1
|
Tskhay F, Köbsch C, Elena AX, Bengtsson-Palme J, Berendonk TU, Klümper U. Fish are poor sentinels for surveillance of riverine antimicrobial resistance. One Health 2025; 20:101026. [PMID: 40236740 PMCID: PMC11999348 DOI: 10.1016/j.onehlt.2025.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Effective surveillance of antimicrobial resistance (AMR) in the environment is crucial for assessing the human and animal health risk of AMR pollution. Wastewater treatment plants (WWTPs) are one of the main sources of AMR pollutants discharged into water bodies. One important factor for assessing the risks associated with such pollution is the colonization potential of the resistant bacteria (ARB) and resistance genes (ARGs) from the environment into human or animal microbiomes upon exposure. This study explores whether fish can act as sentinels for surveillance of AMR pollution in general and specifically the human colonization potential of ARB in rivers impacted by WWTP effluents. Two riverine fish species, Brown trout, and European bullhead, were sampled up- and downstream a German WWTP. The two fish species were chosen due to their different lifestyles: Trout are mainly actively swimming in the water phase, while bullheads are sedentary and river sediment-associated. The bacterial microbiomes and resistomes of fish gills, skin, and feces were compared with those of the respective river water and sediment up- and downstream of the WWTP. Microbiomes of both fish mirrored the changes in river water and sediment downstream of the WWTP, with significant shifts in bacterial community composition, particularly an increase in Proteobacteria and Verrucomicrobia. However, increases in ARG abundances observed in water and sediment downstream of the WWTP were not reflected in any of the fish-associated resistomes. This indicates that while the fish microbiome is sensitive to environmental changes, resistomes of poikilothermic animals such as fish are less responsive to colonization by ARB originating from WWTPs and may not serve as effective sentinels for assessing AMR pollution and colonization risks in freshwater environments. This study highlights the complexity of using wildlife as indicators for environmental AMR pollution and suggests that other species are better suited for surveillance efforts.
Collapse
Affiliation(s)
- Faina Tskhay
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Christoph Köbsch
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Alan X. Elena
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenbureg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Sweden
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| |
Collapse
|
2
|
dos Santos GS, Sellera FP, Furlan JPR, Ferreira Neto JS, Heinemann MB. The ecological threat posed by invasive species as silent carriers of global priority bacteria to wildlife. One Health 2025; 20:101043. [PMID: 40331078 PMCID: PMC12051059 DOI: 10.1016/j.onehlt.2025.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
•Invasive species can act as silent carriers of multidrug-resistant bacterial species.•Invasive species in natural environments without predators can amplify the spread of antimicrobial resistance.•Global data on WHO priority bacteria and antimicrobial resistance in invasive species are provided.•Epidemiological surveillance of antimicrobial resistance in invasive species is discussed.
Collapse
Affiliation(s)
- Gabriel Siqueira dos Santos
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fábio Parra Sellera
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
- Faculdade de Medicina Veterinária, Universidade Metropolitana de Santos, Santos, Brazil
| | - João Pedro Rueda Furlan
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Soares Ferreira Neto
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Smoglica C, Carcagnì A, Angelucci S, Di Tana F, Marsilio F, López-Olvera JR, Di Francesco CE. Systematic review and meta-analysis of antimicrobial resistant bacteria in free-ranging wild mammals. BMC Vet Res 2025; 21:150. [PMID: 40050801 PMCID: PMC11887149 DOI: 10.1186/s12917-025-04548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Bacterial antimicrobial resistance is a significant global threat to public health, closely linked to the misuse of antimicrobials in human and veterinary medicine, aquaculture, and agriculture. The consequences of antimicrobial resistance overcome species boundaries and require a holistic approach for mitigation actions. The study of antimicrobial resistance in wildlife is thus increasingly relevant to understand the spread of antimicrobial resistance in the environment and the animal community, as well as to investigate the role of wildlife either as a carrier, reservoir, spillover, or indicator of antimicrobial resistance. The aim of this study is to describe the prevalence and type of antimicrobial resistance in bacterial isolates from wild mammals through systematic review and meta-analysis of the available literature, following the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. RESULTS Out of 5052 collected documents, 3795 were screened, and finally 139 studies on antimicrobial resistance in free-ranging wild mammals were included in the meta-analysis. The studies covered 37 countries, mostly European. The Enterobacterales Escherichia coli and Salmonella spp., as well as Campylobacter spp., were the most frequently targeted bacterial species, mainly in the Artiodactyla order and specifically in the Suidae and Cervidae families. Low to moderate prevalences of antimicrobial resistance were found in all the continents, countries, bacteria, host taxa, and antimicrobials included in the meta-analysis, even for critically important antimicrobials as defined by the World Health Organisation, with higher values in Africa and Asia, in carnivores, and in animal species with high adaptability to diverse habitats. CONCLUSION This meta-analysis showed that antimicrobial resistance in wild mammals is widespread and variable according to taxonomy, trophic source, and geographic location. The meta-analysis highlighted methodological gaps that need to be addressed to improve the interpretation and conclusions obtained from the data. Genetic analyses on antimicrobial resistance and population ecological data should be included in future analysis to achieve a standardised methodology and overcome current limitations. To date, wildlife appears to be an environmental indicator of antimicrobial resistance and should be included in antimicrobial resistance surveillance plans not only because this sentinel role but also to monitor potential spill-back to livestock and/or humans.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy.
| | - Antonella Carcagnì
- Epidemiology and Biostatistics Facility, G-STeP Generator, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Angelucci
- Wildlife Research Center, Maiella National Park, Caramanico Terme, 65023, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Caramanico Terme, 65023, Italy
| | - Fulvio Marsilio
- Department of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | - Jorge Ramón López-Olvera
- Wildlife Ecology and Health Groupand, Departament de MedicinaICirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193, Spain
| | | |
Collapse
|
4
|
Manzanares-Pedrosa A, Ayats T, Antilles N, Sabaté S, Planell R, González R, Montalvo T, Cerdà-Cuéllar M. Urban yellow-legged gull (Larus michahellis) and peri-urban Audouin's gull (Larus audouinii) as a source of Campylobacter and Salmonella of public health relevance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178227. [PMID: 39765169 DOI: 10.1016/j.scitotenv.2024.178227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Campylobacter spp. and Salmonella spp. are the leading cause of human enteric infections in the European Union. Some gull species act as reservoirs and play an important role in the epidemiology of these zoonotic agents. To gain insight into Campylobacter and Salmonella epidemiology we studied colonies of Audouin's gull (Larus audouinii) and yellow-legged gull (Larus michahellis) in Barcelona metropolitan area, Catalonia (north-eastern Spain). We assessed the occurrence, genetic diversity, virulence potential, and antimicrobial susceptibility of Campylobacter and Salmonella isolates recovered from gull faeces in different time periods within 2009-2018. The occurrence of Campylobacter was higher compared to Salmonella in both gull species. Also, the occurrence of both pathogens was significantly higher in Audouin's gull (45 % for Campylobacter, 20 % for Salmonella), than in yellow-legged gull (13 % and 7 %, respectively). All but one individual carried C. jejuni; the remaining positive yellow-legged gull carried C. lari. Salmonella serovar Typhimurium (including its monophasic variant) was the most frequent in both hosts followed by ser. Bredeney. Other serovars frequently associated with human salmonellosis (Infantis, London, Virchow) were only isolated from yellow-legged gulls. Multilocus Sequence Typing analyses showed that yellow-legged gull and not Audouin's gull carried several Campylobacter genotypes associated with human enteritis. Campylobacter isolates from both gull species revealed a high virulence potential, as opposed to Salmonella isolates which showed a lower prevalence of virulence-associated genes, particularly in Audouin's gull. Overall, a moderate to high frequency of antimicrobial resistance (including multidrug resistance) was found in both pathogens from both gull species. Campylobacter and Salmonella from yellow-legged gull showed a higher frequency of isolates resistant to antimicrobials of relevance in human medicine. Overall, our results highlight the potential public health threat associated with these gull species, particularly yellow-legged gull, in densely human populated areas.
