1
|
Boka HJ, Engel RM, Georges C, McMurrick PJ, Abud HE. Does side matter? Deciphering mechanisms that underpin side-dependent pathogenesis and therapy response in colorectal cancer. Mol Cancer 2025; 24:130. [PMID: 40312719 PMCID: PMC12046799 DOI: 10.1186/s12943-025-02327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Colorectal cancer (CRC) is stratified by heterogeneity between disease sites, with proximal right-sided CRC (RCRC) multifactorial in its distinction from distal left-sided CRC (LCRC). Notably, right-sided tumors are associated with aggressive disease characteristics which culminate in poor clinical outcomes for these patients. While factors such as mutational profile and patterns of metastasis have been suggested to contribute to differences in therapy response, the exact mechanisms through which RCRC resists effective treatment have yet to be elucidated. In response, recent analyzes, including those utilizing whole genome sequencing, transcriptional profiling, and single-cell analyses, have demonstrated that key molecular differences exist between disease sites, with differentially expressed genes spanning a diverse range of cellular functions. Here, we review and contextualize the most recent data on molecular biomarkers found to exhibit discordance between RCRC and LCRC, and highlight candidates for further investigation, including those which present promise for future clinical application. Given the present disparity in survival outcomes for RCRC patients, we expect the prognostic biomarkers presented in our review to be useful in establishing future directions for the side-specific treatment of CRC.
Collapse
Affiliation(s)
- Harrison J Boka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Christine Georges
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Paul J McMurrick
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia.
| |
Collapse
|
2
|
Wang R, Li W, Cao H, Zhang L. Decoding the Tumor-Associated Microbiota: From Origins to Nanomedicine Applications in Cancer Therapy. BIOLOGY 2025; 14:243. [PMID: 40136500 PMCID: PMC11940167 DOI: 10.3390/biology14030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Growing evidence reveals that the tumor microbiome-comprising distinct microbial communities within neoplastic tissues-exerts a profound influence on cancer initiation, progression, and therapeutic response. These microbes actively reshape the tumor microenvironment (TME) through metabolite secretion, the modulation of immune pathways, and direct interactions with host cells, thereby affecting tumor biology and therapeutic outcomes. Despite substantial heterogeneity among cancer types, recent insights underscore the tumor microbiome's potential as both a diagnostic/prognostic biomarker and a targetable component for innovative treatments. In this review, we synthesize emerging knowledge on the mechanistic roles of tumor-associated microbiota in shaping the TME, with a focus on how these discoveries can guide novel therapeutic strategies. We further explore interdisciplinary advances, including the convergence of microbiomics and nanotechnology, to enhance drug delivery, circumvent resistance, and foster TME remodeling. By highlighting these cutting-edge developments, our review underscores the transformative potential of integrating tumor microbiome research into precision oncology and advancing more personalized cancer therapies.
Collapse
Affiliation(s)
- Ruiqi Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Weizheng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Hongqian Cao
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Long J, Wang J, Xiao C, You F, Jiang Y, Li X. Intratumoral microbiota in colorectal cancer: focus on specific distribution and potential mechanisms. Cell Commun Signal 2024; 22:455. [PMID: 39327582 PMCID: PMC11426098 DOI: 10.1186/s12964-024-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal malignant tumors globally, posing significant health risks and societal burdens. Recently, advancements in next-generation sequencing technology have identified CRC intratumoral microbiota, thereby opening up novel avenues for further research. This review synthesizes the current advancements in CRC intratumoral microbiota and their impact on CRC progression and discusses the disparities in the relative abundance and community composition of CRC intratumoral microbiota across various colorectal tumors based on their anatomical location and molecular subtypes, as well as the tumor stages, and spatial tumor distribution. Intratumoral microbiota predominantly influence CRC development by modulating colonic epithelial cells, tumor cells, and the tumor microenvironment. Mechanistically, they can cause DNA damage, apoptosis and epithelial-mesenchymal transition. The effects of different intratumoral microbiota on CRC have been shown to be two-fold. In the future, to address the limitations of existing studies, it is important to develop comprehensive experimental protocols and suitable in vitro models for elucidating more mechanisms of intratumoral microbiota on CRC, which will facilitate the clinical application of microbe-related therapeutic strategies in CRC and potentially other tumors.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Jiamei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Chong Xiao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| |
Collapse
|
6
|
