1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Essex CA, Overson DK, Merenstein JL, Truong TK, Madden DJ, Bedggood MJ, Morgan C, Murray HC, Holdsworth SJ, Stewart AW, Faull RLM, Hume P, Theadom A, Pedersen M. Mild traumatic brain injury increases cortical iron: evidence from individual susceptibility mapping. Brain Commun 2025; 7:fcaf110. [PMID: 40161218 PMCID: PMC11954555 DOI: 10.1093/braincomms/fcaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Quantitative susceptibility mapping has been applied to map brain iron distribution after mild traumatic brain injury to understand properties of neural tissue which may be related to cellular dyshomeostasis. However, this is a heterogeneous injury associated with microstructural brain changes, and 'traditional' group-wise statistical approaches may lead to a loss of clinically relevant information, as subtle alterations at the individual level can be obscured by averages and confounded by within-group variability. More precise and individualized approaches are needed to characterize mild traumatic brain injury better and elucidate potential cellular mechanisms to improve intervention and rehabilitation. To address this issue, we use quantitative MRI to build individualized profiles of regional positive (iron-related) magnetic susceptibility across 34 bilateral cortical ROIs following mild traumatic brain injury. Healthy population templates were constructed for each cortical area using standardized Z-scores derived from 25 age-matched male controls aged between 16 and 32 years (M = 21.10, SD = 4.35), serving as a reference against which Z-scores of 35 males with acute (<14 days) sports-related mild traumatic brain injury were compared [M = 21.60 years (range: 16-33), SD = 4.98]. Secondary analyses sensitive to cortical depth and curvature were also generated to approximate the location of iron accumulation in the cortical laminae and the effect of gyrification. Primary analyses indicated that approximately one-third (11/35; 31%) of injured participants exhibited elevated positive susceptibility indicative of abnormal iron profiles relative to the healthy population, a finding that was mainly concentrated in regions within the temporal lobe. Injury severity was significantly higher (P = 0.02) for these participants than their iron-normal counterparts, suggesting a link between injury severity, symptom burden, and elevated cortical iron. Secondary exploratory analyses of cortical depth and curvature profiles revealed abnormal iron accumulation in 83% (29/35) of mild traumatic brain injury participants, enabling better localization of injury-related changes in iron content to specific loci within each region and identifying effects that may be more subtle and lost in region-wise averaging. Our findings suggest that individualized approaches can further elucidate the clinical relevance of iron in mild head injury. Differences in injury severity between iron-normal and iron-abnormal mild traumatic brain injury participants identified in our primary analysis highlight not only why precise investigation is required to understand the link between objective changes in the brain and subjective symptomatology, but also identify iron as a candidate biomarker for tissue pathology after mild traumatic brain injury.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, Auckland 1023, New Zealand
- School of Psychology, The University of Auckland, Auckland 1142, New Zealand
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Helen C Murray
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Queensland 4067, Australia
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Patria Hume
- School of Sport and Recreation, Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland 0627, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| |
Collapse
|
3
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
4
|
Adebayo OL, Luro GE, Akeju ID, Onu CF, Fawehinmi ME, Aderemi VA, Atunnise AK. Sodium butyrate ameliorates mitochondrial oxidative stress and alterations in membrane-bound enzyme activities in pentylenetetrazole-induced kindling rat model. Metab Brain Dis 2025; 40:120. [PMID: 39913006 DOI: 10.1007/s11011-025-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Epilepsy is a chronic neurological disorder manifested through repeatedly recurrent unprovoked seizures. It is a debilitating neurological illness arising from exacerbated hypersynchronous neuronal firing in the brain. Among various factors, oxidative stress has been implicated in the initiation of epileptogenesis and the progression of epileptic seizures. This study investigates the neuroprotective effect of sodium butyrate in a pentylenetetrazole (PTZ)-induced kindling rat model. Male and female Wistar rats were randomly assigned into four groups for each sex. The PTZ groups were administered 40 mg/kg b.w.t intraperitoneally on alternate days for 30 days and a final single dose on the 40th day, while the sodium butyrate groups were administered along with the rat's drinking water (4 g/L). The seizure score, oxidative stress parameter, acetylcholinesterase (AChE), Na+-K+-ATPase, Ca2+ + Mg2+-ATPase, and Ca2+-ATPase activities were evaluated. The results showed that seizure score was significantly increased in the PTZ group, but the score was attenuated with sodium butyrate treatment. Also, mitochondrial lipid peroxidation and oxidized glutathione were elevated, while the reduction in redox potential, GSH levels, and SOD activity were detected. In addition, a decrease in AChE, Na+-K+-ATPase, Ca2+ + Mg2+-ATPase, and Ca2+-ATPase activities and altered hippocampal and cortical architecture were observed. The administration of sodium butyrate enhanced the antioxidant status and membrane-bound enzymes and restored the histological architecture, as shown in the study, which signifies improved neurological functions. Hence, due to its antioxidant capacity, sodium butyrate may be a possible agent for inhibiting the progression and management of epilepsy in Wistar rats.
Collapse
Affiliation(s)
- Olusegun Lateef Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria.
| | - Gbemileke Emmanuel Luro
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ifewunmi Deborah Akeju
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Chiamaka Favour Onu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | | - Victoria Adejumoke Aderemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Adeleke Kazeem Atunnise
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| |
Collapse
|
5
|
Ilyin NP, Shevlyakov AD, Boyko GA, Moskalenko AM, Ikrin AN, Galstyan DS, Kolesnikova TO, Katolikova NV, Chekrygin SA, Lim LW, Yang L, De Abreu MS, Yenkoyan KB, Kalueff AV, Demin KA. Neurotranscriptomic and behavioral effects of ISRIB, and its therapeutic effects in the traumatic brain injury model in zebrafish. Brain Res 2025; 1848:149329. [PMID: 39537125 DOI: 10.1016/j.brainres.2024.149329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a global medical concern and has a lasting impact on brain activity with high risks of mortality. Current treatments are inadequate for repairing damaged brain cells or correcting cognitive and behavioral disabilities in TBI patients. Mounting evidence links TBI to the activation of the Integrated Stress Response (ISR) signaling in the brain. A novel small molecule, ISRIB, is an effective inhibitor of the ISR pathway, offering potential advantages for brain health. Here, we investigated how ISRIB affects brain transcriptome and behavior in zebrafish TBI model evoked by telencephalic brain injury. Overall, while TBI diminished memory and social behavior in zebrafish, administering ISRIB post-injury markedly reduced these behavioral deficits, and modulated brain gene expression, rescuing TBI-activated pathways related to inflammation and brain cell development. Collectively, this supports the role of brain ISR in TBI, and suggests potential utility of ISRIB for the treatment of TBI-related states.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Galina A Boyko
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Nataliia V Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Chekrygin
- Core Facility Center "Center Bio-Bank", Saint Petersburg University, St. Petersburg, Russia
| | - Lee Wei Lim
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - LongEn Yang
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, M. Heratsi Yerevan State Medical University, Yerevan, Armenia; Biochemistry Department, M. Heratsi Yerevan State Medical University, Yerevan, Armenia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
6
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
8
|
Wang P, Yang X, Yang F, Cardiff K, Houchins M, Carballo N, Shear DA, Scultetus AH, Bailey ZS. Intravenous Administration of Anti-CD47 Antibody Augments Hematoma Clearance, Mitigates Acute Neuropathology, and Improves Cognitive Function in a Rat Model of Penetrating Traumatic Brain Injury. J Neurotrauma 2024; 41:2413-2427. [PMID: 38874230 DOI: 10.1089/neu.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity, and blood-brain barrier dysfunction, which contribute to neuronal loss, motor deficits, and cognitive impairment. Cluster of differentiation 47 (CD47) is an antiphagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous (i.v.) administration of anti-CD47 antibodies following penetrating ballistic-like brain injury (PBBI) with significant traumatic intracerebral hemorrhage (tICH). The pharmacokinetic (PK) profile of the anti-CD47 antibody elicited that antibody concentration decayed over 7 days post-administration. Blood tests and necropsy analysis indicated no severe adverse events following treatment. Cerebral hemoglobin levels were significantly increased after injury, however, anti-CD47 antibody administration at 0.1 mg/kg resulted in a significant reduction in cerebral hemoglobin levels at 72 h post-administration, indicating augmentation of hematoma clearance. Immunohistochemistry assessment of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) demonstrated a significant reduction of GFAP levels in the lesion core and peri-lesional area. Based on these analyses, the optimal dose was identified as 0.1 mg/kg. Lesion volume showed a reduction following treatment. Rotarod testing revealed significant motor deficits in all injured groups but no significant therapeutic benefits. Spatial learning performance revealed significant deficits in all injured groups, which were significantly improved by the last testing day. Anti-CD47 antibody treated rats showed significantly improved attention deficits, but not retention scores. These results provide preliminary evidence that blockade of CD47 using i.v. administration of anti-CD47 antibodies may serve as a potential therapeutic for TBI with ICH.
