1
|
Cieri F, Di Francesco G, Cross CL, Bender A, Caldwell JZK. Dynamic neurocognitive adaptation in aging: Development and validation of a new scale. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70049. [PMID: 39839075 PMCID: PMC11746070 DOI: 10.1002/trc2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Forty-five percent of Alzheimer's disease (AD) cases may have been preventable through protective factors. Reserve, resilience, and resistance share common neurocognitive adaptive processes, acting through protective mechanisms. In this article we propose the development and validation of a new scale, called dynamic Neurocognitive Adaptation, developed in this direction. METHODS We included 815 participants (50% women; 65+ years inclusive of age), divided into two subsamples for exploratory and confirmatory factor analysis. Our initial scale was composed of 30 items, investigating seven dimensions, explored by a 5-point Likert scale reflecting the frequency of activities, for seven time windows. RESULTS Our final scale had 20 items divided among four dimensions: physical, cognitive, creative, and social. There were no issues related to multi-collinearity or non-collinearity. Kaiser-Meyer-Olkin (KMO) = 0.80 and Bartlett's test of sphericity indicated all values ≤0.01; Cronbach's alpha = 0.83. DISCUSSION We have validated a reliable, novel, easy to complete, and comprehensive scale to assess lifetime behaviors, which can be applied in research on AD risk reduction, mild cognitive impairment, and in clinical practice. Highlights Reserve, resistance, and resilience share similar adaptive mechanisms.Dynamic Neurocognitive Adaptation is a new scale to assess lifetime protective factors.Dynamic Neurocognitive Adaptation is a reliable, novel, and easy to complete scale.This approach can characterize specific life stages that are ripe for risk-reduction interventions.Our scale can be used to personalize health recommendations in aging.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of NeurologyCleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Giulia Di Francesco
- Hematology Unit, Department of Oncology‐HematologyPescara HospitalPescaraItaly
| | - Chad Lee Cross
- Department of NeurologyCleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
- Department of Epidemiology & Biostatistics (C.L.C.), School of Public HealthUniversity of NevadaLas VegasNevadaUSA
| | - Andrew Bender
- Department of NeurologyCleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | | |
Collapse
|
2
|
Chojak M, Gawron A, Czechowska-Bieluga M, Różański A, Sarzyńska-Mazurek E, Stachyra-Sokulska A. Neuronal Mechanisms of Reading Informational Texts in People with Different Levels of Mental Resilience. Brain Sci 2024; 14:944. [PMID: 39335438 PMCID: PMC11430290 DOI: 10.3390/brainsci14090944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to verify whether the level of mental resilience would differentiate reading comprehension performance when using different information carriers. More than 150 people filled out a test regarding the level of resilience. They then participated in a survey using fNIRS. Their task was to read a one-page informational text and answer several questions. The results showed no differences in correct answers between groups of people with different levels of resilience. In the groups of people with high and low levels of resilience, the number of correct answers was not differentiated by the type of carrier. Among those with moderate levels of resilience, better results were obtained by those who read text printed on paper. Analyses of neuronal mechanisms showed that the type of carrier differentiated brain activity in each group. Obtaining the same number of correct answers in the test was the result of different neuronal mechanisms activated in those who used a computer and those who read a printed text.
Collapse
Affiliation(s)
- Małgorzata Chojak
- Instytut of Pedagogy, Uniwersity of Marie Curie-Sklodowska, 20-612 Lublin, Poland
| | - Anna Gawron
- Instytut of Pedagogy, Uniwersity of Marie Curie-Sklodowska, 20-612 Lublin, Poland
| | | | - Andrzej Różański
- Instytut of Pedagogy, Uniwersity of Marie Curie-Sklodowska, 20-612 Lublin, Poland
| | | | | |
Collapse
|
3
|
Sidenkova A, Litvinenko V, Bazarny V, Rezaikin A, Zakharov A, Baranskaya L, Babushkina E. Mechanisms and Functions of the Cerebral-Cognitive Reserve in Patients with Alzheimer's Disease: A Narrative Review. CONSORTIUM PSYCHIATRICUM 2024; 5:17-29. [PMID: 39526013 PMCID: PMC11542915 DOI: 10.17816/cp15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The need for scientific knowledge about aging is predicated on the demand of modern society to extend the active life of a person. To maintain intellectual longevity, it is necessary to take into account not only the pathological, but also compensatory mechanisms that arise during aging. The cerebral-cognitive reserve (CCR) influences the rate of transition from pre-phenomenological stages to the clinical stage of the disease, thereby changing the prognosis of Alzheimer's disease (AD). AIM The aim of this work was to review meta-analyses from studies that have examined the principles and functions of the CCR in people with AD. METHODS The work included 83 scientific publications devoted to the issues of the CCR in neurodegenerative diseases such as AD. The Results and Discussion sections of this article provide reviews of the results of 12 meta-analyses published from 2012 to 2024 and selected from the PubMed and eLibrary databases using the following keywords in English and Russian: "cerebral reserve", "cognitive "reserve", and "Alzheimer's disease". The scope of the definition was not limited, since the goal here was to determine the terminological boundaries of the concepts of "cognitive reserve" and "single brain reserve". RESULTS The modern understanding of AD as a biological continuum covering the preclinical, prodromal, and clinical phases of the disease makes it possible to infer that insufficiency of protective factors underlies the progression of AD. The cognitive reserve is involved in the sanogenetic protective mechanism during neurodegeneration. The cognitive reserve is a theoretical concept that reflects modern research's understanding of how the integrative functioning of the brain (cerebral) and cognitive reserves extend the period of active intellectual longevity through energy-saving mechanisms. It considers these mechanisms as central to healthy mental activity and in slowing the progression of neurodegenerative diseases. At some point, an increase in excess interneuronal activity that reflects the hypercompensatory function of the reserve would accelerate the depletion of brain structures and contribute to clinical and psychopathological manifestations of AD. CONCLUSION The concept of the CCR puts the spotlight on the need to determine the compensatory indicators of cognitive deficit in AD, assess the architecture and volume of the reserve, and develop and follow protocols for its maintenance. It appears just as crucial to adopt measures to prevent the Reserve's depletion as early as at the preclinical stages of the disease. Elaborating protective and compensatory mechanisms that help to maintain the functional activity of the brain in conditions of neurodegeneration, that is, CCR, require further research and can form a conceptual basis for the prevention of AD, starting from the preclinical stages of the disease.
