1
|
Antonini G, Fares M, Hauck D, Mała P, Gillon E, Belvisi L, Bernardi A, Titz A, Varrot A, Mazzotta S. Toward Dual-Target Glycomimetics against Two Bacterial Lectins to Fight Pseudomonas aeruginosa- Burkholderia cenocepacia Infections: A Biophysical Study. J Med Chem 2025; 68:9681-9693. [PMID: 40279549 PMCID: PMC12067436 DOI: 10.1021/acs.jmedchem.5c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/27/2025]
Abstract
Chronic lung infections caused by Pseudomonas aeruginosa and Burkholderia cenocepacia pose a severe threat to immunocompromised patients, particularly those with cystic fibrosis. These pathogens often infect the respiratory tract, and available treatments are limited due to antibiotic resistance. Targeting bacterial lectins involved in biofilm formation and host-pathogen interactions represents a promising therapeutic strategy. In this study, we evaluate the potential of synthetic fucosylamides as inhibitors of the two lectins LecB (P. aeruginosa) and BC2L-C-Nt (B. cenocepacia). Using a suite of biophysical assays, we assessed their binding affinities, identifying three β-fucosylamides as promising dual-target ligands, while crystallography studies revealed the atomic basis of these ligands to interact with both bacterial lectins. The emerged classes of compounds represent a solid starting point for the necessary hit-to-lead optimization for future dual inhibitors aiming at the treatment of coinfections with these two bacterial pathogens.
Collapse
Affiliation(s)
- Giulia Antonini
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Mario Fares
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | - Dirk Hauck
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | - Patrycja Mała
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | - Emilie Gillon
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Laura Belvisi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Anna Bernardi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Alexander Titz
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | | | - Sarah Mazzotta
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
2
|
Bennett AJ, Suski CD, O'Keefe JM. Molecular epidemiology of Eimeria spp. parasites and the faecal microbiome of Indiana bats ( Myotis sodalis): a non-invasive, multiplex metabarcode survey of an endangered species. Microb Genom 2025; 11. [PMID: 40009543 DOI: 10.1099/mgen.0.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Assessing individual and population health in endangered wildlife poses unique challenges due to the lack of an adequate baseline and ethical constraints on invasive sampling. For endangered bats, minimally invasive samples like guano can often be the ethical and technical limit for studies of pathogens and the microbiome. In this study, we use multiplex metabarcode sequencing to describe the faecal microbiome and parasites of 56 Indiana bats (Myotis sodalis). We show evidence of a high prevalence of Eimeria spp. protozoan parasite and characterize associations between infection and changes to the faecal microbiome. We identify a strong and significant enrichment of Clostridium species in Eimeria-positive bats, including isolates related to Clostridium perfringens.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Joy M O'Keefe
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
3
|
Yalcinbayir D, Yalcinbayir S, Yalcinbayir O. Coinfection of Ocular Toxoplasmosis and Ocular Toxocariasis in the Same Patient. Ocul Immunol Inflamm 2025; 33:201-205. [PMID: 38648624 DOI: 10.1080/09273948.2024.2344038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To report a rare case of a toxoplasma chorioretinitis in one eye and peripheral ocular toxocariasis granuloma in the fellow eye of the same patient. MATERIALS AND METHODS Retrospective case report. RESULTS A 44-year-old male presented with gradual loss of vision over the past weeks. The patient was diagnosed with ocular toxoplasma chorioretinitis recurrence in his right eye and an inactive peripheral granuloma of ocular toxocariasis was found in the left eye. The patient was a farmer who had been involved in animal husbandry throughout his life. The patient was treated with antibiotics for toxoplasma chorioretinitis and kept under follow-up for ocular toxocariasis. CONCLUSION Coinfections of zoonoses are related to socioeconomic environment and individual characteristics of the host. Ocular toxoplasmosis and ocular toxocariasis may present with different scenarios. To our knowledge, this is the first case of a coinfection of ocular toxoplasmosis and ocular toxocariasis in the same patient. A thorough ophthalmological examination and detailed anamnesis are important for diagnosis.
Collapse
Affiliation(s)
- Deniz Yalcinbayir
- Medical School, Marmara University School of Medicine, Istanbul, Turkey
| | - Seyda Yalcinbayir
- Department of Clinical Microbiology, Bursa City Hospital, Bursa, Turkey
| | - Ozgur Yalcinbayir
- Department of Ophthalmology, Bursa Uludag University School of Medicine, Bursa, Turkey
| |
Collapse
|
4
|
Wang X, Cai M, Lu X, Xu Q, Wang Y, Yang W, Liu K, Gao R, Chen Y, Hu J, Gu M, Hu S, Liu X, Liu X. Research note: Simultaneous detection of GPV, H5 AIV, and GoAstV via TaqMan probe-based multiplex qPCR. Poult Sci 2024; 103:104511. [PMID: 39520755 PMCID: PMC11584559 DOI: 10.1016/j.psj.2024.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The endemic status of goose parvovirus (GPV), H5 subtype avian influenza virus (AIV), and goose astrovirus (GoAstV) infections continues to devastate the poultry industry in China. Despite this, there exists a notable gap in the application of molecular diagnostic techniques. This investigation described the development of a multiplex qualitative polymerase chain reaction (qPCR) assay capable of concurrently detecting GPV, H5 AIV, and GoAstV, with no cross-reactivity observed with other avian viral pathogens. The assay exhibited a detection threshold of 10 copies/μL for both GPV and GoAstV, and 1 copy/μL for H5 AIV. The intra- and inter-assay coefficients of variation were < 3.0%, signifying high repeatability within and across assay batches. Utilizing this multiplex qPCR assay, a batch of 60 clinical samples was analyzed to assess its practical utility. The detected prevalence rates for GoAstV, GPV, and H5 AIV were 35.0% (21/60), 21.7% (13/60), and 15.0% (9/60), respectively. Concurrent infections were also identified, with rates for GPV + GoAstV, GPV + H5 AIV, GoAstV + H5 AIV, and GPV + GoAstV + H5 AIV being 6.7% (4/60), 3.3% (2/60), 3.3% (2/60), and 3.3% (2/60), respectively. The developed multiplex qPCR assay exhibited a diagnostic concordance rate equivalent to that of traditional PCR techniques. This novel assay serves as a rapid, efficient, specific, and sensitive tool for the detection of prevalent goose viruses, thereby enhancing disease management strategies and epidemiological monitoring efforts.
Collapse
Affiliation(s)
- Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Miao Cai
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Qianqian Xu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China
| | - Yanhong Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China
| | - Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
5
|
Brown GD, Murcia PR, Waters AP, Penades J, Muñoz A. Tackling coinfections. Trends Microbiol 2024; 32:1148-1149. [PMID: 39448337 DOI: 10.1016/j.tim.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Mechanistic understanding of the impact of coinfections is a critical knowledge gap. A workshop on coinfections highlighted key aspects required to advance this field, including identifying the coinfection priorities, creating research platforms for this type of research, promoting cross-expertise collaborations, and securing funding to support cross-kingdom pathogen research.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, EX4 4QD, UK.
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, 120 University Place, University of Glasgow, G12 8TA, UK
| | - Jose Penades
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Alberto Muñoz
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
6
|
Khechmar S, Chesnais Q, Villeroy C, Brault V, Drucker M. Interplay between a polerovirus and a closterovirus decreases aphid transmission of the polerovirus. Microbiol Spectr 2024; 12:e0111524. [PMID: 39387567 PMCID: PMC11537018 DOI: 10.1128/spectrum.01115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024] Open
Abstract
Multi-infection of plants by viruses is very common and can change drastically infection parameters such as virus accumulation, distribution, and vector transmission. Sugar beet is an important crop that is frequently co-infected by the polerovirus beet chlorosis virus (BChV) and the closterovirus beet yellows virus (BYV), both vectored by the green peach aphid (Myzus persicae). These phloem-limited viruses are acquired while aphids ingest phloem sap from infected plants. Here we found that co-infection decreased transmission of BChV by ~50% but had no impact on BYV transmission. The drastic reduction of BChV transmission was due to neither lower accumulation of BChV in co-infected plants nor reduced phloem sap ingestion by aphids from these plants. Using the signal amplification by exchange reaction fluorescent in situ hybridization technique on plants, we observed that 40% of the infected phloem cells were co-infected and that co-infection caused redistribution of BYV in these cells. The BYV accumulation pattern changed from distinct intracellular spherical inclusions in mono-infected cells to a diffuse form in co-infected cells. There, BYV co-localized with BChV throughout the cytoplasm, indicative of virus-virus interactions. We propose that BYV-BChV interactions could restrict BChV access to the sieve tubes and reduce its accessibility for aphids and present a model of how co-infection could alter BChV intracellular movement and/or phloem loading and reduce BChV transmission.IMPORTANCEMixed viral infections in plants are understudied yet can have significant influences on disease dynamics and virus transmission. We investigated how co-infection with two unrelated viruses, BChV and BYV, affects aphid transmission of the viruses in sugar beet plants. We show that co-infection reduced BChV transmission by about 50% without affecting BYV transmission, despite similar virus accumulation rates in co-infected and mono-infected plants. Follow-up experiments examined the localization and intracellular distribution of the viruses, leading to the discovery that co-infection caused a redistribution of BYV in the phloem vessels and altered its repartition pattern within plant cells, suggesting virus-virus interactions. In conclusion, the interplay between BChV and BYV affects the transmission of BChV but not BYV, possibly through direct or indirect virus-virus interactions at the cellular level. Understanding these interactions could be crucial for managing virus propagation in crops and preventing yield losses.