Collapse
Affiliation(s)
- Ping Wang
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Fangzhou Yang
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Katherine Cardiff
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Melonie Houchins
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Noemy Carballo
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anke H Scultetus
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Zachary S Bailey
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Adebayo OL, Agu VA, Idowu GA, Ezejiaku BC, Atunnise AK. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum. Neurotox Res 2024; 42:40. [PMID: 39212807 DOI: 10.1007/s12640-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200 mg/kg b.wgt orally in 0.9% saline solution) only for 3 weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na+/K+-, Ca2+-, Mg2+- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.
Collapse
Affiliation(s)
- Olusegun L Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Vivian A Agu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Grace A Idowu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Blessing C Ezejiaku
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Adeleke K Atunnise
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| |
Collapse
|
10
|
Agbolou XM, Yoe CW, Cominski TP, Zimering MB. Effects of a Serotonin Receptor Peptide on Behavioral Pattern Separation in Sham- vs. Mild Traumatic Brain Injured Rats. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2024; 8:10.31038/edmj.2024821. [PMID: 39822258 PMCID: PMC11737203 DOI: 10.31038/edmj.2024821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Aims Behavioral pattern separation is a hippocampal-dependent component of episodic memory and a sensitive marker of early cognitive decline. Here we tested whether mild traumatic injury causes loss of pattern separation in the rat and for its prevention by a novel neuroprotective peptide fragment of the human serotonin 2A receptor (SN..8). Methods Lateral fluid percussion was used to induce mild traumatic brain injury in male Sprague- Dawley rats. Rats were trained to distinguish between a stable vs unstable swim platform separated by increasing distances (4.5 vs 3.0 vs 1.5 feet) in a modification to the classic Morris water maze. Peptide SN..8 vs scrambled version of same amino acids (2 mg/kg) was administered via intraperitoneal route (1-, 3- and 5-days) after lateral fluid percussion or sham injury. Rats received three weeks of training and two weeks of testing before injury and were tested again at 2 and 5-weeks after injury. Results There was a gradient of decreasing incorrect responses to the choice between (stable vs unstable platform) as the platform separation distance was increased from 1.5 to 3.0 to 4.5 feet consistent with behavioral pattern separation. Systemic administration of SN..8 peptide (vs scrambled) peptide was associated with statistically significant lower rate of incorrect responses (at both 4.5 feet and 3.0 feet platform separation) in traumatic brain-injured rats (but not in sham-injured rats) tested at 2-weeks post-injury. Five weeks after injury, the rats had largely recovered and exhibited a much lower overall rate of incorrect responses across both drug and injury subgroups. Conclusions Introduction of an unstable platform (choice phase of the Morris water maze) at varying distances from the stable platform resulted in behavior having the hallmark of pattern separation. Our data are the first to suggest that systemic administration of (2 mg/kg) SN..8 peptide immediately after mild traumatic brain injury (lateral fluid percussion) appeared to protect against loss of behavioral pattern separation in the rat.
Collapse
Affiliation(s)
- Xena M Agbolou
- Medical & Research Services, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
| | - Christine W Yoe
- Medical & Research Services, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
| | - Tara P Cominski
- Medical & Research Services, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mark B Zimering
- Medical & Research Services, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
12
|
Jacobson PT, Vilarello BJ, Tervo JP, Waring NA, Gudis DA, Goldberg TE, Devanand DP, Overdevest JB. Associations between olfactory dysfunction and cognition: a scoping review. J Neurol 2024; 271:1170-1203. [PMID: 38217708 PMCID: PMC11144520 DOI: 10.1007/s00415-023-12057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Strong evidence suggests that olfactory dysfunction (OD) can predict additional neurocognitive decline in neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. However, research exploring olfaction and cognition in younger populations is limited. The aim of this review is to evaluate cognitive changes among non-elderly adults with non-COVID-19-related OD. METHODS We performed a structured comprehensive literature search of PubMed, Ovid Embase, Web of Science, and Cochrane Library in developing this scoping review. The primary outcome of interest was the association between OD and cognitive functioning in adults less than 60 years of age. RESULTS We identified 2878 studies for title and abstract review, with 167 undergoing full text review, and 54 selected for data extraction. Of these, 34 studies reported on populations of individuals restricted to the ages of 18-60, whereas the remaining 20 studies included a more heterogeneous population with the majority of individuals in this target age range in addition to some above the age of 60. The etiologies for smell loss among the included studies were neuropsychiatric disorders (37%), idiopathic cause (25%), type 2 diabetes (7%), trauma (5%), infection (4%), intellectual disability (4%), and other (18%). Some studies reported numerous associations and at times mixed, resulting in a total number of associations greater than the included number of 54 studies. Overall, 21/54 studies demonstrated a positive association between olfaction and cognition, 7/54 demonstrated no association, 25/54 reported mixed results, and only 1/54 demonstrated a negative association. CONCLUSION Most studies demonstrate a positive correlation between OD and cognition, but the data are mixed with associations less robust in this young adult population compared to elderly adults. Despite the heterogeneity in study populations and outcomes, this scoping review serves as a starting point for further investigation on this topic. Notably, as many studies in this review involved disorders that may have confounding effects on both olfaction and cognition, future research should control for these confounders and incorporate non-elderly individuals with non-psychiatric causes of smell loss.
