1
|
Oh SY, Kim DY, Lee KY, Ha DL, Kim TL, Kwon TG, Kim JW, Lee HJ, Choi SY, Hong SH. Streptococcus mutans-derived extracellular vesicles promote skin wound healing via tRNA cargo. J Nanobiotechnology 2025; 23:322. [PMID: 40296033 PMCID: PMC12036164 DOI: 10.1186/s12951-025-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The human oral cavity harbors a diverse microbiota, including Streptococcus species. Oral mucosal wounds heal rapidly, although the exact cause remains unclear. This study investigates the impact of Streptococcus mutans-derived extracellular vesicles (Sm EVs) on wound healing in both oral mucosal organoids and mouse skin. To explore whether microbial EV RNA cargo influences wound healing, RNA sequences from Sm EVs were identified, and the most abundant sequences were synthesized into oligomers and encapsulated in E. coli EVs (Ec EVs) for further in vivo testing. We assessed the role of Toll-like receptor 3 (TLR3) in the wound healing mechanism in TLR3 knockout (KO) mice. RESULTS Sm EVs significantly enhanced cell proliferation and migration in oral mucosa, with enhanced focal adhesion complex formation. Sm EVs improved wound healing in mouse dorsal skin compared to PBS controls. RNA sequencing revealed that bacterial tRNAs, particularly the tRNA-Met variant (Oligo 1), were the most abundant RNAs in Sm EVs. Ec EVs carrying Oligo 1 produced similar wound healing effects to Sm EVs in mucosal organoids and mouse dorsal skin. However, in TLR3 knockout mice, Oligo 1 did not improve wound healing. CONCLUSIONS This study highlights the role of Sm EVs, particularly their tRNA variants, in promoting skin wound healing through a TLR3-dependent mechanism. These findings suggest that EVs from oral commensal bacteria may offer therapeutic potential for chronic, non-healing skin wounds.
Collapse
Affiliation(s)
- Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong Yeon Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Kah Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dae-Lyong Ha
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Tae-Lyn Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
2
|
Qiu P, Jiang Q, Song H. Unveiling the hidden world of transfer RNA-derived small RNAs in inflammation. J Inflamm (Lond) 2024; 21:46. [PMID: 39533297 PMCID: PMC11556027 DOI: 10.1186/s12950-024-00418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly discovered class of small noncoding RNAs (sncRNAs) that include tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs). Following the development of high-throughput sequencing technology, an increasing number of tsRNAs have been discovered with vital functions in different physiological and pathophysiological processes. Extensive research has revealed that tsRNAs are involved in various diseases, such as cancers, autoimmune illnesses and other diseases. This review focuses on the role and significance of tsRNAs in inflammation, such as the regulation of substances including inflammatory inducers, inflammatory cells and inflammatory factors, which contribute to the pathogenesis of inflammation-related diseases. Moreover, we discuss in-depth the molecular pathogenic mechanisms of tsRNAs in inflammation-related diseases through different signaling pathways and assess their clinical value, providing new perspectives for the exploration of tsRNA functions and inflammation-related diseases.
Collapse
Affiliation(s)
- Peiru Qiu
- Health Science Center, Ningbo University, Ningbo, China
| | - Qi Jiang
- Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Haojun Song
- Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Department of Gastroenterology, Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Biobank, Ningbo, China.
| |
Collapse
|
3
|
Artamonov AA, Kondratov KA, Bystritsky EA, Nikitin YV, Velmiskina AA, Mosenko SV, Polkovnikova IA, Asinovskaya AY, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. Changes in the Repertoire of tRNA-Derived Fragments in Different Blood Cell Populations. Life (Basel) 2024; 14:1294. [PMID: 39459595 PMCID: PMC11509557 DOI: 10.3390/life14101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
tRNA-derived fragments function as markers in addition to playing the key role of signalling molecules in a number of disorders. It is known that the repertoire of these molecules differs greatly in different cell types and varies depending on the physiological condition. The aim of our research was to compare the pattern of tRF expression in the main blood cell types and to determine how the composition of these molecules changes during COVID-19-induced cytokine storms. Erythrocytes, monocytes, lymphocytes, neutrophils, basophils and eosinophils from control donors and patients with severe COVID-19 were obtained by fluorescence sorting. We extracted RNA from FACS-sorted cells and performed NGS of short RNAs. The composition of tRNA-derived fragments was analysed by applying a semi-custom bioinformatic pipeline. In this study, we assessed the length and type distribution of tRFs and reported the 150 most prevalent tRF sequences across all cell types. Additionally, we demonstrated a significant (p < 0.05, fold change >16) change in the pattern of tRFs in erythrocytes (21 downregulated, 12 upregulated), monocytes (53 downregulated, 38 upregulated) and lymphocytes (49 upregulated) in patients with severe COVID-19. Thus, different blood cell types exhibit a significant variety of tRFs and react to the cytokine storm by dramatically changing their differential expression patterns. We suppose that the observed phenomenon occurs due to the regulation of nucleotide modifications and alterations in activity of various Rnases.