Ulger Y, Delik A, Akkız H. Gut Microbiome and colorectal cancer: discovery of bacterial changes with metagenomics application in Turkısh population. Genes Genomics 2024; 46:1059-1070. [PMID: 38990271 DOI: 10.1007/s13258-024-01538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the 3rd most common cancer in the world and colonic carcinogenesis is a multifactorial disease that involves environmental and genetic factors. Gut microbiota plays a critical role in the regulation of intestinal homeostasis. Increasing evidence shows that the gut microbiome plays a role in CRC development and may be a biomarker for early diagnosis. OBJECTIVE This study aimed to determine the clinical prognostic significance of gut microbiota in CRC patients in the Turkish population by metagenomic analysis and to determine the microbial composition in tumor tissue biopsy samples. METHODS Tissue biopsies were taken from the participants with sterile forceps during colonoscopy and stored at -80 °C. Then, DNA isolation was performed from the tissue samples and the V3-V4 region of the 16 S rRNA gene was sequenced on the Illumina MiSeq platform. Quality control of the obtained sequence data was performed. Operational taxonomic units (OTUs) were classified according to the Greengenes database. Alpha diversity (Shannon index) and beta diversity (Bray-Curtis distance) analyses were performed. The most common bacterial species in CRC patients and healthy controls were determined and whether there were statistically significant differences between the groups was tested. RESULTS A total of 40 individuals, 13 CRC patients and 20 healthy control individuals were included in our metagenomic study. The mean age of the patients was 64.83 and BMI was 25.85. In CRC patients, the level of Bacteroidetes at the phylum taxonomy was significantly increased (p = 0.04), the level of Clostridia at the class taxonomy was increased (p = 0.23), and the level of Enterococcus at the genus taxonomy was significantly increased (p = 0.01). When CRC patients were compared with the control group, significant increases were detected in the species of Gemmiger formicilis (p = 0.15), Prevotella copri (p = 0.02) and Ruminococcus bromii (p = 0.001) at the species taxonomy. CONCLUSIONS Metagenomic analysis of intestinal microbiota composition in CRC patients provides important data for determining the treatment options for these patients. The results of this study suggest that it may be beneficial in terms of early diagnosis, poor prognosis and survival rates in CRC patients. In addition, this metagenomic study is the first study on the colon microbiome associated with CRC mucosa in the Turkish population.
Collapse
Affiliation(s)
- Yakup Ulger
- Faculty of Medicine, Division of Gastroenterology, Cukurova University, Adana, 01330, Turkey
| | - Anıl Delik
- Faculty of Medicine, Division of Gastroenterology, Cukurova University, Adana, 01330, Turkey
- Faculty of Science and Literature, Division of Biology, Cukurova University, Adana, 01330, Turkey
| | - Hikmet Akkız
- Faculty of Medicine, Division of Gastroenterology Istanbul, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
7
|
Baas FS, Brusselaers N, Nagtegaal ID, Engstrand L, Boleij A. Navigating beyond associations: Opportunities to establish causal relationships between the gut microbiome and colorectal carcinogenesis. Cell Host Microbe 2024; 32:1235-1247. [PMID: 39146796 DOI: 10.1016/j.chom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
The gut microbiota has been recognized as an important determinant in the initiation and progression of colorectal cancer (CRC), with recent studies shining light on the molecular mechanisms that may contribute to the interactions between microbes and the CRC microenvironment. Despite the increasing wealth of associations being established in the field, proving causality remains challenging. Obstacles include the high variability of the microbiome and its context, both across individuals and across time. Additionally, there is a lack of large and representative cohort studies with long-term follow-up and/or appropriate sampling methods for studying the mucosal microbiome. Finally, most studies focus on CRC, whereas interactions between host and bacteria in early events in carcinogenesis remain elusive, reinforced by the heterogeneity of CRC development. Here, we discuss these current most prominent obstacles, the recent developments, and research needs.
Collapse
Affiliation(s)
- Floor S Baas
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden; Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Lu YQ, Qiao H, Tan XR, Liu N. Broadening oncological boundaries: the intratumoral microbiota. Trends Microbiol 2024; 32:807-822. [PMID: 38310023 DOI: 10.1016/j.tim.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
The microbiota of solid tumors was identified >100 years ago; however, heterogeneous composition and diversity have been revealed only recently. Growing evidence has suggested that several functional mechanisms of the intratumoral microbiota affect tumorigenesis and progression, suggesting that the intratumoral microbiota is a promising biomarker for multiple cancers. The low biomass of the intratumoral microbiota poses a major challenge to related research, thus necessitating the use of a multiple-modality integrated framework to resolve this dilemma. Advanced techniques such as single-cell sequencing provide significant clues, and the gradual optimization of functional experiments and culture-based methods enables deeper investigation of the underlying mechanisms involved. In this review, we outline the current state of research on the intratumoral microbiota and describe the challenges and comprehensive strategies for future research.
