1
|
Xiao X, Zhao W, Song Z, Qi Q, Wang B, Zhu J, Lin J, Wang J, Hu A, Huang S, Wang Y, Chen J, Fang C, Ji Q, Zhang N, Meng L, Wei X, Chen C, Cai S, Chen S, Ding K, Li D, Liu S, Song T, Tian L, Zhang H, Zhang Y, Xu S, Chen J, Chen H, Cen Q, Jiang F, Hu G, Tang C, Guo W, Wang X, Zhan L, Fan J, Wang J, Zhou C, Li L, Lv Z, Hu Y, Lin X, Mai G, Luo L, Yang T, Wang W, Kristiansen K, Chen L, Yang H, Ni M, Gu Y, Mu F, Yang Y, Zhou J, Wang J, Zhang WJ, Han M, Xu X, Liu S. Microbial ecosystems and ecological driving forces in the deepest ocean sediments. Cell 2025; 188:1363-1377.e9. [PMID: 40054447 DOI: 10.1016/j.cell.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/18/2024] [Accepted: 12/25/2024] [Indexed: 05/13/2025]
Abstract
Systematic exploration of the hadal zone, Earth's deepest oceanic realm, has historically faced technical limitations. Here, we collected 1,648 sediment samples at 6-11 km in the Mariana Trench, Yap Trench, and Philippine Basin for the Mariana Trench Environment and Ecology Research (MEER) project. Metagenomic and 16S rRNA gene amplicon sequencing generated the 92-Tbp MEER dataset, comprising 7,564 species (89.4% unreported), indicating high taxonomic novelty. Unlike in reported environments, neutral drift played a minimal role, while homogeneous selection (HoS, 50.5%) and dispersal limitation (DL, 43.8%) emerged as dominant ecological drivers. HoS favored streamlined genomes with key functions for hadal adaptation, e.g., aromatic compound utilization (oligotrophic adaptation) and antioxidation (high-pressure adaptation). Conversely, DL promoted versatile metabolism with larger genomes. These findings indicated that environmental factors drive the high taxonomic novelty in the hadal zone, advancing our understanding of the ecological mechanisms governing microbial ecosystems in such an extreme oceanic environment.
Collapse
Affiliation(s)
- Xiang Xiao
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zewei Song
- BGI Research, Sanya 572025, China; BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen 518083, China
| | - Qi Qi
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen 518083, China
| | - Jiahui Zhu
- BGI Research, Sanya 572025, China; BGI Research, Shenzhen 518083, China
| | - James Lin
- Center for High Performance Computing, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, China; Shanghai Jiao Tong University Hainan Research Institute, Sanya 572025, China
| | - Aoran Hu
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Huang
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Jiao Tong University Hainan Research Institute, Sanya 572025, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Chen
- BGI Research, Qingdao 266555, China; Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI Research, Qingdao 266555, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Chao Fang
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen 518083, China
| | | | | | | | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen 518083, China; Genomics Data Center of Guangdong Province, BGI Research, Shenzhen 518083, China
| | - Chuanxu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Shun Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Kang Ding
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Dong Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Shuangquan Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Taoran Song
- College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya 572000, China
| | - Liyang Tian
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-Sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya, Hainan, China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Xu
- MGI Tech, Shenzhen 518083, China
| | - Jiayu Chen
- China National GeneBank, BGI Research, Shenzhen 518083, China
| | | | - Qian Cen
- China National GeneBank, BGI Research, Shenzhen 518083, China
| | - Fangfang Jiang
- China National GeneBank, BGI Research, Shenzhen 518083, China
| | - Guohai Hu
- China National GeneBank, BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen 518083, China
| | | | - Wu Guo
- Center for High Performance Computing, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Jie Fan
- BGI Research, Qingdao 266555, China
| | - Jun Wang
- BGI Research, Sanya 572025, China
| | | | - Liuyang Li
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenbo Lv
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Guoqiang Mai
- China National GeneBank, BGI Research, Shenzhen 518083, China
| | - Linlin Luo
- China National GeneBank, BGI Research, Shenzhen 518083, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518083, China; BGI, Shenzhen 518083, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen 518083, China; BGI, Shenzhen 518083, China
| | - Karsten Kristiansen
- BGI Research, Shenzhen 518083, China; Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI Research, Qingdao 266555, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Liqun Chen
- China National GeneBank, BGI Research, Shenzhen 518083, China
| | | | - Ming Ni
- MGI Tech, Shenzhen 518083, China
| | - Ying Gu
- BGI Research, Shenzhen 518083, China
| | - Feng Mu
- MGI Tech, Shenzhen 518083, China
| | - Yunfeng Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA; School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; School of Computer Sciences, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Wei-Jia Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-Sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya, Hainan, China.
| | - Mo Han
- BGI Research, Sanya 572025, China; BGI Research, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen 518083, China.
| | - Xun Xu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China.
| | - Shanshan Liu
- BGI Research, Qingdao 266555, China; MGI Tech, Shenzhen 518083, China; Shenzhen Key Laboratory of Marine Genomics, BGI Research, Shenzhen 518083, China; Institution of Deep-Sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya, Hainan, China.
