drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (2000-2024) on antimicrobial secondary metabolites from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Tianbo Si
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Anqi Wang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haowen Yan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lili Guan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Yiyi Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
10
|
Ku Y, Liao Y, Chiou S, Lam H, Chan C. From trade-off to synergy: microbial insights into enhancing plant growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2461-2471. [PMID: 38735054 PMCID: PMC11331785 DOI: 10.1111/pbi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.
Collapse
Affiliation(s)
- Yee‐Shan Ku
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| | - Yi‐Jun Liao
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shian‐Peng Chiou
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hon‐Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
- Institute of Environment, Energy and SustainabilityThe Chinese University of Hong KongShatinHong Kong
| | - Ching Chan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
11
|
Gillani SW, Teng L, Khan A, Xu Y, Powell CA, Zhang M. Fungal Diversity and Gibberellin Hormones Associated with Long Whips of Smut-Infected Sugarcanes. Int J Mol Sci 2024; 25:9129. [PMID: 39201814 PMCID: PMC11355029 DOI: 10.3390/ijms25169129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Sugarcane smut, caused by the fungus Sporisorium scitamineum (Sydow), significantly affects sugarcane crops worldwide. Infected plants develop whip-like structures known as sori. Significant variations in these whip lengths are commonly observed, but the physiological and molecular differences causing these morphological differences remain poorly documented. To address this, we employed conventional microbe isolation, metagenomic, and metabolomic techniques to investigate smut-infected sugarcane stems and whips of varying lengths. Metagenomics analysis revealed a diverse fungal community in the sugarcane whips, with Sporisorium and Fusarium genera notably present (>1%) in long whips. Isolation techniques confirmed these findings. Ultra-performance liquid chromatography analysis (UHPLC-MS/MS) showed high levels of gibberellin hormones (GA3, GA1, GA4, GA8, and GA7) in long whips, with GA4 and GA7 found exclusively in long whips and stems. Among the prominent genera present within long whips, Fusarium was solely positively correlated with these gibberellin (GA) hormones, with the exception of GA8, which was positively correlated with Sporisorium. KEGG enrichment analysis linked these hormones to pathways like diterpenoid biosynthesis and plant hormone signal transduction. These findings suggest that Fusarium may influence GA production leading to whip elongation. Our study reveals fungal dynamics and gibberellin responses in sugarcane smut whips. Future research will explore the related molecular gibberellin synthesis mechanisms.
Collapse
Affiliation(s)
- Syeda Wajeeha Gillani
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.G.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lixiu Teng
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.G.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.G.)
| | - Yuzhi Xu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.G.)
| | - Charles A. Powell
- Indian River Research and Education Center-Institute of Food and Agricultural Sciences (IRREC-IFAS), University of Florida, Fort Pierce, FL 34945, USA
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.G.)
| |
Collapse
|
12
|
Salinas-Virgen LI, de la Torre-Hernández ME, Aguirre-Garrido JF, Martínez-Abarca F, Ramírez-Saad HC. Genotypic and Phenotypic Characterization of Pseudomonas atacamensis EMP42 a PGPR Strain Obtained from the Rhizosphere of Echinocactus platyacanthus (Sweet Barrel). Microorganisms 2024; 12:1512. [PMID: 39203355 PMCID: PMC11356332 DOI: 10.3390/microorganisms12081512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 09/03/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria that associate with the rhizosphere of plants; one of the most abundant bacterial genera in this ecological niche is Pseudomonas, which is constantly expanding due to the emergence of new species such as Pseudomonas atacamensis, whose discovery in 2019 has led to the characterization of several strains from different environments but taxonomically related. The objective of this work was to phenotypically and molecularly characterize P. atacamensis strain EMP42, isolated from the rhizosphere of Echinocactus platyacanthus. The strain EMP42 is able to use different substrates and reduce oxidative stress in plants. It is capable of improving growth parameters such as the number of inflorescences and the height of the aerial body of Arabidopsis thaliana, as well as the germination and seedling survival of the cacti Echinocactus platyacanthus and Astrophytum capricorne. The genetic structure of P. atacamensis EMP42 consists of a closed chromosome of 6.14 Mbp, and 61.1% GC content. It has 5572 genes, including those associated with PGPR activities, such as the trpABCDE, SAP, phoABPRU and acsABC genes, among others, and three ncRNA loci, nine regulatory regions, five complete rRNA operons and three CRISPR-Cas loci, showing phylogenomic similarities with the reference strain P. atacamensis B21-026. Therefore, this study contributes to the understanding of genomic diversity within P. atacamensis and, particularly, highlights the potential application of strain EMP42 as a PGPR.
Collapse
Affiliation(s)
| | - María Eugenia de la Torre-Hernández
- CONAHCYT-Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico;
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52004, Mexico;
| | - Francisco Martínez-Abarca
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Hugo César Ramírez-Saad
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
13
|
Dahar GY, Wang HW, Rajer FU, Jin P, Xu P, Abro MA, Qureshi AS, Karim A, Miao W. Comparative genomic analysis of Bacillus atrophaeus HAB-5 reveals genes associated with antimicrobial and plant growth-promoting activities. Front Microbiol 2024; 15:1384691. [PMID: 38989016 PMCID: PMC11233526 DOI: 10.3389/fmicb.2024.1384691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Bacillus atrophaeus HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of B. atrophaeus HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%. The comparative genomic analysis of B. atrophaeus HAB-5 with other strains, Bacillus amyloliquefaciens DSM7, B. atrophaeus SRCM101359, Bacillus velezensis FZB42, B. velezensis HAB-2, and Bacillus subtilis 168, revealed that these strains share 2,465 CDSs, while 599 CDSs are exclusive to the B. atrophaeus HAB-5 strain. Many gene clusters in the B. atrophaeus HAB-5 genome are associated with the production of antimicrobial lipopeptides and polypeptides. These gene clusters comprise distinct enzymes that encode three NRPs, two Transat-Pks, one terpene, one lanthipeptide, one T3PKS, one Ripp, and one thiopeptide. In addition to the likely IAA-producing genes (trpA, trpB, trpC, trpD, trpE, trpS, ywkB, miaA, and nadE), there are probable genes that produce volatile chemicals (acoA, acoB, acoR, acuB, and acuC). Moreover, HAB-5 contained genes linked to iron transportation (fbpA, fetB, feuC, feuB, feuA, and fecD), sulfur metabolism (cysC, sat, cysK, cysS, and sulP), phosphorus solubilization (ispH, pstA, pstC, pstS, pstB, gltP, and phoH), and nitrogen fixation (nif3-like, gltP, gltX, glnR, glnA, nadR, nirB, nirD, nasD, narl, narH, narJ, and nark). In conclusion, this study provides a comprehensive genomic analysis of B. atrophaeus HAB-5, pinpointing the genes and genomic regions linked to the antimicrobial properties of the strain. These findings advance our knowledge of the genetic basis of the antimicrobial properties of B. atrophaeus and imply that HAB-5 may employ a variety of commercial biopesticides and biofertilizers as a substitute strategy to increase agricultural output and manage a variety of plant diseases.