Collapse
Affiliation(s)
- Ying-Qi Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
9
|
Jin M, Fan Q, Shang F, Zhang T, Ogino S, Liu H. Fusobacteria alterations are associated with colorectal cancer liver metastasis and a poor prognosis. Oncol Lett 2024; 27:235. [PMID: 38596264 PMCID: PMC11003219 DOI: 10.3892/ol.2024.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/01/2024] [Indexed: 04/11/2024] Open
Abstract
Liver metastasis is a major cause of mortality in patients with advanced stages of colorectal cancer (CRC). The gut microbiota has been demonstrated to influence the progression of liver diseases, potentially providing novel perspectives for diagnosis, treatment and research. However, the gut microbial characteristics in CRC with liver metastasis (LM) and with no liver metastasis (NLM) have not yet been fully established. In the present study, high-throughput 16S RNA sequencing technology was employed, in order to examine the gut microbial richness and composition in patients with CRC with LM or NLM. A discovery cohort (cohort 2; LM=18; NLM=36) and a validation cohort (cohort 3; LM=13; NLM=41) were established using fresh feces. In addition, primary carcinoma tissue samples were also analyzed (LM=8 and NLM=10) as a supplementary discovery cohort (cohort 1). The findings of the present study indicated that the intestinal microbiota richness and diversity were increased in the LM group as compared to the NLM group. A significant difference was observed in species composition between the LM and NLM group. In the two discovery cohorts with two different samples, the dominant phyla were consistent, but varied at lower taxonomic levels. Phylum Fusobacteria presented consistent and significant enrichment in LM group in both discovery cohorts. Furthermore, with the application of a random forest model and receiver operator characteristic curve analysis, Fusobacteria was identified as a potential biomarker for LM. Moreover, Fusobacteria was also a poor prognosis factor for survival. Importantly, the findings were reconfirmed in the validation cohort. On the whole, the findings of the present study demonstrated that CRC with LM and NLM exhibit distinct gut microbiota characteristics. Fusobacteria detection thus has potential for use in predicting LM and a poor prognosis of patients with CRC.
Collapse
Affiliation(s)
- Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qilin Fan
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Fumei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02212, USA
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
10
|
Li M, Jin M, Zhao L, Yu D, Li Y, Shi L, Zhou B, Liu L, Cao Y, Cai K, Fan J, Nie X, Zhang T, Liu H. Tumor-associated microbiota in colorectal cancer with vascular tumor thrombus and neural invasion and association with clinical prognosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:366-378. [PMID: 37905339 PMCID: PMC10984857 DOI: 10.3724/abbs.2023255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Neural invasion (NI) and vascular tumor thrombus (VT) are associated with poor prognosis in patients with colorectal cancer (CRC). In this study, we apply 16S rRNA amplicon sequencing to tumor tissues and adjacent normal tissues in patients with CRC to determine the microbial differences. A discovery cohort, including 30 patients with NI, 23 with VT, and 35 with double-negative CRC tissue, is utilized. Then, we analyze the relationship between the specific bacterial taxa and indicators of different dimensions in separate cohorts. In the discovery cohort, the diversity and composition of the gut microbiome distinctly differ between the tumor and nontumor tissues in the NI and VT groups. A high abundance of Cupriavidus is found to be related to a short survival time of NI CRC, while Herbaspirillum is a potential microbial biomarker predicting the prognosis of patients with CRC with NI or VT. Moreover, the abundance of Cupriavidus or Herbaspirillum is associated with some clinical patient characteristics and prognosis, respectively. In conclusion, this study is the first to comprehensively elaborate the differences in the gut microbiota of patients with CRC with different invasion statuses and to prove the relationship between some gut microbiota and clinical patient characteristics.
Collapse
Affiliation(s)
- Mingjie Li
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Min Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lei Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dandan Yu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yan Li
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Linli Shi
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bin Zhou
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Li Liu
- of Epidemiology and Biostatisticsthe Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yinghao Cao
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Precision Radiation OncologyWuhan430022China
| | - Kailin Cai
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jun Fan
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiu Nie
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tao Zhang
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hongli Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
11
|
Tak J, An Q, Lee SG, Lee CH, Kim SG. Gα12 and endoplasmic reticulum stress-mediated pyroptosis in a single cycle of dextran sulfate-induced mouse colitis. Sci Rep 2024; 14:6335. [PMID: 38491049 PMCID: PMC10943197 DOI: 10.1038/s41598-024-56685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1β, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1β activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Quanxi An
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Gil Lee
- Research and Development Institute, A Pharma Inc, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
12
|
Wang S, Xu B, Zhang Y, Chen G, Zhao P, Gao Q, Yuan L. The role of intestinal flora on tumorigenesis, progression, and the efficacy of PD-1/PD-L1 antibodies in colorectal cancer. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0376. [PMID: 38148328 PMCID: PMC10875280 DOI: 10.20892/j.issn.2095-3941.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Intestinal flora affects the maturation of the host immune system, serves as a biomarker and efficacy predictor in the immunotherapy of several cancers, and has an important role in the development of colorectal cancer (CRC). Anti-PD-1/PD-L1 antibodies have shown satisfactory results in MSI-H/dMMR CRC but performed poorly in patients with MSS/pMMR CRC. In recent years an increasing number of studies have shown that intestinal flora has an important impact on anti-PD-1/PD-L1 antibody efficacy in CRC patients. Preclinical and clinical evidence have suggested that anti-PD-1/PD-L1 antibody efficacy can be improved by altering the composition of the intestinal flora in CRC. Herein, we summarize the studies related to the influence of intestinal flora on anti-PD-1/PD-L1 antibody efficacy in CRC and discuss the potential underlying mechanism(s). We have focused on the impact of the intestinal flora on the efficacy and safety of anti-PD-1/PD-L1 antibodies in CRC and how to better utilize the intestinal flora as an adjuvant to improve the efficacy of anti-PD-1/PD-L1 antibodies. In addition, we have provided a basis for the potential of the intestinal flora as a new treatment modality and indicator for determining patient prognosis.