| |
Collapse
|
2
|
Cheng Z, He Y, Wang N, Wu L, Xu J, Shi J. Uncovering soil amendment-induced genomic and functional divergence in soybean rhizosphere microbiomes during cadmium-contaminated soil remediation: Novel insights from field multi-omics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125787. [PMID: 39909332 DOI: 10.1016/j.envpol.2025.125787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Soil amendments exhibit great potential in reducing cadmium (Cd) bioavailability and its accumulation in crop grains, but their practical implications on microbial characteristics (genomic traits and ecological functions) remain unclear. The objective of this study was to combine metagenomics and metatranscriptomics to track the dynamics of bacterial and viral communities in the soybean rhizosphere during the remediation of Cd-contaminated soil using a commercial Mg-Ca-Si conditioner (CMC), applied at low and high (975 kg ha-1 and 1950 kg ha-1) rates under field conditions. Application of CMC increased the average size and decreased the guanine-cytosine (GC) content of microbial genomes, which were strongly shaped by soil pH and available Cd (ACd). Gene and transcript abundances analysis indicated that CMC promoted the enrichment of Alphaproteobacterial metagenome-assembled genomes (MAGs) carrying czcC gene encoding Cd efflux and dsbB gene encoding disulfide bond oxidoreductase. These genes are closely related to Cd resistance and exhibited notable (p < 0.05) increased expression in CMC-treated soils. Additionally, low and high CMC addition significantly increased viral alpha diversity by 5.7% and 9.6%, and viral activity by 3.3% and 7.8%, respectively, in comparison to the control. Temperate viruses were predicted as the major group (64%) and actively linked to the dominant host, and CMC amendment increased host metabolism and adaptability by enhancing (p < 0.05) the abundance and transcriptional activity of virus-encoded auxiliary metabolic genes (AMGs) involved in heavy metal resistance (ABC transport), sulfur cycling (cysH), and host metabolism (galE and queD) through "piggyback-the-winner" strategy. Structural equation modeling further revealed that CMC application influences Cd accumulation in soybean grains through its direct and indirect effects on soil properties and rhizosphere microbiomes, and highlighted the potential role of rhizosphere viruses in agricultural soil remediation.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China; Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, Écully, 69134, France
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Nanxi Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiachun Shi
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Jintasakul V, Pattano J, Preeprem S, Mittraparp-Arthorn P. Characterization and genome analysis of lytic Vibrio phage VPK8 with potential in lysing Vibrio parahaemolyticus isolates from clinical and seafood sources. Virol J 2025; 22:21. [PMID: 39885536 PMCID: PMC11783711 DOI: 10.1186/s12985-025-02637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus. This study characterizes Vibrio phage VPK8, focusing on host specificity, efficiency of plating (EOP) variability across V. parahaemolyticus isolates from diverse sources and other Vibrio species, morphology, genomic features, and bacteriolytic potential. METHODS Vibrio phage VPK8 was isolated from blood cockles in Thailand using a mixed-host approach and purified via the double-layer agar method. Host specificity was evaluated using spot assays and EOP measurements against 120 Vibrio strains, including AHPND-associated, clinical, and seafood isolates. Phage morphology was characterized by transmission electron microscopy (TEM), while genomic features were analyzed using next-generation sequencing. Lytic characteristics, including latent period and burst size, were determined through one-step growth curves, and bacterial growth reduction was evaluated over a 24-h. RESULTS Vibrio phage VPK8 is a lytic phage with a 42,866 bp linear double-stranded genome, G + C content of 49.4%, and 48 coding sequences. Phylogenetic analysis grouped it within the Autographiviridae family, showing 95.96% similarity to Vibrio phage vB_VpaP_MGD1. Viral proteomic analysis placed VPK8 within the Pseudomonadota host group. Spot assays indicated broad lytic activity, but EOP analysis revealed high infectivity in clinical and seafood V. parahaemolyticus isolates, as well as some V. cholerae and V. mimicus strains. TEM revealed an icosahedral head (~ 60 nm) and a short tail. At a multiplicity of infection of 0.01, VPK8 exhibited a latent period of 25 min, a burst size of 115, and effectively inhibited the reference host V. parahaemolyticus PSU5124 within 6 h, maintaining its lytic activity and stability for over 24 h. CONCLUSIONS This study provides a detailed characterization of Vibrio phage VPK8 which exhibits targeted infectivity with high EOP in clinical and seafood V. parahaemolyticus isolates, as well as selected Vibrio species. Its stable lytic performance, rapid replication, and genomic safety suggest its potential for phage-based applications. Further studies should explore its in vivo efficacy and the genetic features contributing to phage resistance mechanisms, enhancing its potential applicability in managing Vibrio-related diseases.