Collapse
Affiliation(s)
- Alicia Manzanares-Pedrosa
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain
| | - Teresa Ayats
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain
| | - Noelia Antilles
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain
| | - Sara Sabaté
- Agència de Salut Pública de Barcelona, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77 - 79, 08041 Barcelona, Spain
| | - Raquel Planell
- Agència de Salut Pública de Barcelona, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77 - 79, 08041 Barcelona, Spain
| | | | - Tomás Montalvo
- Agència de Salut Pública de Barcelona, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Marta Cerdà-Cuéllar
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain.
| |
Collapse
|
5
|
Doyle C, Wall K, Fanning S, McMahon BJ. Making sense of sentinels: wildlife as the One Health bridge for environmental antimicrobial resistance surveillance. J Appl Microbiol 2025; 136:lxaf017. [PMID: 39805713 DOI: 10.1093/jambio/lxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Abstract
Antimicrobial resistance (AMR), arising from decades of imprudent anthropogenic use of antimicrobials in healthcare and agriculture, is considered one of the greatest One Health crises facing healthcare globally. Antimicrobial pollutants released from human-associated sources are intensifying resistance evolution in the environment. Due to various ecological factors, wildlife interact with these polluted ecosystems, acquiring resistant bacteria and genes. Although wildlife are recognized reservoirs and disseminators of AMR in the environment, current AMR surveillance systems still primarily focus on clinical and agricultural settings, neglecting this environmental dimension. Wildlife can serve as valuable sentinels of AMR in the environment, reflecting ecosystem health, and the effectiveness of mitigation strategies. This review explores knowledge gaps surrounding the ecological factors influencing AMR acquisition and dissemination in wildlife, and highlights limitations in current surveillance systems and policy instruments that do not sufficiently address the environmental component of AMR. We discuss the underutilized opportunity of using wildlife as sentinel species in a holistic, One Health-centred AMR surveillance system. By better integrating wildlife into systematic AMR surveillance and policy, and leveraging advances in high-throughput technologies, we can track and predict resistance evolution, assess the ecological impacts, and better understand the complex dynamics of environmental transmission of AMR across ecosystems.
Collapse
Affiliation(s)
- Caoimhe Doyle
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katie Wall
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Martín-Vélez V, Navarro J, Vazquez M, Navarro-Ramos MJ, Bonnedahl J, van Toor ML, Bustamante J, Green AJ. Dirty habits: potential for spread of antibiotic-resistance by black-headed gulls from waste-water treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66079-66089. [PMID: 39615007 DOI: 10.1007/s11356-024-35551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
Anthropogenic environments such as wastewater treatment plants (WWTPs) and landfills are sources of antimicrobial resistance (AMR). Black-headed gulls (Chroicocephalus ridibundus) frequently use WWTPs and may be vectors for AMR. We used GPS tracking data for 39 gulls for up to 8 months, combined with a shedding curve, to study sources and dispersal distances of AMR in Iberia. The gulls used 21 different WWTPs (684 visits) and three landfills (21 visits). Areas of high risk of AMR dissemination were an average of 25 km from the infection source, with a maximum of 500 km. Solar saltworks and natural waterbodies were particularly exposed to AMR dissemination, followed by agriculture, sports facilities, and tourist beaches. There was important variability between individual gulls in their habitat specialization, and which WWTPs they visited. Studying the spatial movements of gulls after visiting WWTPs and landfills helps pinpoint sensitive locations where pathogen transmission is most likely.
Collapse
Affiliation(s)
- Víctor Martín-Vélez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
- Departamento de Ciencias de La Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Manuel Vazquez
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| | - María J Navarro-Ramos
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
- Department of Infectious Diseases, Region Kalmar County, 391 85, Kalmar, Sweden
| | - Mariëlle L van Toor
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31, Kalmar, Sweden
| | - Javier Bustamante
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
7
|
Sabença C, Romero-Rivera M, Barbero-Herranz R, Sargo R, Sousa L, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Torres C, Igrejas G, del Campo R, Poeta P. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet Sci 2024; 11:469. [PMID: 39453061 PMCID: PMC11512376 DOI: 10.3390/vetsci11100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (blaCTX-M-65, blaCTX-M-55, and blaEC-1982). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Mario Romero-Rivera
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Raquel Barbero-Herranz
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Roberto Sargo
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipe Silva
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- LxCRAS—Centro de Recuperação de Animais Silvestres de Lisboa, 1500-068 Lisboa, Portugal;
| | - Ana Carolina Abrantes
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Magalhães R, Abreu R, Pereira G, Cunha E, Silva E, Tavares L, Chambel L, Oliveira M. First Insights on Resistance and Virulence Potential of Escherichia coli from Captive Birds of Prey in Portugal. Antibiotics (Basel) 2024; 13:379. [PMID: 38786108 PMCID: PMC11117282 DOI: 10.3390/antibiotics13050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Captive birds of prey are often used for pest control in urban areas, while also participating in falconry exhibitions. Traveling across the country, these birds may represent a public health concern as they can host pathogenic and zoonotic agents and share the same environment as humans and synanthropic species. In this work, Escherichia coli from the cloacal samples of 27 captive birds of prey were characterized to determine their pathogenic potential. Isolates were clustered through ERIC-PCR fingerprinting, and the phylogenetic groups were assessed using a quadruplex PCR method. Their virulence and resistance profile against nine antibiotics were determined, as well as the isolates' ability to produce extended-spectrum β-lactamases (ESBLs). The 84 original isolates were grouped into 33 clonal types, and it was observed that more than half of the studied isolates belonged to groups D and B2. Most isolates presented gelatinase activity (88%), almost half were able to produce biofilm (45%), and some were able to produce α-hemolysin (18%). The isolates presented high resistance rates towards piperacillin (42%), tetracycline (33%), and doxycycline (30%), and 6% of the isolates were able to produce ESBLs. The results confirm the importance of these birds as reservoirs of virulence and resistance determinants that can be disseminated between wildlife and humans, stressing the need for more studies focusing on these animals.