Collapse
Affiliation(s)
- Souheyla Khechmar
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Quentin Chesnais
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | | | - Véronique Brault
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Martin Drucker
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Rodgers ML, Roth-Monzón AJ. The Dominance of Coinfecting Parasites' Indirect Genetic Effects on Host Traits. Am Nat 2024; 204:482-500. [PMID: 39486034 DOI: 10.1086/732256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractIndirect genetic effects (IGEs) exist when there is heritable variation in one organism's ability to alter a second organism's traits. For example, parasites have antigens that can induce a host immune response, as well as disparate strategies to evade or suppress host immunity; among-parasite genetic variation in these antigens generates among-host variation in immune traits. Here, we experimentally show that the cestode parasite Schistocephalus solidus exerts an IGE on an immune trait (peritoneal fibrosis) in its threespine stickleback host: stickleback developed strong fibrosis after exposure to some parasite genotypes but not others. A complication arises during coinfection, when two or more parasite genotypes may impose conflicting IGEs on the same host trait. What parasite-controlled trait will the host express? Will the host trait reflect the more immune-stimulatory parasite genotype or the more immune-evasive genotype? These alternatives can be quantified by estimating the dominance coefficient, as if a coinfected host were a heterozygote. We experimentally estimated the dominance of S. solidus IGEs by coinjecting antigens from different parasite genotypes. Contrary to our a priori hypotheses, coinjected antigens induced an overdominant effect, stronger than either parasite's antigens alone. We present a mathematical model showing that the value of this IGE dominance is biologically important, affecting the evolutionary dynamics of parasites in a density- and frequency-dependent manner. The model indicates that overdominance would be detrimental to immigrants when resident prevalence is high. This combination of experimental data and modeling provides an example of a parasite IGE on host traits and the evolutionary significance of IGE dominance.
Collapse
|
8
|
MINA S, Daher S, Mina N, Khoder G. Concomitant Infection of Helicobacter pylori and Intestinal Parasites: Burden, Sociodemographic and Clinical Characteristics in Hospitalized Children and Adolescents in Northern Lebanon. F1000Res 2024; 13:500. [PMID: 39931329 PMCID: PMC11809640 DOI: 10.12688/f1000research.148550.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 02/13/2025] Open
Abstract
Background Helicobacter pylori and intestinal parasites are well-known for their high prevalence in children, especially in developing countries. However, their concomitant infections are poorly documented. In this study, we aimed to evaluate the association between intestinal parasites and H. pylori among hospitalized children and adolescents with upper gastrointestinal complaints in Northern Lebanon. Methods A cross-sectional study was conducted involving 297 hospitalized pediatric patients, aged between 1 and 15 years, who presented with gastrointestinal symptoms. The socio-demographic, lifestyle, and gastrointestinal characteristics of all participants were analyzed. Fresh stool samples were collected and screened for the presence of intestinal parasites and H. pylori infections. Results 6.4% of the patients were positive for intestinal parasitic infections, 5.4% were positive for H. pylori infection, and 11.8% were co-infected. The results of the Chi-square test showed that H. pylori infection is significantly associated with parasitic infection but not with a particular species. The most frequent coinfection was H. pylori-Entamoeba histolytica (77.1%). Moreover, H. pylori infection was associated with overcrowding and infrequent washing of vegetables before eating. The prevalence of co-infections increased in patients of mothers with a primary educational level or less. In regards to clinical characteristics, our findings showed a statistically significant relationship between i) gastric reflux and H. pylori, and ii) severe diarrhea and parasitic infection. Conclusion Our data highlighted the association between H. pylori and intestinal parasitic infections. Thus, H. pylori detection could be taken into consideration while screening for parasitic infections in children and adolescents.
Collapse
Affiliation(s)
- Sara MINA
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, 11-5020, Lebanon
| | - Sara Daher
- Faculty of Public Health 3, L.S.E.E, Lebanese University, Tripoli, Lebanon
| | - Nour Mina
- Faculty of Medicine, Beirut Arab University, Beirut, 11-5020, Lebanon
| | - Ghalia Khoder
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
9
|
Walch P, Broz P. Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability. Nat Commun 2024; 15:8595. [PMID: 39366977 PMCID: PMC11452664 DOI: 10.1038/s41467-024-52905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The broadening of accessible methodologies has enabled mechanistic insights into single-pathogen infections, yet the molecular mechanisms underlying co-infections remain largely elusive, despite their clinical frequency and relevance, generally exacerbating symptom severity and fatality. Here, we describe an unbiased in vitro screening of pairwise co-infections in a murine macrophage model, quantifying pathogen proliferation and host cell death in parallel over time. The screen revealed that the majority of interactions are antagonistic for both metrics, highlighting general patterns depending on the pathogen virulence strategy. We subsequently decipher two distinct molecular interaction points: Firstly, murine Adenovirus 3 modifies ASC-dependent inflammasome responses in murine macrophages, altering host cell death and cytokine production, thereby impacting secondary Salmonella infection. Secondly, murine Adenovirus 2 infection triggers upregulation of Mprip, a crucial mediator of phagocytosis, which in turn causes increased Yersinia uptake, specifically in virus pre-infected bone-marrow-derived macrophages. This work therefore encompasses both a first-of-its-kind systematic assessment of host-pathogen-pathogen interactions, and mechanistic insight into molecular mediators during co-infection.
Collapse
Affiliation(s)
- Philipp Walch
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Petr Broz
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
10
|
Tandon A, Baral B, Saini V, Kandpal M, Dixit AK, Parmar HS, Meena AK, Chandra Jha H. The role of Helicobacter pylori in augmenting the severity of SARS-CoV-2 related gastrointestinal symptoms: An insight from molecular mechanism of co-infection. Heliyon 2024; 10:e37585. [PMID: 39364240 PMCID: PMC11447314 DOI: 10.1016/j.heliyon.2024.e37585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Coinfection of pathogenic bacteria and viruses is associated with multiple diseases. During the COVID-19 pandemic, the co-infection of other pathogens with SARS-CoV-2 was one of the important determinants of the severity. Although primarily a respiratory virus gastric manifestation of the SARS-CoV-2 infection was widely reported. This study highlights the possible consequences of SARS-CoV-2 -Helicobacter pylori coinfection in the gastrointestinal cells. We utilized the transfection and infection model for SARS-CoV-2 spike Delta (δ) and H. pylori respectively in colon carcinoma cell line HT-29 to develop the coinfection model to study inflammation, mitochondrial function, and cell death. The results demonstrate increased transcript levels of inflammatory markers like TLR2 (p < 0.01), IL10 (p < 0.05), TNFα (p < 0.05) and CXCL1 (p < 0.05) in pre-H. pylori infected cells as compared to the control. The protein levels of the β-Catenin (p < 0.01) and c-Myc (p < 0.01) were also significantly elevated in pre-H. pylori infected group in case of co-infection. Further investigation of apoptotic and necrotic markers (Caspase-3, Caspase-8, and RIP-1) reveals a necroptotic cell death in the coinfected cells. The infection and coinfection also damage the mitochondria in HT-29 cells, further implicating mitochondrial dysfunction in the necrotic cell death process. Our study also highlights the detrimental effect of pre-H. pylori exposure in the coinfection model compared to post-exposure and lone infection of H. pylori and SARS-CoV-2. This knowledge could aid in developing targeted interventions and therapeutic strategies to mitigate the severity of COVID-19 and improve patient outcomes.
