1
|
Soler-Sáez I, Karz A, Hidalgo MR, Gómez-Cabañes B, López-Cerdán A, Català-Senent JF, Prutisto-Chang K, Eskow NM, Izar B, Redmer T, Kumar S, Davies MA, de la Iglesia-Vayá M, Hernando E, García-García F. Unveiling Common Transcriptomic Features between Melanoma Brain Metastases and Neurodegenerative Diseases. J Invest Dermatol 2025; 145:1135-1146. [PMID: 39326662 DOI: 10.1016/j.jid.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Melanoma represents a critical clinical challenge owing to its unfavorable outcomes. This type of skin cancer exhibits unique adaptability to the brain microenvironment, but its underlying molecular mechanisms are poorly understood. Recent findings have suggested that melanoma brain metastases may share biological processes similar to those found in various neurodegenerative diseases. To further characterize melanoma brain metastasis development, we explore the relationship between the transcriptional profiles of melanoma brain metastases and the neurodegenerative diseases Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We take an in silico approach to unveil a neurodegenerative signature of melanoma brain metastases compared with those of melanoma nonbrain metastasis (53 dysregulated genes were enriched in 11 functional terms, such as associated terms to the extracellular matrix and development) and with those of nontumor-bearing brain controls (195 dysregulated genes, mostly involved in development and cell differentiation, chromatin remodeling and nucleosome organization, and translation). Two genes, ITGA10 and DNAJC6, emerged as key potential markers being dysregulated in both scenarios. Finally, we developed an open-source, user-friendly web tool (https://bioinfo.cipf.es/metafun-mbm/) that allows interactive exploration of the complete results.
Collapse
Affiliation(s)
- Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Alcida Karz
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Borja Gómez-Cabañes
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - José F Català-Senent
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Kylie Prutisto-Chang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nicole M Eskow
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Benjamin Izar
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA; Columbia Center for Translational Immunology, New York, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Torben Redmer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Swaminathan Kumar
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - María de la Iglesia-Vayá
- Biomedical Imaging Mixed Unit, FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Eva Hernando
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA.
| | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain.
| |
Collapse
|
2
|
Leupold D, Buder S, Pfeifer L, Szyc L, Riederer P, Strobel S, Monoranu CM. New Aspects Regarding the Fluorescence Spectra of Melanin and Neuromelanin in Pigmented Human Tissue Concerning Hypoxia. Int J Mol Sci 2024; 25:8457. [PMID: 39126026 PMCID: PMC11313424 DOI: 10.3390/ijms25158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum. This characteristic enables the diagnosis of melanoma both in vivo and in histological samples. Neuromelanin, a brain pigment akin to melanin, shares similar fluorescence properties. Its fluorescence can also be quantified with high spectral resolution using the same laser spectroscopic methods. Documented fluorescence spectra of neuromelanin in histological samples from the substantia nigra substantiate these findings. Our research reveals that the spectral behavior of neuromelanin fluorescence mirrors that of melanin in melanomas. This indicates that the typical red fluorescence is likely influenced by the microenvironment around (neuro)melanin, rather than by direct pigment interactions. Our ongoing studies aim to further explore this distinctive "red" fluorescence. We have observed this red fluorescence spectrum in post-mortem measurements of melanin in benign nevus. The characteristic red spectrum is also evident here (unlike the benign nevus in vivo), suggesting that hypoxia may contribute to this phenomenon. Given the central role of hypoxia in both melanoma development and treatment, as well as in fundamental Parkinson's disease mechanisms, this study discusses strategies aimed at reinforcing the hypothesis that red fluorescence from (neuro)melanin serves as an indicator of hypoxia.
Collapse
Affiliation(s)
- Dieter Leupold
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | - Susanne Buder
- Clinic for Dermatology and Venerology, Vivantes Klinikum Neukölln, 12351 Berlin, Germany;
| | - Lutz Pfeifer
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | | | - Peter Riederer
- Department and Research Unit of Psychiatry, University of Southern Denmark, 5230 Odense, Denmark;
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sabrina Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| |
Collapse
|
3
|
Ascsillán AA, Kemény LV. The Skin-Brain Axis: From UV and Pigmentation to Behaviour Modulation. Int J Mol Sci 2024; 25:6199. [PMID: 38892387 PMCID: PMC11172643 DOI: 10.3390/ijms25116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
The skin-brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson's disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin-brain associations in health and disease.