Collapse
Affiliation(s)
- Rita Magalhães
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Raquel Abreu
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Gonçalo Pereira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Eva Cunha
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Elisabete Silva
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Luís Tavares
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Lélia Chambel
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Manuela Oliveira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (R.M.); (R.A.); (G.P.); (E.S.); (L.T.); (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
10
|
Gargano V, Gambino D, Oddo AM, Pizzo M, Sucato A, Cammilleri G, La Russa F, Di Pasquale ML, Parisi MG, Cassata G, Giangrosso G. Scolopax rusticola Carrying Enterobacterales Harboring Antibiotic Resistance Genes. Antibiotics (Basel) 2024; 13:234. [PMID: 38534669 DOI: 10.3390/antibiotics13030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
The Eurasian woodcock (Scolopax rusticola) belongs to those bird species that make systematic migratory flights in spring and autumn in search of favorable breeding and wintering areas. These specimens arrive in the Mediterranean Area from northeastern European countries during the autumn season. The purpose of this study was to assess whether woodcocks can carry antibiotic resistance genes (ARGs) along their migratory routes. Although the role of migratory birds in the spread of some zoonotic diseases (of viral and bacterial etiology) has been elucidated, the role of these animals in the spread of antibiotic resistance has not yet been clarified. In this study, we analyzed the presence of beta-lactam antibiotic resistance genes. The study was conducted on 69 strains from 60 cloacal swabs belonging to an equal number of animals shot during the 2022-2023 hunting season in Sicily, Italy. An antibiogram was performed on all strains using the microdilution method (MIC) and beta-lactam resistance genes were investigated. The strains tested showed no phenotypic resistance to any of the 13 antibiotics tested; however, four isolates of Enterobacter cloacae and three of Klebsiella oxytoca were found to carry the blaIMP-70, blaVIM-35, blaNDM-5 and blaOXA-1 genes. Our results confirm the importance of monitoring antimicrobial resistance among migratory animals capable of long-distance bacteria spread.
Collapse
Affiliation(s)
- Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | | | | | | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90100 Palermo, Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | |
Collapse
|
11
|
Sacristán-Soriano O, Jarma D, Sánchez MI, Romero N, Alonso E, Green AJ, Sànchez-Melsió A, Hortas F, Balcázar JL, Peralta-Sánchez JM, Borrego CM. Winged resistance: Storks and gulls increase carriage of antibiotic resistance by shifting from paddy fields to landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169946. [PMID: 38199372 DOI: 10.1016/j.scitotenv.2024.169946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Waterbirds are vectors for the dissemination of antimicrobial resistance across environments, with some species increasingly reliant on highly anthropized habitats for feeding. However, data on the impact of their feeding habits on the carriage of antibiotic resistance genes (ARGs) are still scarce. To fill this gap, we examined the microbiota (16S rRNA amplicon gene sequencing) and the prevalence of ARG (high-throughput qPCR of 47 genes) in faeces from white storks (Ciconia ciconia) and lesser black-backed gulls (Larus fuscus) feeding in highly (landfill) and less (paddy fields) polluted habitats. Faecal bacterial richness and diversity were higher in gulls feeding upon landfills and showed a greater abundance of potential pathogens, such as Staphylococcus. In contrast, faecal bacterial communities from storks were similar regardless of habitat preferences, maybe due to a less intense habitat use compared to gulls. In addition, birds feeding in the landfill carried a higher burden of ARGs compared to the surrounding soil and surface waters. Network analysis revealed strong correlations between ARGs and potential pathogens, particularly between tetM (resistance to tetracyclines), blaCMY (beta-lactam resistance), sul1 (sulfonamide resistance) and members of the genera Streptococcus, Peptostreptococcus, and Peptoclostridium. Our work demonstrates how transitioning from paddy fields to landfills fosters the carriage of ARGs and potential pathogens in the bird gut, shedding light on the ecological role of these avian vectors in antimicrobial resistance dissemination.
Collapse
Affiliation(s)
| | - Dayana Jarma
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain; Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Marta I Sánchez
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Noelia Romero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Sevilla, Spain
| | - Andy J Green
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | | | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain
| | - José Luis Balcázar
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain; Departamento de Zoología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Spain
| |
Collapse
|
12
|
Smoglica C, Graziosi G, De Angelis D, Lupini C, Festino A, Catelli E, Vergara A, Di Francesco CE. Wild Birds as Drivers of Salmonella Braenderup and Multidrug Resistant Bacteria in Wetlands of Northern Italy. Transbound Emerg Dis 2024; 2024:6462849. [PMID: 40303189 PMCID: PMC12016999 DOI: 10.1155/2024/6462849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 05/02/2025]
Abstract
In this study, the antimicrobial resistance profiles of bacterial strains obtained from wild avian species recovered in wetlands of Northern Italy were described. Cloacal swabs collected from 67 aquatic birds, hunted or found dead in two private hunting grounds, were submitted to microbiological investigations and antimicrobial susceptibility testing using the Vitek 2 system, while specific PCR protocols were applied to screen for genes associated with the resistance. One hundred fifty-seven bacterial strains were characterized. The most frequent isolates were Enterococcus faecalis (36/157; 22.9%) and Escherichia coli (23/157; 14.6%). Seventy-seven isolates (77/157; 49%) were resulted resistant to at least one antibiotic, and eight isolates (8/157; 5%) were classified as multidrug resistant bacteria. Resistance for critically important antibiotics (linezolid, vancomycin, carbapenems, third-generation cephalosporins, and fluoroquinolones) was also described. Salmonella spp. was obtained from a Eurasian teal (Anas crecca), and it was subsequently analyzed by whole genome sequencing, revealing the serovar Salmonella Braenderup ST22. The phylogenetic analysis, performed with all ST22 described in 2021 and 2022, placed the strain under study in a large clade associated with human salmonellosis cases. These results suggest that migratory aquatic birds may be considered as relevant carriers of critically important antibiotic resistant bacteria and zoonotic food-borne pathogens potentially able to impact public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Damiano De Angelis
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Annarita Festino
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | | |
Collapse
|
13
|
Rodrigues IC, Cristal AP, Ribeiro-Almeida M, Silveira L, Prata JC, Simões R, Vaz-Pires P, Pista Â, Martins da Costa P. Gulls in Porto Coastline as Reservoirs for Salmonella spp.: Findings from 2008 and 2023. Microorganisms 2023; 12:59. [PMID: 38257887 PMCID: PMC10819206 DOI: 10.3390/microorganisms12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Gulls act as intermediaries in the exchange of microorganisms between the environment and human settlements, including Salmonella spp. This study assessed the antimicrobial resistance and molecular profiles of Salmonella spp. isolates obtained from fecal samples of gulls in the city of Porto, Portugal, in 2008 and 2023 and from water samples in 2023. Antimicrobial susceptibility profiling revealed an improvement in the prevalence (71% to 17%) and antimicrobial resistance between the two collection dates. Two isolate collections from both 2008 and 2023 underwent serotyping and whole-genome sequencing, revealing genotypic changes, including an increased frequency in the monophasic variant of S. Typhimurium. qacE was identified in 2008 and 2023 in both water and fecal samples, with most isolates exhibiting an MDR profile. The most frequently observed plasmid types were IncF in 2008 (23%), while IncQ1 predominated in 2023 (43%). Findings suggest that Salmonella spp. circulate between humans, animals, and the environment. However, the genetic heterogeneity among the isolates from the gulls' feces and the surface water may indicate a complex ecological and evolutionary dynamic shaped by changing conditions. The observed improvements are likely due to measures to reduce biological contamination and antimicrobial resistance. Nevertheless, additional strategies must be implemented to reduce the public health risk modeled by the dissemination of pathogens by gulls.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Paula Cristal
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Marisa Ribeiro-Almeida
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Leonor Silveira
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Joana C. Prata
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Roméo Simões
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Paulo Vaz-Pires
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ângela Pista
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Paulo Martins da Costa
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
15
|
Liao F, Xia Y, Gu W, Fu X, Yuan B. Comparative analysis of shotgun metagenomics and 16S rDNA sequencing of gut microbiota in migratory seagulls. PeerJ 2023; 11:e16394. [PMID: 37941936 PMCID: PMC10629391 DOI: 10.7717/peerj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Background Shotgun metagenomic and 16S rDNA sequencing are commonly used methods to identify the taxonomic composition of microbial communities. Previously, we analysed the gut microbiota and intestinal pathogenic bacteria configuration of migratory seagulls by using 16S rDNA sequencing and culture methods. Methods To continue in-depth research on the gut microbiome and reveal the applicability of the two methods, we compared the metagenome and 16S rDNA amplicon results to further demonstrate the features of this animal. Results The number of bacterial species detected by metagenomics gradually increased from the phylum to species level, consistent with 16S rDNA sequencing. Several taxa were commonly shared by both sequencing methods. However, Escherichia, Shigella, Erwinia, Klebsiella, Salmonella, Escherichia albertii, Shigella sonnei, Salmonella enterica, and Shigella flexneri were unique taxa for the metagenome compared with Escherichia-Shigella, Hafnia-Obesumbacterium, Catellicoccus marimammalium, Lactococcus garvieae, and Streptococcus gallolyticus for 16S rDNA sequencing. The largest differences in relative abundance between the two methods were identified at the species level, which identified many pathogenic bacteria to humans using metagenomic sequencing. Pearson correlation analysis indicated that the correlation coefficient for the two methods gradually decreased with the refinement of the taxonomic levels. The high consistency of the correlation coefficient was identified at the genus level for the beta diversity of the two methods. Conclusions In general, relatively consistent patterns and reliability could be identified by both sequencing methods, but the results varied following the refinement of taxonomic levels. Metagenomic sequencing was more suitable for the discovery and detection of pathogenic bacteria of gut microbiota in seagulls. Although there were large differences in the numbers and abundance of bacterial species of the two methods in terms of taxonomic levels, the patterns and reliability results of the samples were consistent.