Collapse
Affiliation(s)
- Akrati Tandon
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, Kolkata, 4-CN Block, Sector –V, Bidhannagar, Kolkata, 700 091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh, 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
11
|
Heydari H, Iranikhah A, Ghasemi A, Mohammadbeigi A, Sadat-Mirei SA, Shams S, Kermani S. Evaluation of the prevalence of Aeromonas spp., Campylobacter spp., and Clostridioides difficile in immunocompromised children with diarrhea. BMC Infect Dis 2024; 24:512. [PMID: 38778271 PMCID: PMC11110422 DOI: 10.1186/s12879-024-09372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
AIM Diarrhea is a common disease in immunocompromised patients and can be associated with greater morbidity and even mortality. Therefore, the present study was designed to determine the prevalence of Aeromonas spp., Campylobacter spp., and C. difficile among immunocompromised children. METHODS This study was conducted on 130 stool samples from patients with diarrhea who had defects in the immune system and were referred to Hazrat Masoumeh Children's Hospital in Qom. Demographic information, clinical symptoms, immune status, and duration of chemotherapy were also recorded for each child. DNAs were extracted from the stool, and then direct PCR assays were done by specific primers for the detection of Aeromonas spp., Campylobacter spp., and toxigenic C. difficile, including tcdA/B and cdtA/B genes. Co-infection in patients was also evaluated. RESULTS 60.8% and 39.2% were male and female, respectively, with a m ± SD age of 56.72 ± 40.49 months. Most cases of immunocompromised states were related to Acute Lymphocytic Leukemia (77.7%) and Non-Hodgkin Lymphoma (14.6%). 93.1% of patients were undergoing chemotherapy during the study. Among patients, most clinical symptoms were related to bloody diarrhea (98.5%) and fever (92.3%). Based on PCR, 14.6, 9.2, and 1.5% were positive for Aeromonas spp., C. difficile, and C. jejuni, respectively. Among the C. difficile-positive cases, the tcdA gene was only detected in one patient. In total, three co-infections were identified, which included Aeromonas spp./C. difficile (tcdA+), C. jejuni/C. difficile, and C. jejuni/Aeromonas spp. CONCLUSIONS This is the first study in Iran to investigate the simultaneous prevalence of some pathogens in immunocompromised children with diarrhea. Because Aeromonas spp., Campylobacter spp., and C. difficile are not routinely detected in some laboratories, infections caused by them are underappreciated in the clinic. Our results showed that these pathogens are present in our region and can cause gastroenteritis in children, especially those with underlying diseases. Therefore, increasing the level of hygiene in some areas and controlling bacterial diarrheal diseases should be given more attention by health officials.
Collapse
Affiliation(s)
- Hosein Heydari
- Pediatric Medicine Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Iranikhah
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Ahmad Ghasemi
- Department of Microbiology, Research Center of Reference Health Laboratories, Ministry of Health and Medical Education, Tehran, Iran
| | - Abolfazl Mohammadbeigi
- Department of Epidemiology and Biostatistics, School of Health, Qom University of Medical Sciences, Qom, Iran
| | | | - Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Somayeh Kermani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
12
|
Abdeltawab MSA, Fateen M, Saad El-Din S, Elmessiery RM, Mohammady Mohamed O, Marzouk Sadek K, Medhat E, Hamed AMR. Effect of SARS-CoV-2 and Toxoplasma gondii co-infection on IFN-γ and TNF-α expression and its impact on disease severity. Cytokine 2024; 177:156545. [PMID: 38368695 DOI: 10.1016/j.cyto.2024.156545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The symptomatology of COVID-19 is dependent on the immune status and the cytokine response of the host. The cytokine level of the host is influenced by the presence of chronic persistent or latent infections with co-pathogens. Parasitic diseases are known to induce host immune-modulation which may impact the response to co-infection. Toxoplasmosis is a widespread protozoal infection that remains quiescent in its latent form to be re-activated during states of immune depression. Clinical data on the relation between toxoplasmosis and COVID-19 cytokine profile and symptomatology are still insufficient. Seventy-nine subjects were included in this study. Patients were diagnosed with COVID-19 by PCR. Serological testing for toxoplasmosis was performed by the detection of anti-Toxoplasma IgG antibodies, in addition to IgG avidity testing. IFN-γ and TNF-α levels were determined by RT-PCR. Among patients diagnosed with COVID-19, 67.1% were seronegative for anti-Toxoplasma IgG, while 32.9% were seropositive. High avidity was found in 10 cases (40% of seropositive cases), 4 of whom required ICU administration, while low avidity was found in 15 cases (60%), 7 of which were administered to the ICU. TNF-α and INF-γ levels were significantly higher in COVID-19 patients than in healthy control subjects. No significant association was found between the seroprevalence of toxoplasmosis and the presence of COVID-19 and its severity. Cytokines were significantly higher in both seropositive and seronegative COVID-19 patients than in their control counterparts. The high prevalence of toxoplasmosis merits further exploration of its relation to COVID-19 by mass studies.
Collapse
Affiliation(s)
| | - Mohamed Fateen
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Shimaa Saad El-Din
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Riem M Elmessiery
- Internal Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | | | | | - Engy Medhat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Alshaimaa M R Hamed
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
13
|
Nosik M, Ryzhov K, Kudryavtseva AV, Kuimova U, Kravtchenko A, Sobkin A, Zverev V, Svitich O. Decreased IL-1 β Secretion as a Potential Predictor of Tuberculosis Recurrence in Individuals Diagnosed with HIV. Biomedicines 2024; 12:954. [PMID: 38790916 PMCID: PMC11117744 DOI: 10.3390/biomedicines12050954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The mechanisms of the formation of immunological competence against tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood. However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors of successful treatment outcomes. The goal of the study was to identify possible immunological markers of TB recurrence in individuals with HIV/TB co-infection. Methods: The plasma levels of IFN-γ, TNF-α, IL-10, and IL-1β (cytokines which play important roles in the immune activation and protection against Mycobacterium tuberculosis) were measured using ELISA EIA-BEST kits. The cytokine concentrations were determined using a standard curve obtained with the standards provided by the manufacturer of each kit. Results: A total of 211 individuals were enrolled in the study as follows: 62 patients with HIV/TB co-infection, 52 with HIV monoinfection, 52 with TB monoinfection, and 45 healthy donors. Out of the 62 patients with HIV/TB, 75.8% (47) of patients were newly diagnosed with HIV and TB, and 24.2% (15) displayed recurrent TB and were newly diagnosed with HIV. Decreased levels of IFN-γ, TNF-α, and IL-10 were observed in patients with HIV/TB when compared with HIV and TB patients. However, there was no difference in IFN-γ, TNF-α, or IL-10 secretion between both HIV/TB groups. At the same time, an almost 4-fold decrease in Il-1β levels was detected in the HIV/TB group with TB recurrence when compared with the HIV/TB group (p = 0.0001); a 2.8-fold decrease when compared with HIV patients (p = 0.001); and a 2.2-fold decrease with newly diagnosed TB patients (p = 0.001). Conclusions: Significantly decreased Il-1β levels in HIV/TB patients' cohort with secondary TB indicate that this cytokine can be a potential biomarker of TB recurrence.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Konstantin Ryzhov
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Asya V. Kudryavtseva
- La Facultad de Ciencias Médicas, Universidad Bernardo O’Higgings-Escuela de Medicina, Santiago 8370993, Chile;
| | - Ulyana Kuimova
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexandr Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV, 125466 Moscow, Russia;
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| |
Collapse
|
14
|
Babawale PI, Guerrero-Plata A. Respiratory Viral Coinfections: Insights into Epidemiology, Immune Response, Pathology, and Clinical Outcomes. Pathogens 2024; 13:316. [PMID: 38668271 PMCID: PMC11053695 DOI: 10.3390/pathogens13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Respiratory viral coinfections are a global public health threat that poses an economic burden on individuals, families, and healthcare infrastructure. Viruses may coinfect and interact synergistically or antagonistically, or their coinfection may not affect their replication rate. These interactions are specific to different virus combinations, which underlines the importance of understanding the mechanisms behind these differential viral interactions and the need for novel diagnostic methods to accurately identify multiple viruses causing a disease in a patient to avoid misdiagnosis. This review examines epidemiological patterns, pathology manifestations, and the immune response modulation of different respiratory viral combinations that occur during coinfections using different experimental models to better understand the dynamics respiratory viral coinfection takes in driving disease outcomes and severity, which is crucial to guide the development of prevention and treatment strategies.
Collapse
Affiliation(s)
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
15
|
Zhao HD, Li JW, Wang ZK, Qian HB, Fu K, Liu HL. Characteristics of the Hantaan virus complicated with SARS-CoV2 infection: A case series report. Heliyon 2024; 10:e26618. [PMID: 38455539 PMCID: PMC10918163 DOI: 10.1016/j.heliyon.2024.e26618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Background Coinfection poses a persistent threat to global public health due to its severe effect on individual-level infection risk and disease outcome. Coinfection of SARS-CoV2 with one or more pathogens has been documented. Nevertheless, this virus co-infected with the Hantaan virus (HTNV) is rarely reported. Case summary Here, we presented three cases of HTNV complicated with SARS-CoV2 infection. Not only the conditions including general clinical manifestations, immune and inflammation parameters fluctuation presented in the single infection of HTNV or SARS-CoV2 can be found, but also the unexpected manifestations have attracted our attention that presented as more symptoms of HTNV infection including exudative changes in both lungs and an amount of bilateral pleural effusion as well as bilateral kidney enlargement rather than typical viral pneumonia in SARS-CoV2 infection. Fortunately, the conditions of patients gradually return to normal which is beneficial from the antiviral treatment, hemodialysis, and various supportive therapies including anti-inflammation, liver and gastric mucosa protection. Conclusion Unexpected manifestations of coinfection patients present herein may be associated with multiple factors including virus load, competition or antagonism among antigens, and the susceptibility of target cells to the various pathogens, even though the pathogenesis of HTNV and SARS-CoV2 remains to be elucidated. Given that these two viruses have posed a profound influence on the socioeconomic, healthcare system worldwide, and the threat of coinfection to public health, it is warranted for clinicians, public health authorities, and infectious disease researchers to have a high index of consideration for patients co-infected with HTNV and SARS-CoV2.