Collapse
|
4
|
Pappalettera C, Carrarini C, Miraglia F, Vecchio F, Rossini PM. Cognitive resilience/reserve: Myth or reality? A review of definitions and measurement methods. Alzheimers Dement 2024; 20:3567-3586. [PMID: 38477378 PMCID: PMC11095447 DOI: 10.1002/alz.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 03/14/2024]
Abstract
INTRODUCTION This review examines the concept of cognitive reserve (CR) in relation to brain aging, particularly in the context of dementia and its early stages. CR refers to an individual's ability to maintain or regain cognitive function despite brain aging, damage, or disease. Various factors, including education, occupation complexity, leisure activities, and genetics are believed to influence CR. METHODS We revised the literature in the context of CR. A total of 842 articles were identified, then we rigorously assessed the relevance of articles based on titles and abstracts, employing a systematic approach to eliminate studies that did not align with our research objectives. RESULTS We evaluate-also in a critical way-the methods commonly used to define and measure CR, including sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures. The challenges and limitations of these measures are discussed, emphasizing the need for more targeted research to improve the understanding, definition, and measurement of CR. CONCLUSIONS The review underscores the significance of comprehending CR in the context of both normal and pathological brain aging and emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation in both healthy and neurologically impaired older individuals. HIGHLIGHTS This review examines the concept of cognitive reserve in brain aging, in the context of dementia and its early stages. We have evaluated the methods commonly used to define and measure cognitive reserve. Sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures are discussed. The review emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation.
Collapse
Affiliation(s)
- Chiara Pappalettera
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Claudia Carrarini
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of NeuroscienceCatholic University of Sacred HeartRomeItaly
| | - Francesca Miraglia
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Fabrizio Vecchio
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Paolo M. Rossini
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
| |
Collapse
|
5
|
Han F, Liu X, Mailman RB, Huang X, Liu X. Resting-state global brain activity affects early β-amyloid accumulation in default mode network. Nat Commun 2023; 14:7788. [PMID: 38012153 PMCID: PMC10682457 DOI: 10.1038/s41467-023-43627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
It remains unclear why β-amyloid (Aβ) plaque, a hallmark pathology of Alzheimer's disease (AD), first accumulates cortically in the default mode network (DMN), years before AD diagnosis. Resting-state low-frequency ( < 0.1 Hz) global brain activity recently was linked to AD, presumably due to its role in glymphatic clearance. Here we show that the preferential Aβ accumulation in the DMN at the early stage of Aβ pathology was associated with the preferential reduction of global brain activity in the same regions. This can be partly explained by its failure to reach these regions as propagating waves. Together, these findings highlight the important role of resting-state global brain activity in early preferential Aβ deposition in the DMN.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Richard B Mailman
- Departments of Neurology and Pharmacology, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
- Departments of Radiology, Neurosurgery, and Kinesiology, Translational Brain Research Center, Pennsylvania State University and Milton S. Hershey Medical Center, Hershey, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA.
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
6
|
Stevens WD, Khan N, Anderson JAE, Grady CL, Bialystok E. A neural mechanism of cognitive reserve: The case of bilingualism. Neuroimage 2023; 281:120365. [PMID: 37683809 DOI: 10.1016/j.neuroimage.2023.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Cognitive Reserve (CR) refers to the preservation of cognitive function in the face of age- or disease-related neuroanatomical decline. While bilingualism has been shown to contribute to CR, the extent to which, and what particular aspect of, second language experience contributes to CR are debated, and the underlying neural mechanism(s) unknown. Intrinsic functional connectivity reflects experience-dependent neuroplasticity that occurs across timescales ranging from minutes to decades, and may be a neural mechanism underlying CR. To test this hypothesis, we used voxel-based morphometry and resting-state functional connectivity analyses of MRI data to compare structural and functional brain integrity between monolingual and bilingual older adults, matched on cognitive performance, and across levels of second language proficiency measured as a continuous variable. Bilingualism, and degree of second language proficiency specifically, were associated with lower gray matter integrity in a hub of the default mode network - a region that is particularly vulnerable to decline in aging and dementia - but preserved intrinsic functional network organization. Bilingualism moderated the association between neuroanatomical differences and cognitive decline, such that lower gray matter integrity was associated with lower executive function in monolinguals, but not bilinguals. Intrinsic functional network integrity predicted executive function when controlling for group differences in gray matter integrity and language status. Our findings confirm that lifelong bilingualism is a CR factor, as bilingual older adults performed just as well as their monolingual peers on tasks of executive function, despite showing signs of more advanced neuroanatomical aging, and that this is a consequence of preserved intrinsic functional network organization.
Collapse
Affiliation(s)
- W Dale Stevens
- Department of Psychology, York University, Toronto, Canada.
