1
|
Li J, Wang H, Xia S. Hematopoietic stem and progenitor cells fine-tuning the "sweet" of trained immunity. J Leukoc Biol 2025; 117:qiaf043. [PMID: 40233187 DOI: 10.1093/jleuko/qiaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Recent studies have challenged the traditional view of innate immunity as nonspecific and transient by demonstrating that innate immune cells can develop immune memory in response to various activating factors, a phenomenon known as trained immunity. This process involves epigenetic modifications, such as changes in chromatin accessibility, and metabolic reprogramming, which can provide protection against unrelated pathogens but may also trigger immune-mediated damage. This review summarizes the current understanding of innate immune memory, with a particular focus on recent findings regarding the training of innate immune cells at the hematopoietic stem and progenitor cell stage. We present observations of trained immunity in innate immune cells, summarize key activating factors and underlying mechanisms, and propose potential host-directed immunotherapeutic strategies and preventive measures based on trained immunity. Our aim is to highlight the biological significance of trained immunity and its potential applications in enhancing long-term immunity, improving vaccine efficacy, and preventing immune-related diseases.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| |
Collapse
|
2
|
Gow NAR. Fungal cell wall biogenesis: structural complexity, regulation and inhibition. Fungal Genet Biol 2025; 179:103991. [PMID: 40334812 DOI: 10.1016/j.fgb.2025.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The cell wall is the defining organelle of filamentous and yeast-like fungi. It is responsible for morphology, biotic and abiotic interactions and its components confer its unique and variable signature, making it a natural target for antifungal drugs, but a moving target for immune recognition. The wall is however more than the sum of its many parts. The polysaccharides and proteins of the cell wall must be made at the right time and the right place, but also linked together and remodelled throughout the cell cycle and in response to environmental challenges, nutrient availability, damage after predation and to be complaint to the need to establish mutualistic and parasitic associations. This review summarises recent advances in our understanding of the complex and vital process of fungal cell wall biogenesis using the human pathogens Candida albicans and Aspergillus fumigatus as the principal model fungi.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
Tamai R, Kiyoura Y. Candida Infections: The Role of Saliva in Oral Health-A Narrative Review. Microorganisms 2025; 13:717. [PMID: 40284554 PMCID: PMC12029948 DOI: 10.3390/microorganisms13040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Candida species, particularly Candida albicans, are causative agents of oral infections to which immunocompromised patients are especially susceptible. Reduced saliva flow (xerostomia) can lead to Candida overgrowth, as saliva contains antibacterial components such as histatins and β-defensins that inhibit fungal growth and adhesion to the oral mucosa. Candida adheres to host tissues, forms biofilms, and secretes enzymes required for tissue invasion and immune evasion. Secretory asparaginyl proteinases (Saps) and candidalysin, a cytolytic peptide toxin, are vital to Candida virulence, and agglutinin-like sequence (Als) proteins are crucial for adhesion, invasion, and biofilm formation. C. albicans is a risk factor for dental caries and may increase periodontal disease virulence when it coexists with Porphyromonas gingivalis. Candida infections have been suggested to heighten the risk of oral cancer based on a relationship between Candida species and oral squamous cell carcinoma (OSCC) or oral potentially malignant disorder (OPMD). Meanwhile, β-glucan in the Candida cell wall has antitumor effects. In addition, Candida biofilms protect viruses such as herpesviruses and coxsackieviruses. Understanding the intricate interactions between Candida species, host immune responses, and coexisting microbial communities is essential for developing preventive and therapeutic strategies against oral Candida infections, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
4
|
Bilal H, Khan MN, Khan S, Shafiq M, Fang W, Zeng Y, Guo Y, Li X, Zhao B, Lv QL, Xu B. Fungal Influences on Cancer Initiation, Progression, and Response to Treatment. Cancer Res 2025; 85:413-423. [PMID: 39589783 DOI: 10.1158/0008-5472.can-24-1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Fungal dysbiosis is increasingly recognized as a key factor in cancer, influencing tumor initiation, progression, and treatment outcomes. This review explores the role of fungi in carcinogenesis, with a focus on mechanisms such as immunomodulation, inflammation induction, tumor microenvironment remodeling, and interkingdom interactions. Fungal metabolites are involved in oncogenesis, and antifungals can interact with anticancer drugs, including eliciting potential adverse effects and influencing immune responses. Furthermore, mycobiota profiles have potential as diagnostic and prognostic biomarkers, emphasizing their clinical relevance. The interplay between fungi and cancer therapies can affect drug resistance, therapeutic efficacy, and risk of invasive fungal infections associated with targeted therapies. Finally, emerging strategies for modulating mycobiota in cancer care are promising approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Hazrat Bilal