Collapse
Affiliation(s)
- Patricia T Jacobson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Brandon J Vilarello
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jeremy P Tervo
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas A Waring
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Terry E Goldberg
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - D P Devanand
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
13
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
14
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Jia M, Guo X, Liu R, Sun L, Wang Q, Wu J. Overexpress miR-132 in the Brain Parenchyma by a Non-invasive Way Improves Tissue Repairment and Releases Memory Impairment After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 44:5. [PMID: 38104297 PMCID: PMC11397820 DOI: 10.1007/s10571-023-01435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Traumatic brain injury (TBI) is a serious public health problem worldwide, which could lead to an extremely high percentage of mortality and disability. Current treatment strategies mainly concentrate on neuronal protection and reconstruction, among them, exogenous neural stem cell (NSC) transplantation has long been regarded as the most effective curative treatment. However, due to secondary trauma, transplant rejection, and increased incidence of brain malignant tumor, a non-invasive therapy that enhanced endogenous neurogenesis was more suitable for TBI treatment. Our previous work has shown that miR-132 overexpression could improve neuronal differentiation of NSCs in vitro and in vivo. So, we engineered a new kind of AAV vector named AAV-PHP.eB which can transfect brain parenchyma through intravenous injection to overexpress miR-132 in brain after TBI. We found that miR-132 overexpression could reduce impact volume, promote neurogenesis in the dentate gyrus (DG), accelerate neuroblast migrating into the impact cortex, ameliorate microglia-mediated inflammatory reaction, and ultimately restore learning memory function. Our results revealed that AAV-PHP.eB-based miR-132 overexpression could improve endogenous tissue repairment and release clinical symptoms after traumatic brain injury. This work would provide a new therapeutic strategy for TBI treatment and other neurological disorders characterized by markable neuronal loss and memory impairment. miR-132 overexpression accelerates endogenous neurogenesis and releases TBI-induced tissue repairment and memory impairment. Controlled cortical impact onto the cortex would induce serious cortical injury and microglia accumulation in both cortex and hippocampus. Moreover, endogenous neuroblast could migrate around the injury core. miR-132 overexpression could accelerate neuroblast migration toward the injury core and decreased microglia accumulation in the ipsilateral cortex and hippocampus. miR-132 could be a suitable target on neuroprotective therapy after TBI.
Collapse
Affiliation(s)
- Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Xi Guo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
17
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
18
|
Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issues Mol Biol 2023; 45:8816-8839. [PMID: 37998730 PMCID: PMC10670294 DOI: 10.3390/cimb45110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (R.D.); (R.I.K.); (P.B.); (K.N.); (G.A.)
| |
Collapse
|
19
|
Bolden CT, Skibber MA, Olson SD, Zamorano Rojas M, Milewicz S, Gill BS, Cox CS. Validation and characterization of a novel blood-brain barrier platform for investigating traumatic brain injury. Sci Rep 2023; 13:16150. [PMID: 37752338 PMCID: PMC10522590 DOI: 10.1038/s41598-023-43214-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a highly-selective physiologic barrier responsible for maintaining cerebral homeostasis. Innovative in vitro models of the BBB are needed to provide useful insights into BBB function with CNS disorders like traumatic brain injury (TBI). TBI is a multidimensional and highly complex pathophysiological condition that requires intrinsic models to elucidate its mechanisms. Current models either lack fluidic shear stress, or neglect hemodynamic parameters important in recapitulating the human in vivo BBB phenotype. To address these limitations in the field, we developed a fluid dynamic novel platform which closely mimics these parameters. To validate our platform, Matrigel-coated Transwells were seeded with brain microvascular endothelial cells, both with and without co-cultured primary human astrocytes and bone-marrow mesenchymal stem cells. In this article we characterized BBB functional properties such as TEER and paracellular permeability. Our platform demonstrated physiologic relevant decreases in TEER in response to an ischemic environment, while directly measuring barrier fluid fluctuation. These recordings were followed with recovery, implying stability of the model. We also demonstrate that our dynamic platform is responsive to inflammatory and metabolic cues with resultant permeability coefficients. These results indicate that this novel dynamic platform will be a valuable tool for evaluating the recapitulating BBB function in vitro, screening potential novel therapeutics, and establishing a relevant paradigm to evaluate the pathophysiology of TBI.
Collapse
Affiliation(s)
- Christopher T Bolden
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Max A Skibber
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Miriam Zamorano Rojas
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samantha Milewicz
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
20
|
Kajevu N, Lipponen A, Andrade P, Bañuelos I, Puhakka N, Hämäläinen E, Natunen T, Hiltunen M, Pitkänen A. Treatment of Status Epilepticus after Traumatic Brain Injury Using an Antiseizure Drug Combined with a Tissue Recovery Enhancer Revealed by Systems Biology. Int J Mol Sci 2023; 24:14049. [PMID: 37762352 PMCID: PMC10531083 DOI: 10.3390/ijms241814049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.
Collapse
Affiliation(s)
- Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
21
|
Devoto C, Vorn R, Mithani S, Meier TB, Lai C, Broglio SP, McAllister T, Giza CC, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz K, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, Turtzo C, Latour L, McCrea MA, Gill JM. Plasma phosphorylated tau181 as a biomarker of mild traumatic brain injury: findings from THINC and NCAA-DoD CARE Consortium prospective cohorts. Front Neurol 2023; 14:1202967. [PMID: 37662031 PMCID: PMC10470112 DOI: 10.3389/fneur.2023.1202967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Objective The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.