Collapse
Affiliation(s)
- Valalak Jintasakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jiranan Pattano
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sutima Preeprem
- Medical and Industrial Microbiology Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Pimonsri Mittraparp-Arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
4
|
Dieppa-Colón E, Martin C, Kosmopoulos JC, Anantharaman K. Prophage-DB: a comprehensive database to explore diversity, distribution, and ecology of prophages. ENVIRONMENTAL MICROBIOME 2025; 20:5. [PMID: 39806487 PMCID: PMC11730488 DOI: 10.1186/s40793-024-00659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored. Phages are classified as virulent or temperate based on their life cycles. Temperate phages adopt the lysogenic mode of infection, where the genome integrates into the host cell genome forming a prophage. Prophages enable viral genome replication without host cell lysis, and often contribute novel and beneficial traits to the host genome. Current phage research predominantly focuses on lytic phages, leaving a significant gap in knowledge regarding prophages, including their biology, diversity, and ecological roles. RESULTS Here we develop and describe Prophage-DB, a database of prophages, their proteins, and associated metadata that will serve as a resource for viral genomics and microbial ecology. To create the database, we identified and characterized prophages from genomes in three of the largest publicly available databases. We applied several state-of-the-art tools in our pipeline to annotate these viruses, cluster them, taxonomically classify them, and detect their respective auxiliary metabolic genes. In total, we identify and characterize over 350,000 prophages and 35,000 auxiliary metabolic genes. Our prophage database is highly representative based on statistical results and contains prophages from a diverse set of archaeal and bacterial hosts which show a wide environmental distribution. CONCLUSION Given that prophages are particularly overlooked and merit increased attention due to their vital implications for microbiomes and their hosts, we created Prophage-DB to advance our understanding of prophages in microbiomes through a comprehensive characterization of prophages in publicly available genomes. We propose that Prophage-DB will serve as a valuable resource for advancing phage research, offering insights into viral taxonomy, host relationships, auxiliary metabolic genes, and environmental distribution.
Collapse
Affiliation(s)
- Etan Dieppa-Colón
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - James C Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Indian Institute of Technology Madras, Chennai, TN, India.
| |
Collapse
|
5
|
Middelboe M, Traving SJ, Castillo D, Kalatzis PG, Glud RN. Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments. THE ISME JOURNAL 2025; 19:wraf004. [PMID: 39832281 PMCID: PMC11788074 DOI: 10.1093/ismejo/wraf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes (AMGs) may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded AMGs to host metabolic properties. In this study, we examined a temperate bacteriophage, and its piezotolerant Pseudomonas sp. host obtained from sediment samples collected from the Kermadec Trench at ~10 000 m water depth. Both the phage and host were present throughout the sediment profiles from the surface to 30 cm into the sediment, covering large gradients of environmental conditions. The host and phage each carried one chitinase gene, which differed from each other, suggesting that chitin degradation plays a role in their substrate supply. We demonstrated that prophage-encoded chitinase supported host chitin degradation and growth in the presence of chitin. Furthermore, prophage induction dynamics were strongly substrate-dependent, suggesting that the host controls the lysis-lysogeny switch in response to the presence of chitin, thus optimizing the trade-off between the loss of cells from prophage induction and prophage enhancement of host performance. Overall, the results demonstrate prophage-encoded AMGs as collaborative goods for their hosts and emphasize the potential role of phage-host interactions in benthic biogeochemical cycling, as well as for the capability of deep-sea bacteria to efficiently adapt and thrive at a wide range of environmental conditions.
Collapse
Affiliation(s)
- Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Sachia J Traving
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Panos G Kalatzis
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Ronnie N Glud
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477 Tokyo, Japan
| |
Collapse
|
6
|
Zhou Z, Tran PQ, Martin C, Rohwer RR, Baker BJ, McMahon KD, Anantharaman K. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat Microbiol 2025; 10:231-245. [PMID: 39753667 DOI: 10.1038/s41564-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors. Double-stranded DNA phages from the class Caudoviricetes dominated the community. We identified 574 auxiliary metabolic gene families representing over 140,000 auxiliary metabolic genes, including important genes such as psbA (photosynthesis), pmoC (methane oxidation) and katG (hydrogen peroxide decomposition), which were consistently present and active across decades and seasons. Positive associations and niche differentiation between virus-host pairs, including keystone Cyanobacteria, methanotrophs and Nanopelagicales, emerged during seasonal changes. Inorganic carbon and ammonium influenced viral abundances, underscoring viral roles in both 'top-down' and 'bottom-up' interactions. Evolutionary processes favoured fitness genes, reduced genomic heterogeneity and dominant sub-populations. This study transforms understanding of viral ecology and evolution in Earth's microbiomes.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Marine Science, Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
7
|
Rahimian M, Panahi B. Metagenome sequence data mining for viral interaction studies: Review on progress and prospects. Virus Res 2024; 349:199450. [PMID: 39151562 PMCID: PMC11388672 DOI: 10.1016/j.virusres.2024.199450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Metagenomics has been greatly accelerated by the development of next-generation sequencing (NGS) technologies, which allow scientists to discover and describe novel microorganisms without the need for conventional culture techniques. Examining integrative bioinformatics methods used in viral interaction research, this study highlights metagenomic data from various contexts. Accurate viral identification depends on high-purity genetic material extraction, appropriate NGS platform selection, and sophisticated bioinformatics tools like VirPipe and VirFinder. The efficiency and precision of metagenomic analysis are further improved with the advent of AI-based techniques. The diversity and dynamics of viral communities are demonstrated by case studies from a variety of environments, emphasizing the seasonal and geographical variations that influence viral populations. In addition to speeding up the discovery of new viruses, metagenomics offers thorough understanding of virus-host interactions and their ecological effects. This review provides a promising framework for comprehending the complexity of viral communities and their interactions with hosts, highlighting the transformational potential of metagenomics and bioinformatics in viral research.
