1
|
Abdurakhmanova МM, Leonteva AA, Vasilieva NS, Kuligina EV, Nushtaeva AA. 3D cell culture models: how to obtain and characterize the main models. Vavilovskii Zhurnal Genet Selektsii 2025; 29:175-188. [PMID: 40264808 PMCID: PMC12011624 DOI: 10.18699/vjgb-25-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 04/24/2025] Open
Abstract
For many years, the gold standard in the study of malignant tumors has been the in vitro culture of tumor cells, in vivo xenografts or genetically modified animal models. Meanwhile, three-dimensional cell models (3D cultures) have been added to the arsenal of modern biomedical research. 3D cultures reproduce tissue-specific features of tissue topology. This makes them relevant tissue models in terms of cell differentiation, metabolism and the development of drug resistance. Such models are already being used by many research groups for both basic and translational research, and may substantially reduce the number of animal studies, for example in the field of oncological research. In the current literature, 3D cultures are classified according to the technique of their formation (with or without a scaffold), cultivation conditions (static or dynamic), as well as their cellular organization and function. In terms of cellular organization, 3D cultures are divided into "spheroid models", "organoids", "organs-on-a-chip" and "microtissues". Each of these models has its own unique features, which should be taken into account when using a particular model in an experiment. The simplest 3D cultures are spheroid models which are floating spherical cell aggregates. An organoid is a more complex 3D model, in which a self-organizing 3D structure is formed from stem cells (SCs) capable of self-renewal and differentiation within the model. Organ-on-a-chip models are chips of microfluidic systems that simulate dynamic physical and biological processes found in organs and tissues in vitro. By combining different cell types into a single structure, spheroids and organoids can act as a basis for the formation of a microtissue - a hybrid 3D model imitating a specific tissue phenotype and containing tissue-specific extracellular matrix (ECM) components. This review presents a brief history of 3D cell culture. It describes the main characteristics and perspectives of the use of "spheroid models", "organoids", "organ-on-a-chip" models and "microtissues" in immune oncology research of solid tumors.
Collapse
Affiliation(s)
- М M Abdurakhmanova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Leonteva
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N S Vasilieva
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Kuligina
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Nushtaeva
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
De Pace R, Iaquinta MR, Benkhalqui A, D'Agostino A, Trevisiol L, Nocini R, Mazziotta C, Rotondo JC, Bononi I, Tognon M, Martini F, Mazzoni E. Revolutionizing bone healing: the role of 3D models. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:7. [PMID: 40113735 PMCID: PMC11926310 DOI: 10.1186/s13619-025-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The increasing incidence of bone diseases has driven research towards Bone Tissue Engineering (BTE), an innovative discipline that uses biomaterials to develop three-dimensional (3D) scaffolds capable of mimicking the natural environment of bone tissue. Traditional approaches relying on two-dimensional (2D) models have exhibited significant limitations in simulating cellular interactions and the complexity of the bone microenvironment. In response to these challenges, 3D models such as organoids and cellular spheroids have emerged as effective tools for studying bone regeneration. Adult mesenchymal stem cells have proven crucial in this context, as they can differentiate into osteoblasts and contribute to bone tissue repair. Furthermore, the integration of composite biomaterials has shown substantial potential in enhancing bone healing. Advanced technologies like microfluidics offer additional opportunities to create controlled environments for cell culture, facilitating more detailed studies on bone regeneration. These advancements represent a fundamental step forward in the treatment of bone pathologies and the promotion of skeletal health. In this review, we report on the evolution of in vitro culture models applied to the study of bone healing/regrowth, starting from 2 to 3D cultures and microfluids. The different methodologies of in vitro model generation, cells and biomaterials are presented and discussed.