| | - Naail Khan
- Department of Psychology, York University, Toronto, Canada
| | - John A E Anderson
- Department of Cognitive Science, Carleton University, Ottawa, Canada
| | - Cheryl L Grady
- Rotman Research Institute at Baycrest Hospital, Toronto, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - Ellen Bialystok
- Department of Psychology, York University, Toronto, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, Canada
| |
Collapse
|
7
|
Siciliano L, Olivito G, Urbini N, Silveri MC, Leggio M. The rising role of cognitive reserve and associated compensatory brain networks in spinocerebellar ataxia type 2. J Neurol 2023; 270:5071-5084. [PMID: 37421466 PMCID: PMC10511586 DOI: 10.1007/s00415-023-11855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Pre-existing or enhanced cognitive abilities influence symptom onset and severity in neurodegenerative diseases, which improve an individual's ability to deal with neurodegeneration. This process is named cognitive reserve (CR), and it has acquired high visibility in the field of neurodegeneration. However, the investigation of CR has been neglected in the context of cerebellar neurodegenerative disorders. The present study assessed CR and its impact on cognitive abilities in spinocerebellar ataxia type 2 (SCA2), which is a rare cerebellar neurodegenerative disease. We investigated the existence of CR networks in terms of compensatory mechanisms and neural reserve driven by increased cerebello-cerebral functional connectivity. The CR of 12 SCA2 patients was assessed using the Cognitive Reserve Index Questionnaire (CRIq), which was developed for appraising life-span CR. Patients underwent several neuropsychological tests to evaluate cognitive functioning and a functional MRI examination. Network based statistics analysis was used to assess functional brain networks. The results revealed significant correlations of CRIq measures with cognitive domains and patterns of increased connectivity in specific cerebellar and cerebral regions, which likely indicated CR networks. This study showed that CR may influence disease-related cognitive deficits, and it was related to the effective use of specific cerebello-cerebral networks that reflect a CR biomarker.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | | | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| |
Collapse
|
8
|
Panigrahy A, Schmithorst V, Ceschin R, Lee V, Beluk N, Wallace J, Wheaton O, Chenevert T, Qiu D, Lee JN, Nencka A, Gagoski B, Berman JI, Yuan W, Macgowan C, Coatsworth J, Fleysher L, Cannistraci C, Sleeper LA, Hoskoppal A, Silversides C, Radhakrishnan R, Markham L, Rhodes JF, Dugan LM, Brown N, Ermis P, Fuller S, Cotts TB, Rodriguez FH, Lindsay I, Beers S, Aizenstein H, Bellinger DC, Newburger JW, Umfleet LG, Cohen S, Zaidi A, Gurvitz M. Design and Harmonization Approach for the Multi-Institutional Neurocognitive Discovery Study (MINDS) of Adult Congenital Heart Disease (ACHD) Neuroimaging Ancillary Study: A Technical Note. J Cardiovasc Dev Dis 2023; 10:381. [PMID: 37754810 PMCID: PMC10532244 DOI: 10.3390/jcdd10090381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Dramatic advances in the management of congenital heart disease (CHD) have improved survival to adulthood from less than 10% in the 1960s to over 90% in the current era, such that adult CHD (ACHD) patients now outnumber their pediatric counterparts. ACHD patients demonstrate domain-specific neurocognitive deficits associated with reduced quality of life that include deficits in educational attainment and social interaction. Our hypothesis is that ACHD patients exhibit vascular brain injury and structural/physiological brain alterations that are predictive of specific neurocognitive deficits modified by behavioral and environmental enrichment proxies of cognitive reserve (e.g., level of education and lifestyle/social habits). This technical note describes an ancillary study to the National Heart, Lung, and Blood Institute (NHLBI)-funded Pediatric Heart Network (PHN) "Multi-Institutional Neurocognitive Discovery Study (MINDS) in Adult Congenital Heart Disease (ACHD)". Leveraging clinical, neuropsychological, and biospecimen data from the parent study, our study will provide structural-physiological correlates of neurocognitive outcomes, representing the first multi-center neuroimaging initiative to be performed in ACHD patients. Limitations of the study include recruitment challenges inherent to an ancillary study, implantable cardiac devices, and harmonization of neuroimaging biomarkers. Results from this research will help shape the care of ACHD patients and further our understanding of the interplay between brain injury and cognitive reserve.
Collapse
Affiliation(s)
- Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, 45th Str., Penn Ave., Pittsburgh, PA 15201, USA
| | - Vanessa Schmithorst
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Rafael Ceschin
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Vince Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Nancy Beluk
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Julia Wallace
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Olivia Wheaton
- HealthCore Inc., 480 Pleasant Str., Watertown, MA 02472, USA;
| | - Thomas Chenevert
- Department of Radiology, Michigan Medicine University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA;
- Congenital Heart Center, C. S. Mott Children’s Hospital, 1540 E Hospital Dr., Ann Arbor, MI 48109, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory School of Medicine, 1364 Clifton Rd., Atlanta, GA 30322, USA;
| | - James N Lee
- Department of Radiology, The University of Utah, 50 2030 E, Salt Lake City, UT 84112, USA;
| | - Andrew Nencka
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave., Milwaukee, WI 53226, USA;
| | - Borjan Gagoski
- Department of Radiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA;
| | - Jeffrey I. Berman
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA;
| | - Weihong Yuan
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave., Cincinnati, OH 45267, USA
| | - Christopher Macgowan
- Department of Medical Biophysics, University of Toronto, 101 College Str. Suite 15-701, Toronto, ON M5G 1L7, Canada;
- The Hospital for Sick Children Division of Translational Medicine, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - James Coatsworth
- Department of Radiology, Medical University of South Carolina, 171 Ashley Ave., Room 372, Charleston, SC 29425, USA;
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY 10029, USA; (L.F.); (C.C.); (A.Z.)
| | - Christopher Cannistraci
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY 10029, USA; (L.F.); (C.C.); (A.Z.)
| | - Lynn A. Sleeper
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA; (L.A.S.); (J.W.N.); (M.G.)
| | - Arvind Hoskoppal
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Candice Silversides
- Department of Cardiology, University of Toronto, C. David Naylor Building, 6 Queen’s Park Crescent West, Third Floor, Toronto, ON M5S 3H2, Canada;
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd., Indianapolis, IN 46202, USA;
| | - Larry Markham
- Department of Cardiology, University of Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA;
| | - John F. Rhodes
- Department of Cardiology, Medical University of South Carolina, 96 Jonathan Lucas Str. Ste. 601, MSC 617, Charleston, SC 29425, USA;
| | - Lauryn M. Dugan
- Department of Cardiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA; (L.M.D.); (N.B.)
| | - Nicole Brown
- Department of Cardiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA; (L.M.D.); (N.B.)
| | - Peter Ermis
- Department of Radiology, Texas Children’s Hospital, Houston, TX 77030, USA; (P.E.); (S.F.)
| | - Stephanie Fuller
- Department of Radiology, Texas Children’s Hospital, Houston, TX 77030, USA; (P.E.); (S.F.)
| | - Timothy Brett Cotts
- Departments of Internal Medicine and Pediatrics, Michigan Medicine University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA;
| | - Fred Henry Rodriguez
- Department of Cardiology, Emory School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA;
| | - Ian Lindsay
- Department of Cardiology, The University of Utah, 95 S 2000 E, Salt Lake City, UT 84112, USA;
| | - Sue Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara Str., Pittsburgh, PA 15213, USA; (S.B.); (H.A.)
