1
|
Wyatt‐Johnson SK, Ackley S, Warren J, Priya R, Wan J, Liu S, Brutkiewicz RR. The MR1/MAIT cell axis enhances dystrophic neurite development in Alzheimer's disease. Alzheimers Dement 2025; 21:e14480. [PMID: 39777865 PMCID: PMC11848147 DOI: 10.1002/alz.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites. METHODS Brain tissue from 5XFAD mice and those that are MR1 deficient (MR1 KO), were analyzed for dystrophic neurites, amyloid plaques, and synapses via immunofluorescence, RNA sequencing, enzyme-linked immunosorbent assay, and western blot. RESULTS In 8-month-old 5XFAD/MR1 KO mice, there was reduced expression of lysosomal-associated membrane protein 1, ubiquitin, and n-terminal amyloid precursor protein in the hippocampus compared to 5XFAD mice (P < 0.05). 5XFAD/MR1 KO mice also had less insoluble amyloid beta 40 (P < 0.001) and higher levels of postsynaptic density protein 95 (P < 0.01) in the hippocampus. DISCUSSION Our data contribute additional mechanistic insight into the detrimental role of the MR1/MAIT cell axis in AD pathology development. HIGHLIGHTS 5XFAD mice lacking the innate immune MR1/MAIT (mucosal-associated invariant T) cell axis (5XFAD/MR1 KO) have reduced numbers of dystrophic neurite markers in the hippocampus at 8 months of age. Hippocampal tissue transcriptional analyses showed reduced expression of genes encoding classical dystrophic neurite markers in 5XFAD/MR1 KO mice. 5XFAD/MR1 KO mice had less insoluble amyloid beta 40 and increased levels of the post-synaptic marker, postsynaptic density protein 95, in the hippocampus than did MR1+ 5XFAD mice.
Collapse
Affiliation(s)
- Season K. Wyatt‐Johnson
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Samantha Ackley
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jalyn Warren
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Raj Priya
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Randy R. Brutkiewicz
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
2
|
Ryu T, Kim K, Asiimwe N, Na CH. Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. Proteomics 2025:e202400298. [PMID: 39791267 DOI: 10.1002/pmic.202400298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets. By examining the proteomic landscape of them, we aim to deepen our understanding of the disease and support developing precision medicine strategies for more effective interventions.
Collapse
Affiliation(s)
- Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungdo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Asiimwe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
5
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
6
|
Iannucci J, Dominy R, Bandopadhyay S, Arthur EM, Noarbe B, Jullienne A, Krkasharyan M, Tobin RP, Pereverzev A, Beevers S, Venkatasamy L, Souza KA, Jupiter DC, Dabney A, Obenaus A, Newell-Rogers MK, Shapiro LA. Traumatic brain injury alters the effects of class II invariant peptide (CLIP) antagonism on chronic meningeal CLIP + B cells, neuropathology, and neurobehavioral impairment in 5xFAD mice. J Neuroinflammation 2024; 21:165. [PMID: 38937750 PMCID: PMC11212436 DOI: 10.1186/s12974-024-03146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Reagan Dominy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Shreya Bandopadhyay
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - E Madison Arthur
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Brenda Noarbe
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Amandine Jullienne
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Margret Krkasharyan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Richard P Tobin
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aleksandr Pereverzev
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Samantha Beevers
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Lavanya Venkatasamy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Daniel C Jupiter
- Department of Biostatistics and Data Science, Department of Orthopaedics and Rehabilitation, The University of Texas Medical Branch, Galveston, TX, USA
| | - Alan Dabney
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - Andre Obenaus
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - M Karen Newell-Rogers
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
7
|
Wyatt-Johnson SK, Kersey HN, Brutkiewicz RR. Enrichment of liver MAIT cells in a mouse model of Alzheimer's disease. J Neuroimmunol 2024; 390:578332. [PMID: 38537322 PMCID: PMC11382344 DOI: 10.1016/j.jneuroim.2024.578332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 05/13/2024]
Abstract
Emerging evidence has supported a role for the immune system and liver in Alzheimer's disease (AD). However, our understanding of how hepatic immune cells are altered in AD is limited. We previously found that brain mucosal-associated invariant T (MAIT) cell numbers are increased in AD. Furthermore, loss of MAIT cells and their antigen-presenting molecule, MR1, reduced amyloid-β accumulation in the brain. MAIT cells are also significantly present in the liver. Therefore, we sought to analyze MAIT and other immune cells in the AD liver. Increased frequency of activated MAIT cells (but not conventional T cells) were found in 8-month-old 5XFAD mouse livers. Therefore, these data raise the possibility that there is a role for peripheral MAIT cells in AD pathology.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| | - Holly N Kersey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