Collapse
Affiliation(s)
- Ghulam Yaseen Dahar
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Huan Wei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Pengfie Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Manzoor Ali Abro
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Abdul Sattar Qureshi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Asad Karim
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| |
Collapse
|
14
|
Yin C, Larson M, Lahr N, Paulitz T. Wheat Rhizosphere-Derived Bacteria Protect Soybean from Soilborne Diseases. PLANT DISEASE 2024; 108:1565-1576. [PMID: 38105448 DOI: 10.1094/pdis-08-23-1713-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important oilseed crop with a high economic value. However, three damaging soybean diseases, soybean cyst nematode (SCN; Heterodera glycines Ichinohe), Sclerotinia stem rot caused by the fungus Sclerotinia sclerotiorum (Lid.) de Bary, and soybean root rot caused by Fusarium spp., are major constraints to soybean production in the Great Plains. Current disease management options, including resistant or tolerant varieties, fungicides, nematicides, and agricultural practices (crop rotation and tillage), have limited efficacy for these pathogens or have adverse effects on the ecosystem. Microbes with antagonistic activity are a promising option to control soybean diseases with the advantage of being environmentally friendly and sustainable. In this study, 61 bacterial strains isolated from wheat rhizospheres were used to examine their antagonistic abilities against three soybean pathogens. Six bacterial strains significantly inhibited the growth of Fusarium graminearum in the dual-culture assay. These bacterial strains were identified as Chryseobacterium ginsengisoli, C. indologenes, Pseudomonas poae, two Pseudomonas spp., and Delftia acidovorans by 16S rRNA gene sequencing. Moreover, C. ginsengisoli, C. indologenes, and P. poae significantly increased the mortality of SCN second-stage juveniles (J2), and two Pseudomonas spp. inhibited the growth of S. sclerotiorum in vitro. Further growth chamber tests found that C. ginsengisoli and C. indologenes reduced soybean Fusarium root rot disease. C. ginsengisoli and P. poae dramatically decreased SCN egg number on SCN-susceptible soybean 'Williams 82'. Two Pseudomonas spp. protected soybean plants from leaf damage and collapse after being infected by S. sclerotiorum. These bacteria exhibit versatile antagonistic potential. This work lays the foundation for further research on the field control of soybean pathogens.
Collapse
Affiliation(s)
- Chuntao Yin
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Matt Larson
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD
| | - Nathan Lahr
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Timothy Paulitz
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA
| |
Collapse
|
15
|
Liu T, Cheng R, Hua Z, Gao H, Wang C, Li H, Yuan Y. Identification of Growth-Promoting Bacterial Resources by Investigating the Microbial Community Composition of Polyporus umbellatus Sclerotia. J Fungi (Basel) 2024; 10:386. [PMID: 38921372 PMCID: PMC11205113 DOI: 10.3390/jof10060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The sclerotium of the edible mushroom Polyporus umbellatus (Zhuling) exhibits various medicinal properties. However, given its long growth cycle and overexploitation, wild resources are facing depletion. Macrofungal growth depends on diverse microbial communities; however, the impact of soil bacteria on P. umbellatus development is unknown. Here, we combined high-throughput sequencing and pure culturing to characterize the diversity and potential function of bacteria and fungi inhabiting the P. umbellatus sclerotium and tested the bioactivities of their isolates. Fungal operational taxonomic units (OTUs) were clustered and classified, revealing 1275 genera. Bacterial OTUs yielded 891 genera. Additionally, 81 bacterial and 15 fungal strains were isolated from P. umbellatus sclerotia. Antagonism assays revealed three bacterial strains (FN2, FL19, and CL15) promoting mycelial growth by producing indole-3-acetic acid, solubilizing phosphate, and producing siderophores, suggesting their role in regulating growth, development, and production of active compounds in P. umbellatus. FN2-CL15 combined with bacterial liquid promoted growth and increased the polysaccharide content of P. umbellatus mycelia. This study reports new bioactive microbial resources for fertilizers or pesticides to enhance the growth and polysaccharide accumulation of P. umbellatus mycelia and offers guidance for exploring the correlation between medicinal macrofungi and associated microbial communities.
Collapse
Affiliation(s)
- Tianrui Liu
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; (T.L.); (H.G.); (C.W.); (H.L.)
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Rui Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.C.); (Z.H.)
| | - Zhongyi Hua
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.C.); (Z.H.)
| | - Haiyun Gao
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; (T.L.); (H.G.); (C.W.); (H.L.)
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Chu Wang
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; (T.L.); (H.G.); (C.W.); (H.L.)
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Hui Li
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; (T.L.); (H.G.); (C.W.); (H.L.)
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Yuan Yuan
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; (T.L.); (H.G.); (C.W.); (H.L.)
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
16
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
17
|
Mehdi F, Cao Z, Zhang S, Gan Y, Cai W, Peng L, Wu Y, Wang W, Yang B. Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. FRONTIERS IN PLANT SCIENCE 2024; 15:1374228. [PMID: 38803599 PMCID: PMC11128568 DOI: 10.3389/fpls.2024.1374228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.
Collapse
Affiliation(s)
- Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenwei Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Lishun Peng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| |
Collapse
|
18
|
Singh P, Singh RK, Li HB, Guo DJ, Sharma A, Verma KK, Solanki MK, Upadhyay SK, Lakshmanan P, Yang LT, Li YR. Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnol Genet Eng Rev 2024; 40:15-35. [PMID: 36814143 DOI: 10.1080/02648725.2023.2177814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Diazotrophic microorganisms are free-living groups of organisms that can convert atmospheric nitrogen (N) into bioavailable nitrogen for plants, which increases crop development and production. The purpose of the current study was to ascertain how diazotrophic plant growth promoting (PGP) Pseudomonas strains (P. koreensis CY4 and P. entomophila CN11) enhanced nitrogen fixation, defense activity, and PGP attributes of sugarcane varieties; GT11 and G×B9. A 15N isotope-dilution study was conducted to confirm the sugarcane strains' capacity to fix nitrogen, and the results indicated that between 21 to 35% of plant, nitrogen is fixed biologically by selected rhizobacteria. In comparison to the control, after 30, 60, and 90 days, both CY4 and CN11 strains significantly increased defense-related enzymes (catalase, peroxidase, phenylalanine ammonia-lyase, superoxide dismutase, glucanase, and chitinase) and phytohormones (abscisic acid, ABA, cytokinin, etc.) in GT11 and GXB. Additionally, the expression of SuCHI, SuGLU, SuCAT, SuSOD, and SuPAL genes was found to be elevated in Pseudomonas strains inoculated plants using real-time quantitative polymerase chain reaction (RT-qPCR). Both bacterial strains increased all physiological parameters and chlorophyll content in sugarcane plants more than their control. The effects of P. koreensis CY4 and P. entomophila CN11 strains on sugarcane growth promotion and nitrogen fixation under greenhouse conditions are described here for the first time systematically. The results of confirmation studies demonstrated that P. koreensis CY4 and P. entomophila are PGP bacterial strains with the potential to be employed as a biofertilizer for sugarcane growth, nitrogen nutrient absorption, and reduced application of chemical nitrogenous fertilizers in agricultural fields. .