Collapse
Affiliation(s)
- Han-Dong Zhao
- Central Laboratory of Virology, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, 7100613, China
| | - Jian-Wu Li
- Department of Infectious Diseases, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ze-Kun Wang
- Department of Radiology, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong-Bo Qian
- Clinical Laboratory Center, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kui Fu
- Section of Science and Education, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong-Li Liu
- Clinical Laboratory Center, Xi'an People's Hospital (Xi'an Fourth Hospital) Guang-Ren Hospital Affiliated to Xi'an Jiaotong University Health Science Center, Xi'an, 710004, China
| |
Collapse
|
16
|
Ashok G, Basu S, Priyamvada P, Anbarasu A, Chintala S, Ramaiah S. Coinfections in human papillomavirus associated cancers and prophylactic recommendations. Rev Med Virol 2024; 34:e2524. [PMID: 38375992 DOI: 10.1002/rmv.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The Human Papillomavirus (HPV) infection is responsible for more than 80% of reported cervical cancer and other virus-associated tumours. Although this global threat can be controlled using effective vaccination strategies, a growing perturbation of HPV infection is an emerging coinfection likely to increase the severity of the infection in humans. Moreover, these coinfections prolong the HPV infections, thereby risking the chances for oncogenic progression. The present review consolidated the clinically significant microbial coinfections/co-presence associated with HPV and their underlying molecular mechanisms. We discussed the gaps and concerns associated with demography, present vaccination strategies, and other prophylactic limitations. We concluded our review by highlighting the potential clinical as well as emerging computational intervention measures to kerb down HPV-associated severities.
Collapse
Affiliation(s)
- Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, Tamil Nadu, India
| | - Soumya Basu
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu, India
- Department of Biotechnology, NIST University, Berhampur, Odisha, India
| | | | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu, India
| | - Sreenivasulu Chintala
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Arbune M, Padurariu-Covit MD, Tiutiuca C, Mihailov R, Niculet E, Arbune AA, Tatu AL. Unusual Localization of AIDS-Related Kaposi's Sarcoma in a Heterosexual Male during the COVID-19 Pandemic: A Case Report. Trop Med Infect Dis 2024; 9:47. [PMID: 38393136 PMCID: PMC10892696 DOI: 10.3390/tropicalmed9020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Kaposi's sarcoma is an AIDS-defining illness and remains the most frequent tumor arising in HIV-infected patients with multifactorial etiology. We present a case of a 30-year-old Caucasian male with an 18-year history of HIV infection. The patient was presented with a one-week history of fever, non-productive cough, and skin lesions. There was an associated weakness and weight loss in a duration of 6 months. Clinical examination showed fever, generalized lymphadenopathy, lower limb edema, ascites, and violaceous cutaneous eruption comprising patches, plaques, and nodules. He also had a red nodule on the left conjunctiva, as well as on his oral mucosa. His CD4+ count was below 10/mm3 and ARN-HIV viral load was above 100,000 c/mL, in relation to the antiretroviral failure after five drug regimens. The role of co-infections in oncogenesis and the course of Kaposi's sarcoma were considered in recent studies. Delayed diagnosis of Kaposi's sarcoma in the present case resulted in a negative impact for this patient during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Manuela Arbune
- Medical Clinic Department, Dunarea de Jos University, 800008 Galati, Romania; (M.A.); (A.-L.T.)
- Clinical Hospital for Infectious Diseases, 800179 Galati, Romania
| | - Monica-Daniela Padurariu-Covit
- Doctoral School of Biomedical Sciences, Dunarea de Jos University, 800008 Galati, Romania
- Hematology Department, Sf. Apostol Andrei Emergency County Hospital, 800578 Galati, Romania
| | - Carmen Tiutiuca
- Surgery Clinic Department, Dunarea de Jos University, 800578 Galati, Romania; (C.T.); (R.M.)
- Ophthalmology Department, Sf. Apostol Andrei Emergency County Hospital, 800008 Galati, Romania
| | - Raul Mihailov
- Surgery Clinic Department, Dunarea de Jos University, 800578 Galati, Romania; (C.T.); (R.M.)
- General Surgery Department, Sf. Apostol Andrei Emergency County Hospital, 800578 Galati, Romania
| | - Elena Niculet
- Morphological and Functional Sciences Department, Dunarea de Jos University, 800008 Galati, Romania;
- Pathology Department, Sf. Apostol Andrei Emergency County Hospital, 800578 Galati, Romania
- Multidisciplinary Integrated Center for Dermatological Interface Research, 800010 Galati, Romania;
| | - Anca-Adriana Arbune
- Multidisciplinary Integrated Center for Dermatological Interface Research, 800010 Galati, Romania;
- Neurology Department, Fundeni Clinical Institute, 077086 Bucharest, Romania
| | - Alin-Laurentiu Tatu
- Medical Clinic Department, Dunarea de Jos University, 800008 Galati, Romania; (M.A.); (A.-L.T.)
- Clinical Hospital for Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrated Center for Dermatological Interface Research, 800010 Galati, Romania;
| |
Collapse
|
18
|
Ullah R, Ahmad A, Salcedo YE, Hassan A, Khanal A, Chaulagain A. Concomitant Salmonella and Leptospira Meningitis: A Rare Case Report. Cureus 2024; 16:e54611. [PMID: 38524012 PMCID: PMC10959034 DOI: 10.7759/cureus.54611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
This study presents a unique case of concurrent salmonella and Leptospira meningitis in a 20-year-old woman with no prior medical history. Coinfection with endemic pathogens is plausible, especially in regions like Pakistan. While Salmonella meningitis is uncommon, it presents a significant medical emergency, particularly in immunocompromised adults. Neuroleptospirosis, though rare, can manifest in certain cases. The patient displayed persistent high fever, confusion, irritability, and a single seizure episode. Initial tests, including blood and cerebrospinal fluid (CSF) cultures and serological examinations, detected Salmonella typhi and positive leptospiral antibodies, respectively. Leptomeningeal enhancement was confirmed by an MRI. Treatment with azithromycin, meropenem, and ceftriaxone led to improvement after seven days. She was advised to complete a 28-day course for Salmonella meningitis. This case emphasizes the importance of considering multiple infectious causes, especially in endemic regions. Timely and thorough diagnostic evaluation, followed by appropriate antimicrobial therapy, is essential for effective management. Further research is warranted to enhance understanding of the epidemiology, clinical features, and optimal treatment strategies for such dual infections.
Collapse
Affiliation(s)
- Rizwan Ullah
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Aftab Ahmad
- Geriatrics, Cork University Hospital, Cork, IRL
| | | | - Amir Hassan
- Emergency Medicine, Bronglais General Hospital, Aberystwyth, GBR
| | - Anuva Khanal
- Internal Medicine, Shaheed Ziaur Rahman Medical College and Hospital, Bogra, BGD
| | - Aayush Chaulagain
- Internal Medicine, Shaheed Ziaur Rahman Medical College and Hospital, Bogra, BGD
| |
Collapse
|
19
|
Mehta P, Swaminathan A, Yadav A, Chattopadhyay P, Shamim U, Pandey R. Integrative genomics important to understand host-pathogen interactions. Brief Funct Genomics 2024; 23:1-14. [PMID: 35909219 DOI: 10.1093/bfgp/elac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2024] Open
Abstract
Infectious diseases are the leading cause of morbidity and mortality worldwide. Causative pathogenic microbes readily mutate their genome and lead to outbreaks, challenging the healthcare and the medical support. Understanding how certain symptoms manifest clinically is integral for therapeutic decisions and vaccination efficacy/protection. Notably, the interaction between infecting pathogens, host response and co-presence of microbes influence the trajectories of disease progression and clinical outcome. The spectrum of observed symptomatic patients (mild, moderate and severe) and the asymptomatic infections highlight the challenges and the potential for understanding the factors driving protection/susceptibility. With the increasing repertoire of high-throughput tools, such as cutting-edge multi-omics profiling and next-generation sequencing, genetic drivers of factors linked to heterogeneous disease presentations can be investigated in tandem. However, such strategies are not without limits in terms of effectively integrating host-pathogen interactions. Nonetheless, an integrative genomics method (for example, RNA sequencing data) for exploring multiple layers of complexity in host-pathogen interactions could be another way to incorporate findings from high-throughput data. We further propose that a Holo-transcriptome-based technique to capture transcriptionally active microbial units can be used to elucidate functional microbiomes. Thus, we provide holistic perspective on investigative methodologies that can harness the same genomic data to investigate multiple seemingly independent but deeply interconnected functional domains of host-pathogen interaction that modulate disease severity and clinical outcomes.