Collapse
Affiliation(s)
- Raffaella De Pace
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Assia Benkhalqui
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Department of Surgery, University of Verona, Verona, Italy
| | | | - Lorenzo Trevisiol
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
- Unit of Maxillofacial Surgery, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | | | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Centralized Laboratory of Pre-Clinical Research, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy.
| |
Collapse
|
3
|
Xie Y, Yang X, Pan R, Gao L, Yu L. Co-culture of natural killer cells and tumor spheroids on a heterogeneous multilayer paper stack. J Zhejiang Univ Sci B 2024; 25:1097-1107. [PMID: 39743296 DOI: 10.1631/jzus.b2300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/04/2024] [Indexed: 01/04/2025]
Abstract
Multilayer paper-based cell culture, as an in vitro three-dimensional (3D) cell culture method, has been frequently used to research drug bioavailability, therapeutic efficacy, and dose-limiting toxicity in malignant tumors. This paper proposes a heterogenous multilayer paper stacking co-culture system to establish a model of natural killer (NK) cells moving through the endothelium layer and attacking tumor spheroids. This system consists of three layers: a bottom tumor-spheroid layer, a middle invasion layer, and a top endothelium layer. NK-92 cells were placed in the supernatant on top of the three layers. After two days of co-culture, the attack of tumor spheroids by NK cells was observed. We additionally examined the infiltration of NK-92 cells within the tumor spheroids at different Z-axis depths using a confocal microscope, and the results suggested that the system successfully realizes NK cells traveling cross the endothelium layer to form tumor-infiltrating NK cells (TINKs). The potential application of multilayer paper for co-culture models involving cancer cells and immune cells holds great promise for exploring the interaction dynamics of these two cell types.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiaoyan Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Rong Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
5
|
Shi Y, Han X, Zou S, Liu G. Nanomaterials in Organoids: From Interactions to Personalized Medicine. ACS NANO 2024; 18:33276-33292. [PMID: 39609736 DOI: 10.1021/acsnano.4c13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Organoids are three-dimensional models of microscopic organisms created through the self-organization of various types of stem cells. They are widely unitized in personalized medicine due to their capacity to replicate the structure and functionality of native organs. Meanwhile, nanotechnology has been integrated into diagnostic and therapeutic tools to manage an array of medical conditions, given its unique characteristics of nanoscale. Nanomaterials have demonstrated potential in developing innovative and effective organoids. With a focus on studying the interaction of nanomaterials and organoid technology in personalized medicine, this Review examines the role of nanomaterials in regulating the fate of stem cells to construct different types of organoids. It also explores the potential of nanotechnology to create 3D microenvironments for organoids. Finally, perspectives and challenges of applying nanotechnology for organoids development toward the translation of personalized medicine are discussed.
Collapse
Affiliation(s)
- Ying Shi
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Han
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Siyi Zou
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
6
|
Zhu L, Bai M, Xiao S, Liu Y, Zhu Q, Wang Z, Zhao J, Zhang W, Chen D. In-situ monitoring of cellular H 2O 2 within 3D cell clusters using conductive scaffolds. Talanta 2024; 279:126559. [PMID: 39018950 DOI: 10.1016/j.talanta.2024.126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Accurately monitoring H2O2 concentrations in 3D cell clusters is challenging due to limited diffusion and rapid degradation of H2O2 in the culture medium. Despite the incorporation of three-dimensional cell culture approaches, the detection technology has largely remained as a 2D planar system. In this study, we present a versatile approach of 3D electrochemical sensing utilizing carbon nanotubes as conductive scaffolds for in-situ monitoring of H2O2 in cell clusters. These scaffolds enabled direct contact between H2O2 released from cells and the electrodes, thereby improving sensitivity and ensuring biocompatibility for cell aggregates. The scaffolds exhibited electrocatalytic behavior with a limit of detection of 6.7 nM H2O2. Additionally, the electrochemical responses of cell clusters with the scaffolds exhibited significantly higher current compared to clusters without scaffolds when stimulated with model drugs. This study underscores the potential of conductive scaffolds for real-time monitoring of H2O2 released from cell clusters in 3D microenvironments.