Collapse
Affiliation(s)
- Pratiksha Singh
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai-Bi Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Li-Tao Yang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
19
|
Ambreetha S, Zincke D, Balachandar D, Mathee K. Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J Med Microbiol 2024; 73. [PMID: 38362900 DOI: 10.1099/jmm.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Diansy Zincke
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
20
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
21
|
Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Sarikhan S, Shariati V, Saghafi K, Hosseini-Mazinani M. Comprehensive genome analysis of Pseudomonas sp. SWRIQ11, a new plant growth-promoting bacterium that alleviates salinity stress in olive. 3 Biotech 2023; 13:347. [PMID: 37750167 PMCID: PMC10517913 DOI: 10.1007/s13205-023-03755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/20/2023] [Indexed: 09/27/2023] Open
Abstract
The study presents the genome analysis of a new Pseudomonas sp. (SWRIQ11), which can alleviate salinity stress effects on growth of olive seedlings in greenhouse study. The strain SWRIQ11 can tolerate salinity up to 6%, produce siderophores, indole acetic acid (IAA), aminocyclopropane-1-carboxylate (ACC) deaminase, and has the phosphate-solubilizing capability. The SWRIQ11 genome contained an assembly size of 6,196,390 bp with a GC content of 60.1%. According to derived indices based on whole-genome sequences for species delineation, including tetra nucleotide usage patterns (TETRA), genome-to-genome distance (GGDC), and average nucleotide identity (ANI), Pseudomonas sp. SWRIQ11 can be considered a novel species candidate. The phylogenetic analysis revealed SWRIQ11 clusters with Pseudomonas tehranensis SWRI196 in the same clade. The SWRIQ11 genome was rich in genes related to stress sensing, signaling, and response, chaperones, motility, attachments, colonization, and enzymes for degrading plant-derived carbohydrates. Furthermore, the genes for production of exopolysaccharides, osmoprotectants, phytohormones, and ACC deaminase, ion homeostasis, nutrient acquisition, and antioxidant defenses were identified in the SWRIQ11 genome. The results of genome analysis (identification of more than 825 CDSs related to plant growth-promoting and stress-alleviating traits in the SWRIQ11 genome which is more than 15% of its total CDSs) are in accordance with laboratory and greenhouse experiments assigning the Pseudomonas sp. SWRIQ11 as a halotolerant plant growth-promoting bacterium (PGPB). This research highlights the potential safe application of this new PGPB species in agriculture as a potent biofertilizer.
Collapse
Affiliation(s)
- Seyyedeh Maryam Zamanzadeh-Nasrabadi
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455 Iran
| | - Fatemeh Mohammadiapanah
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455 Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Vahid Shariati
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kobra Saghafi
- Soil and Water Research Institute (SWRI), Karaj, Iran
| | - Mehdi Hosseini-Mazinani
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
22
|
Xie J, Singh P, Qi Y, Singh RK, Qin Q, Jin C, Wang B, Fang W. Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt. J Fungi (Basel) 2023; 9:1047. [PMID: 37998853 PMCID: PMC10672659 DOI: 10.3390/jof9111047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Banana Fusarium wilt (BFW), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses significant threats to banana cultivation. Currently, effective control methods are lacking, and biological control has emerged as a possible strategy to manage BFW outbreaks. In this investigation, 109 bacterial strains were isolated from the rhizospheric soil surrounding banana plants in search of potent biological agents against Foc. Strain 91 exhibited the highest antifungal activity against the causal agent of Foc and was identified as Pseudomonas aeruginosa through 16S rRNA gene sequencing and scanning electron microscopy (SEM). Elucidation of strain 91's inhibitory mechanism against Foc revealed a multifaceted antagonistic approach, encompassing the production of bioactive compounds and the secretion of cell wall hydrolytic enzymes. Furthermore, strain 91 displayed various traits associated with promoting plant growth and showed adaptability to different carbon sources. By genetically tagging with constitutively expressing GFP signals, effective colonization of strain 91 was mainly demonstrated in root followed by leaf and stem tissues. Altogether, our study reveals the potential of P. aeruginosa 91 for biocontrol based on inhibition mechanism, adaptation, and colonization features, thus providing a promising candidate for the control of BFW.
Collapse
Affiliation(s)
- Jin Xie
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Pratiksha Singh
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Qijian Qin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| |
Collapse
|
23
|
Chen S, Chen Z, Lin X, Zhou X, Yang S, Tan H. Why different sugarcane cultivars show different resistant abilities to smut? : Comparisons of endophytic microbial compositions and metabolic functions in stems of sugarcane cultivars with different abilities to resist smut. BMC PLANT BIOLOGY 2023; 23:427. [PMID: 37710150 PMCID: PMC10500793 DOI: 10.1186/s12870-023-04446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
To elucidate the mechanisms underlying the resistance to smut of different sugarcane cultivars, endophytic bacterial and fungal compositions, functions and metabolites in the stems of the sugarcane cultivars were analyzed using high-throughput sequencing techniques and nontargeted metabolomics. The results showed that the levels of ethylene, salicylic acid and jasmonic acid in sugarcane varieties that were not sensitive to smut were all higher than those in sensitive sugarcane varieties. Moreover, endophytic fungi, such as Ramichloridium, Alternaria, Sarocladium, Epicoccum, and Exophiala species, could be considered antagonistic to sugarcane smut. Additionally, the highly active arginine and proline metabolism, pentose phosphate pathway, phenylpropanoid biosynthesis, and tyrosine metabolism in sugarcane varieties that were not sensitive to smut indicated that these pathways contribute to resistance to smut. All of the above results suggested that the relatively highly abundant antagonistic microbes and highly active metabolic functions of endophytes in non-smut-sensitive sugarcane cultivars were important for their relatively high resistance to smut.
Collapse
Affiliation(s)
- Siyu Chen
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China
| | - Zhongliang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Guangxi, P.R. China
| | - Xinru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China
| | - Xinyan Zhou
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China.
| | - Hongwei Tan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Guangxi, P.R. China.