Collapse
Affiliation(s)
- Sen Wang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Benling Xu
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yangyang Zhang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Guangyu Chen
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Peng Zhao
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Quanli Gao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Long Yuan
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
13
|
Ambrosio MR, Niccolai E, Petrelli F, Di Gloria L, Bertacca G, Giusti A, Baldi S, Cavazzana A, Palmeri M, Perotti B, Ramazzotti M, Arganini M, Amedei A. Immune landscape and oncobiota in HPV-Associated Colorectal Cancer: an explorative study. Clin Exp Med 2023; 23:5101-5112. [PMID: 37612430 PMCID: PMC10725376 DOI: 10.1007/s10238-023-01165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Worldwide more than 550,000 new patients suffering from malignant tumors are associated with human papillomaviruses (HPV) infection. However, only a small portion of patients infected progress to cancer, suggesting that other factors other than HPV may play a role. Some studies have investigated HPV infection in colorectal cancer (CRC) with discordant results; moreover, the role of HPV in CRC development is still unknown. We investigated HPV infection in 50 CRC from different regions, excluding the anal one, by immunohistochemistry (IHC), real-time PCR and RNA-seq. For each patient, we studied the tumor microenvironment in neoplastic and matched non-neoplastic samples, and we compared the tumor-infiltrating immune cell phenotypes among HPV-positive and negative samples. Finally, we compared the CRC-associated microbiota in HPV-positive and negative neoplastic samples by 16S rRNA sequencing. HPV infection was identified in 20% of CRC from the right side (caecum, ascending and transverse colon) and in 40% from the left side (descending colon and rectum). In all HPV-positive CRCs we found no expression of p53 and RB, thus suggesting HPV involvement in tumorigenesis. As far as the tumor microenvironment is concerned, in HPV-related cancers we observed a neoplastic environment with a reduced immune surveillance but an enhanced cytotoxic response by lymphocytes. HPV-positive and -negative CRC showed a different microbiota with lack of species normally found in CRC in the HPV-positive ones. Our results support the carcinogenic significance of HPV in CRC, suggesting a role of HPV in modulating the tumor immune microenvironment.
Collapse
Affiliation(s)
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | | | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences, "Mario Serio" University of Florence, Florence, Italy
| | - Gloria Bertacca
- Clinical Chemical Analysis and Immuno Allergology Department, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Andrea Giusti
- Pathology Unit, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | | | - Matteo Palmeri
- Surgery Unit, Ospedale Unico Versilia, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Bruno Perotti
- Surgery Unit, Ospedale Unico Versilia, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences, "Mario Serio" University of Florence, Florence, Italy
| | - Marco Arganini
- Surgery Unit, Ospedale Unico Versilia, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
- Internal Interdisciplinary Medicine Unit, Careggi University Hospital, 50134, Florence, Italy.
| |
Collapse
|
14
|
Aitmanaitė L, Širmonaitis K, Russo G. Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap. Int J Mol Sci 2023; 24:13786. [PMID: 37762088 PMCID: PMC10531294 DOI: 10.3390/ijms241813786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the microbial communities in the human body and the onset and progression of cancer has not been investigated until recently. The vast majority of the metagenomics research in this area has concentrated on the composition of microbiomes, attempting to link the overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour, and its resistance to therapies. However, studies elucidating the functional implications of the microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of studies assessing such implications directly, through analysis of the transcriptome of the bacterial community. This review summarises the contributions of metagenomics and metatranscriptomics to the knowledge of the microbial environment associated with several cancers; most importantly, it highlights all the advantages that metatranscriptomics has over metagenomics and suggests how such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
Collapse
Affiliation(s)
| | | | - Giancarlo Russo
- EMBL Partnership Institute for Gene Editing, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (L.A.); (K.Š.)