Collapse
Affiliation(s)
- Anna A. Ascsillán
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Lajos V. Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
4
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM. Prevention of Parkinson's Disease: From Risk Factors to Early Interventions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:746-760. [PMID: 37326115 DOI: 10.2174/1871527322666230616092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Brendan Jun Lam Chan
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500 Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Srivastava P, Nishiyama S, Zhou F, Lin SH, Srivastava A, Su C, Xu Y, Peng W, Levy M, Schwarzschild M, Chen X. Peripheral MC1R Activation Modulates Immune Responses and is Neuroprotective in a Mouse Model of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:704-717. [PMID: 38110615 PMCID: PMC10769915 DOI: 10.1007/s11481-023-10094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Melanocortin 1 receptor (MC1R) is a key pigmentation gene, and loss-of-function of MC1R variants that produce red hair may be associated with Parkinson's disease (PD). We previously reported compromised dopaminergic neuron survival in Mc1r mutant mice and dopaminergic neuroprotective effects of local injection of a MC1R agonist to the brain or a systemically administered MC1R agonist with appreciable central nervous system (CNS) permeability. Beyond melanocytes and dopaminergic neurons, MC1R is expressed in other peripheral tissues and cell types, including immune cells. The present study investigates the impact of NDP-MSH, a synthetic melanocortin receptor (MCR) agonist that does not cross BBB, on the immune system and the nigrostriatal dopaminergic system in mouse model of PD. METHODS C57BL/6 mice were treated systemically with MPTP.HCl (20 mg/kg) and LPS (1 mg/kg) from day 1 to day 4 and NDP-MSH (400 µg/kg) or vehicle from day 1 to day 12 following which the mice were sacrificed. Peripheral and CNS immune cells were phenotyped and inflammatory markers were measured. The nigrostriatal dopaminergic system was assessed behaviorally, chemically, immunologically, and pathologically. To understand the role of regulatory T cells (Tregs) in this model, CD25 monoclonal antibody was used to deplete CD25 + Tregs. RESULTS Systemic NDP-MSH administration significantly attenuated striatal dopamine depletion and nigral dopaminergic neuron loss induced by MPTP + LPS. It improved the behavioral outcomes in the pole test. Mc1r mutant mice injected with NDP-MSH in the MPTP and LPS paradigm showed no changes in striatal dopamine levels suggesting that the NDP-MSH acts through the MC1R pathway. Although no NDP-MSH was detected in the brain, peripheral, NDP-MSH attenuated neuroinflammation as observed by diminished microglial activation in the nigral region, along with reduced TNF-α and IL1β levels in the ventral midbrain. Depletion of Tregs was associated with diminished neuroprotective effects of NDP-MSH. CONCLUSIONS Our study demonstrates that peripherally acting NDP-MSH confers protection on dopaminergic nigrostriatal neurons and reduces hyperactivated microglia. NDP-MSH modulates peripheral immune responses, and Tregs may be involved in the neuroprotective effect of NDP-MSH.
Collapse
Affiliation(s)
- Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Shuhei Nishiyama
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fang Zhou
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sonia H Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Akriti Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Chienwen Su
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Weiyi Peng
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Michael Levy
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
8
|
Hegazy M, Green KJ. Retromer Chaperones: Potential Therapeutics for Treatment of Skin Disease? J Invest Dermatol 2023; 143:1634-1637. [PMID: 37318403 DOI: 10.1016/j.jid.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
9
|
Ye Q, Srivastava P, Al-Kuwari N, Chen X. Oncogenic BRAFV600E induces microglial proliferation through extracellular signal-regulated kinase and neuronal death through c-Jun N-terminal kinase. Neural Regen Res 2023; 18:1613-1622. [PMID: 36571370 PMCID: PMC10075110 DOI: 10.4103/1673-5374.361516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
Activating V600E in v-Raf murine sarcoma viral oncogene homolog B (BRAF) is a common driver mutation in cancers of multiple tissue origins, including melanoma and glioma. BRAFV600E has also been implicated in neurodegeneration. The present study aims to characterize BRAFV600E during cell death and proliferation of three major cell types of the central nervous system: neurons, astrocytes, and microglia. Multiple primary cultures (primary cortical mixed culture) and cell lines of glial cells (BV2) and neurons (SH-SY5Y) were employed. BRAFV600E and BRAFWT expression was mediated by lentivirus or retrovirus. Blockage of downstream effectors (extracellular signal-regulated kinase 1/2 and JNK1/2) were achieved by siRNA. In astrocytes and microglia, BRAFV600E induces cell proliferation, and the proliferative effect in microglia is mediated by activated extracellular signal-regulated kinase, but not c-Jun N-terminal kinase. Conditioned medium from BRAFV600E-expressing microglia induced neuronal death. In neuronal cells, BRAFV600E directly induces neuronal death, through c-Jun N-terminal kinase but not extracellular signal-regulated kinase. We further show that BRAF-related genes are enriched in pathways in patients with Parkinson's disease. Our study identifies distinct consequences mediated by distinct downstream effectors in dividing glial cells and in neurons following the same BRAF mutational activation and a causal link between BRAF-activated microglia and neuronal cell death that does not require physical proximity. It provides insight into a possibly important role of BRAF in neurodegeneration as a result of either dysregulated BRAF in neurons or its impact on glial cells.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pranay Srivastava