8
|
Yang K, Zhang Z, Zhang Q, Zhang H, Liu X, Jia Z, Ying Z, Liu W. Potential diagnostic markers and therapeutic targets for periodontitis and Alzheimer's disease based on bioinformatics analysis. J Periodontal Res 2024; 59:366-380. [PMID: 38189472 DOI: 10.1111/jre.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND OBJECTIVE As a chronic inflammatory disease, periodontitis threatens oral health and is a risk factor for Alzheimer's disease (AD). There is growing evidence that these two diseases are closely related. However, current research is still incomplete in understanding the common genes and common mechanisms between periodontitis and AD. In this study, we aimed to identify common genes in periodontitis and AD and analyze the relationship between crucial genes and immune cells to provide new therapeutic targets for clinical treatment. MATERIALS AND METHODS We evaluated differentially expressed genes (DEGs) specific to periodontitis and AD. Co-expressed genes were identified by obtaining gene expression profile data from the Gene Expression Omnibus (GEO) database. Using the STRING database, protein-protein interaction (PPI) networks were constructed, and essential genes were identified. We also used four algorithms to identify critical genes and constructed regulatory networks. The association of crucial genes with immune cells and potential therapeutic effects was also assessed. RESULTS PDGFRB, VCAN, TIMP1, CHL1, EFEMP2, and IGFBP5 were obtained as crucial common genes. Immune infiltration analysis showed that Natural killer cells and Myeloid-derived suppressor cells were significantly differentially expressed in patients with PD and AD compared with the normal group. FOXC1 and GATA2 are important TFs for PD and AD. MiR-23a, miR-23b, miR-23a, and miR-23b were associated with AD and PD. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecule and drug-target interactions. CONCLUSION This study reveals commonalities in common hub genes and immune infiltration between periodontitis and AD, and the analysis of six hub genes and immune cells may provide new insights into potential therapeutic directions for the pathogenesis of periodontitis complicated by AD.
Collapse
Affiliation(s)
- Kai Yang
- Acupuncture and Moxibustion Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoqi Zhang
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Qingyuan Zhang
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Hongyu Zhang
- Rehabilitation Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoju Liu
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Zhicheng Jia
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Zhenhao Ying
- Rehabilitation Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Wyatt-Johnson SK, Afify R, Brutkiewicz RR. The immune system in neurological diseases: What innate-like T cells have to say. J Allergy Clin Immunol 2024; 153:913-923. [PMID: 38365015 PMCID: PMC10999338 DOI: 10.1016/j.jaci.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Reham Afify
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
10
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
Yamakawa M, Rexach JE. Cell States and Interactions of CD8 T Cells and Disease-Enriched Microglia in Human Brains with Alzheimer's Disease. Biomedicines 2024; 12:308. [PMID: 38397909 PMCID: PMC10886701 DOI: 10.3390/biomedicines12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a multi-stage neurodegenerative disorder characterized by beta-amyloid accumulation, hyperphosphorylated Tau deposits, neurodegeneration, neuroinflammation, and cognitive impairment. Recent studies implicate CD8 T cells as neuroimmune responders to the accumulation of AD pathology in the brain and potential contributors to toxic neuroinflammation. However, more evidence is needed to understand lymphocytes in disease, including their functional states, molecular mediators, and interacting cell types in diseased brain tissue. The scarcity of lymphocytes in brain tissue samples has limited the unbiased profiling of disease-associated cell types, cell states, drug targets, and relationships to common AD genetic risk variants based on transcriptomic analyses. However, using recent large-scale, high-quality single-nuclear sequencing datasets from over 84 Alzheimer's disease and control cases, we leverage single-nuclear RNAseq data from 800 lymphocytes collected from 70 individuals to complete unbiased molecular profiling. We demonstrate that effector memory CD8 T cells are the major lymphocyte subclass enriched in the brain tissues of individuals with AD dementia. We define disease-enriched interactions involving CD8 T cells and multiple brain cell subclasses including two distinct microglial disease states that correlate, respectively, to beta-amyloid and tau pathology. We find that beta-amyloid-associated microglia are a major hub of multicellular cross-talk gained in disease, including interactions involving both vulnerable neuronal subtypes and CD8 T cells. We reproduce prior reports that amyloid-response microglia are depleted in APOE4 carriers. Overall, these human-based studies provide additional support for the potential relevance of effector memory CD8 T cells as a lymphocyte population of interest in AD dementia and provide new candidate interacting partners and drug targets for further functional study.