| |
Collapse
|
24
|
Guo DJ, Li DP, Yang B, Verma KK, Singh RK, Singh P, Khan Q, Sharma A, Qin Y, Zhang BQ, Song XP, Li YR. Effect of endophytic diazotroph Enterobacter roggenkampii ED5 on nitrogen-metabolism-related microecology in the sugarcane rhizosphere at different nitrogen levels. Front Microbiol 2023; 14:1132016. [PMID: 37649627 PMCID: PMC10464614 DOI: 10.3389/fmicb.2023.1132016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Sugarcane is an important sugar and energy crop worldwide, requiring a large amount of nitrogen (N). However, excessive application of synthetic N fertilizer causes environmental pollution in farmland. Endophytic nitrogen-fixing bacteria (ENFB) provide N nutrition for plants through biological N fixation, thus reducing the need for chemical fertilizers. The present study investigated the effect of the N-fixing endophytic strain Enterobacter roggenkampii ED5 on phytohormone indole-3-acetic acid (IAA), N-metabolism enzyme activities, microbial community compositions, and N cycle genes in sugarcane rhizosphere soil at different N levels. Three levels of 15N-urea, such as low N (0 kg/ha), medium N (150 kg/ha), and high N (300 kg/ha), were applied. The results showed that, after inoculating strain ED5, the IAA content in sugarcane leaves was significantly increased by 68.82% under low N condition at the seedling stage (60 days). The nitrate reductase (NR) activity showed a downward trend. However, the glutamine synthase (GS) and NADH-glutamate dehydrogenase (NADH-GDH) activities were significantly enhanced compared to the control under the high N condition, and the GS and NR genes had the highest expression at 180 and 120 days, respectively, at the low N level. The total N content in the roots, stems, and leaves of sugarcane was higher than the control. The 15N atom % excess of sugarcane decreased significantly under medium N condition, indicating that the medium N level was conducive to N fixation in strain ED5. Metagenome analysis of sugarcane rhizosphere soil exhibited that the abundance of N-metabolizing microbial richness was increased under low and high N conditions after inoculation of strain ED5 at the genus level, while it was increased at the phylum level only under the low N condition. The LefSe (LDA > 2, p < 0.05) found that the N-metabolism-related differential microorganisms under the high N condition were higher than those under medium and low N conditions. It was also shown that the abundance of nifDHK genes was significantly increased after inoculation of ED5 at the medium N level, and other N cycle genes had high abundance at the high N level after inoculation of strain ED5. The results of this study provided a scientific reference for N fertilization in actual sugarcane production.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bin Yang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
25
|
Mehmood N, Saeed M, Zafarullah S, Hyder S, Rizvi ZF, Gondal AS, Jamil N, Iqbal R, Ali B, Ercisli S, Kupe M. Multifaceted Impacts of Plant-Beneficial Pseudomonas spp. in Managing Various Plant Diseases and Crop Yield Improvement. ACS OMEGA 2023; 8:22296-22315. [PMID: 37396244 PMCID: PMC10308577 DOI: 10.1021/acsomega.3c00870] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
The modern agricultural system has issues with the reduction of agricultural productivity due to a wide range of abiotic and biotic stresses. It is also expected that in the future the entire world population may rapidly increase and will surely demand more food. Farmers now utilize a massive quantity of synthetic fertilizers and pesticides for disease management and to increase food production. These synthetic fertilizers badly affect the environment, the texture of the soil, plant productivity, and human health. However, agricultural safety and sustainability depend on an ecofriendly and inexpensive biological application. In contrast to synthetic fertilizers, soil inoculation with plant-growth-promoting rhizobacteria (PGPR) is one of the excellent alternative options. In this regard, we focused on the best PGPR genera, Pseudomonas, which exists in the rhizosphere as well as inside the plant's body and plays a role in sustainable agriculture. Many Pseudomonas spp. control plant pathogens and play an effective role in disease management through direct and indirect mechanisms. Pseudomonas spp. fix the amount of atmospheric nitrogen, solubilize phosphorus and potassium, and also produce phytohormones, lytic enzymes, volatile organic compounds, antibiotics, and secondary metabolites during stress conditions. These compounds stimulate plant growth by inducing systemic resistance and by inhibiting the growth of pathogens. Furthermore, pseudomonads also protect plants during different stress conditions like heavy metal pollution, osmosis, temperature, oxidative stress, etc. Now, several Pseudomonas-based commercial biological control products have been promoted and marketed, but there are a few limitations that hinder the development of this technology for extensive usage in agricultural systems. The variability among the members of Pseudomonas spp. draws attention to the huge research interest in this genus. There is a need to explore the potential of native Pseudomonas spp. as biocontrol agents and to use them in biopesticide development to support sustainable agriculture.
Collapse
Affiliation(s)
- Najaf Mehmood
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Mahnoor Saeed
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Sana Zafarullah
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Zarrin Fatima Rizvi
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department
of Plant Pathology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Nuzhat Jamil
- Department
of Botany, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, Erzurum TR-25240, Türkiye
| | - Muhammed Kupe
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
26
|
Zou L, Wang Q, Li M, Wang S, Ye K, Dai W, Huang J. Culturable bacterial endophytes of Aconitum carmichaelii Debx. were diverse in phylogeny, plant growth promotion, and antifungal potential. Front Microbiol 2023; 14:1192932. [PMID: 37266004 PMCID: PMC10229814 DOI: 10.3389/fmicb.2023.1192932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Medicinal plants harbor tremendously diverse bacterial endophytes that maintain plant growth and health. In the present study, a total of 124 culturable bacterial endophytes were isolated from healthy Aconitum carmichaelii Debx. plants. These strains were clustered into 10 genera based on full-length 16S rDNA sequences, among which Bacillus and Pseudomonas were the dominant genera. In addition, A. carmichaelii may capture 10 potential new bacterial species based on multi-locus sequence analysis of three housekeeping genes (gyrA, rpoB, and atpD). The majority of these bacterial endophytes exhibited plant growth-promoting ability through diverse actions including the production of either indole acetic acid and siderophore or hydrolytic enzymes (glucanase, cellulose, and protease) and solubilization of phosphate or potassium. A total of 20 strains inhibited hyphal growth of fungal pathogens Sclerotium rolfsii and Fusarium oxysporum in vitro on root slices of A. carmichaelii by the dual-culture method, among which Pseudomonas sp. SWUSTb-19 showed the best antagonistic activity. Field experiment confirmed that Pseudomonas sp. SWUSTb-19 significantly reduced the occurrence of southern blight and promoted plant biomass compared with non-inoculation treatment. The possible mode of actions for Pseudomonas sp. SWUSTb-19 to antagonize against S. rolfsii involved the production of glucanase, siderophore, lipopeptides, and antimicrobial volatile compounds. Altogether, this study revealed that A. carmichaelii harbored diverse plant growth-promoting bacterial endophytes, and Pseudomonas sp. SWUSTb-19 could be served as a potential biocontrol agent against southern blight.
Collapse
Affiliation(s)
- Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Qian Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Muyi Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Kunhao Ye
- Institute of Traditional Chinese Medicinal Materials, Miangyang Academy of Agricultural Science, Mianyang, China
| | - Wei Dai
- Institute of Traditional Chinese Medicinal Materials, Miangyang Academy of Agricultural Science, Mianyang, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| |
Collapse
|
27
|
Khalifa A, Alsowayeh N. Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium Priestia filamentosa Strain AZC66 Obtained from Zygophyllum coccineum Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:1944. [PMID: 37653860 PMCID: PMC10222010 DOI: 10.3390/plants12101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66's indole acetic acid production. AZC66's inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 μg mL-1), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg-1 h-1). Cowpea's root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| |
Collapse
|
28
|
Benchlih S, Esmaeel Q, Aberkani K, Tahiri A, Belabess Z, Lahlali R, Barka EA. Modes of Action of Biocontrol Agents and Elicitors for sustainable Protection against Bacterial Canker of Tomato. Microorganisms 2023; 11:microorganisms11030726. [PMID: 36985299 PMCID: PMC10054590 DOI: 10.3390/microorganisms11030726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Tomato is one of the world’s most commonly grown and consumed vegetables. However, it can be attacked by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm), which causes bacterial canker on tomato plants, resulting in significant financial losses in field production and greenhouses worldwide. The current management strategies rely principally on the application of various chemical pesticides and antibiotics, which represent a real danger to the environment and human safety. Plant growth-promoting rhizobacteria (PGPR) have emerged as an attractive alternative to agrochemical crop protection methods. PGPR act through several mechanisms to support plant growth and performance, while also preventing pathogen infection. This review highlights the importance of bacterial canker disease and the pathogenicity of Cmm. We emphasize the application of PGPR as an ecological and cost-effective approach to the biocontrol of Cmm, specifying the complex modes of biocontrol agents (BCAs), and presenting their direct/indirect mechanisms of action that enable them to effectively protect tomato crops. Pseudomonas and Bacillus are considered to be the most interesting PGPR species for the biological control of Cmm worldwide. Improving plants’ innate defense mechanisms is one of the main biocontrol mechanisms of PGPR to manage bacterial canker and to limit its occurrence and gravity. Herein, we further discuss elicitors as a new management strategy to control Cmm, which are found to be highly effective in stimulating the plant immune system, decreasing disease severity, and minimizing pesticide use.