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
10
|
Srivastava P, Nishiyama S, Lin SH, Srivastava A, Su C, Peng W, Levy M, Schwarzschild M, Xu Y, Chen X. Peripheral MC1R activation modulates immune responses and is neuroprotective in a mouse model of Parkinson's disease. RESEARCH SQUARE 2023:rs.3.rs-3042571. [PMID: 37398302 PMCID: PMC10312952 DOI: 10.21203/rs.3.rs-3042571/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Melanocortin 1 receptor (MC1R) is a key pigmentation gene, and loss-of-function of MC1R variants that produce red hair may be associated with Parkinson's disease (PD). We previously reported compromised dopaminergic neuron survival in Mc1r mutant mice and dopaminergic neuroprotective effects of local injection of a MC1R agonist to the brain or a systemically administered MC1R agonist with appreciable CNS permeability. Beyond melanocytes and dopaminergic neurons, MC1R is expressed in other peripheral tissues and cell types, including immune cells. The present study investigates the impact of NDP-MSH, a synthetic melanocortin receptor (MCR) agonist that does not cross BBB, on the immune system and the nigrostriatal dopaminergic system in mouse model of PD. Methods C57BL/6 mice were treated systemically with MPTP.HCl (20 mg/kg) and LPS (1 mg/kg) from day 1 to day 4 and NDP-MSH (400 μg/kg) or vehicle from day 1 to day 12 following which the mice were sacrificed. Peripheral and CNS immune cells were phenotyped and inflammatory markers were measured. The nigrostriatal dopaminergic system was assessed behaviorally, chemically, immunologically, and pathologically. To understand the role of regulatory T cells (Tregs) in this model, CD25 monoclonal antibody was used to deplete CD25+ Tregs. Results Systemic NDP-MSH administration significantly attenuated striatal dopamine depletion and nigral dopaminergic neuron loss induced by MPTP+LPS. It improved the behavioral outcomes in the pole test. Mc1r mutant mice injected with NDP-MSH in the MPTP and LPS paradigm showed no changes in striatal dopamine levels suggesting that the NDP-MSH acts through the MC1R pathway. Although no NDP-MSH was detected in the brain, peripheral, NDP-MSH attenuated neuroinflammation as observed by diminished microglial activation in the nigral region, along with reduced TNF-α and IL1β levels in the ventral midbrain. Depletion of Tregs limited the neuroprotective effects of NDP-MSH. Conclusions Our study demonstrates that peripherally acting NDP-MSH confers protection on dopaminergic nigrostriatal neurons and reduces hyperactivated microglia. NDP-MSH modulates peripheral immune responses, and Tregs may be involved in the neuroprotective effect of NDP-MSH.
Collapse
Affiliation(s)
- Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Shuhei Nishiyama
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Sonia H Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Akriti Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Chienwen Su
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston
| | - Michael Levy
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Michael Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
11
|
Bragina EY, Gomboeva DE, Saik OV, Ivanisenko VA, Freidin MB, Nazarenko MS, Puzyrev VP. Apoptosis Genes as a Key to Identification of Inverse Comorbidity of Huntington's Disease and Cancer. Int J Mol Sci 2023; 24:ijms24119385. [PMID: 37298337 DOI: 10.3390/ijms24119385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer and neurodegenerative disorders present overwhelming challenges for healthcare worldwide. Epidemiological studies showed a decrease in cancer rates in patients with neurodegenerative disorders, including the Huntington disease (HD). Apoptosis is one of the most important processes for both cancer and neurodegeneration. We suggest that genes closely connected with apoptosis and associated with HD may affect carcinogenesis. We applied reconstruction and analysis of gene networks associated with HD and apoptosis and identified potentially important genes for inverse comorbidity of cancer and HD. The top 10 high-priority candidate genes included APOE, PSEN1, INS, IL6, SQSTM1, SP1, HTT, LEP, HSPA4, and BDNF. Functional analysis of these genes was carried out using gene ontology and KEGG pathways. By exploring genome-wide association study results, we identified genes associated with neurodegenerative and oncological disorders, as well as their endophenotypes and risk factors. We used publicly available datasets of HD and breast and prostate cancers to analyze the expression of the identified genes. Functional modules of these genes were characterized according to disease-specific tissues. This integrative approach revealed that these genes predominantly exert similar functions in different tissues. Apoptosis along with lipid metabolism dysregulation and cell homeostasis maintenance in the response to environmental stimulus and drugs are likely key processes in inverse comorbidity of cancer in patients with HD. Overall, the identified genes represent the promising targets for studying molecular relations of cancer and HD.