Collapse
Affiliation(s)
- Alexander A. Artamonov
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Kirov Military Medical Academy, St. Petersburg 194044, Russia; (Y.V.N.)
| | - Kirill A. Kondratov
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Kirov Military Medical Academy, St. Petersburg 194044, Russia; (Y.V.N.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Yuri V. Nikitin
- Kirov Military Medical Academy, St. Petersburg 194044, Russia; (Y.V.N.)
| | - Anastasiya A. Velmiskina
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey V. Mosenko
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Irina A. Polkovnikova
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Anna Yu. Asinovskaya
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Svetlana V. Apalko
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Andrey M. Ivanov
- Kirov Military Medical Academy, St. Petersburg 194044, Russia; (Y.V.N.)
| | - Sergey G. Scherbak
- City Hospital No. 40, St. Petersburg 197706, Russia; (A.A.A.)
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
5
|
Banović Đeri B, Nešić S, Vićić I, Samardžić J, Nikolić D. Benchmarking of five NGS mapping tools for the reference alignment of bacterial outer membrane vesicles-associated small RNAs. Front Microbiol 2024; 15:1401985. [PMID: 39101033 PMCID: PMC11294920 DOI: 10.3389/fmicb.2024.1401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Advances in small RNAs (sRNAs)-related studies have posed a challenge for NGS-related bioinformatics, especially regarding the correct mapping of sRNAs. Depending on the algorithms and scoring matrices on which they are based, aligners are influenced by the characteristics of the dataset and the reference genome. These influences have been studied mainly in eukaryotes and to some extent in prokaryotes. However, in bacteria, the selection of aligners depending on sRNA-seq data associated with outer membrane vesicles (OMVs) and the features of the corresponding bacterial reference genome has not yet been investigated. We selected five aligners: BBmap, Bowtie2, BWA, Minimap2 and Segemehl, known for their generally good performance, to test them in mapping OMV-associated sRNAs from Aliivibrio fischeri to the bacterial reference genome. Significant differences in the performance of the five aligners were observed, resulting in differential recognition of OMV-associated sRNA biotypes in A. fischeri. Our results suggest that aligner(s) should not be arbitrarily selected for this task, which is often done, as this can be detrimental to the biological interpretation of NGS analysis results. Since each aligner has specific advantages and disadvantages, these need to be considered depending on the characteristics of the input OMV sRNAs dataset and the corresponding bacterial reference genome to improve the detection of existing, biologically important OMV sRNAs. Until we learn more about these dependencies, we recommend using at least two, preferably three, aligners that have good metrics for the given dataset/bacterial reference genome. The overlapping results should be considered trustworthy, yet their differences should not be dismissed lightly, but treated carefully in order not to overlook any biologically important OMV sRNA. This can be achieved by applying the intersect-then-combine approach. For the mapping of OMV-associated sRNAs of A. fischeri to the reference genome organized into two circular chromosomes and one circular plasmid, containing copies of sequences with rRNA- and tRNA-related features and no copies of sequences with protein-encoding features, if the aligners are used with their default parameters, we advise avoiding Segemehl, and recommend using the intersect-then-combine approach with BBmap, BWA and Minimap2 to improve the potential for discovery of biologically important OMV-associated sRNAs.