Collapse
|
20
|
Miranda BA, Freitas GJC, Leocádio VAT, Costa MC, Emídio ECP, Ribeiro NQ, Carmo PHF, Gouveia-Eufrásio L, Hubner J, Tavares LP, Arifa RDN, Brito CB, Silva MF, Teixeira MM, Paixão TA, Peres NTA, Fagundes CT, Santos DA. Secondary Streptococcus pneumoniae infection increases morbidity and mortality during murine cryptococcosis. Immunology 2024; 171:92-103. [PMID: 37814467 DOI: 10.1111/imm.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Microorganisms that cause pneumonia and translocate to the central nervous system (CNS) are responsible for high mortality worldwide. The fungus Cryptococcus gattii (Cg) and the bacteria Streptococcus pneumoniae (Sp) target the same infection organs. This study aimed to investigate the consequences of secondary Sp infection during murine cryptococcosis. Mice infected with Sp after Cg showed significantly increased lethality and a drop in scores of motor behaviour, neuropsychiatric status and autonomous function. Previous Cg infection favoured Sp multiplication in the lungs, causing intense inflammation and necrosis, with further increased bacterial translocation to the spleen, liver and brain. This phenotype was associated with increased platelet-activating factor receptor (Pafr) gene expression, reduced M1 macrophage recruitment, and high levels of proinflammatory mediators. Strategies to overcome early mortality (i.e., infection of Pafr-/- mice, treatment with IL-1 inhibitor or corticoid) were insufficient to revert this phenotype. These results suggest that Cg infection makes the lung microenvironment favourable for Sp colonization and dissemination. Altogether, it leads to an exacerbated and ineffective inflammatory response, decisive for the increased morbidity and mortality during coinfection. In conclusion, our results highlight the importance of more studies addressing coinfections and their consequences in the host, aiming to establish more effective therapeutical strategies.
Collapse
Affiliation(s)
- Bárbara A Miranda
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo J C Freitas
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor A T Leocádio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elúzia C P Emídio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Noelly Q Ribeiro
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H F Carmo
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila Gouveia-Eufrásio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josy Hubner
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raquel D N Arifa
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila B Brito
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monique F Silva
- Departamento de Patologia/Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane A Paixão
- Departamento de Patologia/Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nalu T A Peres
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio T Fagundes
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Fraga A, Mósca AF, Moita D, Simas JP, Nunes-Cabaço H, Prudêncio M. SARS-CoV-2 decreases malaria severity in co-infected rodent models. Front Cell Infect Microbiol 2023; 13:1307553. [PMID: 38156320 PMCID: PMC10753813 DOI: 10.3389/fcimb.2023.1307553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) and malaria, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium parasites, respectively, share geographical distribution in regions where the latter disease is endemic, leading to the emergence of co-infections between the two pathogens. Thus far, epidemiologic studies and case reports have yielded insufficient data on the reciprocal impact of the two pathogens on either infection and related diseases. We established novel co-infection models to address this issue experimentally, employing either human angiotensin-converting enzyme 2 (hACE2)-expressing or wild-type mice, in combination with human- or mouse-infective variants of SARS-CoV-2, and the P. berghei rodent malaria parasite. We now show that a primary infection by a viral variant that causes a severe disease phenotype partially impairs a subsequent liver infection by the malaria parasite. Additionally, exposure to an attenuated viral variant modulates subsequent immune responses and provides protection from severe malaria-associated outcomes when a blood stage P. berghei infection was established. Our findings unveil a hitherto unknown host-mediated virus-parasite interaction that could have relevant implications for disease management and control in malaria-endemic regions. This work may contribute to the development of other models of concomitant infection between Plasmodium and respiratory viruses, expediting further research on co-infections that lead to complex disease presentations.
Collapse
Affiliation(s)
- Ana Fraga
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Andreia F. Mósca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Yadav S, Mehta P, Soni J, Chattopadhyay P, Devi P, Habyarimana T, Tardalkar K, Joshi M, Pandey R. Single-cell RNA-Seq reveals intracellular microbial diversity within immune cells during SARS-CoV-2 infection and recovery. iScience 2023; 26:108357. [PMID: 38026191 PMCID: PMC10663746 DOI: 10.1016/j.isci.2023.108357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Intracellular microorganisms, like viruses, bacteria, and fungi, pose challenges in detection due to their non-culturable forms. Transcriptomic analysis at cellular level enables exploration of distributions and the impact of these microorganisms on host cells, a domain that remains underexplored because of methodological limitations. Single-cell technology shows promise in addressing this by capturing polyadenine-tailed transcripts, because recent studies confirmed polyadenylation in microbial transcriptomes. We utilized single-cell RNA-seq from PBMCs to probe intracellular microbes in healthy, SARS-CoV-2-positive, and recovered individuals. Among 76 bacterial species detected, 16 showed significant abundance differences. Buchnera aphidicola, Streptomyces clavuligerus, and Ehrlichia canis emerged significantly in memory-B, Naïve-T, and Treg cells. Staphylococcus aureus, Mycoplasma mycoides, Leptospira interrogans, and others displayed elevated levels in SARS-CoV-2-positive patients, suggesting possible disease association. This highlights the strength of single-cell technology in revealing potential microorganism's cell-specific functions. Further research is essential for functional understanding of their cell-specific abundance across physiological states.
Collapse
Affiliation(s)
- Sunita Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thierry Habyarimana
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Department of Biomedical Laboratory Sciences, INES-Ruhengeri, Ruhengeri, Rwanda
| | - Kishore Tardalkar
- Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra 416003, India
| | - Meghnad Joshi
- Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra 416003, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Zaongo SD, Chen Y. PSGL-1, a Strategic Biomarker for Pathological Conditions in HIV Infection: A Hypothesis Review. Viruses 2023; 15:2197. [PMID: 38005875 PMCID: PMC10674231 DOI: 10.3390/v15112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) has been established to be a cell adhesion molecule that is involved in the cellular rolling mechanism and the extravasation cascade, enabling the recruitment of immune cells to sites of inflammation. In recent years, researchers have established that PSGL-1 also functions as an HIV restriction factor. PSGL-1 has been shown to inhibit the HIV reverse transcription process and inhibit the infectivity of HIV virions produced by cells expressing PSGL-1. Cumulative evidence gleaned from contemporary literature suggests that PSGL-1 expression negatively affects the functions of immune cells, particularly T-cells, which are critical participants in the defense against HIV infection. Indeed, some researchers have observed that PSGL-1 expression and signaling provokes T-cell exhaustion. Additionally, it has been established that PSGL-1 may also mediate virus capture and subsequent transfer to permissive cells. We therefore believe that, in addition to its beneficial roles, such as its function as a proinflammatory molecule and an HIV restriction factor, PSGL-1 expression during HIV infection may be disadvantageous and may potentially predict HIV disease progression. In this hypothesis review, we provide substantial discussions with respect to the possibility of using PSGL-1 to predict the potential development of particular pathological conditions commonly seen during HIV infection. Specifically, we speculate that PSGL-1 may possibly be a reliable biomarker for immunological status, inflammation/translocation, cell exhaustion, and the development of HIV-related cancers. Future investigations directed towards our hypotheses may help to evolve innovative strategies for the monitoring and/or treatment of HIV-infected individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China;
| |
Collapse
|
24
|
Lee EB, Abbas MA, Park J, Tassew DD, Park SC. Optimizing tylosin dosage for co-infection of Actinobacillus pleuropneumoniae and Pasteurella multocida in pigs using pharmacokinetic/pharmacodynamic modeling. Front Pharmacol 2023; 14:1258403. [PMID: 37808183 PMCID: PMC10556534 DOI: 10.3389/fphar.2023.1258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Formulating a therapeutic strategy that can effectively combat concurrent infections of Actinobacillus pleuropneumoniae (A. pleuropneumoniae) and Pasteurella multocida (P. multocida) can be challenging. This study aimed to 1) establish minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time kill curve, and post-antibiotic effect (PAE) of tylosin against A. pleuropneumoniae and P. multocida pig isolates and employ the MIC data for the development of epidemiological cutoff (ECOFF) values; 2) estimate the pharmacokinetics (PKs) of tylosin following its intramuscular (IM) administration (20 mg/kg) in healthy and infected pigs; and 3) establish a PK-pharmacodynamic (PD) integrated model and predict optimal dosing regimens and PK/PD cutoff values for tylosin in healthy and infected pigs. The MIC of tylosin against both 89 and 363 isolates of A. pleuropneumoniae and P. multocida strains spread widely, ranging from 1 to 256 μg/mL and from 0.5 to 128 μg/mL, respectively. According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) ECOFFinder analysis ECOFF value (≤64 µg/mL), 97.75% (87 strains) of the A. pleuropnumoniae isolates were wild-type, whereas with the same ECOFF value (≤64 µg/mL), 99.72% (363 strains) of the P. multicoda isolates were considered wild-type to tylosin. Area under the concentration time curve (AUC), T1/2, and Cmax values were significantly greater in healthy pigs than those in infected pigs (13.33 h × μg/mL, 1.99 h, and 5.79 μg/mL vs. 10.46 h × μg/mL, 1.83 h, and 3.59 μg/mL, respectively) (p < 0.05). In healthy pigs, AUC24 h/MIC values for the bacteriostatic activity were 0.98 and 1.10 h; for the bactericidal activity, AUC24 h/MIC values were 1.97 and 1.99 h for A. pleuropneumoniae and P. multocida, respectively. In infected pigs, AUC24 h/MIC values for the bacteriostatic activity were 1.03 and 1.12 h; for bactericidal activity, AUC24 h/MIC values were 2.54 and 2.36 h for A. pleuropneumoniae and P. multocida, respectively. Monte Carlo simulation lead to a 2 μg/mL calculated PK/PD cutoff. Managing co-infections can present challenges, as it often demands the administration of multiple antibiotics to address diverse pathogens. However, using tylosin, which effectively targets both A. pleuropneumoniae and P. multocida in pigs, may enhance the control of bacterial burden. By employing an optimized dosage of 11.94-15.37 mg/kg and 25.17-27.79 mg/kg of tylosin can result in achieving bacteriostatic and bactericidal effects in 90% of co-infected pigs.