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Muhammad Nadeen Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Pharmacology, Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuebin Zeng
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yangzhong Guo
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Xiaohui Li
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Bing Zhao
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Bin Xu
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| |
Collapse
|
5
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
6
|
Yang L, Hu M, Shao J. Integration of Gut Mycobiota and Oxidative Stress to Decipher the Roles of C-Type Lectin Receptors in Inflammatory Bowel Diseases. Immunol Invest 2024; 53:1177-1204. [PMID: 39115960 DOI: 10.1080/08820139.2024.2388164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of inflammatory bowel disease (IBD) with rapidly increased incidence worldwide. Although multiple factors contribute to the occurrence and progression of IBD, the role of intestinal fungal species (gut mycobiota) in regulating the severity of these conditions has been increasingly recognized. C-type lectin receptors (CLRs) on hematopoietic cells, including Dectin-1, Dectin-2, Dectin-3, Mincle and DC-SIGN, are a group of pattern recognition receptors (PRRs) that primarily recognize fungi and mediate defense responses, such as oxidative stress. Recent studies have demonstrated the indispensable role of CLRs in protecting the colon from intestinal inflammation and mucosal damage. METHODS AND RESULTS This review provides a comprehensive overview of the role of CLRs in the pathogenesis of IBD. Given the significant impact of mycobiota and oxidative stress in IBD, this review also discusses recent advancements in understanding how these factors exacerbate or ameliorate IBD. Furthermore, the latest developments in CLR-guided IBD therapy are examined to highlight the modulation of CLRs in fungal recognition and oxidative burst during the IBD process. CONCLUSION This review emphasizes the importance of CLRs in IBD, offering new perspectives on the etiology and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
| | - Min Hu
- Department of pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
7
|
Rosati D, Pradhan A, van Heck JIP, Helder L, Jaeger M, Gow NAR, Joosten LAB, Williams DL, Brown AJP, Bruno M, Netea MG. Candida albicans N-Linked Mannans Potentiate the Induction of Trained Immunity via Dectin-2. J Infect Dis 2024; 230:768-777. [PMID: 38446996 PMCID: PMC11420807 DOI: 10.1093/infdis/jiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses, which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T-cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by dectin 2. In conclusion, N-linked mannan is needed, in addition to β-glucans, for an effective induction of trained immunity by C. albicans.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Julia I P van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and PharmacyCluj-Napoca, Romania
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Hernández-Chávez MJ, Martínez-Duncker I, Clavijo-Giraldo DM, López-Ramirez LA, Mora-Montes HM. Candida tropicalis PMT2 Is a Dispensable Gene for Viability but Required for Proper Interaction with the Host. J Fungi (Basel) 2024; 10:502. [PMID: 39057387 PMCID: PMC11277967 DOI: 10.3390/jof10070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Candidemia is an opportunistic mycosis with high morbidity and mortality rates. Even though Candida albicans is the main causative agent, other Candida species, such as Candida tropicalis, are relevant etiological agents of candidiasis and candidemia. Compared with C. albicans, there is currently limited information about C. tropicalis' biological aspects, including those related to the cell wall and the interaction with the host. Currently, it is known that its cell wall contains O-linked mannans, and the contribution of these structures to cell fitness has previously been addressed using cells subjected to chemical treatments or in mutants where O-linked mannans and other wall components are affected. Here, we generated a C. tropicalis pmt2∆ null mutant, which was affected in the first step of the O-linked mannosylation pathway. The null mutant was viable, contrasting with C. albicans where this gene is essential. The phenotypical characterization showed that O-linked mannans were required for filamentation; proper cell wall integrity and organization; biofilm formation; protein secretion; and adhesion to extracellular matrix components, in particular to fibronectin; and type I and type II collagen. When interacting with human innate immune cells, it was found that this cell wall structure is dispensable for cytokine production, but mutant cells were more phagocytosed by monocyte-derived macrophages. Furthermore, the null mutant cells showed virulence attenuation in Galleria mellonella larvae. Thus, O-linked mannans are minor components of the cell wall that are involved in different aspects of C. tropicalis' biology.