Collapse
Affiliation(s)
- Mohammadreza Rahimian
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
8
|
Zhou K, Kosmopoulos JC, Colón ED, Badciong PJ, Anantharaman K. V- and V L-Scores Uncover Viral Signatures and Origins of Protein Families. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619987. [PMID: 39554153 PMCID: PMC11565772 DOI: 10.1101/2024.10.24.619987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Viruses are key drivers of microbial diversity, nutrient cycling, and co-evolution in ecosystems, yet their study is hindered due to challenges in culturing. Traditional gene-centric methods, which focus on a few hallmark genes like for capsids, miss much of the viral genome, leaving key viral proteins and functions undiscovered. Here, we introduce two powerful annotation-free metrics, V-score and VL-score, designed to quantify the "virus-likeness" of protein families and genomes and create an open-access searchable database, 'V-Score-Search'. By applying V- and VL-scores to public databases (KEGG, Pfam, and eggNOG), we link 38-77% of protein families with viruses, a 9-16x increase over current estimates. These metrics outperform existing approaches, enabling precise detection of viral genomes, prophages, and host-derived auxiliary viral genes (AVGs) from fragmented sequences, and significantly improving genome binning. Remarkably, we identify up to 17x more AVGs, dominated by non-metabolic proteins of unknown function. This innovation unlocks new insights into virus signatures and host interactions, with wide-ranging implications from genomics to biotechnology.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Etan Dieppa Colón
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
9
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
10
|
Robinson D, Morgan-Kiss RM, Wang Z, Takacs-Vesbach C. Antarctic lake viromes reveal potential virus associated influences on nutrient cycling in ice-covered lakes. Front Microbiol 2024; 15:1422941. [PMID: 39318431 PMCID: PMC11421388 DOI: 10.3389/fmicb.2024.1422941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
The McMurdo Dry Valleys (MDVs) of Antarctica are a mosaic of extreme habitats which are dominated by microbial life. The MDVs include glacial melt holes, streams, lakes, and soils, which are interconnected through the transfer of energy and flux of inorganic and organic material via wind and hydrology. For the first time, we provide new data on the viral community structure and function in the MDVs through metagenomics of the planktonic and benthic mat communities of Lakes Bonney and Fryxell. Viral taxonomic diversity was compared across lakes and ecological function was investigated by characterizing auxiliary metabolic genes (AMGs) and predicting viral hosts. Our data suggest that viral communities differed between the lakes and among sites: these differences were connected to microbial host communities. AMGs were associated with the potential augmentation of multiple biogeochemical processes in host, most notably with phosphorus acquisition, organic nitrogen acquisition, sulfur oxidation, and photosynthesis. Viral genome abundances containing AMGs differed between the lakes and microbial mats, indicating site specialization. Using procrustes analysis, we also identified significant coupling between viral and bacterial communities (p = 0.001). Finally, host predictions indicate viral host preference among the assembled viromes. Collectively, our data show that: (i) viruses are uniquely distributed through the McMurdo Dry Valley lakes, (ii) their AMGs can contribute to overcoming host nutrient limitation and, (iii) viral and bacterial MDV communities are tightly coupled.
Collapse
Affiliation(s)
- David Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | | | - Zhong Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | | |
Collapse
|
11
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Yan Y, Shi Z, Wang C, Jin Z, Yin J, Zhu G. Viral Diversity and Ecological Impact of DNA Viruses in Dominant Tick Species in China. Microorganisms 2024; 12:1736. [PMID: 39203578 PMCID: PMC11357538 DOI: 10.3390/microorganisms12081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Ticks are blood-feeding ectoparasites that also transmit various pathogens, posing severe risks to human and animal health. DNA viruses play a crucial role in the microbial ecology of ticks, but their distribution and ecological significance remain largely undetermined. Here, we assembled an extensive catalog encompassing 4320 viral operational taxonomic units (vOTUs) from six main dominant tick species in China, of which 94.8% have not been found in any other environment. To bridge the knowledge gap in tick DNA virus research and provide a crucial resource platform, we developed the Tick DNA Virus Database. This database includes the vOTUs that are known to cause diseases. Most of the predicted vOTUs are associated with dominant bacterial and archaeal phyla. We identified 105 virus-encoded putative auxiliary metabolic genes (AMGs) that are involved in host metabolism and environmental adaptation, potentially influencing ticks through both top-down and bottom-up mechanisms. The identification of microbial communities and antibiotic resistance in wild tick species suggests that wild ticks are reservoirs of antibiotic resistance and potential spreaders of antibiotic resistance. These findings reveal the potential role of tick viruses in ecosystems, highlighting the importance of monitoring tick microbiomes to address global public health challenges.
Collapse
Affiliation(s)
- Yueyang Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhangpeng Shi
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
| | - Cunmin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zi Jin
- Hangzhou Medical College, Hangzhou 310059, China;
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130062, China; (Y.Y.); (C.W.); (J.Y.)