Collapse
Affiliation(s)
- Salma Benchlih
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Kamal Aberkani
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50001, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Correspondence: (R.L.); (E.A.B.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (R.L.); (E.A.B.)
| |
Collapse
|
29
|
Fang L, Zheng X, Sun Z, Li Y, Deng J, Zhou YI. Characterization of a Plant Growth-Promoting Endohyphal Bacillus subtilis in Fusarium acuminatum from Spiranthes sinensis. Pol J Microbiol 2023; 72:29-37. [PMID: 36929887 DOI: 10.33073/pjm-2023-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023] Open
Abstract
Successful seed germination and seedling growth in orchids require an association with mycorrhizal fungi. An endophytic Fusarium fungal strain YZU 172038 exhibiting plant growth-promoting (PGP) ability was isolated from the roots of Spiranthes sinensis (Orchidaceae). The harboring endohyphal bacteria were detected in the hypha by SYTO-9 fluorescent nucleic acid staining, fluorescence in situ hybridization (FISH), and PCR amplification of the 16S rDNA gene's region. Consequently, one endohyphal bacterium (EHB) - a strain YZSR384 was isolated and identified as Bacillus subtilis based on morphology, phylogenetic analysis, and genomic information. The results indicated that the strain YZSR384 could significantly promote the growth of rice roots and shoots similar to its host fungus. Its indole acetic acid (IAA) production reached a maximum of 23.361 μg/ml on the sixth day after inoculation. The genome annotation revealed several genes involved in PGP traits, including the clusters of genes encoding the IAA (trpABCDEFS), the siderophores (entABCE), and the dissolving phosphate (pstABCS and phoABDHPR). As an EHB, B. subtilis was first isolated from endophytic Fusarium acuminatum from S. sinensis.
Collapse
Affiliation(s)
- Lan Fang
- 1College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiao Zheng
- 1College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhengxiang Sun
- 1College of Agriculture, Yangtze University, Jingzhou, China
| | - Yanyan Li
- 2Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Jianxin Deng
- 1College of Agriculture, Yangtze University, Jingzhou, China
| | - Y I Zhou
- 1College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
30
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
31
|
Luo T, Li CN, Yan R, Huang K, Li YR, Liu XY, Lakshmanan P. Physiological and molecular insights into the resilience of biological nitrogen fixation to applied nitrogen in Saccharum spontaneum, wild progenitor of sugarcane. FRONTIERS IN PLANT SCIENCE 2023; 13:1099701. [PMID: 36714748 PMCID: PMC9881415 DOI: 10.3389/fpls.2022.1099701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Excessive use of nitrogen (N) fertilizer for sugarcane cultivation is a significant cause of greenhouse gas emission. N use-efficiency (NUE) of sugarcane is relatively low, and considerable effort is now directed to exploit biological nitrogen fixation (BNF) in sugarcane. We hypothesize that genetic base-broadening of sugarcane using high-BNF Saccharum spontaneum, a wild progenitor of sugarcane, will help develop N-efficient varieties. We found remarkable genetic variation for BNF and growth in S. spontaneum accessions, and BNF in some accessions remained highly resilient to inorganic N application. Physiological and molecular analyses of two S. spontaneum accessions with high-BNF capacity and growth, namely G152 and G3, grown under N replete and low N conditions showed considerable similarity for total N, NH4-N, soluble sugar, indoleacetic acid, gibberellic acid, zeatin and abscisic acid content; yet, they were strikingly different at molecular level. Global gene expression analysis of G152 and G3 grown under contrasting N supply showed genotype effect explaining much of the gene expression variation observed. Differential gene expression analysis found an over-representation of carbohydrate and amino acid metabolism and transmembrane transport genes in G152 and an enrichment of lipid metabolism and single-organism processes genes in G3, suggesting that distinctly divergent metabolic strategies are driving N-related processes in these accessions. This was attested by the remarkable variation in carbon, N, amino acid and hormone metabolism-related gene expression in G152 and G3 under high- and low-N supply. We conclude that both accessions may be achieving similar BNF and growth phenotypes through overlapping but distinctly different biochemical and molecular mechanisms.
Collapse
Affiliation(s)
- Ting Luo
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chang-Ning Li
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rui Yan
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kejun Huang
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Yan Liu
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
32
|
Guo DJ, Singh P, Yang B, Singh RK, Verma KK, Sharma A, Khan Q, Qin Y, Chen TS, Song XP, Zhang BQ, Li DP, Li YR. Complete genome analysis of sugarcane root associated endophytic diazotroph Pseudomonas aeruginosa DJ06 revealing versatile molecular mechanism involved in sugarcane development. Front Microbiol 2023; 14:1096754. [PMID: 37152763 PMCID: PMC10157262 DOI: 10.3389/fmicb.2023.1096754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Sugarcane is an important sugar and bioenergy source and a significant component of the economy in various countries in arid and semiarid. It requires more synthetic fertilizers and fungicides during growth and development. However, the excess use of synthetic fertilizers and fungicides causes environmental pollution and affects cane quality and productivity. Plant growth-promoting bacteria (PGPB) indirectly or directly promote plant growth in various ways. In this study, 22 PGPB strains were isolated from the roots of the sugarcane variety GT42. After screening of plant growth-promoting (PGP) traits, it was found that the DJ06 strain had the most potent PGP activity, which was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing. Scanning electron microscopy (SEM) and green fluorescent protein (GFP) labeling technology confirmed that the DJ06 strain successfully colonized sugarcane tissues. The complete genome sequencing of the DJ06 strain was performed using Nanopore and Illumina sequencing platforms. The results showed that the DJ06 strain genome size was 64,90,034 bp with a G+C content of 66.34%, including 5,912 protein-coding genes (CDSs) and 12 rRNA genes. A series of genes related to plant growth promotion was observed, such as nitrogen fixation, ammonia assimilation, siderophore, 1-aminocyclopropane-1-carboxylic acid (ACC), deaminase, indole-3-acetic acid (IAA) production, auxin biosynthesis, phosphate metabolism, hydrolase, biocontrol, and tolerance to abiotic stresses. In addition, the effect of the DJ06 strain was also evaluated by inoculation in two sugarcane varieties GT11 and B8. The length of the plant was increased significantly by 32.43 and 12.66% and fresh weight by 89.87 and 135.71% in sugarcane GT11 and B8 at 60 days after inoculation. The photosynthetic leaf gas exchange also increased significantly compared with the control plants. The content of indole-3-acetic acid (IAA) was enhanced and gibberellins (GA) and abscisic acid (ABA) were reduced in response to inoculation of the DJ06 strain as compared with control in two sugarcane varieties. The enzymatic activities of oxidative, nitrogen metabolism, and hydrolases were also changed dramatically in both sugarcane varieties with inoculation of the DJ06 strain. These findings provide better insights into the interactive action mechanisms of the P. aeruginosa DJ06 strain and sugarcane plant development.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bin Yang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ting-Su Chen
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Dong-Ping Li
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- *Correspondence: Yang-Rui Li
| |
Collapse
|
33
|