Collapse
Affiliation(s)
| | - Jessica E. Rexach
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
12
|
Shi M, Chu F, Zhu F, Zhu J. Peripheral blood amyloid-β involved in the pathogenesis of Alzheimer's disease via impacting on peripheral innate immune cells. J Neuroinflammation 2024; 21:5. [PMID: 38178136 PMCID: PMC10765910 DOI: 10.1186/s12974-023-03003-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
A key pathological factor of Alzheimer's disease (AD), the most prevalent form of age-related dementia in the world, is excessive β-amyloid protein (Aβ) in extracellular aggregation in the brain. And in the peripheral blood, a large amount of Aβ is derived from platelets. So far, the causality between the levels of peripheral blood Aβ and its aggregation in the brain, particularly the role of the peripheral blood Aβ in the pathology of AD, is still unclear. And the relation between the peripheral blood Aβ and tau tangles of brain, another crucial pathologic factor contributing to the pathogenesis of AD, is also ambiguous. More recently, the anti-Aβ monoclonal antibodies are approved for treatment of AD patients through declining the peripheral blood Aβ mechanism of action to enhance plasma and central nervous system (CNS) Aβ clearance, leading to a decrease Aβ burden in brain and improving cognitive function, which clearly indicates that the levels of the peripheral blood Aβ impacted on the Aβ burden in brain and involved in the pathogenesis of AD. In addition, the role of peripheral innate immune cells in AD remains mostly unknown and the results obtained were controversial. In the present review, we summarize recent studies on the roles of peripheral blood Aβ and the peripheral innate immune cells in the pathogenesis of AD. Finally, based on the published data and our own work, we believe that peripheral blood Aβ plays an important role in the development and progression of AD by impacting on the peripheral innate immune cells.
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Feiqi Zhu
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
13
|
Widjaya MA, Lee SD, Cheng WC, Wu BT. Effects of Exercise Training on Immune-Related Genes and Pathways in the Cortex of Animal Models of Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2024; 98:1219-1234. [PMID: 38578886 DOI: 10.3233/jad-230803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Alzheimer's disease (AD) is a chronic neurodegenerative disease that affects the immune system due to the accumulation of amyloid-β (Aβ) and tau associated molecular pathology and other pathogenic processes. To address AD pathogenesis, various approaches had been conducted from drug development to lifestyle modification to reduce the prevalence of AD. Exercise is considered a prominent lifestyle modification to combat AD. Objective This observation prompted us to review the literature on exercise related to immune genes in the cortex of animal models of AD. We focused on animal model studies due to their prevalence in this domain. Methods The systematic review was conducted according to PRISMA standards using Web of Science (WoS) and PubMed databases. Any kind of genes, proteins, and molecular molecules were included in this systematic review. The list of these immune-related molecules was analyzed in the STRING database for functional enrichment analysis. Results We found that 17 research studies discussed immune-related molecules and 30 immune proteins. These studies showed that exercise had the ability to ameliorate dysfunction in AD-related pathways, which led to decreasing the expression of microglia-related pathways and Th17-related immune pathways. As a result of decreasing the expression of immune-related pathways, the expression of apoptosis-related pathways was also decreasing, and neuronal survival was increased by exercise activity. Conclusions Based on functional enrichment analysis, exercise not only could reduce apoptotic factors and immune components but also could increase cell survival and Aβ clearance in cortex samples. PROSPERO ID: CRD42022326093.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
14
|
Wang Y, Jiang R, Li M, Wang Z, Yang Y, Sun L. Characteristics of T Cells in Single-Cell Datasets of Peripheral Blood and Cerebrospinal Fluid in Alzheimer's Disease Patients. J Alzheimers Dis 2024; 99:S265-S280. [PMID: 38043012 PMCID: PMC11091562 DOI: 10.3233/jad-230784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/04/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia, causing a huge socioeconomic burden. In parallel with the widespread uptake of single-cell RNA sequencing (scRNA-seq) technology, there has been a rapid accumulation of data produced by researching AD at single-cell resolution, which is more conductive to explore the neuroimmune-related mechanism of AD. Objective To explore the potential features of T cells in the peripheral blood and cerebrospinal fluid of AD patients. Methods Two datasets, GSE181279 and GSE134578, were integrated from GEO database. Seurat, Monocle, CellChat, scRepertoire, and singleR packages were mainly employed for data analysis. Results Our analysis demonstrated that in peripheral blood, T cells were significantly expanded, and these expanded T cells were possessed effector function, such as CD8+TEMRA, CD4+TEMRA, and CD8+TEM. Interestingly, CD8+TEMRA and CD4+TEMRA cells positioned adjacently after dimensions reduction and clustering. Notably, we identified that the expanded T cells were developed from Naïve T cells and TCM cells, and TEM cells was in the intermediate state of this developing process. Additionally, in cerebrospinal fluid of AD patients, the amplified T cells were mainly CD8+TEMRA cells, and the number and strength of communication between CD4+TEM, CD8+TEM, and CD8+TEMRA were decreased in AD patients. Conclusions Our comprehensive analyses identified the cells in cerebrospinal fluid from AD patients are expanded TEMRA or TEM cells and the TEMRA cells communicating with other immune cells is weakened, which may be an important immune feature that leads to AD.