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara Str., Pittsburgh, PA 15213, USA; (S.B.); (H.A.)
| | - David C. Bellinger
- Cardiac Neurodevelopmental Program, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA;
| | - Jane W. Newburger
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA; (L.A.S.); (J.W.N.); (M.G.)
| | - Laura Glass Umfleet
- Department of Neuropsychology, Medical College of Wisconsin, 9200 W Wisconsin Ave., Milwaukee, WI 53226, USA;
| | - Scott Cohen
- Heart and Vascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Ali Zaidi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY 10029, USA; (L.F.); (C.C.); (A.Z.)
| | - Michelle Gurvitz
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA; (L.A.S.); (J.W.N.); (M.G.)
| |
Collapse
|
9
|
Zhu W, Gao Z, Li H, Huang Z, Li X, Wang H, Wu X, Tian Y, Zhou S, Li X, Yu Y. Education reduces cognitive dysfunction in Alzheimer's disease by changing regional cerebral perfusion: An in-vivo arterial spin labeling study. Neurol Sci 2023; 44:2349-2361. [PMID: 36843146 DOI: 10.1007/s10072-023-06696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE Formal education and other cognitive challenges influence brain structure and improve function. It is believed that cognitive activities create a cognitive reserve (CR) that can slow the decline due to aging and neurodegenerative diseases. This study investigated alterations of regional cerebral blood flow (rCBF) associated with high and low CR in different stages of Alzheimer's disease (AD) and examined whether rCBF alteration mediates the relationship between education and cognitive performance. METHODS Patients with AD or amnestic mild cognitive impairment (aMCI) and healthy controls were divided into low cognitive reserve (LCR) and high cognitive reserve (HCR) subgroups according to median of education years (≤ 9 vs. > 9 years). The final study population included 89 AD patients (67 LCR, 22 HCR), 74 aMCI patients (44 LCR, 30 HCR), and 66 healthy controls (29 LCR, 37 HCR). All subjects were examined by arterial spin labeling magnetic resonance imaging and a neurocognitive test battery. rCBF was compared among groups by two-way analysis of variance. Mediation analyses were used to explore the relationships among education, rCBF, and cognitive test scores. RESULTS There were significant interaction effects of disease state (AD, aMCI, HC) and education level (LCR, HCR) on CBF in right hippocampus, posterior cingulate cortex, and right inferior parietal cortex (R_IPC). Education regulated episodic memory score by influencing right hippocampal CBF in HC_HCR and aMCI_HCR subgroups. CONCLUSION Our results indicate that the protective effect of education against cognitive dysfunction in early-stage AD is mediated at least partially by altered CBF in right hippocampus.
Collapse
Affiliation(s)
- Wanqiu Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Ziwen Gao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Hui Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Ziang Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
10
|
Ersoezlue E, Perneczky R, Tato M, Utecht J, Kurz C, Häckert J, Guersel S, Burow L, Koller G, Stoecklein S, Keeser D, Papazov B, Totzke M, Ballarini T, Brosseron F, Buerger K, Dechent P, Dobisch L, Ewers M, Fliessbach K, Glanz W, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Munk MH, Peters O, Priller J, Ramirez A, Roeske S, Roy N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth EJ, Teipel S, Unterfeld C, Wagner M, Wang X, Wiltfang J, Wolfsgruber S, Yakupov R, Duezel E, Jessen F, Rauchmann BS. A Residual Marker of Cognitive Reserve Is Associated with Resting-State Intrinsic Functional Connectivity Along the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 92:925-940. [PMID: 36806502 DOI: 10.3233/jad-220464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Cognitive reserve (CR) explains inter-individual differences in the impact of the neurodegenerative burden on cognitive functioning. A residual model was proposed to estimate CR more accurately than previous measures. However, associations between residual CR markers (CRM) and functional connectivity (FC) remain unexplored. OBJECTIVE To explore the associations between the CRM and intrinsic network connectivity (INC) in resting-state networks along the neuropathological-continuum of Alzheimer's disease (ADN). METHODS Three hundred eighteen participants from the DELCODE cohort were stratified using cerebrospinal fluid biomarkers according to the A(myloid-β)/T(au)/N(eurodegeneration) classification. CRM was calculated utilizing residuals obtained from a multilinear regression model predicting cognition from markers of disease burden. Using an independent component analysis in resting-state fMRI data, we measured INC of resting-state networks, i.e., default mode network (DMN), frontoparietal network (FPN), salience network (SAL), and dorsal attention network. The associations of INC with a composite memory score and CRM and the associations of CRM with the seed-to-voxel functional connectivity of memory-related were tested in general linear models. RESULTS CRM was positively associated with INC in the DMN in the entire cohort. The A+T+N+ group revealed an anti-correlation between the SAL and the DMN. Furthermore, CRM was positively associated with anti-correlation between memory-related regions in FPN and DMN in ADN and A+T/N+. CONCLUSION Our results provide evidence that INC is associated with CRM in ADN defined as participants with amyloid pathology with or without cognitive symptoms, suggesting that the neural correlates of CR are mirrored in network FC in resting-state.