Collapse
Affiliation(s)
- Feng Liao
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yilan Xia
- Department of Infectious Diseases and Hepatology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Wenpeng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, Yunnan, China
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, Yunnan, China
| | - Bing Yuan
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
16
|
Rojas-Sereno ZE, Streicker DG, Suarez-Yana T, Lineros M, Yung V, Godreuil S, Benavides JA. Detection of antimicrobial-resistant Enterobacterales in insectivorous bats from Chile. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231177. [PMID: 38026036 PMCID: PMC10645110 DOI: 10.1098/rsos.231177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Enterobacterales of clinical importance for humans and domestic animals are now commonly detected among wildlife worldwide. However, few studies have investigated their prevalence among bats, particularly in bat species living near humans. In this study, we assessed the occurrence of Extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-resistant (CR) Enterobacterales in rectal swabs of bats submitted to the Chilean national rabies surveillance program from 2021 to 2022. From the 307 swabs screened, 47 (15%) harboured cefotaxime-resistant Enterobacterales. Bats carrying these bacteria originated from 9 out of the 14 Chilean regions. Most positive samples were obtained from Tadarida brasiliensis (n = 42), but also Lasiurus varius, L. cinereus and Histiotus macrotus. No Enterobacterales were resistant to imipenem. All ESBL-Enterobacterales were confirmed as Rahnella aquatilis by MALDI-TOF. No other ESBL or CR Enterobacterales were detected. To our knowledge, this is the first screening of antibiotic-resistant bacteria in wild bats of Chile, showing the bat faecal carriage of R. aquatilis naturally resistant to cephalosporins, but also including acquired resistance to important antibiotics for public health such as amoxicillin with clavulanic acid. Our results suggest unknown selective pressures on R. aquatilis, but low or no carriage of ESBL or CR Escherichia coli and Klebsiella spp. Future studies should assess the zoonotic and environmental implications of R. aquatilis, which are likely present in the guano left by bats roosting in human infrastructures.
Collapse
Affiliation(s)
- Zulma Esperanza Rojas-Sereno
- Centro de Investigación para la Sustentabilidad y Doctorado en Medicina de la Conservación /Facultad Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8320000, Chile
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Tania Suarez-Yana
- Centro de Investigación para la Sustentabilidad y Doctorado en Medicina de la Conservación /Facultad Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8320000, Chile
| | - Michelle Lineros
- Sección Rabia, Departamento Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago 8320000, Chile
| | - Verónica Yung
- Sección Rabia, Departamento Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago 8320000, Chile
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier 34295, France
- Laboratoire Mixte International, DRISA, IRD, Montpellier 34394, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier 34394, France
| | - Julio A. Benavides
- Centro de Investigación para la Sustentabilidad y Doctorado en Medicina de la Conservación /Facultad Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8320000, Chile
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier 34394, France
| |
Collapse
|
17
|
Martínez-Álvarez S, Châtre P, Cardona-Cabrera T, François P, Sánchez-Cano A, Höfle U, Zarazaga M, Madec JY, Haenni M, Torres C. Detection and genetic characterization of bla ESBL-carrying plasmids of cloacal Escherichia coli isolates from white stork nestlings (Ciconia ciconia) in Spain. J Glob Antimicrob Resist 2023; 34:186-194. [PMID: 37482121 DOI: 10.1016/j.jgar.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES This study aimed to characterize Escherichia coli isolates from cloacal samples of white stork nestlings, with a special focus on extended-spectrum β-lactamases (ESBLs)-producing E. coli isolates and their plasmid content. METHODS Cloacal samples of 88 animals were seeded on MacConkey-agar and chromogenic-ESBL plates to recover E. coli and ESBL-producing E. coli. Antimicrobial susceptibility was screened using the disc diffusion method, and the genotypic characterization was performed by polymerase chain reaction (PCR) and subsequent sequencing. S1 nuclease Pulsed-Field-Gel-Electrophoresis (PFGE), Southern blotting, and conjugation essays were performed on ESBL-producing E. coli, as well as whole-genome sequencing by short- and long-reads. The four blaESBL-carrying plasmids were completely sequenced. RESULTS A total of 113 non-ESBL-producing E. coli isolates were collected on antibiotic-free MacConkey-agar, of which 27 (23.9%) showed a multidrug-resistance (MDR) phenotype, mainly associated with β-lactam-phenicol-sulfonamide resistance (blaTEM/cmlA/floR/sul1/sul2/sul3). Moreover, four white stork nestlings carried ESBL-producing E. coli (4.5%) with the following characteristics: blaSHV-12/ST38-D, blaSHV-12/ST58-B1, blaCTX-M-1/ST162-B1, and blaCTX-M-32/ST155-B1. Whole-genome sequencing followed by Southern blot hybridizations on S1-PFGE gels in ESBL-positive isolates proved that the blaCTX-M-1 gene and one of the blaSHV-12 genes were carried by IncI1/pST3 plasmids, while the second blaSHV-12 gene and the blaCTX-M-32 gene were located on IncF plasmids. The two blaSHV-12 genes and the two blaCTX-M genes had similar but non-identical close genetic environments, as all four genes were flanked by a variety of insertion sequences. CONCLUSION The role played by several genetic platforms in the mobility of ESBL genes allows for interchangeability on a remarkably small scale (gene-plasmid-clones), which may support the spread of ESBL genes.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Alberto Sánchez-Cano
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
18
|
Saeed MA, Khan AU, Ehtisham-ul-Haque S, Waheed U, Qamar MF, Rehman AU, Nasir A, Zaman MA, Kashif M, Gonzalez JP, El-Adawy H. Detection and Phylogenetic Analysis of Extended-Spectrum β-Lactamase (ESBL)-Genetic Determinants in Gram-Negative Fecal-Microbiota of Wild Birds and Chicken Originated at Trimmu Barrage. Antibiotics (Basel) 2023; 12:1376. [PMID: 37760673 PMCID: PMC10525410 DOI: 10.3390/antibiotics12091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Extended-spectrum β-lactamases (ESBL) give rise to resistance against penicillin and cephalosporin antibiotics in multiple bacterial species. The present study was conducted to map genetic determinants and related attributes of ESBL-producing bacteria in three wild aquatic bird species and chickens at the "Trimmu Barrage" in district Jhang, Punjab province, Pakistan. To study the prevalence of ESBL-producing bacteria, a total of 280 representative samples were collected from wild bird species; cattle egrets (Bubulcus ibis), little egrets (Egretta garzetta) and common teals (Anas crecca) as well as from indigenous chickens (Gallus gallus domesticus) originating from a local wet market. The isolates were confirmed as ESBL producers using a double disc synergy test (DDST) and bacterial species were identified using API-20E and 20NE strips. A polymerase chain reaction (PCR) was used to detect ESBL genetic determinants and for genus identification via 16S rRNA gene amplification. A phenotypic antimicrobial susceptibility test was performed for ESBL-producing isolates against 12 clinically relevant antibiotics using the Kirby-Bauer disk diffusion susceptibility test. A phylogenetic tree was constructed for the