Collapse
Affiliation(s)
- Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Densema E Gomboeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
- Department of Biology, School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
- Department of Medical Genetics, Faculty of General Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valery P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
- Department of Medical Genetics, Faculty of General Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Tóth V, Diakoumakou SC, Kuroli E, Tóth B, Kuzmanovszki D, Szakonyi J, Lőrincz KK, Somlai B, Kárpáti S, Holló P. Cutaneous malignancies in patients with Parkinson's disease at a dermato-oncological university centre in Hungary. Front Oncol 2023; 13:1142170. [PMID: 37274278 PMCID: PMC10235680 DOI: 10.3389/fonc.2023.1142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Background The possible correlation between melanoma and Parkinson's disease (PD) has been intensively studied. In this work, we aimed to assess the coincidence of skin malignancies and PD at a dermato-oncological university centre in Central-Eastern Europe, Hungary. Methods From 2004 to 2017, a retrospective analysis of the centre's database was performed based on International Statistical Classification of Diseases-10 codes. Results Out of the patients who visited the clinic during the study period, 20,658 were treated for malignant skin tumours. Over the 14 years, 205 dermatological patients had PD simultaneously, 111 (54%) of whom had at least one type of skin malignancy: melanoma (n=22), basal cell carcinoma (BCC) (n=82), or squamous cell carcinoma (SCC) (n=36) (in some patients, multiple skin tumours were identified). Compared to the age- and sex-matched control group, patients with PD had a significantly lower risk for basal cell carcinoma (OR, 0.65; 95% CI, 0.47-0.89, p=0.0076) and for all skin tumours (OR, 0.74; 95% CI, 0.56-0.98, p=0.0392) but not for melanoma. Conclusions We found a decreased risk of all skin tumours and basal cell carcinoma and an unchanged risk of melanoma among patients with PD. However, it should be kept in mind that some large-scale meta-analyses suggest a higher incidence of melanoma after a diagnosis of PD, indicating the importance of skin examination in this vulnerable population.
Collapse
Affiliation(s)
- Veronika Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | | | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Béla Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Daniella Kuzmanovszki
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - József Szakonyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Kende Kálmán Lőrincz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Beáta Somlai
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Sharma A, Wüllner U, Schmidt-Wolf IGH, Maciaczyk J. Marginalizing the genomic architecture to identify crosstalk across cancer and neurodegeneration. Front Mol Neurosci 2023; 16:1155177. [PMID: 36923654 PMCID: PMC10008880 DOI: 10.3389/fnmol.2023.1155177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Affiliation(s)
- Amit Sharma
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital of Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Jarek Maciaczyk
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany.,Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Rachinger N, Mittag N, Böhme-Schäfer I, Xiang W, Kuphal S, Bosserhoff AK. Alpha-Synuclein and Its Role in Melanocytes. Cells 2022; 11:cells11132087. [PMID: 35805172 PMCID: PMC9265281 DOI: 10.3390/cells11132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pigmentation is an important process in skin physiology and skin diseases and presumably also plays a role in Parkinson’s disease (PD). In PD, alpha-Synuclein (aSyn) has been shown to be involved in the pigmentation of neurons. The presynaptic protein is intensively investigated for its pathological role in PD, but its physiological function remains unknown. We hypothesized that aSyn is both involved in melanocytic differentiation and melanosome trafficking processes. We detected a strong expression of aSyn in human epidermal melanocytes (NHEMs) and observed its regulation in melanocytic differentiation via the microphthalmia-associated transcription factor (MITF), a central regulator of differentiation. Moreover, we investigated its role in pigmentation by performing siRNA experiments but found no effect on the total melanin content. We discovered a localization of aSyn to melanosomes, and further analysis of aSyn knockdown revealed an important role in melanocytic morphology and a reduction in melanosome release. Additionally, we found a reduction of transferred melanosomes in co-culture experiments of melanocytes and keratinocytes but no complete inhibition of melanosome transmission. In summary, this study highlights a novel physiological role of aSyn in melanocytic morphology and its so far unknown function in the pigment secretion in melanocytes.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Nora Mittag