Huang X, Zeng Z, Chen Z, Tong X, Jiang J, He C, Xiang T. Deciphering the potential of a plant growth promoting endophyte Rhizobium sp. WYJ-E13, and functional annotation of the genes involved in the metabolic pathway. Front Microbiol 2022; 13:1035167. [PMID: 36406393 PMCID: PMC9671153 DOI: 10.3389/fmicb.2022.1035167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 09/24/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are well-acknowledged root endophytic bacteria used for plant growth promotion. However, which metabolites produced by PGPR could promote plant growth remains unclear. Additionally, which genes are responsible for plant growth-promoting traits is also not elucidated. Thus, as comprehensive understanding of the mechanism of endophyte in growth promotion is limited, this study aimed to determine the metabolites and genes involved in plant growth-promotion. We isolated an endophytic Rhizobium sp. WYJ-E13 strain from the roots of Curcuma wenyujin Y.H. Chen et C. Ling, a perennial herb and medicinal plant. The tissue culture experiment showed its plant growth-promoting ability. The bacterium colonization in the root was confirmed by scanning electron microscopy and paraffin sectioning. Furthermore, it was noted that the WYJ-E13 strain produced cytokinin, anthranilic acid, and L-phenylalanine by metabolome analysis. Whole-genome analysis of the strain showed that it consists of a circular chromosome of 4,350,227 bp with an overall GC content of 60.34%, of a 2,149,667 bp plasmid1 with 59.86% GC, and of a 406,180 bp plasmid2 with 58.05% GC. Genome annotation identified 4,349 putative protein-coding genes, 51 tRNAs, and 9 rRNAs. The CDSs number allocated to the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Clusters of Orthologous Genes databases were 2027, 3,175 and 3,849, respectively. Comparative genome analysis displayed that Rhizobium sp. WYJ-E13 possesses the collinear region among three species: Rhizobium acidisoli FH23, Rhizobium gallicum R602 and Rhizobium phaseoli R650. We recognized a total set of genes that are possibly related to plant growth promotion, including genes involved in nitrogen metabolism (nifU, gltA, gltB, gltD, glnA, glnD), hormone production (trp ABCDEFS), sulfur metabolism (cysD, cysE, cysK, cysN), phosphate metabolism (pstA, pstC, phoB, phoH, phoU), and root colonization. Collectively, these findings revealed the roles of WYJ-E13 strain in plant growth-promotion. To the best of our knowledge, this was the first study using whole-genome sequencing for Rhizobium sp. WYJ-E13 associated with C. wenyujin. WYJ-E13 strain has a high potential to be used as Curcuma biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Xiaxiu Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jie Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjing He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| |
Collapse
|
34
|
Boro M, Sannyasi S, Chettri D, Verma AK. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Arch Microbiol 2022; 204:666. [PMID: 36214917 DOI: 10.1007/s00203-022-03279-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 01/01/2023]
Abstract
Chemical fertilizers and pesticides are an integral part of modern agriculture and are often associated with numerous environmental problems. Biological agents such as microorganisms can largely replace chemical fertilizers and pesticides. The proper use of selected microorganisms such as bacteria, fungi and viruses have several benefits for agriculture. These include a healthy soil microbiota, biological production of important compounds that promote plant health, and to be used as biocontrol agents (BCAs) that provide protection from plant pathogenic microorganisms. Scientists have found that several bacterial genera including Bacillus and Pseudomonas have antimicrobial activity against numerous pathogenic bacterial and fungal plant pathogens. Trichoderma, Aspergillus, and Penicillium are among the most common fungal genera used as BCAs against both bacterial and fungal plant pathogens. Several bacteriophages and mycoviruses are also found effective as BCAs against selective plant pathogens. Fusarium oxysporum is a commonly found microbial plant pathogen causing wilts and rots in plants. Overall, it can be concluded that the use of microbial BCAs is an effective practice against microbial plant pathogens.
Collapse
Affiliation(s)
- Manswama Boro
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Shuvankar Sannyasi
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
35
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
36
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
37
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
38
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Abstract
The findings on the strategies employed by endophytic microbes have provided salient information to the researchers on the need to maximally explore them as bio-input in agricultural biotechnology. Biotic and abiotic factors are known to influence microbial recruitments from external plant environments into plant tissues. Endophytic microbes exhibit mutualism or antagonism association with host plants. The beneficial types contribute to plant growth and soil health, directly or indirectly. Strategies to enhance the use of endophytic microbes are desirable in modern agriculture, such that these microbes can be applied individually or combined as bioinoculants with bioprospecting in crop breeding systems. Scant information is available on the strategies for shaping the endophytic microbiome; hence, the need to unravel microbial strategies for yield enhancement and pathogen suppressiveness have become imperative. Therefore, this review focuses on the endophytic microbiome, mechanisms, factors influencing endophyte recruitment, and strategies for possible exploration as bioinoculants.
Collapse
|
40
|
Wang C, Ye Q, Zhang J, Pang R, Gu Q, Ding Y, Wu Q, Wang J. Multiplex PCR identification of the major Pseudomonas aeruginosa serogroups using specific novel target genes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Condessa BMB, da Silva KV, da Silva JFM, de Morais PB, Leal Zimmer FMA, de Almeida AF, Niculau EDS, Nogueira KL, Santos CCADA. Performance of wild
Saccharomyces
and Non‐
Saccharomyces
yeasts as starter cultures in dough fermentation and bread making. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Paula Benevides de Morais
- Bionorte – Legal Amazon Biodiversity and Biotechnology Network Federal University of Tocantins Palmas Brazil
| | | | - Alex Fernando de Almeida
- Graduate Program in Food Science and Technology Federal University of Tocantins (UFT) Palmas Brazil
| | | | | | | |
Collapse
|
42
|
Sugarcane Smut: Current Knowledge and the Way Forward for Management. J Fungi (Basel) 2021; 7:jof7121095. [PMID: 34947077 PMCID: PMC8703903 DOI: 10.3390/jof7121095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Whip smut of sugarcane is the most serious and widely spread disease of sugarcane and causes a significant reduction in cane quantity and quality. The severity of this disease often depends on the pathogen races, environmental conditions, cultivar genotype and the interaction among these three factors. Under optimum climatic conditions, this disease has the potential to cause total crop failure. Resistance screening is an ongoing process due to the variability among smut pathogen isolates. Multiple races and mutation ability of smut pathogen makes the breeding task more complex. A number of studies on various aspects of the disease epidemiology and management have been published. Due to many overlapping characteristics within the species complex, there is a dearth of information on early detection and strategies to control the smut pathogen. Furthermore, there is a need to coordinate these findings to expedite its research and control. In this paper, we summarize the disease etiology, especially disease impact on the qualitative and quantitative parameters of sugarcane. We also gathered research progress on molecular-based detection and available information on genetic variability in S.scitamineum. The research on the set of management options needed to effectively cope with the disease are reviewed herein. The present review is expected to be helpful for the further investigation on smut resistance in sugarcane.