Collapse
Affiliation(s)
- Ling Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Mingxia Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Shenghao Xiao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yanhui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Zixuan Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Jiaqian Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China
| | - Wei Zhang
- Medtronic Technology Center, Shanghai, China.
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China.
| |
Collapse
|
7
|
Cheng YW, Hsieh YC, Sun YS, Wang YH, Yang YW, Lo KY. Using microfluidic and conventional platforms to evaluate the effects of lanthanides on spheroid formation. Toxicology 2024; 508:153931. [PMID: 39222830 DOI: 10.1016/j.tox.2024.153931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Metastasis contributes to the increased mortality rate of cancer, but the intricate mechanisms remain unclear. Cancer cells from a primary tumor invade nearby tissues and access the lymphatic or circulatory system. If these cells manage to survive and extravasate from the vasculature into distant tissues and ultimately adapt to survive, they will proliferate and facilitate malignant tumor formation. Traditional two-dimensional (2D) cell cultures offer a rapid and convenient method for validating the efficacy of anticancer drugs within a reasonable cost range, but their utility is limited because of tumors' high heterogeneity in vivo and spatial complexities. Three-dimensional (3D) cell cultures that mimic the physiological conditions of cancer cells in vivo have gained considerable interest. In these cultures, cells assemble into spheroids through gravity, magnetic forces, or their low-adhesion to the plates. Although these approaches address some of the limitations of 2D cultures, they often require a considerable amount of time and cost. Therefore, this study aims to enhance the effectiveness of 3D culture techniques by using microfluidic systems to provide a high-throughput and sensitive pipeline for drug screening. Using these systems, we studied the effects of lanthanide elements, which have garnered interest in cancer treatment, on spheroid formation and cell spreading. Our findings suggest that these elements alter the compactness of cell spheroids and decrease cell mobility.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Agricultural Chemistry, National Taiwan University Taipei City 10617, Taiwan
| | - Yu-Chen Hsieh
- Department of Agricultural Chemistry, National Taiwan University Taipei City 10617, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Hsun Wang
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, Taipei City 100225, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University Taipei City 10617, Taiwan.
| |
Collapse
|
8
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
12
|
Boscaro D, Sikorski P. Spheroids as a 3D in vitro model to study bone and bone mineralization. BIOMATERIALS ADVANCES 2024; 157:213727. [PMID: 38101067 DOI: 10.1016/j.bioadv.2023.213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Traumas, fractures, and diseases can severely influence bone tissue. Insight into bone mineralization is essential for the development of therapies and new strategies to enhance bone regeneration. 3D cell culture systems, in particular cellular spheroids, have gained a lot of interest as they can recapitulate crucial aspects of the in vivo tissue microenvironment, such as the extensive cell-cell and cell-extracellular matrix (ECM) interactions found in tissue. The potential of combining spheroids and various classes of biomaterials opens also new opportunities for research within bone tissue engineering. Characterizing cellular organization, ECM structure, and ECM mineralization is a fundamental step for understanding the biological processes involved in bone tissue formation in a spheroid-based model system. Still, many experimental techniques used in this field of research are optimized for use with monolayer cell cultures. There is thus a need to develop new and improving existing experimental techniques, for applications in 3D cell culture systems. In this review, bone composition and spheroids properties are described. This is followed by an insight into the techniques that are currently used in bone spheroids research and how these can be used to study bone mineralization. We discuss the application of staining techniques used with optical and confocal fluorescence microscopy, molecular biology techniques, second harmonic imaging microscopy, Raman spectroscopy and microscopy, as well as electron microscopy-based techniques, to evaluate osteogenic differentiation, collagen production and mineral deposition. Challenges in the applications of these methods in bone regeneration and bone tissue engineering are described. STATEMENT OF SIGNIFICANCE: 3D cell cultures have gained a lot of interest in the last decades as a possible technique that can be used to recreate in vitro in vivo biological process. The importance of 3D environment during bone mineralization led scientists to use this cell culture to study this biological process, to obtain a better understanding of the events involved. New and improved techniques are also required for a proper analysis of this cell model and the process under investigation. This review summarizes the state of the art of the techniques used to study bone mineralization and how 3D cell cultures, in particular spheroids, are tested and analysed to obtain better resolved results related to this complex biological process.