sequence data obtained in this study and comparative sequence data obtained from GenBank. The overall prevalence of ESBL-producing bacteria was 34.64% (97/280). The highest percentage (44.28%; 31/70) of ESBL-producing bacteria was recovered from chickens (Gallus gallus domesticus), followed by little egrets (Egretta garzetta) (41.43%; 29/70), common teal (Anas crecca) (28.57%; 20/70) and cattle egrets (Bubulcus ibis) (24.28%; 17/70). Five different ESBL-producing bacteria were identified biochemically and confirmed via 16S rRNA gene sequencing, which included Escherichia coli (72; 74.23%), Enterobacter cloacae (11; 11.34%), Klebsiella pneumoniae (8; 8.25%), Salmonella enterica (4; 4.12%) and Pseudomonas aeruginosa (2; 2.06%). Based on PCR, the frequency of obtained ESBL genes in 97 isolates was blaCTX-M (51.55%), blaTEM (20.62%), blaOXA (6.18%) and blaSHV (2.06%). In addition, gene combinations blaCTX-M + blaTEM, blaTEM + blaOXA and blaCTX-M + blaSHV were also detected in 16.49%, 2.06% and 1.03% of isolates, respectively. The ESBL gene variation was significant (p = 0.02) in different bacterial species while non-significant in relation to different bird species (p = 0.85). Phylogenetic analysis of amino acid sequence data confirmed the existence of CTX-M-15 and TEM betalactamases. The average susceptibility of the antibiotics panel used was lowest for both Klebsiella pneumoniae (62.5% ± 24.42) and Salmonella enterica (62.5% ± 31.08) as compared to Enterobacter cloacae (65.90% ± 21.62), Pseudomonas aeruginosa (70.83% ± 33.42) and Escherichia coli (73.83% ± 26.19). This study provides insight into the role of aquatic wild birds as reservoirs of ESBL-producing bacteria at Trimmu Barrage, Punjab, Pakistan. Hence, active bio-surveillance and environment preservation actions are necessitated to curb antimicrobial resistance.
Collapse
Affiliation(s)
- Muhammad Adnan Saeed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Aman Ullah Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Syed Ehtisham-ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Muhammad Fiaz Qamar
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Aziz ur Rehman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Amar Nasir
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.N.); (M.K.)
| | - Muhammad Arfan Zaman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Muhammad Kashif
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.N.); (M.K.)
| | - Jean-Paul Gonzalez
- Department of Microbiology & Immunology, School of Medicine, Georgetown University, Washington, DC 20057, USA;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| |
Collapse
|
19
|
Fuentes-Castillo D, Castro-Tardón D, Esposito F, Neves I, Rodrigues L, Fontana H, Fuga B, Catão-Dias JL, Lincopan N. Genomic evidences of gulls as reservoirs of critical priority CTX-M-producing Escherichia coli in Corcovado Gulf, Patagonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162564. [PMID: 36870482 DOI: 10.1016/j.scitotenv.2023.162564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Extended spectrum β-lactamase (ESBL)-producing Enterobacterales has spread rapidly around the world, reaching remote areas. In this regard, wild birds that acquire ESBL producers from anthropogenically impacted areas can become reservoirs, contributing to further dissemination of antimicrobial-resistant bacteria categorized as critical priority pathogens to remote environments, during migration seasons. We have conducted a microbiological and genomic investigation on the occurrence and features of ESBL-producing Enterobacterales in wild birds from the remote Acuy Island, in the Gulf of Corcovado, at Chilean Patagonia. Strikingly, five ESBL-producing Escherichia coli were isolated from migratory and resident gulls. Whole-genome sequencing (WGS) analysis revealed the presence of two E. coli clones belonging to international sequence types (STs) ST295 and ST388, producing CTX-M-55 and CTX-M-1 ESBLs, respectively. Moreover, E. coli carried a wide resistome and virulome associated with human and animal infections. Phylogenomic analysis of global and publicly genomes of E. coli ST388 (n = 51) and ST295 (n = 85) clustered gulls isolates along to E. coli strains isolated from the environment, companion animal and livestock in the United States of America, within or close to the migratory route of Franklin's gull, suggesting a possible trans hemispheric movement of international clones of WHO critical priority ESBL producing pathogens.
Collapse
Affiliation(s)
- Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile; Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Daniela Castro-Tardón
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca, Chile
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Ingrith Neves
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José L Catão-Dias
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, Hall S, Henderson JD, Kenney SM, Lensink ME, Paternoster MV, Pyle SL, Ustick L, Walters-Laird CJ, Top EM, Cummings DE. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid 2023; 126:102682. [PMID: 37023995 PMCID: PMC10213127 DOI: 10.1016/j.plasmid.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E. coli after one hour, with frequencies as high as 10-3 transconjugants per recipient. Two of the plasmids also transferred cefotaxime resistance to Pseudomonas putida, but these were unable to back-transfer this resistance from P. putida to E. coli. In addition to the cephalosporins, E. coli transconjugants inherited resistance to at least seven distinct classes of antibiotics. Complete nucleotide sequences revealed large IncF-type plasmids with globally distributed replicon sequence types F31:A4:B1 and F18:B1:C4 carrying diverse antibiotic resistance and virulence genes. The plasmids encoded extended-spectrum β-lactamases blaCTX-M-15 or blaCTX-M-55, each associated with the insertion sequence ISEc9, although in different local arrangements. Despite similar resistance profiles, the plasmids shared only one resistance gene in common, the aminoglycoside acetyltransferase aac(3)-IIe. Plasmid accessory cargo also included virulence factors involved in iron acquisition and defense against host immunity. Despite their sequence similarities, several large-scale recombination events were detected, including rearrangements and inversions. In conclusion, selection with a single antibiotic, cefotaxime, yielded conjugative plasmids conferring multiple resistance and virulence factors. Clearly, efforts to limit the spread of antibiotic resistance and virulence among bacteria must include a greater understanding of mobile elements in the natural and human-impacted environments.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Dawne M Page
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Joseph A Bravo
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Madelaine L Brown
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Claudia C Castilleja
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Samantha Hall
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Jacob D Henderson
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Shelby M Kenney
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Mariele E Lensink
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Megan V Paternoster
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Sarah L Pyle
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Lucas Ustick
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America; Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Chara J Walters-Laird
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, United States of America
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America.