Collapse
Affiliation(s)
- Christina Devoto
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Rany Vorn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Sara Mithani
- School of Nursing, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Steven P. Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, United States
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher C. Giza
- Departments of Pediatrics and Neurosurgery, UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Kenneth L. Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Kevin Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Brooks
- Department of Orthopedics and Sports Medicine, University of Wisconsin, Madison, WI, United States
| | - Stefan Duma
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Steven Rowson
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul Pasquina
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Scarpa E, Cascione M, Griego A, Pellegrino P, Moschetti G, De Matteis V. Gold and silver nanoparticles in Alzheimer's and Parkinson's diagnostics and treatments. IBRAIN 2023; 9:298-315. [PMID: 37786760 PMCID: PMC10527799 DOI: 10.1002/ibra.12126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Neurodegenerative diseases (NDs) impose substantial medical and public health burdens on people worldwide and represent one of the major threats to human health. The prevalence of these age-dependent disorders is dramatically increasing over time, a process intrinsically related to a constantly rising percentage of the elderly population in recent years. Among all the NDs, Alzheimer's and Parkinson's are considered the most debilitating as they cause memory and cognitive loss, as well as severely affecting basic physiological conditions such as the ability to move, speak, and breathe. There is an extreme need for new and more effective therapies to counteract these devastating diseases, as the available treatments are only able to slow down the pathogenic process without really stopping or resolving it. This review aims to elucidate the current nanotechnology-based tools representing a future hope for NDs treatment. Noble metal nano-systems, that is, gold and silver nanoparticles (NPs), have indeed unique physicochemical characteristics enabling them to deliver any pharmacological treatment in a more effective way within the central nervous system. This can potentially make NPs a new hope for reversing the actual therapeutic strategy based on slowing down an irreversible process into a more effective and permanent treatment.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| | - Anna Griego
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Paolo Pellegrino
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| | - Giorgia Moschetti
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| |
Collapse
|
23
|
Grinberg M, Burton J, Pang KC, Zimering MB. Neuroprotective Effects of a Serotonin Receptor Peptide Following Sham vs. Mild Traumatic Brain Injury in the Zucker Rat. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2023; 7:1-9. [PMID: 37560759 PMCID: PMC10411128 DOI: 10.31038/edmj.2023731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Aims Accelerated cognitive decline frequently complicates traumatic brain injury. Obesity and type 2 diabetes mellitus drive peripheral inflammation which may accelerate traumatic brain injury-associated neurodegeneration. The Zucker rat harbors G-protein coupled receptor agonist IgG autoantibodies and in vitro neurotoxicity caused by these autoantibodies was prevented by a novel synthetic fragment of the serotonin 2A receptor. The aim of the present study was to test whether genetic obesity manifested in Zucker diabetic fatty rat is associated with greater spatial memory impairment before and after mild traumatic brain injury compared to Zucker lean rats. Furthermore, we investigated whether these neurodegenerative complications can be lessened by administration of a novel putative neuroprotective peptide comprised of a fragment of the second extracellular loop of the serotonin 2A receptor. Methods Age-matched lean and fatty diabetic Zucker rats were tested in the Morris water maze (spatial memory) prior to receiving a sham-injury or lateral fluid percussion (LFP) mild traumatic brain injury. Behavioral testing was repeated at 1-week, 1-month, and 3-month intervals following injury. A synthetic peptide consisting of a portion of the 5-hydroxytryptamine (serotonin) 2A receptor (2 mg/kg) (vehicle, or an inactive scrambled version of the peptide (2 mg/kg)) was administered via intraperitoneal route every other day for 7 days after sham or LFP injury to lean rats or 7 days before and after sham or LFP injury to fatty rats. Results Mild traumatic brain injury impaired recall of spatial memory in fatty and lean rats. Zucker fatty rats subjected to sham-injury or mild TBI experienced a significantly greater longitudinal decline in recall of spatial memory compared to lean Zucker rats. A synthetic peptide fragment of the 5-hydroxytryptamine 2A receptor significantly enhanced acquisition of spatial learning and it appeared to strengthen recall of spatial learning (one-week) after sham injury in Zucker rats. Conclusions These data suggest that the Zucker diabetic fatty rat is a suitable animal model to investigate the role of metabolic factor(s) in accelerated cognitive decline. A novel synthetic peptide comprised of a fragment of the second extracellular loop of the human serotonin 2A receptor appeared to have neuroprotective effects on both acquisition and recall of spatial memory in subsets of Zucker rats, with relatively greater benefit in sham-injured, lean Zucker rats.
Collapse
Affiliation(s)
- Mihal Grinberg
- Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
| | - Julia Burton
- Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
| | - Kevin Ch Pang
- Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
| | - Mark B Zimering
- Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
- Endocrinology, Rutgers/Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
24
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
25
|
Zimering MB. Repeated Traumatic Brain Injury is Associated with Neurotoxic Plasma Autoantibodies Directed against the Serotonin 2A and Alpha 1 Adrenergic Receptors. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2023; 7:1-12. [PMID: 37560352 PMCID: PMC10411137 DOI: 10.31038/edmj.2023722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Objectives Traumatic brain injury (TBI) was associated with increased plasma agonist autoantibodies targeting the serotonin 2A receptor. Repeated TBI exposure is associated with high risk for neurodegenerative and neuropsychiatric complications. Here we tested a hypothesis that repeated TBI is associated with plasma agonist autoantibodies targeting more than one kind of catecholamine G-protein coupled receptor. Methods Protein-A affinity chromatography was used to isolate the IgG fraction of plasma in forty-two middle-aged and older adults who had experienced one or more TBI exposures. The Ig (1/40th dilution=7.5 ug/mL) were tested for neurotoxicity in mouse neuroblastoma cells using an acute neurite retraction assay indicative of Gq11/IP3/Ca2+ and RhoA/Rho kinase signaling pathways' activation. Three different linear synthetic peptides corresponding to the second extracellular loop of the alpha 1A, alpha 2A or serotonin 2A receptors were used as target antigen in different enzyme-linked immunoassays. The second extracellular loop receptor peptides themselves (alpha 1A, alpha 2A) or a fragment (serotonin 2A) were tested for ability to prevent Ig-induced neurite retraction. Results Patients who had experienced either repeated TBI (N=10) or a single TBI with a co-morbid autoimmune disease (N=5) were significantly more likely to harbor neurotoxic plasma autoantibodies targeting both alpha 1 adrenergic and serotonin 2A receptors vs. patients having only a single TBI. Ig-induced neurotoxicity was significantly prevented by co-incubation with either 850 nM prazosin (alpha 1 adrenergic receptor) and/or 500 nM M100907 (serotonin 2A receptor) antagonists. Alpha 1 adrenergic receptor and serotonin 2A receptor Ig immunoreactive level and titer were significantly increased in repeated TBI and single TBI/autoimmune patients (N=7-8) compared to age-matched TBI patients without neurotoxic plasma Ig (N=4). SN.8, a linear synthetic peptide corresponding to a conserved region of the second extracellular loop (ECL) of the serotonin 2A receptor completely prevented neurite retraction induced by repeated TBI plasma Ig. A repeated TBI patient harboring alpha adrenergic receptor AAB alone experienced prospective steep decline in cognitive function over two years. Conclusions Repeated TBI and TBI with associated autoimmunity harbored more than one kind of neurotoxic catecholaminergic agonist GPCR autoantibody each associated with high risk for steep rate of cognitive decline. Specific immunoassays using the second extracellular receptor loop as target antigen are needed to detect each specific different GPCR autoantibody. A fragment of the second ECL of the serotonin 2A receptor (SN.8) neutralized Ig-induced neurotoxicity in repeated TBI or TBI with associated systemic autoimmunity.
Collapse
Affiliation(s)
- Mark B Zimering
- Medical Service, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
26
|
Velmurugan GV, Hubbard WB, Prajapati P, Vekaria HJ, Patel SP, Rabchevsky AG, Sullivan PG. LRP1 Deficiency Promotes Mitostasis in Response to Oxidative Stress: Implications for Mitochondrial Targeting after Traumatic Brain Injury. Cells 2023; 12:1445. [PMID: 37408279 PMCID: PMC10217498 DOI: 10.3390/cells12101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Samir P. Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
27
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
28
|
Olver P, Bohn MK, Adeli K. Central role of laboratory medicine in public health and patient care. Clin Chem Lab Med 2023; 61:666-673. [PMID: 36436024 DOI: 10.1515/cclm-2022-1075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Clinical laboratories play a vital role in the healthcare system. Objective medical data provided by clinical laboratories supports approximately 60-70% of clinical decisions, however, evidence supporting this claim is poorly documented and laboratories still lack visibility, despite their indisputable impact on patient care and public health. The International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on Outcome Studies in Laboratory Medicine (TF-OSLM) was recently developed to support directed research evaluating the role of laboratory medicine on clinical outcomes. Establishing and documenting this evidence is key to enhance visibility of the field in the eye of the public and other healthcare professionals together with optimizing patient outcomes and health care system operations. In this review, we discuss four areas that exemplify the contribution of laboratory medicine directly to patient care. This includes high-sensitivity cardiac troponin (hs-cTn) and N-terminal pro-B-type natriuretic peptide/B-type natriuretic peptides (NT-proBNP/BNP) for the diagnosis and prognosis of myocardial infarction and heart failure, respectively, and procalcitonin for the management of sepsis and antibiotic stewardship. Emerging markers of traumatic brain injury and the role of laboratory medicine in the fight against the COVID-19 pandemic are discussed along with an introduction to plans of IFCC TF-OSLM.