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
| | - Ines Böhme-Schäfer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
- Correspondence:
| |
Collapse
|
15
|
Particulate Matter Exacerbates the Death of Dopaminergic Neurons in Parkinson's Disease through an Inflammatory Response. Int J Mol Sci 2022; 23:ijms23126487. [PMID: 35742931 PMCID: PMC9223534 DOI: 10.3390/ijms23126487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Particulate matter (PM), a component of air pollution, has been epidemiologically associated with a variety of diseases. Recent reports reveal that PM has detrimental effects on the brain. In this study, we aimed to investigate the biological effects of ambient particles on the neurodegenerative disease Parkinson’s disease (PD). We exposed mice to coarse particles (PM10: 2.5–10 μm) for short (5 days) and long (8 weeks) durations via intratracheal instillation. Long-term PM10 exposure exacerbated motor impairment and dopaminergic neuron death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. Short-term PM10 exposure resulted in both pulmonary and systemic inflammatory responses in mice. We further investigated the mechanism underlying PM10-induced neurotoxicity in cocultures of lung LA-4 epithelial cells and RAW264.7 macrophages. PM10 treatment elicited a dramatic increase in proinflammatory mediators in LA-4/RAW264.7 coculture. Treating BV2 microglial cells with PM10-treated conditioned medium induced microglial activation. Furthermore, 1-methyl-4-phenylpyridinium (MPP+) treatment caused notable cell death in N2A neurons cocultured with activated BV2 cells in PM10-conditioned medium. Altogether, our results demonstrated that PM10 plays a role in the neurodegeneration associated with PD. Thus, the impact of PM10 on neurodegeneration could be related to detrimental air pollution-induced systemic effects on the brain.
Collapse
|
16
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
17
|
Zhang X, Wu Z, Ma K. SNCA correlates with immune infiltration and serves as a prognostic biomarker in lung adenocarcinoma. BMC Cancer 2022; 22:406. [PMID: 35421944 PMCID: PMC9009002 DOI: 10.1186/s12885-022-09289-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The SNCA gene is a critical gene in Parkinson's disease (PD) pathology. Accumulating evidence indicates that SNCA is involved in tumorigenesis; however, the role of SNCA in lung adenocarcinoma (LUAD) remains unclear. This study aimed to explore the potential value of SNCA as a prognostic and diagnostic molecular marker in LUAD. METHODS In this study, we explored the expression pattern, prognostic value, and promoter methylation status of SNCA in LUAD based on Oncomine, UALCAN, and Kaplan-Meier Plotter. Then, using TIMER, we investigated the correlation between SNCA expression and immune infiltration. And cBioPortal were used to analysis the correlation between SNCA expression and immune checkpoint. The transcriptome data of A549 cells overexpressing SNCA were used to further study the potential immune role of SNCA in LUAD. The effect of SNCA on proliferation of A549 cells were evaluated by CCK-8, EdU and colony formation. Finally, LUAD cell lines treated with 5-aza-dC were used to explore the correlation between increased promoter methylation and downregulated mRNA expression of SNCA. RESULTS In general, the expression level of SNCA in LUAD tissue was lower than that in normal tissue, and high expression of SNCA was related to better prognosis. There were significant positive correlations between SNCA expression and immune infiltrations, including CD8+ T cells, macrophages, neutrophils, dendritic cells, B cells, and CD4+ T cells, and immune checkpoints, suggesting that immune infiltration was one of the reasons for the influence of SNCA on prognosis in LUAD. The transcriptome data of A549 cells overexpressing SNCA were further used to screen the relevant immune-related genes regulated by SNCA. Enrichment analysis confirmed that SNCA participates in the PI3K-AKT signaling pathway and other key tumor signaling pathways and regulates the expression of MAPK3, SRC, PLCG1, and SHC1. Cellular proliferation assay showed that SNCA could inhabit the growth of A549 cells via inhibiting activity of PI3K/AKT/ mTOR pathway. Finally, analysis of the methylation level of SNCA promoter showed that the promoter methylation negatively correlated with mRNA level. The expression of SNCA in LUAD cell lines was significantly upregulated by treatment with 5-aza-dC. CONCLUSION High methylation of SNCA promoter in LUAD is one of the reasons for the downregulation of SNCA mRNA level. Given that SNCA could inhibit the proliferation of A549 cells and correlates with immune infiltrates, it may serve as a prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Xiuao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118 China