| |
Collapse
|
15
|
Mouradov D, Greenfield P, Li S, In EJ, Storey C, Sakthianandeswaren A, Georgeson P, Buchanan DD, Ward RL, Hawkins NJ, Skinner I, Jones IT, Gibbs P, Ma C, Liew YJ, Fung KYC, Sieber OM. Oncomicrobial Community Profiling Identifies Clinicomolecular and Prognostic Subtypes of Colorectal Cancer. Gastroenterology 2023; 165:104-120. [PMID: 36933623 DOI: 10.1053/j.gastro.2023.03.205] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND & AIMS Dysbiosis of gut microbiota is linked to the development of colorectal cancer (CRC). However, microbiota-based stratification of CRC tissue and how this relates to clinicomolecular characteristics and prognosis remains to be clarified. METHODS Tumor and normal mucosa from 423 patients with stage I to IV CRC were profiled by bacterial 16S rRNA gene sequencing. Tumors were characterized for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), APC, BRAF, KRAS, PIK3CA, FBXW7, SMAD4, and TP53 mutations, subsets for chromosome instability (CIN), mutation signatures, and consensus molecular subtypes (CMS). Microbial clusters were validated in an independent cohort of 293 stage II/III tumors. RESULTS Tumors reproducibly stratified into 3 oncomicrobial community subtypes (OCSs) with distinguishing features: OCS1 (Fusobacterium/oral pathogens, proteolytic, 21%), right-sided, high-grade, MSI-high, CIMP-positive, CMS1, BRAF V600E, and FBXW7 mutated; OCS2 (Firmicutes/Bacteroidetes, saccharolytic, 44%), and OCS3 (Escherichia/Pseudescherichia/Shigella, fatty acid β-oxidation, 35%) both left-sided and exhibiting CIN. OCS1 was associated with MSI-related mutation signatures (SBS15, SBS20, ID2, and ID7) and OCS2 and OCS3 with SBS18 related to damage by reactive oxygen species. Among stage II/III patients, OCS1 and OCS3 both had poorer overall survival compared with OCS2 for microsatellite stable tumors (multivariate hazard ratio [HR], 1.85; 95% confidence interval [CI], 1.15-2.99; P = .012; and HR, 1.52; 95% CI 1.01-2.29; P = .044, respectively) and left-sided tumors (multivariate HR, 2.66; 95% CI, 1.45-4.86; P = .002; and HR, 1.76; 95% CI, 1.03-3.02; P = .039, respectively). CONCLUSIONS OCS classification stratified CRCs into 3 distinct subgroups with different clinicomolecular features and outcomes. Our findings provide a framework for a microbiota-based stratification of CRC to refine prognostication and to inform the development of microbiota-targeted interventions.
Collapse
Affiliation(s)
- Dmitri Mouradov
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Greenfield
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organization, Lindfield, New South Wales, Australia; School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Shan Li
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Eun-Jung In
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Claire Storey
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anuratha Sakthianandeswaren
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Robyn L Ward
- Prince of Wales Clinical School and Lowy Cancer Research Center, UNSW Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas J Hawkins
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Iain Skinner
- Department of Surgery, Western Health, Footscray, Victoria, Australia
| | - Ian T Jones
- Department of Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Medical Oncology, Western Health, St Albans, Victoria, Australia; Department of Medical Oncology, Western Health, Footscray, Victoria, Australia
| | - Chenkai Ma
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Yi Jin Liew
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Kim Y C Fung
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Zhu A, Liu Y, Li Z, He Y, Bai L, Wu Y, Zhang Y, Huang Y, Jiang P. Diagnosis and functional prediction of microbial markers in tumor tissues of sporadic colorectal cancer patients associated with the MLH1 protein phenotype. Front Oncol 2023; 12:1116780. [PMID: 36755857 PMCID: PMC9899897 DOI: 10.3389/fonc.2022.1116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Most patients with sporadic colorectal cancer (SCRC) develop microsatellite instability because of defects in mismatch repair (MMR). Moreover, the gut microbiome plays a vital role in the pathogenesis of SCRC. In this study, we assessed the microbial composition and diversity of SCRC tumors with varying MutL protein homolog 1 (MLH1) status, and the effects of functional genes related to bacterial markers and clinical diagnostic prediction. Methods The tumor microbial diversity and composition were profiled using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) software and BugBase tool were used to predict the functional roles of the microbiome. We aimed to construct a high-accuracy model to detect and evaluate the area under the receiver operating characteristic curve with candidate biomarkers. Results The study included 23 patients with negative/defective MLH1 (DM group) and 22 patients with positive/intact MLH1 (IM group). Estimation of alpha diversity indices showed that the Shannon index (p = 0.049) was significantly higher in the DM group than in the controls, while the Simpson index (p = 0.025) was significantly lower. At the genus level, we observed a significant difference in beta diversity in the DM group versus the IM group. Moreover, the abundance of Lachnoclostridium spp. and Coprococcus spp. was significantly more enriched in the DM group than in the IM group (q < 0.01 vs. q < 0.001). When predicting metagenomes, there were 18 Kyoto Encyclopedia of Genes and Genomes pathways and one BugBase function difference in both groups (all q < 0.05). On the basis of the model of diagnostic prediction, we built a simplified optimal model through stepwise selection, consisting of the top two bacterial candidate markers (area under the curve = 0.93). Conclusion In conclusion, the genera Lachnoclostridium and Coprococcus as key species may be crucial biomarkers for non-invasive diagnostic prediction of DM in patients with SCRC in the future.