| |
Collapse
|
21
|
Salgueiro V, Manageiro V, Bandarra NM, Ferreira E, Clemente L, Caniça M. First comparative genomic characterization of the MSSA ST398 lineage detected in aquaculture and other reservoirs. Front Microbiol 2023; 14:1035547. [PMID: 36970692 PMCID: PMC10030524 DOI: 10.3389/fmicb.2023.1035547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Staphylococcus aureus ST398 can cause diseases in several different animals. In this study we analyzed ten S. aureus ST398 previously collected in three different reservoirs in Portugal (humans, gilthead seabream from aquaculture and dolphin from a zoo). Strains tested against sixteen antibiotics, by disk diffusion or minimum inhibitory concentration, showed decreased susceptibility to benzylpenicillin (all strains from gilthead seabream and dolphin) and to erythromycin with an iMLSB phenotype (nine strains), and susceptibility to cefoxitin (methicillin-susceptible S. aureus, MSSA). All strains from aquaculture belonged to the same spa type, t2383, whereas strains from the dolphin and humans belonged to spa type t571. A more detailed analysis using single nucleotide polymorphisms (SNPs)-based tree and a heat map, showed that all strains from aquaculture origin were highly related with each other and the strains from dolphin and humans were more distinct, although they were very similar in ARG, VF and MGE content. Mutations F3I and A100V in glpT gene and D278E and E291D in murA gene were identified in nine fosfomycin susceptible strains. The blaZ gene was also detected in six of the seven animal strains. The study of the genetic environment of erm(T)-type (found in nine S. aureus strains) allowed the identification of MGE (rep13-type plasmids and IS431R-type), presumably involved in the mobilization of this gene. All strains showed genes encoding efflux pumps from major facilitator superfamily (e.g., arlR, lmrS-type and norA/B-type), ATP-binding cassettes (ABC; mgrA) and multidrug and toxic compound extrusion (MATE; mepA/R-type) families, all associated to decreased susceptibility to antibiotics/disinfectants. Moreover, genes related with tolerance to heavy metals (cadD), and several VF (e.g., scn, aur, hlgA/B/C and hlb) were also identified. Insertion sequences, prophages, and plasmids made up the mobilome, some of them associated with ARG, VF and genes related with tolerance to heavy metals. This study highlights that S. aureus ST398 can be a reservoir of several ARG, heavy metals resistance genes and VF, which are essential in the adaption and survival of the bacterium in the different environments and an active agent in its dissemination. It makes an important contribution to understanding the extent of the spread of antimicrobial resistance, as well as the virulome, mobilome and resistome of this dangerous lineage.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Lurdes Clemente
- INIAV–Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- *Correspondence: Manuela Caniça,
| |
Collapse
|
22
|
Batista R, Saraiva M, Lopes T, Silveira L, Coelho A, Furtado R, Castro R, Correia CB, Rodrigues D, Henriques P, Lóio S, Soeiro V, da Costa PM, Oleastro M, Pista A. Genotypic and Phenotypic Characterization of Pathogenic Escherichia coli, Salmonella spp., and Campylobacter spp., in Free-Living Birds in Mainland Portugal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:223. [PMID: 36612545 PMCID: PMC9819048 DOI: 10.3390/ijerph20010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Birds are potential carriers of pathogens affecting humans and agriculture. Aiming to evaluate the occurrence of the top three most important foodborne pathogens in free-living birds in Portugal, we investigated 108 individual fecal samples from free-living birds and one pooled sample of gull feces (n = 50) for the presence of Escherichia coli (pathogenic and non-pathogenic), Salmonella spp. and Campylobacter spp. Virulence- and antimicrobial resistance- (AMR) associated genes were detected by PCR and Whole-Genome Sequencing (WGS), and phenotypic (serotyping and AMR profiles) characterization was performed. Overall, 8.9% of samples tested positive for pathogenic E. coli, 2.8% for Salmonella spp., and 9.9% for Campylobacter spp. AMR was performed on all pathogenic isolates and in a fraction of non-pathogenic E. coli, being detected in 25.9% of them. Ten of the tested E. coli isolates were multidrug-resistant (MDR), and seven of them were Extended-spectrum β-lactamase (ESBL) producers. Among Salmonella (n = 3) and Campylobacter (n = 9), only one strain of C. jejuni was identified as MDR. Most of the identified serotypes/sequence types had already been found to be associated with human disease. These results show that free-living birds in Portugal may act as carriers of foodborne pathogens linked to human disease, some of them resistant to critically important antimicrobials.
Collapse
Affiliation(s)
- Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Margarida Saraiva
- Food Microbiology Laboratory, Food and Nutrition Department, Rua Alexandre Herculano 321, 4000-055 Oporto, Portugal
| | - Teresa Lopes
- Food Microbiology Laboratory, Food and Nutrition Department, Rua Alexandre Herculano 321, 4000-055 Oporto, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rosália Furtado
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Castro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Cristina Belo Correia
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - David Rodrigues
- ESAC-IPC, Coimbra College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal
- CEF, Forest Research Centre, Edifício Prof. Azevedo Gomes, ISA, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pedro Henriques
- ESAC-IPC, Coimbra College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal
- Espaço de Visitação e Observação de Aves, 2600 Vila Franca de Xira, Portugal
| | - Sara Lóio
- Centro de Recuperação de Fauna do Parque Biológico de Gaia, Rua da Cunha, Avintes, 4430-812 Vila Nova de Gaia, Portugal
| | - Vanessa Soeiro
- Centro de Recuperação de Fauna do Parque Biológico de Gaia, Rua da Cunha, Avintes, 4430-812 Vila Nova de Gaia, Portugal
| | - Paulo Martins da Costa
- ICBAS—Institute of Biomedical Sciences Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Oporto, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
23
|
Extended Spectrum β-Lactamase-Producing Escherichia coli from Poultry and Wild Birds (Sparrow) in Djelfa (Algeria), with Frequent Detection of CTX-M-14 in Sparrow. Antibiotics (Basel) 2022; 11:antibiotics11121814. [PMID: 36551471 PMCID: PMC9774291 DOI: 10.3390/antibiotics11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is a global threat that is spreading more and more in both human and animal niches. This study investigates the antimicrobial resistance and virulence threats of Escherichia coli isolates recovered from intestinal and fecal samples of 100 chickens, 60 turkeys, and 30 sparrows. Extended spectrum β-lactamase (ESBL) producing E. coli isolates were recovered in 12 of the animals tested, selecting one isolate per positive animal: sparrow (eight isolates, 26.7%), turkey (three isolates, 5%), and chicken (one isolate, 1%). The E. coli isolates were ascribed to B1 and D phylogenetic groups. The blaCTX-M-14 gene was detected in all ESBL-producing E. coli isolates from sparrow. The blaCTX-M-15 (two isolates) and blaCTX-M-14 genes (one isolate) were detected in the isolates of turkey, and the blaCTX-M-1 gene in one isolate from broiler. Three lineages were revealed among the tested isolates (ST/phylogenetic group/type of ESBL/origin): ST117/D/CTX-M-1/broiler, ST4492 (CC405)/D/CTX-M-15/turkey, and ST602/B1/CTX-M-14/sparrow. All isolates were negative for stx1, sxt2, and eae virulence genes. Our findings provide evidence that the sparrow could be a vector in the dissemination of ESBL-producing E. coli isolates to other environments. This study also reports, to our knowledge, the first detection of blaCTX-M-14 from sparrow at a global level and in turkey in Algeria.