Collapse
Affiliation(s)
- Diamante Boscaro
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| |
Collapse
|
13
|
Xie Y, Pan R, Wu S, Yang X, Chen F, Sun W, Yu L. Cell repelling agar@paper interface assisted probing of the tumor spheroids infiltrating natural killer cells. BIOMATERIALS ADVANCES 2023; 153:213507. [PMID: 37354744 DOI: 10.1016/j.bioadv.2023.213507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Scaffold-based culture is one of the effective methods to resemble three-dimensional (3D) cells model in vitro. An agar@lens paper hybrid scaffold was prepared by one-pot dip-coating. The lens paper's cellulose fiber networks are the scaffold's backbone. The agar gel seized the gaps between the fibrous structures that can improve the paper scaffold's optical transparency and prevent cells from spreading on the scaffold. The SEM and light microscope images showed that the agar gel on the bottom of the paper and the cellulose fiber of the paper formed micro-well structures. Without staining, the cells growing on the agar@paper scaffold can be directly observed under a light microscope. Cells aggregated between the cellulose fibers and formed spheroids within 24 h. The cell spheroids can be non-enzymatically retrieved from the agar@paper scaffold because of the cell-repelling property of agar. The agar@paper scaffold was applied for co-culturing tumor cells (MDA-MB-231, DU 145) and natural killer cells (NKs, NK-92). Using the agar@paper scaffolds, the tumor-infiltrating NKs can be separated from floating NKs that did not attack the tumor spheroids. The effect of NKs infiltrating on tumor spheroids size was characterized. The results showed that NKs attacking the spheroids grown on agar@paper scaffold can be readily tracked because of the improved optical transparency. Higher NKs: tumor cells ratio resulted in a high percentage of tumor infiltrating NKs. The separated NKs can be further tested to reveal their biological characteristics. Both agar and lens paper is accessible for most biological labs, highlighting the potential of agar@paper scaffold in 3D culture.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Rong Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Shiming Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaoyan Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Feng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Hu H, Krishaa L, Fong ELS. Magnetic force-based cell manipulation for in vitro tissue engineering. APL Bioeng 2023; 7:031504. [PMID: 37736016 PMCID: PMC10511261 DOI: 10.1063/5.0138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Cell manipulation techniques such as those based on three-dimensional (3D) bioprinting and microfluidic systems have recently been developed to reconstruct complex 3D tissue structures in vitro. Compared to these technologies, magnetic force-based cell manipulation is a simpler, scaffold- and label-free method that minimally affects cell viability and can rapidly manipulate cells into 3D tissue constructs. As such, there is increasing interest in leveraging this technology for cell assembly in tissue engineering. Cell manipulation using magnetic forces primarily involves two key approaches. The first method, positive magnetophoresis, uses magnetic nanoparticles (MNPs) which are either attached to the cell surface or integrated within the cell. These MNPs enable the deliberate positioning of cells into designated configurations when an external magnetic field is applied. The second method, known as negative magnetophoresis, manipulates diamagnetic entities, such as cells, in a paramagnetic environment using an external magnetic field. Unlike the first method, this technique does not require the use of MNPs for cell manipulation. Instead, it leverages the magnetic field and the motion of paramagnetic agents like paramagnetic salts (Gadobutrol, MnCl2, etc.) to propel cells toward the field minimum, resulting in the assembly of cells into the desired geometrical arrangement. In this Review, we will first describe the major approaches used to assemble cells in vitro-3D bioprinting and microfluidics-based platforms-and then discuss the use of magnetic forces for cell manipulation. Finally, we will highlight recent research in which these magnetic force-based approaches have been applied and outline challenges to mature this technology for in vitro tissue engineering.