Collapse
Affiliation(s)
- Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jonghyun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- DIVA Bio Incorporation, Daegu, Republic of Korea
| | | | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
25
|
Essomba RG, Mbe RM, Ngogang MP, Ekono CB, Bitoungui VJN, Seni N, Nguwoh PS, Ateba PT, Kamdem SD, Nono JK, Ambomo MS, Assoumou MCO, Mbopi-Kéou FX. Plasma IL-33 levels and immune activation in HIV-TB coinfection: a cross-sectional study in Yaoundé, Cameroon. Pan Afr Med J 2023; 46:13. [PMID: 38035159 PMCID: PMC10683167 DOI: 10.11604/pamj.2023.46.13.41152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction HIV-1 and Mtb are characterized by immune activation and unbalances production of cytokines, but the expression of IL33 in HIV/TB coinfection remain understudied. This study aimed to evaluate the level of IL-33 in plasma of HIV and M. tuberculosis (HIV/TB) coinfected patients compared to patients with respective mono infections in Yaoundé. Methods a cross-sectional study was conducted among patients attending the pneumology service and HIV treatment center of the Yaoundé Jamot Hospital. Plasma samples of 157 HIV/TB coinfected patients (n =26, 50% males and 50% females, mean age 39), HIV-1 monoinfected patients (n = 41, 41% males and 59% females, mean age 35), TB monoinfected patients (n = 48, 56% males and 44% females, mean age 37) and healthy controls (n = 42, 29% males and 71% females, mean age 32) were examined by enzyme-linked immunoassay (ELISA) to detect the levels of IL-33 cytokine. Results plasma level of IL-33 were higher in HIV/TB coinfected (33.1±30.9 pg/ml) and TB monoinfected individuals (15.1±2.9 pg/ml) compared to healthy controls (14.0±3.4 pg/ml) and could not be detected in most of the HIV-1 monoinfected individuals (12.6±8.7 pg/ml). Interestingly, the increased plasma level of IL-33 in HIV/TB coinfected patients showed a statistically significant difference between healthy controls (33.1±30.9 pg/ml vs 14.0±3.4 pg/ml, P<0.0001) and HIV-1 monoinfected patients (33.1±30.9 pg/ml vs 12.6±8.7 pg/ml, P=0.0002). We further found that IL-33 was higher in patients with high viral load group (40.6±59.7 pg/ml vs 12.6±1.8 pg/ml), P= 0.47) whereas patients under highly active antiretroviral therapy (HAART) showed decreased level of IL-33 concentration as the number of years under ART increased. Our data showed a positive association between plasma IL-33 and viral load in the context of HIV/TB coinfection in our study population with a positive Pearson coefficient of r=0.21. Conclusion this study indicates that plasma level of IL-33 differs among HIV/TB coinfected patients and respective monoinfections patients. The increased level of plasma IL-33 reveals that IL-33 measurement in HIV-1 monoinfected patients may represent an early predictor of development of tuberculosis.
Collapse
Affiliation(s)
- René Ghislain Essomba
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Rostand Munkam Mbe
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Marie Paule Ngogang
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
| | - Claire Bitchong Ekono
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Douala, Douala, Cameroon
- Pneumology Service, Jamot Hospital of Yaoundé, Yaoundé, Cameroon
| | | | - Nassif Seni
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | | | | | - Severin Donald Kamdem
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Dschang, Dschang, Cameroon
- Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Justin Komguep Nono
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Dschang, Dschang, Cameroon
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Myriam Sylvie Ambomo
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Marie Claire Okomo Assoumou
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
| | | |
Collapse
|
26
|
Oguzie JU, Petros BA, Oluniyi PE, Mehta SB, Eromon PE, Nair P, Adewale-Fasoro O, Ifoga PD, Odia I, Pastusiak A, Gbemisola OS, Aiyepada JO, Uyigue EA, Edamhande AP, Blessing O, Airende M, Tomkins-Tinch C, Qu J, Stenson L, Schaffner SF, Oyejide N, Ajayi NA, Ojide K, Ogah O, Abejegah C, Adedosu N, Ayodeji O, Liasu AA, Okogbenin S, Okokhere PO, Park DJ, Folarin OA, Komolafe I, Ihekweazu C, Frost SDW, Jackson EK, Siddle KJ, Sabeti PC, Happi CT. Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria. Nat Commun 2023; 14:4693. [PMID: 37542071 PMCID: PMC10403498 DOI: 10.1038/s41467-023-40247-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.
Collapse
Affiliation(s)
- Judith U Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Brittany A Petros
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
- Harvard/MIT MD-PhD Program, Boston, MA, 02115, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul E Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Samar B Mehta
- Department of Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Philomena E Eromon
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Opeoluwa Adewale-Fasoro
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Peace Damilola Ifoga
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Ikponmwosa Odia
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | - Otitoola Shobi Gbemisola
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | | | | | | | - Osiemi Blessing
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael Airende
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Christopher Tomkins-Tinch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - James Qu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liam Stenson
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Nicholas Oyejide
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Nnenna A Ajayi
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Kingsley Ojide
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Onwe Ogah
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | | | | | | | | | | | | | - Daniel J Park
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Onikepe A Folarin
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | | | - Simon D W Frost
- Microsoft Premonition, Redmond, WA, USA
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Katherine J Siddle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Christian T Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
27
|
Sisson D, Beechler B, Jabbar A, Jolles A, Hufschmid J. Epidemiology of Anaplasma marginale and Anaplasma centrale infections in African buffalo ( Syncerus caffer) from Kruger National Park, South Africa. Int J Parasitol Parasites Wildl 2023; 21:47-54. [PMID: 37124669 PMCID: PMC10140747 DOI: 10.1016/j.ijppaw.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Image 1.
Collapse
Affiliation(s)
- Danielle Sisson
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
- Corresponding author.
| | - Brianna Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Magruder Hall, 700 SW 30th St, Corvallis, OR, 97331, USA
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Anna Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Magruder Hall, 700 SW 30th St, Corvallis, OR, 97331, USA
- Department of Integrative Biology, Oregon State University, Cordley Hall, 3029, 2701 SW Campus Way, Corvallis, OR, 97331, USA
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
28
|
Nosik M, Belikova MG, Ryzhov K, Avdoshina D, Sobkin A, Zverev V, Svitich O. Unique Profile of Proinflammatory Cytokines in Plasma of Drug-Naïve Individuals with Advanced HIV/TB Co-Infection. Viruses 2023; 15:1330. [PMID: 37376629 DOI: 10.3390/v15061330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-1 infection is characterized by aberrant immune activation, and infection with M. tuberculosis by an unbalanced production of proinflammatory cytokines. The expression of these cytokines in HIV-1/TB coinfection is still understudied. Here, we aimed to compare the production of proinflammatory cytokines in drug-naive patients coinfected with HIV-1 and M. tuberculosis (HIV/TB) compared to patients with respective monoinfections. Plasma samples of patients with HIV/TB coinfection (n = 36), HIV-1 monoinfection (n = 36), and TB monoinfection (n = 35) and healthy donors (n = 36) were examined for the levels of eight proinflammatory cytokines. Their levels were significantly increased in all patient groups compared to healthy donors. At the same time, a drastic decrease in the plasma levels of IFN-γ, TNF-α, Il-1β, IL-15, and IL-17 was detected in patients with HIV/TB coinfection compared to patients with HIV-1 or TB monoinfections. The plasma levels of IL-17 characterized the TB severity: in HIV/TB-coinfected patients with disseminated TB, plasma levels of IL-17 were eight times lower than in patients with less severe TB forms (infiltrative TB or TB of intrathoracic lymph nodes; p < 0.0001). At the same time, HIV/TB-coinfected patients had increased plasma levels of IL-8, IL-12, and IL-18, with the levels of IL-8 correlating with mortality (p < 0.0001). Thus, on the contrary to the patients with HIV-1 or TB monoinfections, HIV/TB-coinfected patients had suppressed production of most of the proinflammatory cytokines associated with antimicrobial immune response, specifically of T-cells involved in the containment of both infections. At the same time, they demonstrated an expansion of proinflammatory cytokines known to originate from both hematopoietic and nonhematopoietic cells, and manifest tissue inflammation. In HIV-1/TB coinfection, this leads to the disruption of granuloma formation, contributing to bacterial dissemination and enhancing morbidity and mortality.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Maria G Belikova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
- Translational Medicine Cluster, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | | | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - Alexandr Sobkin
- Department for Treatment of TB Patients with HIV Infection, G.A. Zaharyan Moscow Tuberculosis Clinic, 125466 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| |
Collapse
|
29
|
Hikita T, Phan T, Okitsu S, Hayakawa S, Ushijima H. A Comparative Study of Acute Gastroenteritis Symptoms in Single- versus Multiple-Virus Infections. Int J Mol Sci 2023; 24:ijms24098364. [PMID: 37176070 PMCID: PMC10179108 DOI: 10.3390/ijms24098364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Many different enteric viruses can cause acute gastroenteritis in humans worldwide. While a single virus can indeed cause disease, multiple-virus infections are commonly reported. However, data regarding a comparison between single- and multiple-virus infections upon clinical manifestations of acute gastroenteritis are relatively limited. In this study, a total of 2383 fecal specimens were collected from children with acute gastroenteritis during June 2014-July 2017 in a pediatric clinic in Japan and tested for 11 viruses by multiplex RT-PCR. At least 1 virus was found in 1706 (71.6%) specimens and norovirus GII was the most frequent agent, followed by rotavirus A and other viruses. Multiple-virus infections were identified in 565 cases (33.1%). While major clinical symptoms were found to be significantly different in some single- vs. multiple-virus infections, the disease severity was statistically non-significant. Our study highlights the burden of multiple-virus infections for acute gastroenteritis and the clinical features of patients with multiple-virus infections.