Collapse
Affiliation(s)
- Pyper Olver
- CALIPER Program, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Kathryn Bohn
- CALIPER Program, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Khosrow Adeli
- CALIPER Program, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Willis EF, Gillespie ER, Guse K, Zuercher AW, Käsermann F, Ruitenberg MJ, Vukovic J. Intravenous immunoglobulin (IVIG) promotes brain repair and improves cognitive outcomes after traumatic brain injury in a FcγRIIB receptor-dependent manner. Brain Behav Immun 2023; 109:37-50. [PMID: 36581304 DOI: 10.1016/j.bbi.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a promising immune-modulatory therapy for limiting harmful inflammation and associated secondary tissue loss in neurotrauma. Here, we show that IVIG therapy attenuates spatial learning and memory deficits following a controlled cortical impact mouse model of traumatic brain injury (TBI). These improvements in cognitive outcomes were associated with increased neuronal survival, an overall reduction in brain tissue loss, and a greater preservation of neural connectivity. Furthermore, we demonstrate that the presence of the main inhibitory FcγRIIB receptor is required for the beneficial effects of IVIG treatment in TBI, with our results simultaneously highlighting the role of this receptor in reducing secondary damage arising from brain injury.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten Guse
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Marc J Ruitenberg
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
30
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
31
|
Mira RG, Quintanilla RA, Cerpa W. Mild Traumatic Brain Injury Induces Mitochondrial Calcium Overload and Triggers the Upregulation of NCLX in the Hippocampus. Antioxidants (Basel) 2023; 12:antiox12020403. [PMID: 36829963 PMCID: PMC9952386 DOI: 10.3390/antiox12020403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Traumatic brain injury (TBI) is brain damage due to external forces. Mild TBI (mTBI) is the most common form of TBI, and repeated mTBI is a risk factor for developing neurodegenerative diseases. Several mechanisms of neuronal damage have been described in the cortex and hippocampus, including mitochondrial dysfunction. However, up until now, there have been no studies evaluating mitochondrial calcium dynamics. Here, we evaluated mitochondrial calcium dynamics in an mTBI model in mice using isolated hippocampal mitochondria for biochemical studies. We observed that 24 h after mTBI, there is a decrease in mitochondrial membrane potential and an increase in basal matrix calcium levels. These findings are accompanied by increased mitochondrial calcium efflux and no changes in mitochondrial calcium uptake. We also observed an increase in NCLX protein levels and calcium retention capacity. Our results suggest that under mTBI, the hippocampal cells respond by incrementing NCLX levels to restore mitochondrial function.
Collapse
Affiliation(s)
- Rodrigo G. Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Correspondence:
| |
Collapse
|
32
|
Chiu LS, Anderton RS. The role of the microbiota-gut-brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci 2023; 57:400-418. [PMID: 36494087 PMCID: PMC10107147 DOI: 10.1111/ejn.15892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) can be a devastating and debilitating disease to endure. Due to improvements in clinical practice, declining mortality rates have led to research into the long-term consequences of TBI. For example, the incidence and severity of TBI have been associated with an increased susceptibility of developing neurodegenerative disorders, such as Parkinson's or Alzheimer's disease. However, the mechanisms linking this alarming association are yet to be fully understood. Recently, there has been a groundswell of evidence implicating the microbiota-gut-brain axis in the pathogenesis of these diseases. Interestingly, survivors of TBI often report gastrointestinal complaints and animal studies have demonstrated gastrointestinal dysfunction and dysbiosis following injury. Autonomic dysregulation and chronic inflammation appear to be the main driver of these pathologies. Consequently, this review will explore the potential role of the microbiota-gut-brain axis in the development of neurodegenerative diseases following TBI.
Collapse
Affiliation(s)
- Li Shan Chiu
- School of Medicine, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
33
|
Daniels BP, Oberst A. Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection. Curr Top Microbiol Immunol 2023; 442:155-174. [PMID: 32253569 PMCID: PMC7781604 DOI: 10.1007/82_2020_204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.
Collapse
Affiliation(s)
- Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
34
|
Havlicek DF, Furhang R, Nikulina E, Smith-Salzberg B, Lawless S, Severin SA, Mallaboeva S, Nayab F, Seifert AC, Crary JF, Bergold PJ. A single closed head injury in male adult mice induces chronic, progressive white matter atrophy and increased phospho-tau expressing oligodendrocytes. Exp Neurol 2023; 359:114241. [PMID: 36240881 DOI: 10.1016/j.expneurol.2022.114241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI). At 14 DPI, injured animals have atrophy of ipsilesional cortex, thalamus, and corpus callosum, with bilateral atrophy of the dorsal fornix. Atrophy of the ipsilesional corpus callosum is accompanied by decreased fractional anisotropy and increased mean and radial diffusivity that remains unchanged between 14 and 180 DPI. Injured animals show an increased density of phospho-tau immunoreactive (pTau+) cells in the ipsilesional cortex and thalamus, and bilaterally in corpus callosum. Between 14 and 180 DPI, atrophy occurs in the ipsilesional ventral fornix, contralesional corpus callosum, and bilateral internal capsule. Diffusion tensor MRI parameters remain unchanged in white matter regions with delayed atrophy. Between 14 and 180 DPI, pTau+ cell density increases bilaterally in corpus callosum, but decreases in cortex and thalamus. The location of pTau+ cells within the ipsilesional corpus callosum changes between 14 and 180 DPI; density of all cells increases including pTau+ or pTau- cells. >90% of the pTau+ cells are in the oligodendrocyte lineage in both gray and white matter. Density of thioflavin-S+ cells in thalamus increases by 180 DPI. These data suggest a single closed head impact produces multiple forms of chronic neurodegeneration. Gray and white matter regions proximal to the impact site undergo early atrophy. More distal white matter regions undergo chronic, progressive white matter atrophy with an increasing density of oligodendrocytes containing pTau. These data suggest a complex chronic neurodegenerative process arising from a single moderate closed head injury.