Collapse
|
24
|
Andrzejewska M, Grudlewska-Buda K, Śpica D, Skowron K, Ćwiklińska-Jurkowska M, Szady-Grad M, Indykiewicz P, Wiktorczyk-Kapischke N, Klawe JJ. Genetic relatedness, virulence, and drug susceptibility of Campylobacter isolated from water and wild birds. Front Cell Infect Microbiol 2022; 12:1005085. [PMID: 36506026 PMCID: PMC9732551 DOI: 10.3389/fcimb.2022.1005085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction This study aimed to identify the characteristics of Campylobacter isolated from wild birds (Black-headed gulls Chroicocephalus ridibundus and Great tits Parus major) and collect surface water samples (from rivers, ponds, ornamental lakes, freshwater beaches). Research material included 33 Campylobacter isolates. All the strains were isolated by different monitoring and surveillance plans. Methods The prevalence of selected genes (flaA, cadF, iam, cdtB, wlaN, sodB, tet0) encoding virulence factors and resistance among Campylobacter spp. was assessed by the PCR method. The genetic similarities of isolates were determined by Pulsed-Field Gel Electrophoresis (PFGE). The susceptibility of Campylobacter isolates to clinically important antimicrobials: erythromycin, tetracycline, and ciprofloxacin, previously assessed by E-test, was presented in the form of drug susceptibility profiles depending on the origin of the isolates. Results The cadF, flaA, cdtB, and sodB genes exhibited the highest detection rate. Statistically significant differences between the presence of wlaN virulence genes were noted among different species of the isolates. No genetically identical isolates were found. The most numerous antibiotic susceptibility profile included strains susceptible to all antibiotics studied (profile A-33.3%). The second most common were the tetracycline - and ciprofloxacin-resistant (profile B-27.2%), and tetracycline-resistant profile (C-24.2%) respectively. Discussion The study revealed the virulent properties of Campylobacter isolated from water samples, and wild birds, and high resistance rates to tetracycline, and fluoroquinolones. The lack of genetic relatedness among strains isolated from water, and birds may indicate other sources of surface water contamination with Campylobacter bacteria than birds. The presence of Campylobacter spp. in wild birds could also have other environmental origins.
Collapse
Affiliation(s)
- Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland,*Correspondence: Małgorzata Andrzejewska,
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Dorota Śpica
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Theory of Biomedical Systems, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Szady-Grad
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
25
|
Zhang S, Wen J, Wang Y, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). Front Microbiol 2022; 13:969769. [PMID: 36246244 PMCID: PMC9557194 DOI: 10.3389/fmicb.2022.969769] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Ribeiro-Almeida M, Mourão J, Novais Â, Pereira S, Freitas-Silva J, Ribeiro S, Martins da Costa P, Peixe L, Antunes P. High diversity of pathogenic Escherichia coli clones carrying mcr-1 among gulls underlines the need for strategies at the environment-livestock-human interface. Environ Microbiol 2022; 24:4702-4713. [PMID: 35726894 DOI: 10.1111/1462-2920.16111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
The expansion of mcr-carrying bacteria is a well-recognized public health problem. Measures to contain mcr spread have mainly been focused on the food-animal production sector. Nevertheless, the spread of MCR-producers at the environmental interface particularly driven by the increasing population of gulls in coastal cities has been less explored. Occurrence of mcr-carrying Escherichia coli in gull's colonies faeces on a Portuguese beach was screened over 7-months. Cultural, molecular, and genomic approaches were used to characterize their diversity, mcr plasmids and adaptive features. Multidrug-resistant mcr-1-carrying E. coli were detected for three consecutive months. Over time, multiple strains were recovered, including zoonotic-related pathogenic E. coli clones (e.g., B2-ST131-H22, A-ST10, and B1-ST162). Diverse mcr-1.1 genetic environments were mainly associated with ST2/ST4-HI2 (ST10, ST131, ST162, ST354 and ST4204) but also IncI2 (ST12990) plasmids or in the chromosome (ST656). Whole-genome sequencing revealed enrichment of these strains on antibiotic resistance, virulence, and metal tolerance genes. Our results underscore gulls as important spreaders of high priority bacteria and genes that may affect the environment, food-animals and/or humans, potentially undermining One-Health strategies to reduce colistin resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marisa Ribeiro-Almeida
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Mourão
- Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sofia Pereira
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Freitas-Silva
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo Martins da Costa
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Athanasakopoulou Z, Diezel C, Braun SD, Sofia M, Giannakopoulos A, Monecke S, Gary D, Krähmer D, Chatzopoulos DC, Touloudi A, Birtsas P, Palli M, Georgakopoulos G, Spyrou V, Petinaki E, Ehricht R, Billinis C. Occurrence and Characteristics of ESBL- and Carbapenemase- Producing Escherichia coli from Wild and Feral Birds in Greece. Microorganisms 2022; 10:1217. [PMID: 35744734 PMCID: PMC9227375 DOI: 10.3390/microorganisms10061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Wild and feral birds are known to be involved in the maintenance and dissemination of clinically-important antimicrobial-resistant pathogens, such as extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae. The aim of our study was to evaluate the presence of ESBL- and carbapenemase-producing Escherichia coli among wild and feral birds from Greece and to describe their antimicrobial resistance characteristics. In this context, fecal samples of 362 birds were collected and cultured. Subsequently, the antimicrobial resistance pheno- and geno-type of all the obtained E. coli isolates were determined. A total of 12 multidrug-resistant (MDR), ESBL-producing E. coli were recovered from eight different wild bird species. Eleven of these isolates carried a blaCTX-M-1 group gene alone or in combination with blaTEM and one carried only blaTEM. AmpC, fluoroquinolone, trimethoprim/sulfamethoxazole, aminoglycoside and macrolide resistance genes were also detected. Additionally, one carbapenemase-producing E. coli was identified, harboring blaNDM along with a combination of additional resistance genes. This report describes the occurrence of ESBL- and carbapenemase-producing E. coli among wild avian species in Greece, emphasizing the importance of incorporating wild birds in the assessment of AMR circulation in non-clinical settings.