Collapse
Affiliation(s)
- Marco J. Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, MOR, Mexico;
| | - Diana M. Clavijo-Giraldo
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Luz A. López-Ramirez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| |
Collapse
|
9
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Fuchsberger FF, Kim D, Baranova N, Vrban H, Kagelmacher M, Wawrzinek R, Rademacher C. Information transfer in mammalian glycan-based communication. eLife 2023; 12:69415. [PMID: 36803584 PMCID: PMC10014076 DOI: 10.7554/elife.69415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single-cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used nuclear factor kappa-B-reporter cell lines expressing DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), macrophage C-type lectin (MCL), dectin-1, dectin-2, and macrophage-inducible C-type lectin (MINCLE), as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors transmit information with similar signaling capacity, except dectin-2. This lectin was identified to be less efficient in information transmission compared to the other CTLs, and even when the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation toward the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) is being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low-glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins, and therefore, the findings provide insight into how immune cells translate glycan information using multivalent interactions.
Collapse
Affiliation(s)
- Felix F Fuchsberger
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Dongyoon Kim
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Natalia Baranova
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Hanka Vrban
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Marten Kagelmacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Robert Wawrzinek
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| |
Collapse
|
11
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
12
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Abstract
Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
14
|
Griffiths JS, White PL, Thompson A, da Fonseca DM, Pickering RJ, Ingram W, Wilson K, Barnes R, Taylor PR, Orr SJ. A Novel Strategy to Identify Haematology Patients at High Risk of Developing Aspergillosis. Front Immunol 2021; 12:780160. [PMID: 34975870 PMCID: PMC8716727 DOI: 10.3389/fimmu.2021.780160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Invasive Aspergillosis (IA), typically caused by the fungus Aspergillus fumigatus, is a leading cause of morbidity and mortality in immunocompromised patients. IA remains a significant burden in haematology patients, despite improvements in the diagnosis and treatment of Aspergillus infection. Diagnosing IA is challenging, requiring multiple factors to classify patients into possible, probable and proven IA cohorts. Given the low incidence of IA, using negative results as exclusion criteria is optimal. However, frequent false positives and severe IA mortality rates in haematology patients have led to the empirical use of toxic, drug-interactive and often ineffective anti-fungal therapeutics. Improvements in IA diagnosis are needed to reduce unnecessary anti-fungal therapy. Early IA diagnosis is vital for positive patient outcomes; therefore, a pre-emptive approach is required. In this study, we examined the sequence and expression of four C-type Lectin-like receptors (Dectin-1, Dectin-2, Mincle, Mcl) from 42 haematology patients and investigated each patient's anti-Aspergillus immune response (IL-6, TNF). Correlation analysis revealed novel IA disease risk factors which we used to develop a pre-emptive patient stratification protocol to identify haematopoietic stem cell transplant patients at high and low risk of developing IA. This stratification protocol has the potential to enhance the identification of high-risk patients whilst reducing unnecessary treatment, minimizing the development of anti-fungal resistance, and prioritising primary disease treatment for low-risk patients.
Collapse
MESH Headings
- Adult
- Aged
- Aspergillosis/diagnosis
- Aspergillosis/epidemiology
- Aspergillosis/immunology
- Aspergillosis/microbiology
- Aspergillus fumigatus/immunology
- Aspergillus fumigatus/isolation & purification
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Female
- Gene Expression Profiling
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Immunocompromised Host
- Immunosuppressive Agents/adverse effects
- Invasive Fungal Infections/diagnosis
- Invasive Fungal Infections/epidemiology
- Invasive Fungal Infections/immunology
- Invasive Fungal Infections/microbiology
- Lectins, C-Type/blood
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/complications
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Polymerase Chain Reaction
- Risk Assessment/methods
- Transplantation, Homologous/adverse effects
- Young Adult
Collapse
Affiliation(s)
- James S. Griffiths
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, University Hospital of Wales (UHW), Cardiff, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- United Kingdom (UK) Dementia Research Institute at Cardiff, Cardiff, United Kingdom
| | - Diogo M. da Fonseca
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Robert J. Pickering
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Wendy Ingram
- University Hospital of Wales, Cardiff, United Kingdom
| | - Keith Wilson
- University Hospital of Wales, Cardiff, United Kingdom
| | - Rosemary Barnes
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Philip R. Taylor
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- United Kingdom (UK) Dementia Research Institute at Cardiff, Cardiff, United Kingdom
| | - Selinda J. Orr
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|