Collapse
Affiliation(s)
- David F Havlicek
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Rachel Furhang
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Bayle Smith-Salzberg
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Siobhán Lawless
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sasha A Severin
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sevara Mallaboeva
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Fizza Nayab
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Alan C Seifert
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America.
| |
Collapse
|
35
|
Fiorini MR, Dilliott AA, Farhan SMK. Sex-stratified RNA-seq analysis reveals traumatic brain injury-induced transcriptional changes in the female hippocampus conducive to dementia. Front Neurol 2022; 13:1026448. [PMID: 36619915 PMCID: PMC9813497 DOI: 10.3389/fneur.2022.1026448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Traumatic brain injury (TBI), resulting from a violent force that causes functional changes in the brain, is the foremost environmental risk factor for developing dementia. While previous studies have identified specific candidate genes that may instigate worse outcomes following TBI when mutated, TBI-induced changes in gene expression conducive to dementia are critically understudied. Additionally, biological sex seemingly influences TBI outcomes, but the discrepancies in post-TBI gene expression leading to progressive neurodegeneration between the sexes have yet to be investigated. Methods We conducted a whole-genome RNA sequencing analysis of post-mortem brain tissue from the parietal neocortex, temporal neocortex, frontal white matter, and hippocampus of 107 donors characterized by the Aging, Dementia, and Traumatic Brain Injury Project. Our analysis was sex-stratified and compared gene expression patterns between TBI donors and controls, a subset of which presented with dementia. Results We report three candidate gene modules from the female hippocampus whose expression correlated with dementia in female TBI donors. Enrichment analyses revealed that the candidate modules were notably enriched in cardiac processes and the immune-inflammatory response, among other biological processes. In addition, multiple candidate module genes showed a significant positive correlation with hippocampal concentrations of monocyte chemoattractant protein-1 in females with post-TBI dementia, which has been previously described as a potential biomarker for TBI and susceptibility to post-injury dementia. We concurrently examined the expression profiles of these candidate modules in the hippocampus of males with TBI and found no apparent indicator that the identified candidate modules contribute to post-TBI dementia in males. Discussion Herein, we present the first sex-stratified RNA sequencing analysis of TBI-induced changes within the transcriptome that may be conducive to dementia. This work contributes to our current understanding of the pathophysiological link between TBI and dementia and emphasizes the growing interest in sex as a biological variable affecting TBI outcomes.
Collapse
Affiliation(s)
- Michael R. Fiorini
- Department of Human Genetics, McGill University, Montreal, QC, Canada,*Correspondence: Michael R. Fiorini ✉
| | - Allison A. Dilliott
- Department of Neurology and Neurosurgery, The Neuro, McGill University, Montreal, QC, Canada,Allison A. Dilliott ✉
| | - Sali M. K. Farhan
- Department of Human Genetics, McGill University, Montreal, QC, Canada,Department of Neurology and Neurosurgery, The Neuro, McGill University, Montreal, QC, Canada,Sali M. K. Farhan ✉
| |
Collapse
|
36
|
HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J Mol Sci 2022; 23:ijms232416140. [PMID: 36555780 PMCID: PMC9783654 DOI: 10.3390/ijms232416140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic hypoxia is a risk factor for Alzheimer's disease (AD), and the neurofibrillary tangle (NFT) formed by hyperphosphorylated tau is one of the two major pathological changes in AD. However, the effect of chronic hypoxia on tau phosphorylation and its mechanism remains unclear. In this study, we investigated the role of HIF-1α (the functional subunit of hypoxia-inducible factor 1) in tau pathology. It was found that in Sprague-Dawley (SD) rats, global hypoxia (10% O2, 6 h per day) for one month induced cognitive impairments. Meanwhile it induced HIF-1α increase, tau hyperphosphorylation, and protein phosphatase 2A (PP2A) deficiency with leucine carboxyl methyltransferase 1(LCMT1, increasing PP2A activity) decrease in the rats' hippocampus. The results were replicated by hypoxic treatment in primary hippocampal neurons and C6/tau cells (rat C6 glioma cells stably expressing human full-length tau441). Conversely, HIF-1α silencing impeded the changes induced by hypoxia, both in primary neurons and SD rats. The result of dual luciferase assay proved that HIF-1α acted as a transcription factor of LCMT1. Unexpectedly, HIF-1α decreased the protein level of LCMT1. Further study uncovered that both overexpression of HIF-1α and hypoxia treatment resulted in a sizable degradation of LCMT1 via the autophagy--lysosomal pathway. Together, our data strongly indicated that chronic hypoxia upregulates HIF-1α, which obviously accelerated LCMT1 degradation, thus counteracting its transcriptional expression. The increase in HIF-1α decreases PP2A activity, finally resulting in tau hyperphosphorylation and cognitive dysfunction. Lowering HIF-1α in chronic hypoxia conditions may be useful in AD prevention.
Collapse
|
37
|
San Martín Molina I, Fratini M, Campi G, Burghammer M, Grünewald TA, Salo RA, Narvaez O, Aggarwal M, Tohka J, Sierra A. A multiscale tissue assessment in a rat model of mild traumatic brain injury. J Neuropathol Exp Neurol 2022; 82:71-83. [PMID: 36331507 PMCID: PMC9764078 DOI: 10.1093/jnen/nlac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated the potential to assess the pathophysiology of mild traumatic brain injury (mTBI) but correlations of DTI findings and pathological changes in mTBI are unclear. We evaluated the potential of ex vivo DTI to detect tissue damage in a mild mTBI rat model by exploiting multiscale imaging methods, histology and scanning micro-X-ray diffraction (SμXRD) 35 days after sham-operation (n = 2) or mTBI (n = 3). There were changes in DTI parameters rostral to the injury site. When examined by histology and SμXRD, there was evidence of axonal damage, reduced myelin density, gliosis, and ultrastructural alterations in myelin that were ongoing at the experimental time point of 35 days postinjury. We assessed the relationship between the 3 imaging modalities by multiple linear regression analysis. In this analysis, DTI and histological parameters were moderately related, whereas SμXRD parameters correlated weakly with DTI and histology. These findings suggest that while DTI appears to distinguish tissue changes at the microstructural level related to the loss of myelinated axons and gliosis, its ability to visualize alterations in myelin ultrastructure is limited. The use of several imaging techniques represents a novel approach to reveal tissue damage and provides new insights into mTBI detection.
Collapse
Affiliation(s)
| | - Michela Fratini
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Rome, Italy,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Tilman A Grünewald
- European Synchrotron Radiation Facility, Grenoble Cedex, France,Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Raimo A Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Omar Narvaez
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- Send correspondence to: Alejandra Sierra, PhD, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland (Kuopio Campus), PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland; E-mail:
| |
Collapse
|
38
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Zheng L, Pang Q, Xu H, Guo H, Liu R, Wang T. The Neurobiological Links between Stress and Traumatic Brain Injury: A Review of Research to Date. Int J Mol Sci 2022; 23:ijms23179519. [PMID: 36076917 PMCID: PMC9455169 DOI: 10.3390/ijms23179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Neurological dysfunctions commonly occur after mild or moderate traumatic brain injury (TBI). Although most TBI patients recover from such a dysfunction in a short period of time, some present with persistent neurological deficits. Stress is a potential factor that is involved in recovery from neurological dysfunction after TBI. However, there has been limited research on the effects and mechanisms of stress on neurological dysfunctions due to TBI. In this review, we first investigate the effects of TBI and stress on neurological dysfunctions and different brain regions, such as the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We then explore the neurobiological links and mechanisms between stress and TBI. Finally, we summarize the findings related to stress biomarkers and probe the possible diagnostic and therapeutic significance of stress combined with mild or moderate TBI.