Collapse
Affiliation(s)
- Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Dominik Gary
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | - Domenique Krähmer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | | | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Periklis Birtsas
- Faculty of Forestry, Wood Science and Design, 43100 Karditsa, Greece;
| | - Matina Palli
- Wildlife Protection & Rehabilitation Center, 24400 Gargalianoi, Greece; (M.P.); (G.G.)
| | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | | | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University, 07745 Jena, Germany
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
28
|
Qualitative Risk Assessment for Antimicrobial Resistance among Humans from Salmon Fillet Consumption Due to the High Use of Antibiotics against Bacterial Infections in Farmed Salmon. Antibiotics (Basel) 2022; 11:antibiotics11050662. [PMID: 35625306 PMCID: PMC9137906 DOI: 10.3390/antibiotics11050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Worldwide, aquaculture is considered as a hotspot environment for antimicrobial resistance (AMR) due to the intense use of antibiotics in its productive systems. Chile is the second largest producer of farmed salmon worldwide, and tons of antibiotics are used to control bacterial diseases, such as Salmon Rickettsial Syndrome (SRS) and Bacterial Kidney Disease (BKD). However, studies determining the risk of consuming salmon fillets that have been treated with antibiotics during the salmon production are limited. Consulting leading experts in the field could provide a knowledge base to identify and address this question and research gaps. Methods: Multisectoral risk perception of AMR through salmon fillet consumption was evaluated by eliciting expert data obtained through discussions during a workshop and from questionnaires given to experts from academia (n = 15, 63%), the public sector (n = 5, 21%), and the salmon industry (n = 4, 17%). Results: The qualitative risk analysis suggested an overall ‘low’ probability of AMR acquisition by consumption of salmon fillet that had been treated during the production cycle. The risk perception varied slightly between production stages in freshwater and seawater. In consensus with all sectors, this overall ‘low’, but existing, risk was probably associated with bacterial infections and the use of antibiotics. Conclusions: As it is essential to reduce the use of antibiotics in the Chilean salmon industry, this intersectoral approach and consensual results could favor effective implementation of targeted initiatives for the control and prevention of major bacterial diseases.
Collapse
|
29
|
Laborda P, Sanz-García F, Ochoa-Sánchez LE, Gil-Gil T, Hernando-Amado S, Martínez JL. Wildlife and Antibiotic Resistance. Front Cell Infect Microbiol 2022; 12:873989. [PMID: 35646736 PMCID: PMC9130706 DOI: 10.3389/fcimb.2022.873989] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
Antibiotic resistance is a major human health problem. While health care facilities are main contributors to the emergence, evolution and spread of antibiotic resistance, other ecosystems are involved in such dissemination. Wastewater, farm animals and pets have been considered important contributors to the development of antibiotic resistance. Herein, we review the impact of wildlife in such problem. Current evidence supports that the presence of antibiotic resistance genes and/or antibiotic resistant bacteria in wild animals is a sign of anthropic pollution more than of selection of resistance. However, once antibiotic resistance is present in the wild, wildlife can contribute to its transmission across different ecosystems. Further, the finding that antibiotic resistance genes, currently causing problems at hospitals, might spread through horizontal gene transfer among the bacteria present in the microbiomes of ubiquitous animals as cockroaches, fleas or rats, supports the possibility that these organisms might be bioreactors for the horizontal transfer of antibiotic resistance genes among human pathogens. The contribution of wildlife in the spread of antibiotic resistance among different hosts and ecosystems occurs at two levels. Firstly, in the case of non-migrating animals, the transfer will take place locally; a One Health problem. Paradigmatic examples are the above mentioned animals that cohabit with humans and can be reservoirs and vehicles for antibiotic resistance dissemination. Secondly, migrating animals, such as gulls, fishes or turtles may participate in the dissemination of antibiotic resistance across different geographic areas, even between different continents, which constitutes a Global Health issue.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Sanz-García
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Luz Edith Ochoa-Sánchez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: José Luis Martínez,
| |
Collapse
|
30
|
Benavides JA, Godreuil S, Opazo-Capurro A, Mahamat OO, Falcon N, Oravcova K, Streicker DG, Shiva C. Long-term maintenance of multidrug-resistant Escherichia coli carried by vampire bats and shared with livestock in Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152045. [PMID: 34883172 DOI: 10.1016/j.scitotenv.2021.152045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) have been reported in wildlife worldwide. Whether wildlife is a transient host of ESBL-E. coli or comprises an independently maintained reservoir is unknown. We investigated this question by longitudinally monitoring ESBL-E. coli in common vampire bats and nearby livestock in Peru. Among 388 bats from five vampire bat colonies collected over three years, ESBL-E. coli were detected at a low prevalence (10% in 2015, 4% in 2017 and 2018) compared to a high prevalence (48%) from 134 livestock sampled in 2017. All ESBL-E. coli were multidrug-resistant, and whole genome sequencing of 33 randomly selected ESBL-E. coli isolates (18 recovered from bats) detected 46 genes conferring resistance to antibiotics including third-generation cephalosporins (e.g., blaCTX-M-55, blaCTX-M-15, blaCTX-M-65, blaCTX-M-3, blaCTX-M-14), aminoglycosides, fluoroquinolones, and colistin (mcr-1). The mcr-1 gene is reported for the first time on a wild bat in Latin America. ESBL-E. coli also carried 31 plasmid replicon types and 16 virulence genes. Twenty-three E. coli sequence types (STs) were detected, including STs involved in clinical infections worldwide (e.g., ST 167, ST 117, ST 10, ST 156 and ST 648). ESBL-E. coli with identical cgMLST (ST 167) were detected in the same bat roost in 2015 and 2017, and several ESBL-E. coli from different bat roosts clustered together in the cgMLST reconstruction, suggesting long-term maintenance of ESBL-E. coli within bats. Most antibiotic resistance and virulence genes were detected in E. coli from both host populations, while ESBL-E. coli ST 744 was found in a bat and a pig from the same locality, suggesting possible cross-species exchanges of genetic material and/or bacteria between bats and livestock. This study suggests that wild mammals can maintain multidrug-resistant bacteria and share them with livestock.
Collapse
Affiliation(s)
- Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago, Chile.
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago, Chile
| | - Oumar O Mahamat
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France; Service de laboratoire Hôpital de la Mère et de l'Enfant, N'Djaména, Chad
| | - Nestor Falcon
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carlos Shiva
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
31
|
Brandão J, Weiskerger C, Valério E, Pitkänen T, Meriläinen P, Avolio L, Heaney CD, Sadowsky MJ. Climate Change Impacts on Microbiota in Beach Sand and Water: Looking Ahead. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1444. [PMID: 35162479 PMCID: PMC8834802 DOI: 10.3390/ijerph19031444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/05/2022]
Abstract
Beach sand and water have both shown relevance for human health and their microbiology have been the subjects of study for decades. Recently, the World Health Organization recommended that recreational beach sands be added to the matrices monitored for enterococci and Fungi. Global climate change is affecting beach microbial contamination, via changes to conditions like water temperature, sea level, precipitation, and waves. In addition, the world is changing, and humans travel and relocate, often carrying endemic allochthonous microbiota. Coastal areas are amongst the most frequent relocation choices, especially in regions where desertification is taking place. A warmer future will likely require looking beyond the use of traditional water quality indicators to protect human health, in order to guarantee that waterways are safe to use for bathing and recreation. Finally, since sand is a complex matrix, an alternative set of microbial standards is necessary to guarantee that the health of beach users is protected from both sand and water contaminants. We need to plan for the future safer use of beaches by adapting regulations to a climate-changing world.
Collapse
Affiliation(s)
- João Brandão
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Tarja Pitkänen
- Department of Health Security, The Finnish Institute for Health and Welfare, 70210 Kuopio, Finland; (T.P.); (P.M.)
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00100 Helsinki, Finland
| | - Päivi Meriläinen
- Department of Health Security, The Finnish Institute for Health and Welfare, 70210 Kuopio, Finland; (T.P.); (P.M.)
| | - Lindsay Avolio
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; (L.A.); (C.D.H.)
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; (L.A.); (C.D.H.)
| | - Michael J. Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA;
- Department of Soil, Water & Climate, University of Minnesota, St. Paul, MN 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|