- Institute of Zoonosis, Jilin University, Changchun 130062, China;
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Dieppa-Colón E, Martin C, Anantharaman K. Prophage-DB: A comprehensive database to explore diversity, distribution, and ecology of prophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603044. [PMID: 39071402 PMCID: PMC11275716 DOI: 10.1101/2024.07.11.603044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored. Phages are classified as virulent or temperate based on their life cycles. Temperate phages adopt the lysogenic mode of infection, where the genome integrates into the host cell genome forming a prophage. Prophages enable viral genome replication without host cell lysis, and often contribute novel and beneficial traits to the host genome. Current phage research predominantly focuses on lytic phages, leaving a significant gap in knowledge regarding prophages, including their biology, diversity, and ecological roles. Results Here we develop and describe Prophage-DB, a database of prophages, their proteins, and associated metadata that will serve as a resource for viral genomics and microbial ecology. To create the database, we identified and characterized prophages from genomes in three of the largest publicly available databases. We applied several state-of-the-art tools in our pipeline to annotate these viruses, cluster and taxonomically classify them, and detect their respective auxiliary metabolic genes. In total, we identify and characterize over 350,000 prophages and 35,000 auxiliary metabolic genes. Our prophage database is highly representative based on statistical results and contains prophages from a diverse set of archaeal and bacterial hosts which show a wide environmental distribution. Conclusion Prophages are particularly overlooked in viral ecology and merit increased attention due to their vital implications for microbiomes and their hosts. Here, we created Prophage-DB to advance our comprehension of prophages in microbiomes through a comprehensive characterization of prophages in publicly available genomes. We propose that Prophage-DB will serve as a valuable resource for advancing phage research, offering insights into viral taxonomy, host relationships, auxiliary metabolic genes, and environmental distribution.
Collapse
Affiliation(s)
- Etan Dieppa-Colón
- Department of Bacteriology, University of Wisconsin-Madison
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison
- Department of Integrative Biology, University of Wisconsin-Madison
| |
Collapse
|
14
|
Rasmussen TS, Mao X, Forster S, Larsen SB, Von Münchow A, Tranæs KD, Brunse A, Larsen F, Mejia JLC, Adamberg S, Hansen AK, Adamberg K, Hansen CHF, Nielsen DS. Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments. MICROBIOME 2024; 12:119. [PMID: 38951925 PMCID: PMC11218093 DOI: 10.1186/s40168-024-01820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) and fecal virome transplantation (FVT, sterile filtrated donor feces) have been effective in treating recurrent Clostridioides difficile infections, possibly through bacteriophage-mediated modulation of the gut microbiome. However, challenges like donor variability, costly screening, coupled with concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinder their wider clinical application in treating less acute diseases. METHODS To overcome these challenges, we developed methods to broaden FVT's clinical application while maintaining efficacy and increasing safety. Specifically, we employed the following approaches: (1) chemostat-fermentation to reproduce the bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), (2) solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and (3) pyronin-Y treatment to inhibit RNA virus replication (FVT-PyT). We assessed the efficacy of these processed FVTs in a C. difficile infection mouse model and compared them with untreated FVT (FVT-UnT), FMT, and saline. RESULTS FVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the humane endpoint (0/8, 2/7, and 3/8, respectively) compared to FMT, FVT-PyT, and saline (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of colonizing C. difficile cells and associated toxin A/B levels. There was a potential elimination of C. difficile colonization, with seven out of eight mice treated with FVT-SDT testing negative with qPCR. In contrast, all other treatments exhibited the continued presence of C. difficile. Moreover, the results were supported by changes in the gut microbiome profiles, cecal cytokine levels, and histopathological findings. Assessment of viral engraftment following FMT/FVT treatment and host-phage correlations analysis suggested that transfer of phages likely were an important contributing factor associated with treatment efficacy. CONCLUSIONS This proof-of-concept study shows that specific modifications of FVT hold promise in addressing challenges related to donor variability and infection risks. Two strategies lead to treatments significantly limiting C. difficile colonization in mice, with solvent/detergent treatment and chemostat propagation of donor phages emerging as promising approaches. Video Abstract.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark.
| | - Xiaotian Mao
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Sarah Forster
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Sabina Birgitte Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Alexandra Von Münchow
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Kaare Dyekær Tranæs
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg, Denmark
| | - Frej Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Josue Leonardo Castro Mejia
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Camilla Hartmann Friis Hansen
- Section of Experimental Animal Models, Department, of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9 1, 1871, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4, 1958, Frederiksberg, Denmark.
| |
Collapse
|
15
|
Mao X, Larsen SB, Zachariassen LSF, Brunse A, Adamberg S, Mejia JLC, Larsen F, Adamberg K, Nielsen DS, Hansen AK, Hansen CHF, Rasmussen TS. Transfer of modified gut viromes improves symptoms associated with metabolic syndrome in obese male mice. Nat Commun 2024; 15:4704. [PMID: 38830845 PMCID: PMC11148109 DOI: 10.1038/s41467-024-49152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.
Collapse
Affiliation(s)
- Xiaotian Mao
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Sabina Birgitte Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Line Sidsel Fisker Zachariassen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Josue Leonardo Castro Mejia
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Frej Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Dennis Sandris Nielsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Axel Kornerup Hansen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Camilla Hartmann Friis Hansen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Torben Sølbeck Rasmussen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
16
|
Ni Y, Chu T, Yan S, Wang Y. Forty-nine metagenomic-assembled genomes from an aquatic virome expand Caudoviricetes by 45 potential new families and the newly uncovered Gossevirus of Bamfordvirae. J Gen Virol 2024; 105. [PMID: 38446011 DOI: 10.1099/jgv.0.001967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.