| |
Collapse
|
18
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci 2022; 23:4176. [PMID: 35456994 PMCID: PMC9029562 DOI: 10.3390/ijms23084176] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| |
Collapse
|
19
|
Cai S, Wu Y, Chen G. A Novel Elastomeric UNet for Medical Image Segmentation. Front Aging Neurosci 2022; 14:841297. [PMID: 35360219 PMCID: PMC8961507 DOI: 10.3389/fnagi.2022.841297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Medical image segmentation is of important support for clinical medical applications. As most of the current medical image segmentation models are limited in the U-shaped structure, to some extent the deep convolutional neural network (CNN) structure design is hard to be accomplished. The design in this study mimics the way the wave is elastomeric propagating, extending the structure from both the horizontal and spatial dimensions for realizing the Elastomeric UNet (EUNet) structure. The EUNet can be divided into two types: horizontal EUNet and spatial EUNet, based on the propagation direction. The advantages of this design are threefold. First, the training structure can be deepened effectively. Second, the independence brought by each branch (a U-shaped design) makes the flexible design redundancy available. Finally, a horizontal and vertical series-parallel structure helps on feature accumulation and recursion. Researchers can adjust the design according to the requirements to achieve better segmentation performance for the independent structural design. The proposed networks were evaluated on two datasets: a self-built dataset (multi-photon microscopy, MPM) and publicly benchmark retinal datasets (DRIVE). The results of experiments demonstrated that the performance of EUNet outperformed the UNet and its variants.
Collapse
Affiliation(s)
- Sijing Cai
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
- School of Electronic & Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, China
| | - Yi Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
| | - Guannan Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
| |
Collapse
|
20
|
Lee JYS, Ng JH, Saffari SE, Tan EK. Parkinson's disease and cancer: a systematic review and meta-analysis on the influence of lifestyle habits, genetic variants, and gender. Aging (Albany NY) 2022; 14:2148-2173. [PMID: 35247252 PMCID: PMC8954974 DOI: 10.18632/aging.203932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE The relationship between Parkinson's disease (PD) and cancer has been debated. Gender and genetic influences on cancer development in PD is unclear. METHODS Using QUOROM guidelines, we conducted a systematic review and meta-analysis on potential clinical and genetic factors influencing the PD and subsequent cancer relationship. English articles published in PubMed, Web of Science, and SCOPUS from 2010 to 30 August 2020 were considered for suitability. RESULTS Of 46 studies identified, fourteen satisfied the inclusion criteria and were further analysed. Unadjusted risk ratios (RR) and 95% confidence intervals were computed to determine the PD and cancer relationship. PD patients have decreased subsequent cancer risks (RR = 0.87, 95% CI = 0.81-0.93), reduced risks of colon, rectal, and colorectal cancer (RR = 0.77, 95% CI = 0.63-0.94), lung cancer (RR = 0.62, 95% CI = 0.48-0.80), and increased brain cancer (R = 1.48, 95% CI = 1.02-2.13) and melanoma risk (R = 1.76, 95% CI = 1.23-2.50). Compared to idiopathic PD, LRRK2-G2019S carriers had increased general cancer risks (RR = 1.26, 95% CI = 1.09-1.46), particularly brain (RR = 2.41, 95% CI = 1.06-5.50), breast (RR = 2.57, 95% CI = 1.19-5.58), colon (RR = 1.83, 95% CI = 1.13-2.99), and haematological cancers (RR = 2.05, 95% CI = 1.07-3.92). Female PD patients have decreased general cancer risks compared to male PD patients in this analysis (RR = 0.83, 95% CI = 0.69-0.98). CONCLUSION PD patients have reduced risks of colon, rectal, colorectal cancer and lung cancers and increased risks of brain cancer and melanoma. LRRK2-G2019S carriers have increased cancer risks, particularly brain, breast, colon and blood cancers. Female gender was associated with reduced risks. The role of ethnicity, comorbidities, and lifestyle habits on PD patients' subsequent cancer risk should be further investigated.