Collapse
Affiliation(s)
- Bojana Banović Đeri
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sofija Nešić
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivan Vićić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Samardžić
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Nikolić
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Li Z, Barnaby R, Nymon A, Roche C, Koeppen K, Ashare A, Hogan DA, Gerber SA, Taatjes DJ, Hampton TH, Stanton BA. P. aeruginosa tRNA-fMet halves secreted in outer membrane vesicles suppress lung inflammation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2024; 326:L574-L588. [PMID: 38440830 PMCID: PMC11380944 DOI: 10.1152/ajplung.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Carolyn Roche
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Pulmonary and Critical Care Medicine, Dartmouth Health Medical Center, Lebanon, New Hampshire, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Scott A Gerber
- Dartmouth Health Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
7
|
Li Z, Barnaby R, Nymon A, Roche C, Koeppen K, Ashare A, Hogan DA, Gerber SA, Taatjes DJ, Hampton TH, Stanton BA. P. aeruginosa tRNA-fMet halves secreted in outer membrane vesicles suppress lung inflammation in Cystic Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578737. [PMID: 38352468 PMCID: PMC10862835 DOI: 10.1101/2024.02.03.578737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa . The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lung, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection. New and noteworthy The experiments in this report identify a novel mechanim whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet haves in OMVs secreted by P. aeruginiosa , which reduced the OMV-LPS induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF. Graphical abstract The anti-inflammatory effect of tobramycin mediated by 5' tRNA-fMet halves secreted in P. aeruginosa OMVs. (A) P. aeruginosa colonizes the CF lungs and secrets OMVs. OMVs diffuse through the mucus layer overlying bronchial epithelial cells and induce IL-8 secretion, which recruits neutrophils that causes lung damage. ( B ) Tobramycin increases 5' tRNA-fMet halves in OMVs secreted by P. aeruginosa . 5' tRNA-fMet halves are delivered into host cells after OMVs fuse with lipid rafts in CF-HBEC and down-regulate protein expression of MAPK10, IKBKG, and EP300, which suppresses IL-8 secretion and neutrophils in the lungs. A reduction in neutrophils in CF BALF is predicted to improve lung function and decrease lung damage.
Collapse
|
8
|
Sarkar S, Barnaby R, Nymon AB, Taatjes DJ, Kelley TJ, Stanton BA. Extracellular vesicles secreted by primary human bronchial epithelial cells reduce Pseudomonas aeruginosa burden and inflammation in cystic fibrosis mouse lung. Am J Physiol Lung Cell Mol Physiol 2024; 326:L164-L174. [PMID: 38084406 PMCID: PMC11279747 DOI: 10.1152/ajplung.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Cystic fibrosis (CF) results in a reduction in the volume of airway surface liquid, increased accumulation of viscous mucus, persistent antibiotic-resistant lung infections that cause chronic inflammation, and a decline in lung function. More than 50% of adults with CF are chronically colonized by Pseudomonas aeruginosa (P. aeruginosa), the primary reason for morbidity and mortality in people with CF (pwCF). Although highly effective modulator therapy (HEMT) is an important part of disease management in CF, HEMT does not eliminate P. aeruginosa or lung inflammation. Thus, new treatments are required to reduce lung infection and inflammation in CF. In a previous in vitro study, we demonstrated that primary human bronchial epithelial cells (HBECs) secrete extracellular vesicles (EVs) that block the ability of P. aeruginosa to form biofilms by reducing the abundance of several proteins necessary for biofilm formation as well as enhancing the sensitivity of P. aeruginosa to β-lactam antibiotics. In this study, using a CF mouse model of P. aeruginosa infection, we demonstrate that intratracheal administration of EVs secreted by HBEC reduced P. aeruginosa lung burden and several proinflammatory cytokines including IFN-γ, TNF-α, and MIP-1β in bronchoalveolar lavage fluid (BALF), even in the absence of antibiotics. Moreover, EVs decreased neutrophils in BALF. Thus, EVs secreted by HBEC reduce the lung burden of P. aeruginosa, decrease inflammation, and reduce neutrophils in a CF mouse model. These results suggest that HBEC via the secretion of EVs may play an important role in the immune response to P. aeruginosa lung infection.NEW & NOTEWORTHY Our findings show that extracellular vesicles secreted by primary human bronchial epithelial cells significantly reduce Pseudomonas aeruginosa burden, inflammation, and weight loss in a cystic fibrosis mouse model of infection.