Collapse
Affiliation(s)
- Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Ting Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, PR China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| |
Collapse
|
17
|
Ishola OA, Kublik S, Durai Raj AC, Ohnmacht C, Schulz S, Foesel BU, Schloter M. Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models. Microorganisms 2024; 12:255. [PMID: 38399658 PMCID: PMC10892684 DOI: 10.3390/microorganisms12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Oluwaseun A. Ishola
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Abilash Chakravarthy Durai Raj
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Caspar Ohnmacht
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University of Munich, Helmholtz Zentrum München, 85764 München, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Bärbel U. Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
- Central Institute for Nutrition and Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
18
|
Xiong L, Li Y, Zeng K, Wei Y, Li H, Ji X. Revealing viral diversity in the Napahai plateau wetland based on metagenomics. Antonie Van Leeuwenhoek 2023; 117:3. [PMID: 38153618 DOI: 10.1007/s10482-023-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
We focused on exploring the diversity of viruses in the Napahai plateau wetland, a unique ecosystem located in Yunnan, China. While viruses in marine environments have been extensively studied for their influence on microbial metabolism and biogeochemical cycles, little is known about their composition and function in plateau wetlands. Metagenomic analysis was employed to investigate the viral diversity and biogeochemical impacts in the Napahai wetland. It revealed that the Caudoviricetes and Malgrandaviricetes class level was the most abundant viral category based on phylogenetic analysis. Additionally, a gene-sharing network highlighted the presence of numerous unexplored viruses and demonstrated their unique characteristics and significant variation within the viral community of the Napahai wetland. Furthermore, the study identified the auxiliary metabolic genes (AMGs). AMGs provide phages with additional functions, such as protection against host degradation and involvement in metabolic pathways, such as the pentose phosphate pathway and DNA biosynthesis. The viruses in the Napahai wetland were found to influence carbon, nitrogen, sulfur, and amino acid metabolism, indirectly contributing to biogeochemical cycling through these AMGs. Overall, the research sheds light on the diverse and unique viral communities in the Napahai plateau wetland and emphasizes the significant roles of viruses in microbial ecology. The findings contribute to a deeper understanding of the characteristics and ecological functions of viral communities in plateau wetland ecosystems.
Collapse
Affiliation(s)
- Lingling Xiong
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yanmei Li
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kun Zeng
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yunlin Wei
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiuling Ji
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
19
|
Minch B, Akter S, Weinheimer A, Rahman MS, Parvez MAK, Rezwana Rahman S, Ahmed MF, Moniruzzaman M. Phylogenetic diversity and functional potential of large and cell-associated viruses in the Bay of Bengal. mSphere 2023; 8:e0040723. [PMID: 37902318 PMCID: PMC10732071 DOI: 10.1128/msphere.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The BoB, the world's largest bay, is of significant economic importance to surrounding countries, particularly Bangladesh, which heavily relies on its coastal resources. Concurrently, the BoB holds substantial ecological relevance due to the region's high vulnerability to climate change-induced impacts. Yet, our understanding of the BoB's microbiome in relation to marine food web and biogeochemical cycling remains limited. Particularly, there are little or no data on the viral diversity and host association in the BoB. We examined the viral community in two distinct BoB coastal regions to reveal a multitude of viral species interacting with a wide range of microbial hosts, some of which play key roles in coastal biogeochemical cycling or potential pathogens. Furthermore, we demonstrate that the BoB coast harbors a diverse community of large and giant viruses, underscoring the importance of investigating understudied environments to discover novel viral lineages with complex metabolic capacities.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| | - Salma Akter
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | | | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
20
|
Tsiola A, Michoud G, Daffonchio D, Fodelianakis S, Giannakourou A, Malliarakis D, Pavlidou A, Pitta E, Psarra S, Santi I, Zeri C, Pitta P. Depth-driven patterns in lytic viral diversity, auxiliary metabolic gene content, and productivity in offshore oligotrophic waters. Front Microbiol 2023; 14:1271535. [PMID: 38029212 PMCID: PMC10653327 DOI: 10.3389/fmicb.2023.1271535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.
Collapse
Affiliation(s)
- Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stilianos Fodelianakis
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Antonia Giannakourou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | | | - Alexandra Pavlidou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Elli Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Stella Psarra
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Ioulia Santi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Christina Zeri
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| |
Collapse
|
21
|
Listmann L, Peters C, Rahlff J, Esser SP, Schaum CE. Seasonality and Strain Specificity Drive Rapid Co-evolution in an Ostreococcus-Virus System from the Western Baltic Sea. MICROBIAL ECOLOGY 2023; 86:2414-2423. [PMID: 37268771 PMCID: PMC10640450 DOI: 10.1007/s00248-023-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Marine viruses are a major driver of phytoplankton mortality and thereby influence biogeochemical cycling of carbon and other nutrients. Phytoplankton-targeting viruses are important components of ecosystem dynamics, but broad-scale experimental investigations of host-virus interactions remain scarce. Here, we investigated in detail a picophytoplankton (size 1 µm) host's responses to infections by species-specific viruses from distinct geographical regions and different sampling seasons. Specifically, we used Ostreococcus tauri and O. mediterraneus and their viruses (size ca. 100 nm). Ostreococcus sp. is globally distributed and, like other picoplankton species, play an important role in coastal ecosystems at certain times of the year. Further, Ostreococcus sp. is a model organism, and the Ostreococcus-virus system is well-known in marine biology. However, only few studies have researched its evolutionary biology and the implications thereof for ecosystem dynamics. The Ostreococcus strains used here stem from different regions of the Southwestern Baltic Sea that vary in salinity and temperature and were obtained during several cruises spanning different sampling seasons. Using an experimental cross-infection set-up, we explicitly confirm species and strain specificity in Ostreococcus sp. from the Baltic Sea. Moreover, we found that the timing of virus-host co-existence was a driver of infection patterns as well. In combination, these findings prove that host-virus co-evolution can be rapid in natural systems.