Collapse
Affiliation(s)
- Huiqian Hu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - L. Krishaa
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Eliza Li Shan Fong
- Present address: Translational Tumor Engineering Laboratory, 15 Kent Ridge Cres, E7, 06-01G, Singapore 119276, Singapore. Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 2023; 50:7017-7025. [PMID: 37378748 DOI: 10.1007/s11033-023-08585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.
Collapse
Affiliation(s)
- Ugur Tepe
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Bahar Aslanbay Guler
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
16
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
17
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Shen C, Zhang ZJ, Li XX, Huang YP, Wang YX, Zhou H, Xiong L, Wen Y, Zou H, Liu ZT. Intersection of nanomaterials and organoids technology in biomedicine. Front Immunol 2023; 14:1172262. [PMID: 37187755 PMCID: PMC10175666 DOI: 10.3389/fimmu.2023.1172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Organoids are stem cell-derived, self-organizing, 3D structures. Compared to the conventional 2D cell culture method, 3D cultured organoids contain a variety of cell types that can form functional "micro-organs" and can be used to simulate the occurrence process and physiological pathological state of organ tissues more effectively. Nanomaterials (NMs) are becoming indispensable in the development of novel organoids. Understanding the application of nanomaterials in organoid construction can, therefore, provide researchers with ideas for the development of novel organoids. Here, we discuss the application status of NMs in various organoid culture systems and the research direction of NMs combined with organoids in the biomedical field.
Collapse
Affiliation(s)
- Chen Shen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-xue Li
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-peng Huang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-xiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Zou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-tao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Song Y, Zhang Y, Qu Q, Zhang X, Lu T, Xu J, Ma W, Zhu M, Huang C, Xiong R. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol 2023; 226:14-36. [PMID: 36436602 DOI: 10.1016/j.ijbiomac.2022.11.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
In recent decades, three-dimensional (3D) cell culture technologies have been developed rapidly in the field of tissue engineering and regeneration, and have shown unique advantages and great prospects in the differentiation of stem cells. Herein, the article reviews the progress and advantages of 3D cell culture technologies in the field of stem cell differentiation. Firstly, 3D cell culture technologies are divided into two main categories: scaffoldless and scaffolds. Secondly, the effects of hydrogels scaffolds and porous scaffolds on stem cell differentiation in the scaffold category were mainly reviewed. Among them, hydrogels scaffolds are divided into natural hydrogels and synthetic hydrogels. Natural materials include polysaccharides, proteins, and their derivatives, focusing on hyaluronic acid, collagen and polypeptides. Synthetic materials mainly include polyethylene glycol (PEG), polyacrylic acid (PAA), polyvinyl alcohol (PVA), etc. In addition, since the preparation techniques have a large impact on the properties of porous scaffolds, several techniques for preparing porous scaffolds based on different macromolecular materials are reviewed. Finally, the future prospects and challenges of 3D cell culture in the field of stem cell differentiation are reviewed. This review will provide a useful guideline for the selection of materials and techniques for 3D cell culture in stem cell differentiation.
Collapse
Affiliation(s)
- Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
20
|
de Souza Castro G, de Souza W, Lima TSM, Bonfim DC, Werckmann J, Archanjo BS, Granjeiro JM, Ribeiro AR, Gemini-Piperni S. The Effects of Titanium Dioxide Nanoparticles on Osteoblasts Mineralization: A Comparison between 2D and 3D Cell Culture Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:425. [PMID: 36770386 PMCID: PMC9921996 DOI: 10.3390/nano13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although several studies assess the biological effects of micro and titanium dioxide nanoparticles (TiO2 NPs), the literature shows controversial results regarding their effect on bone cell behavior. Studies on the effects of nanoparticles on mammalian cells on two-dimensional (2D) cell cultures display several disadvantages, such as changes in cell morphology, function, and metabolism and fewer cell-cell contacts. This highlights the need to explore the effects of TiO2 NPs in more complex 3D environments, to better mimic the bone microenvironment. This study aims to compare the differentiation and mineralized matrix production of human osteoblasts SAOS-2 in a monolayer or 3D models after exposure to different concentrations of TiO2 NPs. Nanoparticles were characterized, and their internalization and effects on the SAOS-2 monolayer and 3D spheroid cells were evaluated with morphological analysis. The mineralization of human osteoblasts upon exposure to TiO2 NPs was evaluated by alizarin red staining, demonstrating a dose-dependent increase in mineralized matrix in human primary osteoblasts and SAOS-2 both in the monolayer and 3D models. Furthermore, our results reveal that, after high exposure to TiO2 NPs, the dose-dependent increase in the bone mineralized matrix in the 3D cells model is higher than in the 2D culture, showing a promising model to test the effect on bone osteointegration.