Collapse
Affiliation(s)
- Joon Yan Selene Lee
- Department of Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| | - Jing Han Ng
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Seyed Ehsan Saffari
- Department of Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore
| |
Collapse
|
21
|
Dent SE, King DP, Osterberg VR, Adams EK, Mackiewicz MR, Weissman TA, Unni VK. Phosphorylation of the aggregate-forming protein alpha-synuclein on serine-129 inhibits its DNA-bending properties. J Biol Chem 2021; 298:101552. [PMID: 34973339 PMCID: PMC8800120 DOI: 10.1016/j.jbc.2021.101552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha-synuclein (aSyn) is a vertebrate protein, normally found within the presynaptic nerve terminal and nucleus, which is known to form somatic and neuritic aggregates in certain neurodegenerative diseases. Disease-associated aggregates of aSyn are heavily phosphorylated at serine-129 (pSyn), while normal aSyn protein is not. Within the nucleus, aSyn can directly bind DNA, but the mechanism of binding and the potential modulatory roles of phosphorylation are poorly understood. Here we demonstrate using a combination of electrophoretic mobility shift assay and atomic force microscopy approaches that both aSyn and pSyn can bind DNA within the major groove, in a DNA length-dependent manner and with little specificity for DNA sequence. Our data are consistent with a model in which multiple aSyn molecules bind a single 300 base pair (bp) DNA molecule in such a way that stabilizes the DNA in a bent conformation. We propose that serine-129 phosphorylation decreases the ability of aSyn to both bind and bend DNA, as aSyn binds 304 bp circular DNA forced into a bent shape, but pSyn does not. Two aSyn paralogs, beta- and gamma-synuclein, also interact with DNA differently than aSyn, and do not stabilize similar DNA conformations. Our work suggests that reductions in aSyn's ability to bind and bend DNA induced by serine-129 phosphorylation may be important for modulating aSyn's known roles in DNA metabolism, including the regulation of transcription and DNA repair.
Collapse
Affiliation(s)
- Sydney E Dent
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Dennisha P King
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Valerie R Osterberg
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Eleanor K Adams
- Department of Chemistry, Portland State University, Portland, Oregon, 97239, USA
| | - Marilyn R Mackiewicz
- Department of Chemistry, Portland State University, Portland, Oregon, 97239, USA
| | - Tamily A Weissman
- Department of Biology, Lewis & Clark College, Portland, Oregon, 97219, USA
| | - Vivek K Unni
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA; OHSU Parkinson Center, Oregon Health & Science University, Portland, Oregon, 97239, USA.
| |
Collapse
|
22
|
Leong YQ, Lee SWH, Ng KY. Cancer risk in Parkinson disease: An updated systematic review and meta-analysis. Eur J Neurol 2021; 28:4219-4237. [PMID: 34403556 DOI: 10.1111/ene.15069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests significant associations between Parkinson disease (PD) and cancer risks. We conducted an updated review of studies that examined the risks of various cancer among PD patients and how this differed when cancer preceded PD diagnosis or PD diagnosis preceded cancer. METHODS Four databases were searched for studies that examined the association between PD and incidence of cancer from database inception to 4 June 2021. Three independent reviewers screened the articles for eligibility and extracted study data. Pooled relative risk with 95% confidence intervals were calculated using a random effects model. RESULTS Forty studies involving 11 case-control studies, two nested case-control studies, 22 cohort studies, and five cross-sectional studies were included. Compared to controls, PD patients had lower risks of lung, genitourinary, gastrointestinal, and haematological cancers. Conversely, higher risks of melanoma and brain cancer were noted among PD patients. No association was found between PD and risk of female cancers. Subgroup analysis found negative associations between PD patients and risks of colon cancer, rectal cancer, and non-Hodgkin lymphoma. CONCLUSIONS Findings from our meta-analysis suggest PD patients had lower risks of lung, genitourinary, gastrointestinal, and haematological cancers and increased risks of melanoma and brain cancer. Future research to investigate the underlying mechanisms between PD and cancers is warranted.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,School of Pharmacy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Dean DN, Lee JC. Linking Parkinson's Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation. Mov Disord 2021; 36:1489-1498. [PMID: 34021920 DOI: 10.1002/mds.28655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the death of dopaminergic neurons within the substantia nigra of the brain. Melanoma is a cancer of melanocytes, pigmented cells that give rise to skin tone, hair, and eye color. Although these two diseases fundamentally differ, with PD leading to cell degeneration and melanoma leading to cell proliferation, epidemiological evidence has revealed a reciprocal relationship where patients with PD are more susceptible to melanoma and patients with melanoma are more susceptible to PD. The hallmark pathology observed in PD brains is intracellular inclusions, of which the primary component is proteinaceous α-synuclein (α-syn) amyloid fibrils. α-Syn also has been detected in cultured melanoma cells and tissues derived from patients with melanoma, where an inverse correlation exists between α-syn expression and pigmentation. Although this has led to the prevailing hypothesis that α-syn inhibits enzymes