Collapse
Affiliation(s)
- Ersin Ersoezlue
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Department of Gerontopsychiatry and Developmental Disorders, kbo-Isar-Amper-Klinikum Haar, University Teaching Hospital of LMU Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Jan Häckert
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Sophia Stoecklein
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Boris Papazov
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Marie Totzke
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | | | | | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences Department of Cognitive Neurology, Georg-August-University Goettingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience Charité - Universitätsmedizin Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty of University of Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Oliver Peters
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine Technical University of Munich, Germany.,University of Edinburgh and UK DRI Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Germany.,Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE) Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Department of Neurology, University of Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Chantal Unterfeld
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Xiao Wang
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE) Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Department of Psychiatry, Medical Faculty of University of Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK.,Department of Neuroradiology, University Hospital, LMU Munich, Germany
| | | |
Collapse
|
11
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
12
|
Ersoezlue E, Rauchmann BS, Schneider-Axmann T, Wagner M, Ballarini T, Tato M, Utecht J, Kurz C, Papazov B, Guersel S, Burow L, Koller G, Stöcklein S, Keeser D, Bartels C, Brosseron F, Buerger K, Cetindag AC, Dechent P, Dobisch L, Ewers M, Fliessbach K, Frommann I, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Maier F, Metzger CD, Munk MH, Peters O, Preis L, Priller J, Ramirez A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Wiltfang J, Wolfsgruber S, Yakupov R, Duezel E, Jessen F, Perneczky R. Lifelong experiences as a proxy of cognitive reserve moderate the association between connectivity and cognition in Alzheimer's disease. Neurobiol Aging 2023; 122:33-44. [PMID: 36476760 DOI: 10.1016/j.neurobiolaging.2022.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is associated with alterations in functional connectivity (FC) of the brain. The FC underpinnings of CR, that is, lifelong experiences, are largely unknown. Resting-state FC and structural MRI were performed in 76 CSF amyloid-β (Aβ) negative healthy controls and 152 Aβ positive individuals as an AD spectrum cohort (ADS; 55 with subjective cognitive decline, SCD; 52 with mild cognitive impairment; 45 with AD dementia). Following a region-of-interest (ROI) FC analysis, intrinsic network connectivity within the default-mode network (INC-DMN) and anti-correlation in INC between the DMN and dorsal attention network (DMN:DAN) were obtained as composite scores. CR was estimated by education and Lifetime Experiences Questionnaire (LEQ). The association between INC-DMN and MEM was attenuated by higher LEQ scores in the entire ADS group, particularly in SCD. In ROI analyses, higher LEQ scores were associated with higher FC within the DMN in ADS group. INC-DMN remains relatively intact despite memory decline in individuals with higher lifetime activity estimates, supporting a role for functional networks in maintaining cognitive function in AD.
Collapse
Affiliation(s)
- Ersin Ersoezlue
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Tommaso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arda C Cetindag
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Daniel Janowitz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleinedam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany; Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK; Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
13
|
Li Y, Jiang L. State and Trait Anxiety Share Common Network Topological Mechanisms of Human Brain. Front Neuroinform 2022; 16:859309. [PMID: 35811997 PMCID: PMC9260038 DOI: 10.3389/fninf.2022.859309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
Anxiety is a future-oriented unpleasant and negative mental state induced by distant and potential threats. It could be subdivided into momentary state anxiety and stable trait anxiety, which play a complex and combined role in our mental and physical health. However, no studies have systematically investigated whether these two different dimensions of anxiety share a common or distinct topological mechanism of human brain network. In this study, we used macroscale human brain morphological similarity network and functional connectivity network as well as their spatial and temporal variations to explore the topological properties of state and trait anxiety. Our results showed that state and trait anxiety were both negatively correlated with the coefficient of variation of nodal efficiency in the left frontal eyes field of volume network; state and trait anxiety were both positively correlated with the median and mode of pagerank centrality distribution in the right insula for both static and dynamic functional networks. In summary, our study confirmed that state and trait anxiety shared common human brain network topological mechanisms in the insula and the frontal eyes field, which were involved in preliminary cognitive processing stage of anxiety. Our study also demonstrated that the common brain network topological mechanisms had high spatiotemporal robustness and would enhance our understanding of human brain temporal and spatial organization.
Collapse
Affiliation(s)
- Yubin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lili Jiang
| |
Collapse
|
14
|
Dong N, Fu C, Li R, Zhang W, Liu M, Xiao W, Taylor HM, Nicholas PJ, Tanglay O, Young IM, Osipowicz KZ, Sughrue ME, Doyen SP, Li Y. Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer’s Disease and Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:854733. [PMID: 35592700 PMCID: PMC9110794 DOI: 10.3389/fnagi.2022.854733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Alzheimer’s Disease (AD) is a progressive condition characterized by cognitive decline. AD is often preceded by mild cognitive impairment (MCI), though the diagnosis of both conditions remains a challenge. Early diagnosis of AD, and prediction of MCI progression require data-driven approaches to improve patient selection for treatment. We used a machine learning tool to predict performance in neuropsychological tests in AD and MCI based on functional connectivity using a whole-brain connectome, in an attempt to identify network substrates of cognitive deficits in AD. Methods Neuropsychological tests, baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI, and diffusion weighted imaging scans were obtained from 149 MCI, and 85 AD patients; and 140 cognitively unimpaired geriatric participants. A novel machine learning tool, Hollow Tree Super (HoTS) was utilized to extract feature importance from each machine learning model to identify brain regions that were associated with deficit and absence of deficit for 11 neuropsychological tests. Results 11 models attained an area under the receiver operating curve (AUC-ROC) greater than 0.65, while five models had an AUC-ROC ≥ 0.7. 20 parcels of the Human Connectome Project Multimodal Parcelation Atlas matched to poor performance in at least two neuropsychological tests, while 14 parcels were associated with good performance in at least two tests. At a network level, most parcels predictive of both presence and absence of deficit were affiliated with the Central Executive Network, Default Mode Network, and the Sensorimotor Networks. Segregating predictors by the cognitive domain associated with each test revealed areas of coherent overlap between cognitive domains, with the parcels providing possible markers to screen for cognitive impairment. Conclusion Approaches such as ours which incorporate whole-brain functional connectivity and harness feature importance in machine learning models may aid in identifying diagnostic and therapeutic targets in AD.