Collapse
Affiliation(s)
- Lexin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qiuyu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China
- Correspondence:
| |
Collapse
|
40
|
TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 2022; 144:187-210. [PMID: 35713704 PMCID: PMC9945325 DOI: 10.1007/s00401-022-02449-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Collapse
|
41
|
Qubty D, Frid K, Har-Even M, Rubovitch V, Gabizon R, Pick CG. Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules 2022; 27:molecules27092725. [PMID: 35566074 PMCID: PMC9105273 DOI: 10.3390/molecules27092725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI), is one of the most common causes of neurological damage in young populations. It is widely considered as a risk factor for neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s (PD) disease. These diseases are characterized in part by the accumulation of disease-specific misfolded proteins and share common pathological features, such as neuronal death, as well as inflammatory and oxidative damage. Nano formulation of Pomegranate seed oil [Nano-PSO (Granagard TM)] has been shown to target its active ingredient to the brain and thereafter inhibit memory decline and neuronal death in mice models of AD and genetic Creutzfeldt Jacob disease. In this study, we show that administration of Nano-PSO to mice before or after TBI application prevents cognitive and behavioral decline. In addition, immuno-histochemical staining of the brain indicates that preventive Nano-PSO treatment significantly decreased neuronal death, reduced gliosis and prevented mitochondrial damage in the affected cells. Finally, we examined levels of Sirtuin1 (SIRT1) and Synaptophysin (SYP) in the cortex using Western blotting. Nano-PSO consumption led to higher levels of SIRT1 and SYP protein postinjury. Taken together, our results indicate that Nano-PSO, as a natural brain-targeted antioxidant, can prevent part of TBI-induced damage.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kati Frid
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
| | - Ruth Gabizon
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
42
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
43
|
Du M, Wu C, Yu R, Cheng Y, Tang Z, Wu B, Fu J, Tan W, Zhou Q, Zhu Z, Balawi E, Huang X, Ma J, Liao ZB. A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol Psychiatry 2022; 27:4575-4589. [PMID: 35918398 PMCID: PMC9734054 DOI: 10.1038/s41380-022-01711-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) can lead to different neurological and psychiatric disorders. Circular RNAs (circRNAs) are highly expressed in the nervous system and enriched in synapses; yet, the underlying role and mechanisms of circRNAs in neurological impairment and dysfunction are still not fully understood. In this study, we investigated the expression of circRNAs and their relation with neurological dysfunction after TBI. RNA-Seq was used to detect differentially expressed circRNAs in injured brain tissue, revealing that circIgfbp2 was significantly increased. Up-regulated hsa_circ_0058195, which was highly homologous to circIgfbp2, was further confirmed in the cerebral cortex specimens and serum samples of patients after TBI. Moreover, correlation analysis showed a positive correlation between hsa_circ_0058195 levels and the Self-Rating Anxiety Scale scores in these subjects. Furthermore, knockdown of circIgfbp2 in mice relieved anxiety-like behaviors and sleep disturbances induced by TBI. Knockdown of circIgfbp2 in H2O2 treated HT22 cells alleviated mitochondrial dysfunction, while its overexpression reversed the process. Mechanistically, we discovered that circIgfbp2 targets miR-370-3p to regulate BACH1, and down-regulating BACH1 alleviated mitochondrial dysfunction and oxidative stress-induced synapse dysfunction. In conclusion, inhibition of circIgfbp2 alleviated mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after TBI through the miR-370-3p/BACH1/HO-1 axis. Thus, circIgfbp2 might be a novel therapeutic target for anxiety and sleep disorders after TBI.
Collapse
Affiliation(s)
- Mengran Du
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Chenrui Wu
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Renqiang Yu
- grid.452206.70000 0004 1758 417XDepartment of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yuqi Cheng
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Zhaohua Tang
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Biying Wu
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiayuanyuan Fu
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Weilin Tan
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Qiang Zhou
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Ziyu Zhu
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Ehab Balawi
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xuekang Huang
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jun Ma
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Z. B. Liao
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
44
|
Rao V, Bhushan R, Kumari P, Cheruku SP, Ravichandiran V, Kumar N. Chemobrain: A review on mechanistic insight, targets and treatments. Adv Cancer Res 2022; 155:29-76. [DOI: 10.1016/bs.acr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Datta D, Bangirana P, Opoka RO, Conroy AL, Co K, Bond C, Zhao Y, Kawata K, Saykin AJ, John CC. Association of Plasma Tau With Mortality and Long-term Neurocognitive Impairment in Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA Netw Open 2021; 4:e2138515. [PMID: 34889945 PMCID: PMC8665370 DOI: 10.1001/jamanetworkopen.2021.38515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Cerebral malaria (CM) and severe malarial anemia (SMA) are associated with persistent neurocognitive impairment (NCI) among children in Africa. Identifying blood biomarkers of acute brain injury that are associated with future NCI could allow early interventions to prevent or reduce NCI in survivors of severe malaria. OBJECTIVE To investigate whether acutely elevated tau levels are associated with future NCI in children after CM or SMA. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted at Mulago National Referral Hospital in Kampala, Uganda, from March 2008 to October 2015. Children aged 1.5 to 12 years with CM (n = 182) or SMA (n = 162) as well as community children (CC; n = 123) were enrolled in the study. Data analysis was conducted from January 2020 to May 2021. EXPOSURE CM or SMA. MAIN OUTCOMES AND MEASURES Enrollment plasma tau levels were measured using single-molecule array detection technology. Overall cognition (primary) and attention and memory (secondary) z scores were measured at 1 week and 6, 12, and 24 months after discharge using tools validated in Ugandan children younger than 5 years or 5 years and older. RESULTS A total of 467 children were enrolled. In the CM group, 75 (41%) were girls, and the mean (SD) age was 4.02 (1.92) years. In the SMA group, 59 (36%) were girls, and the mean (SD) age was 3.45 (1.60) years. In the CC group, 65 (53%) were girls, and the mean (SD) age was 3.94 (1.92) years. Elevated plasma tau levels (>95th percentile in CC group; >6.43 pg/mL) were observed in 100 children (55%) with CM and 69 children (43%) with SMA (P < .001). In children with CM who were younger than 5 years, elevated plasma tau levels were associated with increased mortality (odds ratio [OR], 3.06; 95% CI, 1.01-9.26; P = .048). In children with CM who were younger than 5 years at both CM episode and follow-up neurocognitive testing, plasma tau levels (log10 transformed) were associated with worse overall cognition scores over 24-month follow-up (β = -0.80; 95% CI, -1.32 to -0.27; P = .003). In children with CM who were younger than 5 years at CM episode and 5 years or older at follow-up neurocognitive testing, plasma tau was associated with worse scores in attention (β = -1.08; 95% CI, -1.79 to -0.38; P = .003) and working memory (β = -1.39; 95% CI, -2.18 to -0.60; P = .001). CONCLUSIONS AND RELEVANCE In this study, plasma tau, a marker of injury to neuronal axons, was elevated in children with CM or SMA and was associated with mortality and persistent NCI in children with CM younger than 5 years.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Katrina Co
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Caitlin Bond
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Yi Zhao
- Department of Biostatistics and Health Sciences, Indiana University School of Medicine, Indianapolis
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
- Division of Global Pediatrics, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
46
|
Differential Expression Patterns of TDP-43 in Single Moderate versus Repetitive Mild Traumatic Brain Injury in Mice. Int J Mol Sci 2021; 22:ijms222212211. [PMID: 34830093 PMCID: PMC8621440 DOI: 10.3390/ijms222212211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a disabling disorder and a major cause of death and disability in the world. Both single and repetitive traumas affect the brain acutely but can also lead to chronic neurodegenerative changes. Clinical studies have shown some dissimilarities in transactive response DNA binding protein 43 (TDP-43) expression patterns following single versus repetitive TBI. We explored the acute cortical post-traumatic changes of TDP-43 using the lateral fluid percussion injury (LFPI) model of single moderate TBI in adult male mice and investigated the association of TDP-43 with post-traumatic neuroinflammation and synaptic plasticity. In the ipsilateral cortices of animals following LFPI, we found changes in the cytoplasmic and nuclear levels of TDP-43 and the decreased expression of postsynaptic protein 95 within the first 3 d post-injury. Subacute pathological changes of TDP-43 in the hippocampi of animals following LFPI and in mice exposed to repetitive mild TBI (rmTBI) were studied. Changes in the hippocampal TDP-43 expression patterns at 14 d following different brain trauma procedures showed pathological alterations only after single moderate, but not following rmTBI. Hippocampal LFPI-induced TDP-43 pathology was not accompanied by the microglial reaction, contrary to the findings after rmTBI, suggesting that different types of brain trauma may cause diverse pathophysiological changes in the brain, specifically related to the TDP-43 protein as well as to the microglial reaction. Taken together, our findings may contribute to a better understanding of the pathophysiological events following brain trauma.