Collapse
Affiliation(s)
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Bunkyo City 113-8602, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Bunkyo City 113-8602, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Bunkyo City 113-8602, Tokyo, Japan
| |
Collapse
|
30
|
Zabidi NZ, Liew HL, Farouk IA, Puniyamurti A, Yip AJW, Wijesinghe VN, Low ZY, Tang JW, Chow VTK, Lal SK. Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses 2023; 15:v15040944. [PMID: 37112923 PMCID: PMC10145020 DOI: 10.3390/v15040944] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is associated with a lower fatality rate than its SARS and MERS counterparts. However, the rapid evolution of SARS-CoV-2 has given rise to multiple variants with varying pathogenicity and transmissibility, such as the Delta and Omicron variants. Individuals with advanced age or underlying comorbidities, including hypertension, diabetes and cardiovascular diseases, are at a higher risk of increased disease severity. Hence, this has resulted in an urgent need for the development of better therapeutic and preventive approaches. This review describes the origin and evolution of human coronaviruses, particularly SARS-CoV-2 and its variants as well as sub-variants. Risk factors that contribute to disease severity and the implications of co-infections are also considered. In addition, various antiviral strategies against COVID-19, including novel and repurposed antiviral drugs targeting viral and host proteins, as well as immunotherapeutic strategies, are discussed. We critically evaluate strategies of current and emerging vaccines against SARS-CoV-2 and their efficacy, including immune evasion by new variants and sub-variants. The impact of SARS-CoV-2 evolution on COVID-19 diagnostic testing is also examined. Collectively, global research and public health authorities, along with all sectors of society, need to better prepare against upcoming variants and future coronavirus outbreaks.
Collapse
Affiliation(s)
- Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Hern Liang Liew
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Isra Ahmad Farouk
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | | | - Zheng Yao Low
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Julian W Tang
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Vincent T K Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Sunil K Lal
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
31
|
Apari P, Földvári G. Domestication and microbiome succession may drive pathogen spillover. Front Microbiol 2023; 14:1102337. [PMID: 37007505 PMCID: PMC10065160 DOI: 10.3389/fmicb.2023.1102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Emerging infectious diseases have posed growing medical, social and economic threats to humanity. The biological background of pathogen spillover or host switch, however, still has to be clarified. Disease ecology finds pathogen spillovers frequently but struggles to explain at the molecular level. Contrarily, molecular biological traits of host-pathogen relationships with specific molecular binding mechanisms predict few spillovers. Here we aim to provide a synthetic explanation by arguing that domestication, horizontal gene transfer even between superkingdoms as well as gradual exchange of microbiome (microbiome succession) are essential in the whole scenario. We present a new perspective at the molecular level which can explain the observations of frequent pathogen spillover events at the ecological level. This proposed rationale is described in detail, along with supporting evidence from the peer-reviewed literature and suggestions for testing hypothesis validity. We also highlight the importance of systematic monitoring of virulence genes across taxonomical categories and in the whole biosphere as it helps prevent future epidemics and pandemics. We conclude that that the processes of domestication, horizontal gene transfer and microbial succession might be important mechanisms behind the many spillover events driven and accelerated by climate change, biodiversity loss and globalization.
Collapse
Affiliation(s)
- Péter Apari
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Gábor Földvári
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Centre for Eco-Epidemiology, National Laboratory for Health Security, Budapest, Hungary
- *Correspondence: Gábor Földvári,
| |
Collapse
|
32
|
de Nies L, Galata V, Martin-Gallausiaux C, Despotovic M, Busi SB, Snoeck CJ, Delacour L, Budagavi DP, Laczny CC, Habier J, Lupu PC, Halder R, Fritz JV, Marques T, Sandt E, O'Sullivan MP, Ghosh S, Satagopam V, Krüger R, Fagherazzi G, Ollert M, Hefeng FQ, May P, Wilmes P. Altered infective competence of the human gut microbiome in COVID-19. MICROBIOME 2023; 11:46. [PMID: 36894986 PMCID: PMC9995755 DOI: 10.1186/s40168-023-01472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, including the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are unique to severe cases or a common effect of COVID-19. We used high-resolution systematic multi-omic analyses to profile the gut microbiome in asymptomatic-to-moderate COVID-19 individuals compared to a control group. RESULTS We found a striking increase in the overall abundance and expression of both virulence factors and antimicrobial resistance genes in COVID-19. Importantly, these genes are encoded and expressed by commensal taxa from families such as Acidaminococcaceae and Erysipelatoclostridiaceae, which we found to be enriched in COVID-19-positive individuals. We also found an enrichment in the expression of a betaherpesvirus and rotavirus C genes in COVID-19-positive individuals compared to healthy controls. CONCLUSIONS Our analyses identified an altered and increased infective competence of the gut microbiome in COVID-19 patients. Video Abstract.
Collapse
Affiliation(s)
- Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Valentina Galata
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camille Martin-Gallausiaux
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Milena Despotovic
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Chantal J Snoeck
- Clinical and Applied Virology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lea Delacour
- Luxembourg Centre for Systems Biomedicine, LCSB Operations, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Deepthi Poornima Budagavi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cédric Christian Laczny
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janine Habier
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paula-Cristina Lupu
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Scientific Central Services, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joëlle V Fritz
- Transversal Translation Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Taina Marques
- Translational Neuroscience Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Estelle Sandt
- Translational Medicine Operations Hub, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marc Paul O'Sullivan
- Translational Medicine Operations Hub, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Soumyabrata Ghosh
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Transversal Translation Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Translational Neuroscience Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Guy Fagherazzi
- Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg.