Collapse
Affiliation(s)
- Ningxin Dong
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyong Fu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weixin Xiao
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | - Michael E. Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
| | | | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yunxia Li,
| |
Collapse
|
15
|
Varela-López B, Cruz-Gómez ÁJ, Lojo-Seoane C, Díaz F, Pereiro A, Zurrón M, Lindín M, Galdo-Álvarez S. Cognitive reserve, neurocognitive performance, and high-order resting-state networks in cognitively unimpaired aging. Neurobiol Aging 2022; 117:151-164. [DOI: 10.1016/j.neurobiolaging.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
16
|
Common genetic variation is associated with longitudinal decline and network features in behavioral variant frontotemporal degeneration. Neurobiol Aging 2021; 108:16-23. [PMID: 34474300 PMCID: PMC8616801 DOI: 10.1016/j.neurobiolaging.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023]
Abstract
The T allele in rs1768208 located in or near the myelin oligodendrocyte basic protein gene (MOBP) is a risk factor for frontotemporal degeneration pathology. We evaluated the hypothesis that the presence of a T allele in rs1768208 will be associated with rate of cognitive decline in behavioral variant frontotemporal degeneration (bvFTD) related to compromised frontal networks. We studied 81 individuals clinically diagnosed with bvFTD who were genotyped for rs1768208 and coded using a dominant model reflecting the presence (i.e., MOBP +) or absence (MOBP -) of the T risk allele. Linear mixed-effects models assessed the association of genotype on neuropsychological performance over time. Regression analyses examined differences in network structure by MOBP genotype. We found a genotype by time interaction for declining cognitive performance, whereby MOBP + individuals demonstrated faster rates of decline in executive function. The presence of a MOBP risk allele was associated with degradation of white matter network features in the frontal lobe. These findings suggest that individual genetic variation may contribute to heterogeneity in clinical progression.
Collapse
|
17
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Bilgel M, Hou X, Lu H, Miller MI, Albert M. Association of Lifestyle Activities with Functional Brain Connectivity and Relationship to Cognitive Decline among Older Adults. Cereb Cortex 2021; 31:5637-5651. [PMID: 34184058 DOI: 10.1093/cercor/bhab187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
This study examines the relationship of engagement in different lifestyle activities to connectivity in large-scale functional brain networks, and whether network connectivity modifies cognitive decline, independent of brain amyloid levels. Participants (N = 153, mean age = 69 years, including N = 126 with amyloid imaging) were cognitively normal when they completed resting-state functional magnetic resonance imaging, a lifestyle activity questionnaire, and cognitive testing. They were followed with annual cognitive tests up to 5 years (mean = 3.3 years). Linear regressions showed positive relationships between cognitive activity engagement and connectivity within the dorsal attention network, and between physical activity levels and connectivity within the default-mode, limbic, and frontoparietal control networks, and global within-network connectivity. Additionally, higher cognitive and physical activity levels were independently associated with higher network modularity, a measure of functional network specialization. These associations were largely independent of APOE4 genotype, amyloid burden, global brain atrophy, vascular risk, and level of cognitive reserve. Moreover, higher connectivity in the dorsal attention, default-mode, and limbic networks, and greater global connectivity and modularity were associated with reduced cognitive decline, independent of APOE4 genotype and amyloid burden. These findings suggest that changes in functional brain connectivity may be one mechanism by which lifestyle activity engagement reduces cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuxin Zhu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
18
|
Lin Y, Zeng Q, Hu M, Peng G, Luo B. Temporal Dynamic Changes of Intrinsic Brain Activity Associated with Cognitive Reserve in Prodromal Alzheimer's Disease. J Alzheimers Dis 2021; 81:1285-1294. [PMID: 33935072 DOI: 10.3233/jad-201244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cognitive reserve (CR) is an important protective factor for Alzheimer's disease (AD), yet its mechanism has not been fully elucidated. OBJECTIVE To explore the effect of CR on resting and dynamic brain intrinsic activity in patients with mild cognitive impairment (MCI). METHODS 65 amyloid-β PET-negative (Aβ-) normal controls (NC) and 30 amyloid-β PET-positive (Aβ+) MCI patients underwent resting-state functional magnetic resonance imaging were included from Alzheimer's Disease Neuroimaging Initiative. According to the years of education, the subjects were divided into high education group and low education group. A two-way analysis of variance was employed for the fractional amplitude of low-frequency fluctuation (fALFF) and dynamic fALFF (dfALFF) comparisons among the four groups. Moreover, the interaction effect of neuroimaging×pathology on clinical cognitive function was tested with linear regression analysis. RESULTS The value of fALFF in the left prefrontal lobe was increased in Aβ+ MCI patients compared to Aβ- NC. The significant interactive effect between disease state and education (binary factor) was observed in the right parahippocampal gyrus (PHG) for fALFF, the right PHG and the right inferior parietal lobule for dfALFF. While no significant results between education (continuous factor) and brain activity was found in voxel-by-voxel analysis. For MCI patients, a significant fluorodeoxyglucose hypometabolic convergence index×right PHG dfALFF interaction was found, indicating the maintenance of executive function at higher levels of dfALFF in the right PHG. CONCLUSION High CR can alleviate the impairment of hypometabolism on executive function in MCI patients, which is partially achieved by regulating the dynamic brain activity in the right PHG.
Collapse
Affiliation(s)
- Yajie Lin
- Department of Neurology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - MengJie Hu
- Department of Neurology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
19
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
20
|
Rizzi L, Aventurato ÍK, Balthazar MLF. Neuroimaging Research on Dementia in Brazil in the Last Decade: Scientometric Analysis, Challenges, and Peculiarities. Front Neurol 2021; 12:640525. [PMID: 33790850 PMCID: PMC8005640 DOI: 10.3389/fneur.2021.640525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
The last years have evinced a remarkable growth in neuroimaging studies around the world. All these studies have contributed to a better understanding of the cerebral outcomes of dementia, even in the earliest phases. In low- and middle-income countries, studies involving structural and functional neuroimaging are challenging due to low investments and heterogeneous populations. Outstanding the importance of diagnosing mild cognitive impairment and dementia, the purpose of this paper is to offer an overview of neuroimaging dementia research in Brazil. The review includes a brief scientometric analysis of quantitative information about the development of this field over the past 10 years. Besides, discusses some peculiarities and challenges that have limited neuroimaging dementia research in this big and heterogeneous country of Latin America. We systematically reviewed existing neuroimaging literature with Brazilian authors that presented outcomes related to a dementia syndrome, published from 2010 to 2020. Briefly, the main neuroimaging methods used were morphometrics, followed by fMRI, and DTI. The major diseases analyzed were Alzheimer's disease, mild cognitive impairment, and vascular dementia, respectively. Moreover, research activity in Brazil has been restricted almost entirely to a few centers in the Southeast region, and funding could be the main driver for publications. There was relative stability concerning the number of publications per year, the citation impact has historically been below the world average, and the author's gender inequalities are not relevant in this specific field. Neuroimaging research in Brazil is far from being developed and widespread across the country. Fortunately, increasingly collaborations with foreign partnerships contribute to the impact of Brazil's domestic research. Although the challenges, neuroimaging researches performed in the native population regarding regional peculiarities and adversities are of pivotal importance.