Collapse
Affiliation(s)
| | - Wanderson de Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Thais Suelen Mello Lima
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Danielle Cabral Bonfim
- LabCeR Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Jacques Werckmann
- Visitant Professor at Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
| | - Braulio Soares Archanjo
- Materials Metrology Division, National Institute of Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Ana Rosa Ribeiro
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Sara Gemini-Piperni
- Postgraduate Program in Odontology, Unigranrio, Duque de Caxias 25071-202, Brazil
- Labεn Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
21
|
Ultrastructural Characterization of Human Gingival Fibroblasts in 3D Culture. Cells 2022; 11:cells11223647. [PMID: 36429075 PMCID: PMC9688082 DOI: 10.3390/cells11223647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cell spheroids are applied in various fields of research, such as the fabrication of three-dimensional artificial tissues in vitro, disease modeling, stem cell research, regenerative therapy, and biotechnology. A preclinical 3D culture model of primary human gingival fibroblasts free of external factors and/or chemical inducers is presented herein. The ultrastructure of the spheroids was characterized to establish a cellular model for the study of periodontal tissue regeneration. The liquid overlay technique was used with agarose to generate spheroids. Fibroblasts in 2D culture and cell spheroids were characterized by immunofluorescence, and cell spheroids were characterized by optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, backscattered electrons, and Fourier transform infrared spectroscopy. Ostegenic related genes were analyzed by RT-qPCR. Gingival fibroblasts formed spheroids spontaneously and showed amorphous calcium phosphate nanoparticle deposits on their surface. The results suggest that human gingival fibroblasts have an intrinsic potential to generate a mineralized niche in 3D culture.
Collapse
|
22
|
Marques IA, Fernandes C, Tavares NT, Pires AS, Abrantes AM, Botelho MF. Magnetic-Based Human Tissue 3D Cell Culture: A Systematic Review. Int J Mol Sci 2022; 23:ijms232012681. [PMID: 36293537 PMCID: PMC9603906 DOI: 10.3390/ijms232012681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-based assays, conducted on monolayer (2D) cultured cells, are an unquestionably valuable tool for biomedical research. However, three-dimensional (3D) cell culture models have gained relevance over the last few years due to the advantages of better mimicking the microenvironment and tissue microarchitecture in vivo. Recent magnetic-based 3D (m3D) cell culture systems can be used for this purpose. These systems are based on exposing magnetized cells to magnetic fields by levitation, bioprinting, or ring formation to promote cell aggregation into 3D structures. However, the successful development of these structures is dependent on several methodological characteristics and can be applied to mimic different human tissues. Thus, a systematic review was performed using Medline (via Pubmed), Scopus, and Web of Science (until February 2022) databases to aggregate studies using m3D culture in which human tissues were mimicked. The search generated 3784 records, of which 25 met the inclusion criteria. The usability of these m3D systems for the development of homotypic or heterotypic spheroids with or without scaffolds was explored in these studies. We also explore methodological differences specifically related to the magnetic method. Generally, the development of m3D cultures has been increasing, with bioprinting and levitation systems being the most used to generate homotypic or heterotypic cultures, mainly to mimic the physiology of human tissues, but also to perform therapeutic screening. This systematic review showed that there are areas of research where the application of this method remains barely explored, such as cancer research.