Collapse
Affiliation(s)
- Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Amanda B Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| |
Collapse
|
9
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
10
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Vill AC, Rice EJ, De Vlaminck I, Danko CG, Brito IL. Precision run-on sequencing (PRO-seq) for microbiome transcriptomics. Nat Microbiol 2024; 9:241-250. [PMID: 38172625 PMCID: PMC11059318 DOI: 10.1038/s41564-023-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Bacteria respond to environmental stimuli through precise regulation of transcription initiation and elongation. Bulk RNA sequencing primarily characterizes mature transcripts, so to identify actively transcribed loci we need to capture RNA polymerase (RNAP) complexed with nascent RNA. However, such capture methods have only previously been applied to culturable, genetically tractable organisms such as E. coli and B. subtilis. Here we apply precision run-on sequencing (PRO-seq) to profile nascent transcription in cultured E. coli and diverse uncultured bacteria. We demonstrate that PRO-seq can characterize the transcription of small, structured, or post-transcriptionally modified RNAs, which are often absent from bulk RNA-seq libraries. Applying PRO-seq to the human microbiome highlights taxon-specific RNAP pause motifs and pause-site distributions across non-coding RNA loci that reflect structure-coincident pausing. We also uncover concurrent transcription and cleavage of CRISPR guide RNAs and transfer RNAs. We demonstrate the utility of PRO-seq for exploring transcriptional dynamics in diverse microbial communities.
Collapse
Affiliation(s)
- Albert C Vill
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Schemiko Almeida K, Rossi SA, Alves LR. RNA-containing extracellular vesicles in infection. RNA Biol 2024; 21:37-51. [PMID: 39589334 PMCID: PMC11601058 DOI: 10.1080/15476286.2024.2431781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Kayo Schemiko Almeida
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Suélen Andreia Rossi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
13
|
Shavkunov KS, Markelova NY, Glazunova OA, Kolzhetsov NP, Panyukov VV, Ozoline ON. The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli. Int J Mol Sci 2023; 24:12960. [PMID: 37629141 PMCID: PMC10455298 DOI: 10.3390/ijms241612960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria.
Collapse
Affiliation(s)
- Konstantin S. Shavkunov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Yu. Markelova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga A. Glazunova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikolay P. Kolzhetsov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valery V. Panyukov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
14
|
Abstract
Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.
Collapse
Affiliation(s)
- Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Phillip Sweet
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
15
|
Platt MP, Lin YH, Penix T, Wiscovitch-Russo R, Vashee I, Mares CA, Rosch JW, Yu Y, Gonzalez-Juarbe N. A multiomics analysis of direct interkingdom dynamics between influenza A virus and Streptococcus pneumoniae uncovers host-independent changes to bacterial virulence fitness. PLoS Pathog 2022; 18:e1011020. [PMID: 36542660 PMCID: PMC9815659 DOI: 10.1371/journal.ppat.1011020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/05/2023] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.
Collapse
Affiliation(s)
- Maryann P. Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Trevor Penix
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Isha Vashee
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Chris A. Mares
- Department of Life Sciences, Texas A&M University-San Antonio, Texas, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
16
|
Diallo I, Ho J, Lalaouna D, Massé E, Provost P. RNA Sequencing Unveils Very Small RNAs With Potential Regulatory Functions in Bacteria. Front Mol Biosci 2022; 9:914991. [PMID: 35720117 PMCID: PMC9203972 DOI: 10.3389/fmolb.2022.914991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species capable of modulating the microRNA from which they derive prompted us to challenge this dogma and, by expanding the window of RNA sizes down to 8 nt, to confirm the existence of functional very small RNAs (vsRNAs <16 nt). Here we report the detailed profiling of vsRNAs in Escherichia coli, E. coli-derived outer membrane vesicles (OMVs) and five other bacterial strains (Pseudomonas aeruginosa PA7, P. aeruginosa