Collapse
Affiliation(s)
- Liara Rizzi
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | |
Collapse
|
21
|
Williams BD, Pendleton N, Chandola T. Does the association between cognition and education differ between older adults with gradual or rapid trajectories of cognitive decline? NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2021; 29:1-21. [PMID: 33683174 DOI: 10.1080/13825585.2021.1889958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Education is associated with improved baseline cognitive performance in older adults, but the association with maintenance of cognitive function is less clear. Education may be associated with different types of active cognitive reserve in those following different cognitive trajectories. We used data on n = 5642 adults aged >60 from the English Longitudinal Study of Aging (ELSA) over 5 waves (8 years). We used growth mixture models to test if the association between educational attainment and rate of change in verbal fluency or immediate recall varied by latent class trajectory. For recall, 91.5% (n = 5164) of participants were in a gradual decline class and 8.5% (n = 478) in a rapid decline class. For fluency, 90.0% (n = 4907) were in a gradual decline class and 10.0% (n = 561) were in a rapid decline class. Educational attainment was associated with improved baseline performance for both verbal fluency and recall. In the rapidly declining classes, educational attainment was not associated with rate of change for either outcome. In the verbal fluency gradual decline class, education was associated with higher (an additional 0.05-0.38 words per 2 years) or degree level education (an additional 0.04-0.42 words per 2 years) when compared to those with no formal qualifications. We identified no evidence of a protective effect of education against rapid cognitive decline. There was some evidence of active cognitive reserve for verbal fluency but not recall, which may reflect a small degree of domain-specific protection against age-related cognitive decline.
Collapse
Affiliation(s)
| | - Neil Pendleton
- Cathie Marsh Institute for Social Research, University of Manchester, Manchester, UK
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Tarani Chandola
- Cathie Marsh Institute for Social Research, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Möllers T, Stocker H, Perna L, Nabers A, Rujescu D, Hartmann AM, Holleczek B, Schöttker B, Gerwert K, Brenner H. Aβ misfolding in blood plasma measured by immuno-infrared-sensor as an age-independent risk marker of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12151. [PMID: 33614887 PMCID: PMC7875190 DOI: 10.1002/dad2.12151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Determining potential risk factors of amyloid beta (Aβ) misfolding in blood, a risk marker for clinical Alzheimer's disease (AD), could have important implications for its utility in future research and clinical settings. METHODS Participants aged 50 to 75 years attending a general health examination were recruited for a prospective community-based cohort study in Saarland, Germany, in 2000 to 2002. For these analyses, participants with available Aβ misfolding measurements and clinical AD information at 17-year follow-up were included (n = 444). RESULTS Age did not show any association with Aβ misfolding in plasma; however, a strong association of both age and Aβ misfolding with the incidence of clinical AD was evident. Education and cardiovascular diseases were likewise not associated with Aβ misfolding. DISCUSSION Structural measurement of Aβ misfolding in blood plasma is an age-independent risk marker of clinical AD among older adults, supporting that risk of clinical AD is already largely determined before older adulthood.
Collapse
Affiliation(s)
- Tobias Möllers
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
- Network Aging ResearchHeidelberg UniversityHeidelbergGermany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
- Network Aging ResearchHeidelberg UniversityHeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Laura Perna
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
- Department of Translational Research in Psychiatry, Max Planck Institute of PsychiatryMunichGermany
| | - Andreas Nabers
- Department of BiophysicsRuhr‐University BochumBochumGermany
- Department of BiophysicsCenter for Protein Diagnostics (ProDi)BiospectroscopyRuhr‐University BochumBochumGermany
| | - Dan Rujescu
- Psychotherapy and PsychosomaticsUniversity Clinic and Outpatient Clinic for PsychiatryMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | - Annette M. Hartmann
- Psychotherapy and PsychosomaticsUniversity Clinic and Outpatient Clinic for PsychiatryMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
- Network Aging ResearchHeidelberg UniversityHeidelbergGermany
| | - Klaus Gerwert
- Department of BiophysicsRuhr‐University BochumBochumGermany
- Department of BiophysicsCenter for Protein Diagnostics (ProDi)BiospectroscopyRuhr‐University BochumBochumGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
- Network Aging ResearchHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
23
|
Rodriguez FS. Life-Course Pathways to Cognitive Aging: The Significance of Intellectual Stimulation in the Form of Education and Occupation for Public Policy and Prevention Plans. Front Psychiatry 2021; 12:719609. [PMID: 34366944 PMCID: PMC8339265 DOI: 10.3389/fpsyt.2021.719609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Francisca S Rodriguez
- German Center for Neurodegenerative Diseases (DZNE), RG Psychosocial Epidemiology and Public Health, Greifswald, Germany.,Center for Cognitive Science, University of Kaiserslautern, Kaiserslautern, Germany.,Institute of Social Medicine, Occupational Medicine and Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Edwards G, Contò F, Bucci LK, Battelli L. Controlling Brain State Prior to Stimulation of Parietal Cortex Prevents Deterioration of Sustained Attention. Cereb Cortex Commun 2020; 1:tgaa069. [PMID: 34296130 PMCID: PMC8152938 DOI: 10.1093/texcom/tgaa069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 11/13/2022] Open
Abstract
Sustained attention is a limited resource which declines during daily tasks. Such decay is exacerbated in clinical and aging populations. Inhibition of the intraparietal sulcus (IPS), using low-frequency repetitive transcranial magnetic stimulation (LF-rTMS), can lead to an upregulation of functional communication within the attention network. Attributed to functional compensation for the inhibited node, this boost lasts for tens of minutes poststimulation. Despite the neural change, no behavioral correlate has been found in healthy subjects, a necessary direct evidence of functional compensation. To understand the functional significance of neuromodulatory induced fluctuations on attention, we sought to boost the impact of LF-rTMS to impact behavior. We controlled brain state prior to LF-rTMS using high-frequency transcranial random noise stimulation (HF-tRNS), shown to increase and stabilize neuronal excitability. Using fMRI-guided stimulation protocols combining HF-tRNS and LF-rTMS, we tested the poststimulation impact on sustained attention with multiple object tracking (MOT). While attention deteriorated across time in control conditions, HF-tRNS followed by LF-rTMS doubled sustained attention capacity to 94 min. Multimethod stimulation was more effective when targeting right IPS, supporting specialized attention processing in the right hemisphere. Used in cognitive domains dependent on network-wide neural activity, this tool may cause lasting neural compensation useful for clinical rehabilitation.