Collapse
Affiliation(s)
- Inês Alexandra Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carolina Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Science and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Nuno Tiago Tavares
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Centre (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Salomé Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Correspondence:
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Centre (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
23
|
Physiological Mineralization during In Vitro Osteogenesis in a Biomimetic Spheroid Culture Model. Cells 2022; 11:cells11172702. [PMID: 36078105 PMCID: PMC9454617 DOI: 10.3390/cells11172702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone health-targeting drug development strategies still largely rely on inferior 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblasts were cultured in α-MEM with 10% FCS, at 37 °C and 5% CO2 for up to 28 days, in non-adherent V-shaped plates to form uniformly sized 3D spheroids. Osteogenic differentiation was induced by 10 mM β-glycerophosphate and 50 µg/mL ascorbic acid. Mineralization stages were assessed through studying expression of marker genes, alkaline phosphatase activity, and calcium deposition by histochemistry. Mineralization quality was evaluated by Fourier transformed infrared (FTIR) and scanning electron microscopic (SEM) analyses and quantified by micro-CT analyses. Expression profiles of selected early- and late-stage osteoblast differentiation markers indicated a well-developed 3D biomineralization process with strongly upregulated Col1a1, Bglap and Alpl mRNA levels and type I collagen- and osteocalcin-positive immunohistochemistry (IHC). A dynamic biomineralization process with increasing mineral densities was observed during the second half of the culture period. SEM–Energy-Dispersive X-ray analyses (EDX) and FTIR ultimately confirmed a native bone-like hydroxyapatite mineral deposition ex vivo. We thus established a robust and versatile biomimetic, and high-throughput compatible, cost-efficient spheroid culture model with a native bone-like mineralization for improved pharmacological ex vivo screenings.
Collapse
|
24
|
Badr-Eldin SM, Aldawsari HM, Kotta S, Deb PK, Venugopala KN. Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals (Basel) 2022; 15:926. [PMID: 36015074 PMCID: PMC9412659 DOI: 10.3390/ph15080926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite tremendous advancements in technologies and resources, drug discovery still remains a tedious and expensive process. Though most cells are cultured using 2D monolayer cultures, due to lack of specificity, biochemical incompatibility, and cell-to-cell/matrix communications, they often lag behind in the race of modern drug discovery. There exists compelling evidence that 3D cell culture models are quite promising and advantageous in mimicking in vivo conditions. It is anticipated that these 3D cell culture methods will bridge the translation of data from 2D cell culture to animal models. Although 3D technologies have been adopted widely these days, they still have certain challenges associated with them, such as the maintenance of a micro-tissue environment similar to in vivo models and a lack of reproducibility. However, newer 3D cell culture models are able to bypass these issues to a maximum extent. This review summarizes the basic principles of 3D cell culture approaches and emphasizes different 3D techniques such as hydrogels, spheroids, microfluidic devices, organoids, and 3D bioprinting methods. Besides the progress made so far in 3D cell culture systems, the article emphasizes the various challenges associated with these models and their potential role in drug repositioning, including perspectives from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.K.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.K.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.K.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
25
|
Sarabi MR, Yetisen AK, Tasoglu S. Magnetic levitation for space exploration. Trends Biotechnol 2022; 40:915-917. [DOI: 10.1016/j.tibtech.2022.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
|
26
|
Dabbagh SR, Alseed MM, Saadat M, Sitti M, Tasoglu S. Biomedical Applications of Magnetic Levitation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR) Koç University Sariyer Istanbul Turkey 34450
| | - M. Munzer Alseed
- Institute of Biomedical Engineering Boğaziçi University Çengelköy Istanbul Turkey 34684
| | - Milad Saadat
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
| | - Metin Sitti
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
- School of Medicine Koç University Istanbul 34450 Turkey
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany
| | - Savas Tasoglu
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR) Koç University Sariyer Istanbul Turkey 34450
- Institute of Biomedical Engineering Boğaziçi University Çengelköy Istanbul Turkey 34684
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany
| |
Collapse
|