PAO1, Salmonella enterica serovar Typhimurium 14028S, Legionella pneumophila JR32 Philadelphia-1 and Staphylococcus aureus HG001). vsRNAs of 8–15 nt in length [RNAs (8-15 nt)] were found to be more abundant than RNAs of 16–30 nt in length [RNAs (16–30 nt)]. vsRNA biotypes were distinct and varied within and across bacterial species and accounted for one third of reads identified in the 8–30 nt window. The tRNA-derived fragments (tRFs) have appeared as a major biotype among the vsRNAs, notably Ile-tRF and Ala-tRF, and were selectively loaded in OMVs. tRF-derived vsRNAs appear to be thermodynamically stable with at least 2 G-C basepairs and stem-loop structure. The analyzed tRF-derived vsRNAs are predicted to target several human host mRNAs with diverse functions. Bacterial vsRNAs and OMV-derived vsRNAs could be novel players likely modulating the intricate relationship between pathogens and their hosts.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jeffrey Ho
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Patrick Provost,
| |
Collapse
|
17
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
18
|
Wilson B, Dutta A. Function and Therapeutic Implications of tRNA Derived Small RNAs. Front Mol Biosci 2022; 9:888424. [PMID: 35495621 PMCID: PMC9043108 DOI: 10.3389/fmolb.2022.888424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
tRNA derived small RNAs are mainly composed of tRNA fragments (tRFs) and tRNA halves (tiRs). Several functions have been attributed to tRFs and tiRs since their initial characterizations, spanning all aspects of regulation of the Central Dogma: from nascent RNA silencing, to post-transcriptional gene silencing, and finally, to translational regulation. The length distribution, sequence diversity, and multifaceted functions of tRFs and tiRs positions them as attractive new models for small RNA therapeutics. In this review, we will discuss the principles of tRF biogenesis and function in order to highlight their therapeutic potential.
Collapse
Affiliation(s)
- Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
19
|
Boldrin F, Cioetto Mazzabò L, Lanéelle MA, Rindi L, Segafreddo G, Lemassu A, Etienne G, Conflitti M, Daffé M, Garzino Demo A, Manganelli R, Marrakchi H, Provvedi R. LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain. BMC Microbiol 2022; 22:85. [PMID: 35365094 PMCID: PMC8974105 DOI: 10.1186/s12866-022-02493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aminoacyl-phosphatidylglycerol (aaPG) synthases are bacterial enzymes that usually catalyze transfer of aminoacyl residues to the plasma membrane phospholipid phosphatidylglycerol (PG). The result is introduction of positive charges onto the cytoplasmic membrane, yielding reduced affinity towards cationic antimicrobial peptides, and increased resistance to acidic environments. Therefore, these enzymes represent an important defense mechanism for many pathogens, including Staphylococcus aureus and Mycobacterium tuberculosis (Mtb), which are known to encode for lysyl-(Lys)-PG synthase MprF and LysX, respectively. Here, we used a combination of bioinformatic, genetic and bacteriological methods to characterize a protein encoded by the Mtb genome, Rv1619, carrying a domain with high similarity to MprF-like domains, suggesting that this protein could be a new aaPG synthase family member. However, unlike homologous domains of MprF and LysX that are positioned in the cytoplasm, we predicted that the MprF-like domain in LysX2 is in the extracytoplasmic region. RESULTS Using genetic fusions to the Escherichia coli proteins PhoA and LacZ of LysX2, we confirmed this unique membrane topology, as well as LysX and MprF as benchmarks. Expression of lysX2 in Mycobacterium smegmatis increased cell resistance to human β-defensin 2 and sodium nitrite, enhanced cell viability and delayed biofilm formation in acidic pH environment. Remarkably, MtLysX2 significantly reduced the negative charge on the bacterial surface upon exposure to an acidic environment. Additionally, we found LysX2 orthologues in major human pathogens and in rapid-growing mycobacteria frequently associated with human infections, but not in environmental and non-pathogenic mycobacteria. CONCLUSIONS Overall, our data suggest that LysX2 is a prototype of a new class within the MprF-like protein family that likely enhances survival of the pathogenic species through its catalytic domain which is exposed to the extracytoplasmic side of the cell membrane and is required to decrease the negative charge on the bacterial surface through a yet uncharacterized mechanism.