Collapse
Affiliation(s)
- Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Center for Mind/Brain Sciences – CIMeC, University of Trento, 38122 Trento, Italy
| | - Loryn K Bucci
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
25
|
Muhire G, Iulita MF, Vallerand D, Youwakim J, Gratuze M, Petry FR, Planel E, Ferland G, Girouard H. Arterial Stiffness Due to Carotid Calcification Disrupts Cerebral Blood Flow Regulation and Leads to Cognitive Deficits. J Am Heart Assoc 2020; 8:e011630. [PMID: 31057061 PMCID: PMC6512142 DOI: 10.1161/jaha.118.011630] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Arterial stiffness is associated with cognitive decline and dementia; however, the precise mechanisms by which it affects the brain remain unclear. Methods and Results Using a mouse model based on carotid calcification this study characterized mechanisms that could contribute to brain degeneration due to arterial stiffness. At 2 weeks postcalcification, carotid stiffness attenuated resting cerebral blood flow in several brain regions including the perirhinal/entorhinal cortex, hippocampus, and thalamus, determined by autoradiography (P<0.05). Carotid calcification impaired cerebral autoregulation and diminished cerebral blood flow responses to neuronal activity and to acetylcholine, examined by laser Doppler flowmetry (P<0.05, P<0.01). Carotid stiffness significantly affected spatial memory at 3 weeks (P<0.05), but not at 2 weeks, suggesting that cerebrovascular impairments precede cognitive dysfunction. In line with the endothelial deficits, carotid stiffness led to increased blood‐brain barrier permeability in the hippocampus (P<0.01). This region also exhibited reductions in vessel number containing collagen IV (P<0.01), as did the somatosensory cortex (P<0.05). No evidence of cerebral microhemorrhages was present. Carotid stiffness did not affect the production of mouse amyloid‐β (Aβ) or tau phosphorylation, although it led to a modest increase in the Aβ40/Aβ42 ratio in frontal cortex (P<0.01). Conclusions These findings suggest that carotid stiffness alters brain microcirculation and increases blood‐brain barrier permeability associated with cognitive impairments. Therefore, arterial stiffness should be considered a relevant target to protect the brain and prevent cognitive dysfunctions.
Collapse
Affiliation(s)
- Gervais Muhire
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada
| | - M Florencia Iulita
- 2 Groupe de Recherche sur le Système Nerveux Central Université de Montréal Québec Canada.,3 Département de Neurosciences Université de Montréal Québec Canada
| | - Diane Vallerand
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada
| | - Jessica Youwakim
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada
| | - Maud Gratuze
- 4 Département de Psychiatrie et Neurosciences Université Laval Québec Québec Canada
| | - Franck R Petry
- 4 Département de Psychiatrie et Neurosciences Université Laval Québec Québec Canada
| | - Emmanuel Planel
- 4 Département de Psychiatrie et Neurosciences Université Laval Québec Québec Canada.,5 Centre de Recherche du CHU de Québec Québec Canada
| | - Guylaine Ferland
- 6 Département de Nutrition Université de Montréal Québec Canada.,7 Centre de Recherche de l'Institut de Cardiologie de Montréal Montréal Québec Canada
| | - Hélène Girouard
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada.,2 Groupe de Recherche sur le Système Nerveux Central Université de Montréal Québec Canada.,8 Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal Montréal Québec Canada
| |
Collapse
|
26
|
Rahmani F, Sanjari Moghaddam H, Rahmani M, Aarabi MH. Metabolic connectivity in Alzheimer’s diseases. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
The Relationships Between Cognitive Reserve and Psychological Symptoms: A Cross-Sectional Study in Healthy Individuals. Am J Geriatr Psychiatry 2020; 28:404-409. [PMID: 31495773 DOI: 10.1016/j.jagp.2019.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Low levels of cognitive reserve (CR), depressive symptomatology, and apathy are considered risk factors for cognitive decline. The aim of this study was to explore the relationships between these factors across the lifespan in healthy adults. METHODS This study included 429 Italian participants with no cognitive impairment, divided in three age subgroups: young adults, adults, and elderly. Participants were categorized as having low- or high CR based on the median of the Cognitive Reserve Scale, a self-rated questionnaire evaluating engagement in several leisure and social activities. Depressive symptomatology and severity of apathy were assessed by the Beck Depression Inventory - second edition (BDI-II) and the Dimensional Apathy Scale (DAS), respectively. Analysis of variance and regression served to explore the association between CR, apathy, and depression in the whole sample and in the three age subgroups. RESULTS The analyses of variance and regression analyses revealed that DAS was associated with I-CRS scores in all age groups, as people with high levels of lifetime CR showed a lower level of apathy, whereas no association was found between BDI-II and I-CRS scores. CONCLUSION Lifetime CR is associated with levels of apathy, but not of depressive symptomatology. Low CR is strongly associated with high levels of apathy and might indicate the need for psychoeducational interventions in order to prevent development of cognitive deterioration.
Collapse
|