Collapse
|
43
|
Singh RK, Singh P, Guo DJ, Sharma A, Li DP, Li X, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR. Root-Derived Endophytic Diazotrophic Bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 Promote Nitrogen Assimilation and Growth in Sugarcane. Front Microbiol 2021; 12:774707. [PMID: 34975800 PMCID: PMC8714890 DOI: 10.3389/fmicb.2021.774707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022] Open
Abstract
Excessive, long-term application of chemical fertilizers in sugarcane crops disrupts soil microbial flora and causes environmental pollution and yield decline. The role of endophytic bacteria in improving crop production is now well-documented. In this study, we have isolated and identified several endophytic bacterial strains from the root tissues of five sugarcane species. Among them, eleven Gram-negative isolates were selected and screened for plant growth-promoting characteristics, i.e., production of siderophores, indole-3-acetic acid (IAA), ammonia, hydrogen cyanide (HCN), and hydrolytic enzymes, phosphorus solubilization, antifungal activity against plant pathogens, nitrogen-fixation, 1-aminocyclopropane-1-carboxylic acid deaminase activity, and improving tolerance to different abiotic stresses. These isolates had nifH (11 isolates), acdS (8 isolates), and HCN (11 isolates) genes involved in N-fixation, stress tolerance, and pathogen biocontrol, respectively. Two isolates Pantoea cypripedii AF1and Kosakonia arachidis EF1 were the most potent strains and they colonized and grew in sugarcane plants. Both strains readily colonized the leading Chinese sugarcane variety GT42 and significantly increased the activity of nitrogen assimilation enzymes (glutamine synthetase, NADH glutamate dehydrogenase, and nitrate reductase), chitinase, and endo-glucanase and the content of phytohormones gibberellic acid, indole-3-acetic acid, and abscisic acid. The gene expression analysis of GT42 inoculated with isolates of P. cypripedii AF1 or K. arachidis EF1 showed increased activity of nifH and nitrogen assimilation genes. Also, the inoculated diazotrophs significantly increased plant nitrogen content, which was corroborated by the 15N isotope dilution analysis. Collectively, these findings suggest that P. cypripedii and K. arachidis are beneficial endophytes that could be used as a biofertilizer to improve plant nitrogen nutrition and growth of sugarcane. To the best of our knowledge, this is the first report of sugarcane growth enhancement and nitrogen fixation by Gram-negative sugarcane root-associated endophytic bacteria P. cypripedii and K. arachidis. These strains have the potential to be utilized as sugarcane biofertilizers, thus reducing nitrogen fertilizer use and improving disease management.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiang Li
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Interdisciplinary Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
44
|
Pseudomonas spp. Mediate defense response in sugarcane through differential exudation of root phenolics. Saudi J Biol Sci 2021; 28:7528-7538. [PMID: 34867057 PMCID: PMC8626327 DOI: 10.1016/j.sjbs.2021.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas spp., a ubiquitous biocontrol agent, protects the plants from phytopathogens by suppressing them directly by reinforcing the plant’s intrinsic defense mechanism. Root exudated phenolics play an important role in establishing the rhizobacteria population and cross the host boundaries in beneficial plant–microbe interaction. In this study, Pseudomonas spp. HU-8 & HU-9 antagonized the sugarcane red rot pathogen (C. falcatum) and showed a positive chemotactic response against different concentrations (10–30 µM) of synthetic phenolic acids like p-coumaric, vanillic, and 3,4 di-hydroxybenzoic acid. In a pot experiment, they effectively colonized the sugarcane rhizosphere and mediated defense response in sugarcane plants challenged with red rot pathogen C. falcatum by regulating the exudation of root phenolics under hydroponic conditions. They significantly induced the activity of the antioxidant enzymes CAT (1.24–1.64 fold), PO (0.78–1.61 fold), PAL (0.77–0.97 fold), and PPO (3.67–3.73 fold) over untreated plants in sugarcane. They also induced the total phenolic contents (TPC) in sugarcane in the presence (6.56–10.29 mg/g GAE) and absence (2.89–4.16 mg/g GAE) of the pathogen quantified through the Folin-Ciocalteu (FC) method. However, their effect was lower than that of the pathogen (4.34–8 mg/g GAE). The Pseudomonas spp. significantly colonized the sugarcane rhizosphere by maintaining a cell population of (1.0E + 07–1.3E + 08 CFU/mL). A significant positive Pearson’s correlation was observed between the root exudated total phenolic contents, antioxidant enzymatic activities, and rhizospheric population of inoculated bacteria. The 16S rRNA and rpoD gene analysis showed sequence conservation (C: 0.707), average number of nucleotide differences (k: 199.816), nucleotide diversity, (Pi): 0.09819), average number of informative nucleotide sites per site (Psi: 0.01275), GC content (0.57), and polymorphic sites (n = 656). These diverse Pseudomonas spp. could be an ideal bio-inoculants for a broad range of hosts especially graminaceous crops.
Collapse
|
45
|
Adeleke BS, Ayangbenro AS, Babalola OO. Bacterial community structure of the sunflower ( Helianthus annuus) endosphere. PLANT SIGNALING & BEHAVIOR 2021; 16:1974217. [PMID: 34590546 PMCID: PMC9208795 DOI: 10.1080/15592324.2021.1974217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Agrochemical applications on farmland aim to enhance crop yield; however, the consequence of biodiversity loss has caused a reduction in ecological functions. The positive endosphere interactions and crop rotation systems may function in restoring a stable ecosystem. Employing culture-independent techniques will help access the total bacteria community in the sunflower endosphere. Limited information is available on the bacteria diversity in sunflower plants cultivated under different agricultural practices. Hence, this study was designed to investigate the endophytic bacterial community structure of sunflower at the growing stage. Plant root and stem samples were sourced from two locations (Itsoseng and Lichtenburg), for DNA extraction and sequenced on the Illumina Miseq platform. The sequence dataset was analyzed using online bioinformatics tools. Saccharibacteria and Acidobacteria were dominant in plant roots, while the stem is dominated by Proteobacteria, Bacteriodetes, and Gemmatimonadetes across the sites. Bacterial genera, Acidovorax, Flavobacterium, Hydrogenophaga, and Burkholderia-Paraburkhoderia were found dominant in the root, while the stem is dominated by Streptomyces. The diverse bacterial community structure at phyla and class levels were significantly different in plant organs across the sites. The influence of soil physical and chemical parameters analyzed was observed to induce bacterial distribution across the sites. This study provides information on the dominant bacteria community structure in sunflowers at the growing stage and their predictive functions, which suggest their future exploration as bioinoculants for improved agricultural yields.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- CONTACT Olubukola Oluranti Babalola Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho2735, South Africa
| |
Collapse
|
46
|
Ali M, Walait S, Farhan Ul Haque M, Mukhtar S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68846-68861. [PMID: 34282546 DOI: 10.1007/s11356-021-15436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution especially heavy metal-contaminated soils adversely affects the microbial communities associated with the rhizosphere and phyllosphere of plants growing in these areas. In the current study, we identified and characterized the rhizospheric and phyllospheric bacterial strains from Avena fatua and Brachiaria reptans with the potential for antimicrobial activity and heavy metal resistance. A total of 18 bacterial strains from the rhizosphere and phyllosphere of A. fatua and 19 bacterial strains from the rhizosphere and phyllosphere of B. reptans were identified based on 16S rRNA sequence analysis. Bacterial genera, including Bacillus, Staphylococcus, Pseudomonas, and Enterobacter were dominant in the rhizosphere and phyllosphere of A. fatua and Bacillus, Marinobacter, Pseudomonas, Enterobacter, and Kocuria, were the dominating bacterial genera from the rhizosphere and phyllosphere of B. reptans. Most of the bacterial strains were resistant to heavy metals (Cd, Pb, and Cr) and showed antimicrobial activity against different pathogenic bacterial strains. The whole-genome sequence analysis of Pseudomonas putida BR-PH17, a strain isolated from the phyllosphere of B. reptans, was performed by using the Illumina sequencing approach. The BR-PH17 genome contained a chromosome with a size of 5774330 bp and a plasmid DNA with 80360 bp. In this genome, about 5368 predicted protein-coding sequences with 5539 total genes, 22 rRNAs, and 75 tRNA genes were identified. Functional analysis of chromosomal and plasmid DNA revealed a variety of enzymes and proteins involved in antibiotic resistance and biodegradation of complex organic pollutants. These results indicated that bacterial strains identified in this study could be utilized for bioremediation of heavy metal-contaminated soils and as a novel source of antimicrobial drugs.