Collapse
Affiliation(s)
- Luisa Listmann
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany.
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany.
| | - Carina Peters
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany
| | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Departement of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - C-Elisa Schaum
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany
| |
Collapse
|
22
|
Ru J, Xue J, Sun J, Cova L, Deng L. Unveiling the hidden role of aquatic viruses in hydrocarbon pollution bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132299. [PMID: 37597386 DOI: 10.1016/j.jhazmat.2023.132299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Hydrocarbon pollution poses substantial environmental risks to water and soil. Bioremediation, which utilizes microorganisms to manage pollutants, offers a cost-effective solution. However, the role of viruses, particularly bacteriophages (phages), in bioremediation remains unexplored. This study examines the diversity and activity of hydrocarbon-degradation genes encoded by environmental viruses, focusing on phages, within public databases. We identified 57 high-quality phage-encoded auxiliary metabolic genes (AMGs) related to hydrocarbon degradation, which we refer to as virus-encoded hydrocarbon degradation genes (vHYDEGs). These genes are encoded by taxonomically diverse aquatic phages and highlight the under-characterized global virosphere. Six protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic analyses revealed the diverse evolutionary trajectories of vHYDEGs across habitats, revealing previously unknown biodegraders linked evolutionarily with vHYDEGs. Our findings suggest phage AMGs may contribute to alkane and aromatic hydrocarbon degradation, participating in the initial, rate-limiting hydroxylation steps, thereby aiding hydrocarbon pollution bioremediation and promoting their propagation. To support future research, we developed vHyDeg, a database containing identified vHYDEGs with comprehensive annotations, facilitating the screening of hydrocarbon degradation AMGs and encouraging their bioremediation applications.
Collapse
Affiliation(s)
- Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Linda Cova
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
| |
Collapse
|
23
|
Yan M, Pratama AA, Somasundaram S, Li Z, Jiang Y, Sullivan MB, Yu Z. Interrogating the viral dark matter of the rumen ecosystem with a global virome database. Nat Commun 2023; 14:5254. [PMID: 37644066 PMCID: PMC10465536 DOI: 10.1038/s41467-023-41075-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
The diverse rumen virome can modulate the rumen microbiome, but it remains largely unexplored. Here, we mine 975 published rumen metagenomes for viral sequences, create a global rumen virome database (RVD), and analyze the rumen virome for diversity, virus-host linkages, and potential roles in affecting rumen functions. Containing 397,180 species-level viral operational taxonomic units (vOTUs), RVD substantially increases the detection rate of rumen viruses from metagenomes compared with IMG/VR V3. Most of the classified vOTUs belong to Caudovirales, differing from those found in the human gut. The rumen virome is predicted to infect the core rumen microbiome, including fiber degraders and methanogens, carries diverse auxiliary metabolic genes, and thus likely impacts the rumen ecosystem in both a top-down and a bottom-up manner. RVD and the findings provide useful resources and a baseline framework for future research to investigate how viruses may impact the rumen ecosystem and digestive physiology.
Collapse
Affiliation(s)
- Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Akbar Adjie Pratama
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Sripoorna Somasundaram
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Matthew B Sullivan
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Cheng Z, Li X, Palomo A, Yang Q, Han L, Wu Z, Li Z, Zhang M, Chen L, Zhao B, Yu K, Zhang C, Hou S, Zheng Y, Xia Y. Virus impacted community adaptation in oligotrophic groundwater environment revealed by Hi-C coupled metagenomic and viromic study. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131944. [PMID: 37390685 DOI: 10.1016/j.jhazmat.2023.131944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Viruses play a crucial role in microbial mortality, diversity and biogeochemical cycles. Groundwater is the largest global freshwater and one of the most oligotrophic aquatic systems on Earth, but how microbial and viral communities are shaped in this special habitat is largely unexplored. In this study, we collected groundwater samples from 23 to 60 m aquifers at Yinchuan Plain, China. In total, 1920 non-reductant viral contigs were retrieved from metagenomes and viromes constructed by Illumina and Nanopore hybrid sequencing. Only 3% of them could be clustered with known viruses, most of which were Caudoviricetes. Coupling 1.2 Tb Hi-C sequencing with CRISPR matching and homology search, we connected 469 viruses with their hosts while some viral clusters presented a broad-host-range trait. Meanwhile, a large proportion of biosynthesis related auxiliary metabolism genes were identified. Those characteristics might benefit viruses for a better survival in this special oligotrophic environment. Additionally, the groundwater virome showed genomic features distinct from those of the open ocean and wastewater treatment facilities in GC distribution and unannotated gene compositions. This paper expands the current knowledge of the global viromic records and serves as a foundation for a more thorough understanding of viruses in groundwater.