Collapse
Affiliation(s)
- Anchao Zhu
- Department of Pathology, Harbin First Hospital, Harbin, China
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yingying Liu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Zongmin Li
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying He
- Department of Gastroenterology, Harbin First Hospital, Harbin, China
| | - Lijing Bai
- Department of Laboratory Diagnosis, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youtian Wu
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Yuying Zhang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying Huang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ping Jiang
- Department of Pathology, Harbin First Hospital, Harbin, China
| |
Collapse
|
17
|
Xu Y, Zhao J, Ma Y, Liu J, Cui Y, Yuan Y, Xiang C, Ma D, Liu H. The microbiome types of colorectal tissue are potentially associated with the prognosis of patients with colorectal cancer. Front Microbiol 2023; 14:1100873. [PMID: 37025624 PMCID: PMC10072283 DOI: 10.3389/fmicb.2023.1100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
As the second leading cause of cancer worldwide, colorectal cancer (CRC) is associated with a poor prognosis. Although recent studies have explored prognostic markers in patients with CRC, whether tissue microbes carry prognostic information remains unknown. Here, by assessing the colorectal tissue microbes of 533 CRC patients, we found that Proteobacteria (43.5%), Firmicutes (25.3%), and Actinobacteria (23.0%) dominated the colorectal tissue microbiota, which was different from the gut microbiota. Moreover, two clear clusters were obtained by clustering based on the tissue microbes across all samples. By comparison, the relative abundances of Proteobacteria and Bacteroidetes in cluster 1 were significantly higher than those in cluster 2; while compared with cluster 1, Firmicutes and Actinobacteria were more abundant in cluster 2. In addition, the Firmicutes/Bacteroidetes ratios in cluster 1 were significantly lower than those in cluster 2. Further, compared with cluster 2, patients in cluster 1 had relatively poor survival (Log-rank test, p = 0.0067). By correlating tissue microbes with patient survival, we found that the relative abundance of dominant phyla, including Proteobacteria, Firmicutes, and Bacteroidetes, was significantly associated with survival in CRC patients. Besides, the co-occurrence network of tissue microbes at the phylum level of cluster 2 was more complicated than that of cluster 1. Lastly, we detected some pathogenic bacteria enriched in cluster 1 that promote the development of CRC, thus leading to poor survival. In contrast, cluster 2 showed significant increases in the abundance of some probiotics and genera that resist cancer development. Altogether, this study provides the first evidence that the tissue microbiome of CRC patients carries prognostic information and can help design approaches for clinically evaluating the survival of CRC patients.
Collapse
Affiliation(s)
- Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Zhao
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingying Cui
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuqing Yuan
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongshen Ma
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Hui Liu, ; Dongshen Ma,
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Hui Liu, ; Dongshen Ma,
| |
Collapse
|
18
|
Gao F, Yu B, Rao B, Sun Y, Yu J, Wang D, Cui G, Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol 2022; 13:1051987. [PMID: 36466871 PMCID: PMC9718533 DOI: 10.3389/fimmu.2022.1051987] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 10/26/2023] Open
Abstract
In the past few decades, great progress has been achieved in the understanding of microbiome-cancer interactions. However, most of the studies have focused on the gut microbiome, ignoring how other microbiomes interact with tumors. Emerging evidence suggests that in many types of cancers, such as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral microbiome plays a significant role. In addition, accumulating evidence suggests that intratumoral microbes have multiple effects on the biological behavior of tumors, for example, regulating tumor initiation and progression and altering the tumor response to chemotherapy and immunotherapy. However, to fully understand the role of the intratumoral microbiome in cancer, further investigation of the effects and mechanisms is still needed. This review discusses the role of intratumoral bacteria in tumorigenesis and tumor progression, recurrence and metastasis, as well as their effect on cancer prognosis and treatment outcome, and summarizes the relevant mechanisms.
Collapse
Affiliation(s)
- Feng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Guan J, Zhang ZG, Liu Y, Wang M. A novel bi-directional heterogeneous network selection method for disease and microbial association prediction. BMC Bioinformatics 2022; 23:483. [PMID: 36376802 PMCID: PMC9664813 DOI: 10.1186/s12859-022-04961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms in the human body have a great impact on human health. Therefore, mastering the potential relationship between microorganisms and diseases is helpful to understand the pathogenesis of diseases and is of great significance to the prevention, diagnosis, and treatment of diseases. In order to predict the potential microbial disease relationship, we propose a new computational model. Firstly, a bi-directional heterogeneous microbial disease network is constructed by integrating multiple similarities, including Gaussian kernel similarity, microbial function similarity, disease semantic similarity, and disease symptom similarity. Secondly, the neighbor information of the network is learned by random walk; Finally, the selection model is used for information aggregation, and the microbial disease node pair is analyzed. Our method is superior to the existing methods in leave-one-out cross-validation and five-fold cross-validation. Moreover, in case studies of different diseases, our method was proven to be effective.