| |
Collapse
|
33
|
Yadav A, Pandey R. Viral infectious diseases severity: co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front Immunol 2022; 13:1056036. [PMID: 36532032 PMCID: PMC9755851 DOI: 10.3389/fimmu.2022.1056036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Humans have been challenged by infectious diseases for all of their recorded history, and are continually being affected even today. Next-generation sequencing (NGS) has enabled identification of, i) culture independent microbes, ii) emerging disease-causing pathogens, and iii) understanding of the genome architecture. This, in turn, has highlighted that pathogen/s are not a monolith, and thereby allowing for the differentiation of the wide-ranging disease symptoms, albeit infected by a primary pathogen. The conventional 'one disease - one pathogen' paradigm has been positively revisited by considering limited yet important evidence of the co-presence of multiple transcriptionally active microbes (TAMs), potential pathogens, in various infectious diseases, including the COVID-19 pandemic. The ubiquitous microbiota presence inside humans gives reason to hypothesize that the microbiome, especially TAMs, contributes to disease etiology. Herein, we discuss current evidence and inferences on the co-infecting microbes particularly in the diseases caused by the RNA viruses - Influenza, Dengue, and the SARS-CoV-2. We have highlighted that the specific alterations in the microbial taxonomic abundances (dysbiosis) is functionally connected to the exposure of primary infecting pathogen/s. The microbial presence is intertwined with the differential host immune response modulating differential disease trajectories. The microbiota-host interactions have been shown to modulate the host immune responses to Influenza and SARS-CoV-2 infection, wherein the active commensal microbes are involved in the generation of virus-specific CD4 and CD8 T-cells following the influenza virus infection. Furthermore, COVID-19 dysbiosis causes an increase in inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which might be one of the important predisposing factors for severe infection. Through this article, we aim to provide a comprehensive view of functional microbiomes that can have a significant regulatory impact on predicting disease severity (mild, moderate and severe), as well as clinical outcome (survival and mortality). This can offer fresh perspectives on the novel microbial biomarkers for stratifying patients for severe disease symptoms, disease prevention and augmenting treatment regimens.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
34
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
35
|
Jia T, Liu D, Bi X, Li M, Cai Z, Fu J, Liu Z, Wu P, Ke X, Jia A, Zhang G, Li G, Yang L. The AhR ligand phthiocol and vitamin K analogs as Pseudomonas aeruginosa quorum sensing inhibitors. Front Microbiol 2022; 13:896687. [PMID: 36187967 PMCID: PMC9515472 DOI: 10.3389/fmicb.2022.896687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) protein senses microbial-secreted metabolites to trigger the host's innate immune system. The Pseudomonas quinolone signal (PQS) and Mycobacterium tuberculosis (MTb) metabolite phthiocol (Pht) are both ligands of AhR with similar chemical structures. As PQS is an essential quorum-sensing molecule that regulates a wide range of virulence factors in Pseudomonas aeruginosa, we hypothesized that Pht and its analogs are potential P. aeruginosa quorum-sensing inhibitors (QSIs) with immune-modulating functions. In this study, we demonstrated that Pht was able to inhibit the P. aeruginosa pqs QS system and reduce both biofilm formation and the production of pyocyanin. Molecular docking analysis suggested that Pht competes with PQS at the binding site of its receptor, PqsR. An electrophoretic mobility shift assay confirmed the Pht-PqsR interaction and showed that Pht attenuated PqsR from binding to the pqsA promoter. Proteomic analysis showed that synthesis of the key pqs QS proteins decreased upon the addition of Pht to the bacterial cultures. Furthermore, Pht analogs vitamins K1 (Phylloquinone), K2 (Menaquinones), and K3 (Menadione) were also showed to inhibit the P. aeruginosa pqs QS system while able to activate the AhR signaling pathways. Our study suggests that the AhR ligands Pht and its vitamin K analogs are promising QSIs for the alternative treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Tianyuan Jia
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dongjing Liu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianbiao Bi
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Menglu Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiapeng Fu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Pengyao Wu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xue Ke
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Aiqun Jia
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
36
|
Rahim F, Amin S, Noor M, Ali B, Wahab A. Dengue Fever, Crimean-Congo Hemorrhagic Fever, and COVID-19 Triple Co-infection: Out of the Frying Pan Into the Fire. Cureus 2022; 14:e29028. [PMID: 36249653 PMCID: PMC9550205 DOI: 10.7759/cureus.29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/05/2022] Open
Abstract
In developing countries, infectious diseases are thriving due to poor hygiene, inadequate public health infrastructure, and socio-cultural factors. Generally, infections are due to a single pathogen, but due to the shared risk factors for transmission, co-infections are not uncommon. The severity and outcome of infections are adversely affected by co-infection. Co-infections present as diagnostic and therapeutic enigmas because of the complex interaction between different pathogens involved and distorted host responses. The southeast Asian region, particularly Pakistan, is known for unique combinations of different infections. We present a distinctive case of triple co-infection of dengue virus, Crimean-Congo hemorrhagic fever virus, and severe acute respiratory syndrome coronavirus-2. The index case was a 60-year-old gentleman who presented with fever, cough, shortness of breath, bruises, and hemoptysis. He had thrombocytopenia, deranged liver and renal function, coagulopathy, and infiltrates in both lung fields. Subsequent investigations revealed a positive polymerase chain reaction for ribonucleic acid of dengue virus, Crimean-Congo Hemorrhagic fever virus, and severe acute respiratory syndrome coronavirus-2. He received supportive treatment including antibiotics, blood products, ribavirin, and supplemental oxygen. He developed multi-organ failure and succumbed to the triple co-infection. This case will act as a wake-up call for clinicians, public health authorities, and infectious disease specialists to plan before the volcano of co-infections erupts.
Collapse
|
37
|
Hirata K, Watanabe K, Sasaki T, Yoshimasu T, Shimomura A, Ando N, Yanagawa Y, Mizushima D, Teruya K, Kikuchi Y, Oka S, Tsukada K. Unmasking latent extrapulmonary tuberculosis with newly diagnosed HIV-1 infection in a COVID-19 patient with prolonged fever. Oxf Med Case Reports 2022; 2022:omac079. [PMID: 35903623 PMCID: PMC9318900 DOI: 10.1093/omcr/omac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prolonged fever is a common symptom of COVID-19 infection. However, other febrile diseases continue during the pandemic. Herein, we report a COVID-19-infected patient with prolonged fever despite the lack of oxygen requirement, who was finally diagnosed with tuberculotic lymphadenitis and HIV-1 infection. All symptoms improved rapidly after the initiation of antituberculosis medications. Tuberculosis is an important differential diagnosis for patients with prolonged fever during the COVID-19 pandemic. It is possible that COVID-19 infection could serve to unmask latent infections via a cytokine storm.
Collapse
Affiliation(s)
- Kaiho Hirata
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Koji Watanabe
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Takeshi Sasaki
- 374th Medical Group , Yokota Air Force Base, Tokyo, Japan
| | - Takashi Yoshimasu
- Department of Obstetrics and Gynecology , Teine Keijinkai Hospital, Hokkaido, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine , Tokyo, Japan
| | - Naokatsu Ando
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Yasuaki Yanagawa
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Daisuke Mizushima
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Katsuji Teruya
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Yoshimi Kikuchi
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| | - Kunihisa Tsukada
- AIDS Clinical Center, National Center for Global Health and Medicine , Tokyo, Japan
| |
Collapse
|
38
|
Shirley K, Loftis JM. A spotlight on HCV and SARS-CoV-2 co-infection and brain function. Pharmacol Biochem Behav 2022; 217:173403. [PMID: 35561837 PMCID: PMC9088049 DOI: 10.1016/j.pbb.2022.173403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Kate Shirley
- Research & Development Service, VA Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Clinical Psychology PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer M Loftis
- Research & Development Service, VA Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Clinical Psychology PhD Program, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
39
|
Noor M, Rahim F, Amin S, Ullah R, Zafar S. A Patient With Fever, Loose Motions and Jaundice: Hickam’s Dictum or Occam's Razor. Cureus 2022; 14:e23295. [PMID: 35464514 PMCID: PMC9013503 DOI: 10.7759/cureus.23295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases like malaria, typhoid, leptospirosis, and dengue fever are the leading causes of morbidity and mortality in developing countries like Pakistan. Although rare, it is possible to have coinfection with organisms that are endemic in a region, causing diagnostic and therapeutic dilemmas. Leptospirosis is caused by Gram-negative spirochetes. Leptospira are widely distributed and are transmitted by contamination of water and food by the urine of infected animals like rodents. Leptospirosis is characterized by fever, body aches, abdominal pain, and hepatic and renal involvement. Laboratory abnormalities include cytopenia, elevated bilirubin, alanine aminotransferase, and abnormal renal function tests. Typhoid fever is caused by Salmonella typhi (S. typhi), which is transmitted by fecal contamination of drinking water and food items. The clinical manifestations of typhoid fever include fever, abdominal pain, and diarrhea. Laboratory abnormalities include cytopenia and mildly deranged liver function tests. A strain of S. typhi resistant to all antibiotics except azithromycin and carbapenems was isolated in 2016 in Pakistan. Most of the clinical manifestations and laboratory abnormalities of leptospirosis and typhoid fever overlap. There have been case reports of coinfection of S. typhi and Leptospira, but there is no report of coinfection of extensively drug-resistant (XDR) S. typhi and Leptospira. We present a case of a 20-year-old man with fever, loose motions, and jaundice from Peshawar, Pakistan who had coinfection of Leptospira and XDR S. typhi. The attending physicians should adopt Hickam’s dictum instead of Occam's razor approach.
Collapse
|
40
|
Venter F, Matthews KR, Silvester E. Parasite co-infection: an ecological, molecular and experimental perspective. Proc Biol Sci 2022; 289:20212155. [PMID: 35042410 PMCID: PMC8767208 DOI: 10.1098/rspb.2021.2155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laboratory studies of pathogens aim to limit complexity in order to disentangle the important parameters contributing to an infection. However, pathogens rarely exist in isolation, and hosts may sustain co-infections with multiple disease agents. These interact with each other and with the host immune system dynamically, with disease outcomes affected by the composition of the community of infecting pathogens, their order of colonization, competition for niches and nutrients, and immune modulation. While pathogen-immune interactions have been detailed elsewhere, here we examine the use of ecological and experimental studies of trypanosome and malaria infections to discuss the interactions between pathogens in mammal hosts and arthropod vectors, including recently developed laboratory models for co-infection. The implications of pathogen co-infection for disease therapy are also discussed.
Collapse
Affiliation(s)
- Frank Venter
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
41
|
J N, T H, J S. IPSC-derived models in Africa: An HIV perspective. Biochimie 2022; 196:153-160. [DOI: 10.1016/j.biochi.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022]
|