involved in melanin biosynthesis, we recently reported an alternative hypothesis in which α-syn interacts with and modulates the aggregation of Pmel17, a functional amyloid that serves as a scaffold for melanin biosynthesis. In this perspective, we review the literature describing the epidemiological and molecular connections between PD and melanoma, presenting both the prevailing hypothesis and our amyloid-centric hypothesis. We offer our views of the essential questions that remain unanswered to motivate future investigations. Understanding the behavior of α-syn in melanoma could not only provide novel approaches for treating melanoma but also could reveal insights into the role of α-syn in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Perwez A, Wahabi K, Rizvi MA. Parkin: A targetable linchpin in human malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188533. [PMID: 33785381 DOI: 10.1016/j.bbcan.2021.188533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Parkin, an E3 ubiquitin ligase has been found to be deregulated in a variety of human cancers. Our current understanding is endowed with strong evidences that Parkin plays crucial role in the pathogenesis of cancer by controlling/interfering with major hallmarks of cancer delineated till today. Consistent with the idea of mitophagy, the existing studies imitates the tumor suppressive potential of Parkin, resolved by its capacity to regulate cell proliferation, cell migration, angiogenesis, apoptosis and overall cellular survival. Dysfunction of Parkin has resulted in the loss of ubiquitination of cell cycle components followed by their accumulation leading to genomic instability, perturbed cell cycle and eventually tumor progression. In this review, we provide an overview of current knowledge about the critical role of Parkin in cancer development and progression and have focussed on its therapeutic implications highlighting the diagnostic and prognostic value of Parkin as a biomarker. We earnestly hope that an in-depth knowledge of Parkin will provide a linchpin to target in various cancers that will open a new door of clinical applications and therapeutics.
Collapse
Affiliation(s)
- Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khushnuma Wahabi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
25
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
26
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
27
|
Filippou PS, Outeiro TF. Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Mov Disord 2020; 36:340-346. [PMID: 33346940 DOI: 10.1002/mds.28425] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer and neurodegeneration are two major leading causes of morbidity and death worldwide. At first sight, the two fields do not seem to share much in common and, if anything, might be placed on opposite ends of a spectrum. Although neurodegeneration results in excessive neuronal cell death, cancer emerges from increased proliferation and resistance to cell death. Therefore, one might expect significant differences in the underlying pathophysiological mechanisms. However, the more we deepen our understanding of these two types of diseases, the more we appreciate the unexpected overlap between them. Although most epidemiological studies support an inverse association between the risk for development of neurodegenerative diseases and cancer, increasing evidence points to a positive correlation between specific types of cancer, like melanoma, and neurodegenerative diseases, like Parkinson's disease (PD). We believe that deciphering the molecular processes and pathways underlying one of these diseases may significantly increase our understanding about the other. Therefore, the identification of novel biomarkers and therapeutic approaches in cancer, may lead to improved diagnosis and treatment of neurodegeneration, and vice versa. In this Viewpoint, we summarize recent findings connecting both diseases and speculate that insights from one disease may inform on mechanisms, and help identify novel biomarkers and targets for intervention, possibly leading to improved management of both diseases. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Panagiota S Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
28
|
Niemann N, Billnitzer A, Jankovic J. Parkinson's disease and skin. Parkinsonism Relat Disord 2020; 82:61-76. [PMID: 33248395 DOI: 10.1016/j.parkreldis.2020.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is associated with a variety of dermatologic disorders and the study of skin may provide insights into pathophysiological mechanisms underlying this common neurodegenerative disorder. Skin disorders in patients with Parkinson's disease can be divided into two major groups: 1) non-iatrogenic disorders, including melanoma, seborrheic dermatitis, sweating disorders, bullous pemphigoid, and rosacea, and 2) iatrogenic disorders related either to systemic side effects of antiparkinsonian medications or to the delivery system of antiparkinsonian therapy, including primarily carbidopa/levodopa, rotigotine and other dopamine agonists, amantadine, catechol-O-methyl transferase inhibitors, subcutaneous apomorphine, levodopa/carbidopa intestinal gel, and deep brain stimulation. Recent advances in our understanding of the role of α-synuclein in peripheral tissues, including the skin, and research based on induced pluripotent stem cells derived from skin fibroblasts have made skin an important target for the study of Parkinson's disease pathogenesis, drug discovery, novel stem cell therapies, and diagnostics.
Collapse
Affiliation(s)
- Nicki Niemann
- Muhammad Ali Parkinson Center, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | - Andrew Billnitzer
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|