Collapse
|
47
|
Chen YH, Chen YC, Hwang LL, Yang LY, Lu DY. Deficiency in Androgen Receptor Aggravates Traumatic Brain Injury-Induced Pathophysiology and Motor Deficits in Mice. Molecules 2021; 26:6250. [PMID: 34684832 PMCID: PMC8537172 DOI: 10.3390/molecules26206250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Androgens have been shown to have a beneficial effect on brain injury and lower reactive astrocyte expression after TBI. Androgen receptors (ARs) are known to mediate the neuroprotective effects of androgens. However, whether ARs play a crucial role in TBI remains unknown. In this study, we investigated the role of ARs in TBI pathophysiology, using AR knockout (ARKO) mice. We used the controlled cortical impact model to produce primary and mechanical brain injuries and assessed motor function and brain-lesion volume. In addition, the AR knockout effects on necrosis and autophagy were evaluated after TBI. AR knockout significantly increased TBI-induced expression of the necrosis marker alpha-II-spectrin breakdown product 150 and astrogliosis marker glial fibrillary acidic protein. In addition, the TBI-induced astrogliosis increase in ARKO mice lasted for three weeks after a TBI. The autophagy marker Beclin-1 was also enhanced in ARKO mice compared with wild-type mice after TBI. Our results also indicated that ARKO mice showed a more unsatisfactory performance than wild-type mice in a motor function test following TBI. Further, they were observed to have more severe lesions than wild-type mice after injury. These findings strongly suggest that ARs play a role in TBI.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (Y.-C.C.); (L.-L.H.)
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (Y.-C.C.); (L.-L.H.)
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (Y.-C.C.); (L.-L.H.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory of Neural Repair, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 404333, Taiwan
| |
Collapse
|
48
|
Demirci H, Kuzucu P, Seymen CM, Gülbahar Ö, Özişik P, Emmez H. The effect of antiepileptic drugs on re-myelinization of axons: Phenytoin, levetiracetam, carbamazepine, and valproic acid, used following traumatic brain injury. Clin Neurol Neurosurg 2021; 209:106911. [PMID: 34509750 DOI: 10.1016/j.clineuro.2021.106911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Traumatic brain injury is a major health and socioeconomic problem and the first cause of young death worldwide. For this reason, the prevention of post-traumatic brain injury and the research of new methods for it are important today. In this study, we aimed to determine whether the use of antiepileptic drugs contributed to axonal healing after traumatic brain injury. METHODS Thirty-six Long-Evans rats, each weighing 300-350 g, were used in this study. A total of 6 groups, including the sham, control, and 4 study groups, were determined. A 1.5 mm-sized trauma was created in the biparietal area with a blunt-tipped dissector. Carbamazepine phenytoin valproic acid and levetiracetam (phenytoin: 30 mg/kg, valproic acid: 60 mg/kg, levetiracetam: 80 mg/kg, and carbamazepine: 36 mg/kg) were intraperitoneally administered to the study groups, and the control group intraperitoneally received a physiological saline solution (15 ml/kg) twice daily for 3 days. After 72 h, hemispheres of the sacrificed subjects were taken for examination in biochemistry and histology. Glutathione, malondialdehyde, and NG2 levels in the samples were determined. RESULTS No significant difference was found in biochemical measurements. Histopathological examination revealed that the NG2 expression was more intense in the group treated with phenytoin and levetiracetam (phenytoin was partly higher) and the amount of edema decreased. The NG2 expression increased and the edema decreased, though lower in the group treated with carbamazepine and valproic acid, compared with phenytoin and levetiracetam. An increase in the NG2 expression and edema intensity were determined in the control and sham groups. CONCLUSION Antiepileptic drug selection after traumatic brain injury is an important medical matter. Although the patient-oriented selection is essential, the study suggests that the choice of phenytoin, levetiracetam carbamazepine, and valproic acid will, respectively, have an accelerating effect for axonal healing.
Collapse
Affiliation(s)
- Harun Demirci
- Department of Neurosurgery,Ankara Yildirim Beyazit University Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey.
| | - Pelin Kuzucu
- Department of Neurosurgery, University of Health Sciences, Gülhane Faculty of Medicine, Ankara, Turkey.
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Özlem Gülbahar
- Department of Department of Clinical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Pınar Özişik
- Department of Neurosurgery,Ankara Yildirim Beyazit University Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey.
| | - Hakan Emmez
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
49
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Fourier Transform Infrared Imaging-A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11070918. [PMID: 34356152 PMCID: PMC8307811 DOI: 10.3390/brainsci11070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) can be defined as a disorder in the function of the brain after a bump, blow, or jolt to the head, or penetrating head injury. Mild traumatic brain injury (mTBI) can cause devastating effects, such as the initiation of long-term neurodegeneration in brain tissue. In the current study, the effects of mTBI were investigated on rat brain regions; cortex (Co) and corpus callosum (CC) after 24 h (subacute trauma) by Fourier transform infrared (FTIR) imaging and immunohistochemistry (IHC). IHC studies showed the formation of amyloid-β (Aβ) plaques in the cortex brain region of mTBI rats. Moreover, staining of myelin basic protein presented the shearing of axons in CC region in the same group of animals. According to FTIR imaging results, total protein and lipid content significantly decreased in both Co and CC regions in mTBI group compared to the control. Due to this significant decrease in both lipid and protein content, remarkable consistency in lipid/protein band ratio in mTBI and control group, was observed. Significant decrease in methyl content and a significant increase in olefinic content were observed in Co and CC regions of mTBI rat brain tissues. Classification amongst distinguishable groups was performed using principal component analysis (PCA) and hierarchical clustering (HCA). This study established the prospective of FTIR imaging for assessing biochemical changes due to mTBI with high sensitivity, precision and high-resolution.
Collapse
|