Collapse
|
20
|
Lo CH, Wu DC, Jao SW, Wu CC, Lin CY, Chuang CH, Lin YB, Chen CH, Chen YT, Chen JH, Hsiao KH, Chen YJ, Chen YT, Wang JY, Li LH. Enrichment of Prevotella intermedia in human colorectal cancer and its additive effects with Fusobacterium nucleatum on the malignant transformation of colorectal adenomas. J Biomed Sci 2022; 29:88. [PMID: 36303164 PMCID: PMC9615364 DOI: 10.1186/s12929-022-00869-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Owing to the heterogeneity of microbiota among individuals and populations, only Fusobacterium nucleatum and Bacteroides fragilis have been reported to be enriched in colorectal cancer (CRC) in multiple studies. Thus, the discovery of additional bacteria contributing to CRC development in various populations can be expected. We aimed to identify bacteria associated with the progression of colorectal adenoma to carcinoma and determine the contribution of these bacteria to malignant transformation in patients of Han Chinese origin. METHODS Microbiota composition was determined through 16S rRNA V3-V4 amplicon sequencing of autologous adenocarcinomas, adenomatous polyps, and non-neoplastic colon tissue samples (referred to as "tri-part samples") in patients with CRC. Enriched taxa in adenocarcinoma tissues were identified through pairwise comparison. The abundance of candidate bacteria was quantified through genomic quantitative polymerase chain reaction (qPCR) in tissue samples from 116 patients. Associations of candidate bacteria with clinicopathological features and genomic and genetic alterations were evaluated through odds ratio tests. Additionally, the effects of candidate bacteria on CRC cell proliferation, migration, and invasion were evaluated through the co-culture of CRC cells with bacterial cells or with conditioned media from bacteria. RESULTS Prevotella intermedia was overrepresented in adenocarcinomas compared with paired adenomatous polyps. Furthermore, co-abundance of P. intermedia and F. nucleatum was observed in tumor tissues. More notably, the coexistence of these two bacteria in adenocarcinomas was associated with lymph node involvement and distant metastasis. These two bacteria also exerted additive effects on the enhancement of the migration and invasion abilities of CRC cells. Finally, conditioned media from P. intermedia promoted the migration and invasion of CRC cells. CONCLUSION This report is the first to demonstrate that P. intermedia is enriched in colorectal adenocarcinoma tissues and enhances the migration and invasion abilities of CRC cells. Moreover, P. intermedia and F. nucleatum exert additive effects on the malignant transformation of colorectal adenomas into carcinomas. These findings can be used to identify patients at a high risk of malignant transformation of colorectal adenomas or metastasis of CRC, and they can accordingly be provided optimal clinical management.
Collapse
Affiliation(s)
- Chia-Hui Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Wen Jao
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chang-Chieh Wu
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | - Ya-Bo Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ying-Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jiann-Hwa Chen
- Scool of Medicine, Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan
| | - Koung-Hung Hsiao
- Department of Colorectal Surgery, Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan
| | - Ying-Ju Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan.
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
21
|
Xie J, Jin D, Xu J, Yang F, Jin J. Hsa_hsa_circ_0081069 promotes the progression of colorectal cancer through sponging miR-665 and regulating E2F3 expression. J Clin Lab Anal 2022; 36:e24710. [PMID: 36181281 DOI: 10.1002/jcla.24710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the initiation and development of various cancers. This study explored the potential contribution of hsa_hsa_circ_0081069 in the progression of colorectal cancer (CRC). METHODS The gene expression was analyzed by qRT-PCR. Functional roles of hsa_circ_0081069 were examined by shRNA-mediated silencing using CCK-8 proliferation assay, Transwell migration and invasion assay, tube formation assay. The tumorigenesis and metastasis of CRC cells were assess in a xenograft mouse model. RESULTS Hsa_circ_0081069 was significantly upregulated in CRC tissues and cells. Hsa_circ_0081069 knockdown suppressed the proliferation, migration and invasion in CRC cells, as well as the angiogenesis. Silencing hsa_circ_0081069 also impaired the tumorigenesis of CRC cells in a xenograft mouse model. Furthermore, miR-665 was identified as an interacting partner of hsa_circ_0081069, which was negatively regulated by hsa_circ_0081069. miR-665 targeted the mRNA of E2F3 to suppress its expression. We further demonsatred that miR-665/E2F3 axis mediated the functional role of hsa_circ_0081069 in regulating the malignant phenotype of CRC cells. CONCLUSIONS Collectively, our study suggests that hsa_circ_0081069 could serve as a prognostic marker in progression of CRC. Targeting hsa_circ_0081069 and miR-665/E2F3 axis could serve as potential therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Oncology, Taizhou Hospital of Zhejiang Province, Linhai City, People's Republic of China
| | - Dan Jin
- Department of Oncology, Taizhou Hospital of Zhejiang Province, Linhai City, People's Republic of China
| | - Jinyin Xu
- Department of Oncology, Taizhou Hospital of Zhejiang Province, Linhai City, People's Republic of China
| | - Fei Yang
- Department of Oncology, Taizhou Hospital of Zhejiang Province, Linhai City, People's Republic of China
| | - Jianying Jin
- Department of Oncology, Taizhou Hospital of Zhejiang Province, Linhai City, People's Republic of China
| |
Collapse
|
22
|
Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol 2022; 28:4053-4060. [PMID: 36157114 PMCID: PMC9403435 DOI: 10.3748/wjg.v28.i30.4053] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that inhabit the digestive tracts of humans, living in symbiosis with the host. Dysbiosis, characterized by an imbalance between the beneficial and opportunistic gut microbiota, is associated with several gastrointestinal disorders, such as irritable bowel syndrome (IBS); inflammatory bowel disease (IBD), represented by ulcerative colitis and Crohn's disease; and colorectal cancer (CRC). Dysbiosis can disrupt the mucosal barrier, resulting in perpetuation of inflammation and carcinogenesis. The increase in some specific groups of harmful bacteria, such as Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF), has been associated with chronic tissue inflammation and the release of pro-inflammatory and carcinogenic mediators, increasing the chance of developing CRC, following the inflammation-dysplasia-cancer sequence in IBD patients. Therefore, the aim of the present review was to analyze the correlation between changes in the gut microbiota and the development and maintenance of IBD, CRC, and IBD-associated CRC. Patients with IBD and CRC have shown reduced bacterial diversity and abundance compared to healthy individuals, with enrichment of Firmicute sand Bacteroidetes. Specific bacteria are also associated with the onset and progression of CRC, such as Fusobacterium nucleatum, E. coli, Enterococcus faecalis, Streptococcus gallolyticus, and ETBF. Future research can evaluate the advantages of modulating the gut microbiota as preventive measures in CRC high-risk patients, directly affecting the prognosis of the disease and the quality of life of patients.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Ellen Cristina Souza De Oliveira
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Luiz Claudio Di Stasi
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| |
Collapse
|
23
|
Collatuzzo G, Seyyedsalehi MS, Rezaeianzadeh A, Marzban M, Rashidian H, Hadji M, Kamangar F, Etemadi A, Pukkala E, Zendehdel K, Boffetta P. Consumption of Yoghurt and Other Dairy Products and Risk of Colorectal Cancer in Iran: The IROPICAN Study. Nutrients 2022; 14:2506. [PMID: 35745234 PMCID: PMC9228368 DOI: 10.3390/nu14122506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is evidence of an inverse association between yoghurt intake and risk of colorectal cancer (CRC). We aimed at investigating the association between the intake of yoghurt and other dairy foods consumed in Iran and CRC risk. METHODS Our analysis included 4070 subjects within the IROPICAN (Iran Study of Opium and Cancer) study. Detailed information was collected by the use of validated questionnaires. We estimated adjusted odds ratios (OR) and 95% confidence intervals (CI) for the association between the intake of total dairy products, and, separately, of yoghurt, milk, cheese, kashk, dough, cream, ice cream, and other milk products, and CRC using unconditional logistic regression analyses. The intake was categorized in tertiles. RESULTS Overall, we analyzed 865 cases and 3205 controls. Total dairy products intake was not associated with CRC. The OR for one tertile increase (OR_T) in yoghurt intake was 0.97 (95% CI 0.87-1.08) for CRC and 0.66 (95% CI 0.52-0.84) for proximal colon cancer. Cream intake was associated with CRC (OR_T3 = 1.33, 95% CI 1.08-1.64), colon (OR_T3 = 1.37, 95% CI 1.03-1.81), and proximal cancer (OR_T3 = 1.29, 95% CI 1.04-1.61). The OR of distal colon cancer for ice cream intake was 0.59 (95% CI 0.43-0.82). Other dairy products were not associated with CRC risk.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (M.S.S.)
| | - Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (M.S.S.)
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran; (H.R.); (M.H.); (K.Z.)
| | - Abbas Rezaeianzadeh
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Maryam Marzban
- Department of Public Health, School of Public Health, Bushehr University of Medical Science, Bushehr 7514763448, Iran;
- Clinical Research Development Center, The Persian Gulf Martyrs, Bushehr University of Medical Science, Bushehr 7514763448, Iran
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran; (H.R.); (M.H.); (K.Z.)
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran; (H.R.); (M.H.); (K.Z.)
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland;
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran;
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20810, USA
| | - Eero Pukkala
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland;
- Finnish Cancer Registry—Institute for Statistical and Epidemiological Cancer Research, 00100 Helsinki, Finland
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran; (H.R.); (M.H.); (K.Z.)
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (M.S.S.)
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
24
|
Zhou P, Yang D, Sun D, Zhou Y. Gut microbiome: New biomarkers in early screening of colorectal cancer. J Clin Lab Anal 2022; 36:e24359. [PMID: 35312122 PMCID: PMC9102648 DOI: 10.1002/jcla.24359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Peng Zhou
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology School of Medicine Ningbo University Ningbo China
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
| | - Dongxue Yang
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
- Institute of Digestive Disease of Ningbo University Ningbo China
| | - Desen Sun
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology School of Medicine Ningbo University Ningbo China
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
- Institute of Digestive Disease of Ningbo University Ningbo China
| | - Yuping Zhou
- Department of Gastroenterology The Affiliated Hospital of Medical School Ningbo University Ningbo China
- Institute of Digestive Disease of Ningbo University Ningbo China
| |
Collapse
|