Collapse
Affiliation(s)
- Zhanwen Cheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Shengwei Hou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
25
|
Rodríguez-Ramos J, Oliverio A, Borton MA, Danczak R, Mueller BM, Schulz H, Ellenbogen J, Flynn RM, Daly RA, Schopflin L, Shaffer M, Goldman A, Lewandowski J, Stegen JC, Wrighton KC. Spatial and temporal metagenomics of river compartments reveals viral community dynamics in an urban impacted stream. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535500. [PMID: 37066413 PMCID: PMC10104031 DOI: 10.1101/2023.04.04.535500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.
Collapse
|
26
|
Yu Z, Ma Y, Guan Y, Zhu Y, Wang K, Wang Y, Liu P, Chen J, Yu Y. Metagenomics of Virus Diversities in Solid-State Brewing Process of Traditional Chinese Vinegar. Foods 2022; 11:3296. [PMID: 37431044 PMCID: PMC9602057 DOI: 10.3390/foods11203296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional Chinese vinegar offers an exceptional flavor and rich nutrients due to its unique solid-state fermentation process, which is a multiple microbial fermentation system including various bacteria, fungi and viruses. However, few studies on the virus diversities in traditional Chinese vinegar have been reported. In this paper, using Zhenjiang aromatic vinegar as a model system, we systemically explored the viral communities in the solid-state brewing process of traditional Chinese vinegar using bacterial and viral metagenomes. Results showed that the viral diversity in vinegar Pei was extensive and the virus communities varied along with the fermentation process. In addition, there existed some interactions between viral and bacterial communities. Moreover, abundant antibiotic resistance genes were found in viromes, indicating that viruses might protect fermentation bacteria strains from the stress of antibiotics in the fermentation environment. Remarkably, we identified abundant auxiliary carbohydrate metabolic genes (including alcohol oxidases, the key enzymes for acetic acid synthesis) from viromes, implying that viruses might participate in the acetic acid synthesis progress of the host through auxiliary metabolic genes. Taken together, our results indicated the potential roles of viruses in the vinegar brewing process and provided a new perspective for studying the fermentation mechanisms of traditional Chinese vinegar.
Collapse
Affiliation(s)
- Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yan Ma
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yingfen Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Juan Chen
- College of Food Science and Engineering, Moutai Institute, Renhuai 564501, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
27
|
Elbehery AHA, Deng L. Insights into the global freshwater virome. Front Microbiol 2022; 13:953500. [PMID: 36246212 PMCID: PMC9554406 DOI: 10.3389/fmicb.2022.953500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Viruses are by far the most abundant life forms on this planet. Yet, the full viral diversity remains mostly unknown, especially in environments like freshwater. Therefore, we aimed to study freshwater viruses in a global context. To this end, we downloaded 380 publicly available viral metagenomes (>1 TB). More than 60% of these metagenomes were discarded based on their levels of cellular contamination assessed by ribosomal DNA content. For the remaining metagenomes, assembled contigs were decontaminated using two consecutive steps, eventually yielding 273,365 viral contigs longer than 1,000 bp. Long enough contigs (≥ 10 kb) were clustered to identify novel genomes/genome fragments. We could recover 549 complete circular and high-quality draft genomes, out of which 10 were recognized as being novel. Functional annotation of these genomes showed that most of the annotated coding sequences are DNA metabolic genes or phage structural genes. On the other hand, taxonomic analysis of viral contigs showed that most of the assigned contigs belonged to the order Caudovirales, particularly the families of Siphoviridae, Myoviridae, and Podoviridae. The recovered viral contigs contained several auxiliary metabolic genes belonging to several metabolic pathways, especially carbohydrate and amino acid metabolism in addition to photosynthesis as well as hydrocarbon degradation and antibiotic resistance. Overall, we present here a set of prudently chosen viral contigs, which should not only help better understanding of freshwater viruses but also be a valuable resource for future virome studies.
Collapse
Affiliation(s)
- Ali H. A. Elbehery
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
- *Correspondence: Ali H. A. Elbehery,
| | - Li Deng
- Helmholtz Centre Munich – German Research Centre for Environmental Health, Institute of Virology, Neuherberg, Germany
- Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, Freising, Germany
- Li Deng,
| |
Collapse
|
28
|
Busse L, Tisza M, DiRuggiero J. Viruses Ubiquity and Diversity in Atacama Desert Endolithic Communities. Viruses 2022; 14:1983. [PMID: 36146789 PMCID: PMC9500819 DOI: 10.3390/v14091983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are key players in the environment, and recent metagenomic studies have revealed their diversity and genetic complexity. Despite progress in understanding the ecology of viruses in extreme environments, viruses' dynamics and functional roles in dryland ecosystems, which cover about 45% of the Earth's land surfaces, remain largely unexplored. This study characterizes virus sequences in the metagenomes of endolithic (within rock) microbial communities ubiquitously found in hyper-arid deserts. Taxonomic classification and network construction revealed the presence of novel and diverse viruses in communities inhabiting calcite, gypsum, and ignimbrite rocks. Viral genome maps show a high level of protein diversity within and across endolithic communities and the presence of virus-encoded auxiliary metabolic genes. Phage-host relationships were predicted by matching tRNA, CRISPR spacer, and protein sequences in the viral and microbial metagenomes. Primary producers and heterotrophic bacteria were found to be putative hosts to some viruses. Intriguingly, viral diversity was not correlated with microbial diversity across rock substrates.
Collapse
Affiliation(s)
- Leora Busse
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mike Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|