Collapse
Affiliation(s)
| | | | - Marie-Antoinette Lanéelle
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Rindi
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marta Conflitti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alfredo Garzino Demo
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
20
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
21
|
Peng R, Santos HJ, Nozaki T. Transfer RNA-Derived Small RNAs in the Pathogenesis of Parasitic Protozoa. Genes (Basel) 2022; 13:286. [PMID: 35205331 PMCID: PMC8872473 DOI: 10.3390/genes13020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are newly identified non-coding small RNAs that have recently attracted attention due to their functional significance in both prokaryotes and eukaryotes. tsRNAs originated from the cleavage of precursor or mature tRNAs by specific nucleases. According to the start and end sites, tsRNAs can be broadly divided into tRNA halves (31-40 nucleotides) and tRNA-derived fragments (tRFs, 14-30 nucleotides). tsRNAs have been reported in multiple organisms to be involved in gene expression regulation, protein synthesis, and signal transduction. As a novel regulator, tsRNAs have also been identified in various protozoan parasites. The conserved biogenesis of tsRNAs in early-branching eukaryotes strongly suggests the universality of this machinery, which requires future research on their shared and potentially disparate biological functions. Here, we reviewed the recent studies of tsRNAs in several representative protozoan parasites including their biogenesis and the roles in parasite biology and intercellular communication. Furthermore, we discussed the remaining questions and potential future works for tsRNAs in this group of organisms.
Collapse
Affiliation(s)
| | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.P.); (H.J.S.)
| |
Collapse
|
22
|
Charbonnier M, González-Espinoza G, Kehl-Fie TE, Lalaouna D. Battle for Metals: Regulatory RNAs at the Front Line. Front Cell Infect Microbiol 2022; 12:952948. [PMID: 35865816 PMCID: PMC9294342 DOI: 10.3389/fcimb.2022.952948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metal such as iron, zinc, manganese, and nickel are essential elements for bacteria. These nutrients are required in crucial structural and catalytic roles in biological processes, including precursor biosynthesis, DNA replication, transcription, respiration, and oxidative stress responses. While essential, in excess these nutrients can also be toxic. The immune system leverages both of these facets, to limit bacterial proliferation and combat invaders. Metal binding immune proteins reduce the bioavailability of metals at the infection sites starving intruders, while immune cells intoxicate pathogens by providing metals in excess leading to enzyme mismetallation and/or reactive oxygen species generation. In this dynamic metal environment, maintaining metal homeostasis is a critical process that must be precisely coordinated. To achieve this, bacteria utilize diverse metal uptake and efflux systems controlled by metalloregulatory proteins. Recently, small regulatory RNAs (sRNAs) have been revealed to be critical post-transcriptional regulators, working in conjunction with transcription factors to promote rapid adaptation and to fine-tune bacterial adaptation to metal abundance. In this mini review, we discuss the expanding role for sRNAs in iron homeostasis, but also in orchestrating adaptation to the availability of other metals like manganese and nickel. Furthermore, we describe the sRNA-mediated interdependency between metal homeostasis and oxidative stress responses, and how regulatory networks controlled by sRNAs contribute to survival and virulence.
Collapse
Affiliation(s)
- Mathilde Charbonnier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | | | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana IL, United States.,Carl R. Woese Institute for Genomic Biology University of Illinois Urbana-Champaign, Urbana IL, United States
| | - David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| |
Collapse
|
23
|
Wu D, Wang L, Zhang Y, Bai L, Yu F. Emerging roles of pathogen-secreted host mimics in plant disease development. Trends Parasitol 2021; 37:1082-1095. [PMID: 34627670 DOI: 10.1016/j.pt.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
Plant pathogens and parasites use multiple virulence factors to successfully infect plants. While most plant-pathogen interaction studies focus on pathogen effectors and their functions in suppressing plant immunity or interfering with normal cellular processes, other virulence factors likely also contribute. Here we highlight another important strategy used by pathogens to promote virulence: secretion of mimics of host molecules, including peptides, phytohormones, and small RNAs, which play diverse roles in plant development and stress responses. Pathogen-secreted mimics hijack the host endogenous signaling pathways, thereby modulating host cellular functions to the benefit of the pathogen and promoting infection. Understanding the mechanisms of pathogen-secreted host mimics will expand our knowledge of host-pathogen coevolution and interactions, while providing new targets for plant disease control.
Collapse
Affiliation(s)
- Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
24
|
Extracellular Vesicles and Host-Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA. Genes (Basel) 2021; 12:genes12071010. [PMID: 34208860 PMCID: PMC8303656 DOI: 10.3390/genes12071010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
The focus of this brief review is to describe the role of noncoding regulatory RNAs, including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian (human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells, and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection. Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus, as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication between bacteria and mammalian (human) host cells. However, additional research is necessary to elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate inter-kingdom communication.
Collapse
|