Collapse
Affiliation(s)
- Muskan Ali
- Lahore College for Women University, Near Wapda Flats, Jail Rd, Jubilee Town, Lahore, Punjab, 54000, Pakistan
| | - Sadia Walait
- Riphah International University, Faisalabad, Adjacent Fish Farm, Satayana Rd, Faisalabad, Punjab, 44000, Pakistan
| | | | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
47
|
Hu S, Wang X, Sun W, Wang L, Li W. In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron ( Crocus sativus L.). Pathogens 2021; 10:1423. [PMID: 34832579 PMCID: PMC8620626 DOI: 10.3390/pathogens10111423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/29/2022] Open
Abstract
Plant rhizosphere soil contains a large number of plant-growth promoting rhizobacteria, which can not only resist the invasion of pathogenic microorganisms and protect plants from damage, but also promote the growth and development of plants. In this study, Pseudomonas aeruginosa strain YY322, isolated and screened from the rhizosphere soil of saffron (Crocus sativus L.), was found through a plate confrontation experiment to show highly effectual and obvious antagonistic activity against the pathogens of saffron, including Fusarium oxysporum, Fusarium solani, Penicillium citreosulfuratum, Penicillium citrinum and Stromatinia gladioli. In addition, the volatile organic compounds of strain YY322 had great antagonistic activity against these pathogens. Observation under a scanning electron microscope and transmission electron microscope reflected that strain YY322 had a significant effect on the hyphae and conidia of F. oxysporum and F. solani. Through the detection of degrading enzymes, it was found that P. aeruginosa can secrete protease and glucanase. The plant growth promoting performance was evaluated, finding that strain YY322 had the functions of dissolving phosphorus, fixing nitrogen, producing siderophore and producing NH3. In addition, whole genome sequencing analysis indicated that the YY322 genome is comprised of a 6,382,345-bp circular chromosome, containing 5809 protein-coding genes and 151 RNA genes. The P. aeruginosa YY322 genome encodes genes related to phenazine (phzABDEFGIMRS), hydrogen cyanide(HCN) (hcnABC), surfactin (srfAA), salicylate (pchA), biofilm formation (flgBCDEFGHIJKL, motAB, efp, hfq), and colonization (minCDE, yjbB, lysC). These results collectively indicated the role of P. aeruginosa YY322 in plant growth enhancement and biocontrol mechanisms. All in all, this study provides a theoretical basis for P. aeruginosa as the PGPR of saffron, paving the way for the subsequent development and utilization of microbial fertilizer.
Collapse
Affiliation(s)
| | | | | | | | - Wankui Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (S.H.); (X.W.); (W.S.); (L.W.)
| |
Collapse
|
48
|
Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS. Sugarcane Smut, Caused by Sporisorium scitamineum, a Major Disease of Sugarcane: A Contemporary Review. PHYTOPATHOLOGY 2021; 111:1905-1917. [PMID: 34241540 DOI: 10.1094/phyto-05-21-0221-rvw] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sugarcane smut caused by the fungus Sporisorium scitamineum is one of the major diseases of sugarcane worldwide, causing significant losses in productivity and profitability of this perennial crop. Teliospores of this fungus are airborne, can travel long distances, and remain viable in hot and dry conditions for >6 months. The disease is easily recognized by its long whiplike sorus produced on the apex or side shoots of sugarcane stalks. Each sorus can release ≤100 million teliospores in a day; the spores are small (≤7.5 µ) and light and can survive in harsh environmental conditions. The airborne teliospores are the primary mode of smut spread around the world and across cane-growing regions. The most effective method of managing this disease is via resistant varieties. Because of the complex genomic makeup of sugarcane, selection for resistant traits is difficult in sugarcane breeding programs. In recent times, the application of molecular markers as a rapid tool of discarding susceptible genotypes early in the selection program has been investigated. Large effect resistance loci have been identified and have the potential to be used for marker-assisted selection to increase the frequency of resistant breeding lines in breeding programs. Recent developments in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have contributed to our understanding and provided insights into the mechanism of resistance and susceptibility. This knowledge will further our understanding of smut and its interactions with sugarcane genotypes and aid in the development of durable resistant varieties.
Collapse
Affiliation(s)
- Shamsul A Bhuiyan
- Sugar Research Australia, Woodford, QLD 4514, Australia, and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | | | - Meredith D McNeil
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4072, Australia
| | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4072, Australia
| |
Collapse
|
49
|
Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates. J Appl Microbiol 2021; 132:3226-3248. [PMID: 34608722 DOI: 10.1111/jam.15317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023]
Abstract
AIM Pseudomonas aeruginosa, a leading opportunistic pathogen causing hospital-acquired infections, is also commonly found in agricultural settings. However, there are minimal attempts to examine the molecular and functional attributes shared by agricultural and clinical strains of P. aeruginosa. This study investigates the presence of P. aeruginosa in edible vegetable plants (including salad vegetables) and analyses the evolutionary and metabolic relatedness of the agricultural and clinical strains. METHODS AND RESULTS Eighteen rhizospheric and endophytic P. aeruginosa strains were isolated from cucumber, tomato, eggplant, and chili directly from the farms. The identity of these strains was confirmed using biochemical and molecular assays. The genetic and metabolic traits of these plant-associated P. aeruginosa isolates were compared with clinical strains. DNA fingerprinting and 16S rDNA-based phylogenetic analyses revealed that the plant- and human-associated strains are evolutionarily related. Both agricultural and clinical isolates possessed plant-beneficial properties, including mineral solubilization to release essential nutrients (phosphorous, potassium, and zinc), ammonification, and the ability to release extracellular pyocyanin, siderophore, and indole-3 acetic acid. CONCLUSION These findings suggest that rhizospheric and endophytic P. aeruginosa strains are genetically and functionally analogous to the clinical isolates. In addition, the genotypic and phenotypic traits do not correlate with plant sources or ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY This study reconfirms that edible plants are the potential source for human and animal transmission of P. aeruginosa.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Ponnusamy Marimuthu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
50
|
Singh P, Xie J, Qi Y, Qin Q, Jin C, Wang B, Fang W. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Mar Drugs 2021; 19:md19090516. [PMID: 34564178 PMCID: PMC8472358 DOI: 10.3390/md19090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.
Collapse
Affiliation(s)
- Pratiksha Singh
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Jin Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Qijian Qin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| |
Collapse
|