Collapse
Affiliation(s)
- Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Richeng Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zicheng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
15
|
Liu B, Luo W, Huang L, Wei C, Huang X, Liu J, Tao R, Mo Y, Li X. Migration Inhibition Factor Secreted by Peripheral Blood Memory B Cells Binding to CD74-CD44 Receptor Complex Drives Macrophage Behavior in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2024; 39:15333175241238577. [PMID: 38491918 PMCID: PMC10944588 DOI: 10.1177/15333175241238577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Dysregulation of the peripheral immune system is be involved in the neuroinflammation in Alzheimer disease (AD) and accelerate the disease progression. The contribution of immune cells, particularly B cells, to AD pathogenesis has gained attention in recent research. In this study, we investigated the role of Peripheral Blood Memory B cells (PBMBs) and their secreted Migration Inhibition Factor (MIF) in driving macrophage behavior in AD based on the scRNA-seq technique, immunofluorescence and flow cytometry. We discovered that MIF binds to the CD74-CD44 receptor complex on macrophages, influencing their behavior. The dysregulated macrophage response hampers the clearance of amyloid-beta (Aβ) plaques, exacerbating AD pathology. Targeting the MIF-CD74-CD44 signal pathway may hold therapeutic potential in modulating macrophage activity and mitigating neuroinflammation in AD. This study provides a further understanding of peripheral immune cells dysregulated in AD.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurology, The First Clinical Medical College of Jinan University, Jinan University, Guangzhou, China
- Department of Geriatric Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Luo
- Department of Physical Examination Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunying Wei
- Department of Geriatric Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaorui Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun Liu
- Department of Geriatric Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ran Tao
- Department of Geriatric Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingmin Mo
- Department of Geriatric Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xuebin Li
- Department of Neurology, The First Clinical Medical College of Jinan University, Jinan University, Guangzhou, China
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Neurology, West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
16
|
Piccoli T, Castro F, La Bella V, Meraviglia S, Di Simone M, Salemi G, Dieli F, Spataro R. Role of the immune system in amyotrophic lateral sclerosis. Analysis of the natural killer cells and other circulating lymphocytes in a cohort of ALS patients. BMC Neurol 2023; 23:222. [PMID: 37296379 DOI: 10.1186/s12883-023-03255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
AIMS Neuroinflammation might be involved in the degeneration and progression of Amyotrophic Lateral Sclerosis (ALS). Here, we studied the role of the circulating lymphocytes in ALS, in particular the NK cells. We focused on the relationship between blood lymphocytes, ALS clinical subtype and disease severity. SUBJECTS AND METHODS Blood samples were collected from 92 patients with sporadic ALS, 21 patients with Primary Lateral Sclerosis (PLS) and 37 patients affected by primary progressive multiple sclerosis (PPMS) with inactive plaques. Blood was taken from ALS and controls at the time of diagnosis/referral. Circulating lymphocytes were analyzed by flow cytometry with specific antibodies. Values were expressed as absolute number (n°/µl) of viable lymphocytes subpopulations in ALS were compared with controls. Multivariable analysis was made using site of onset, gender changes in ALSFRS-R and disease progression rate (calculated as ΔFS score). RESULTS Age at onset was 65y (58-71) in ALS (spinal 67.4%; bulbar, 32.6%), 57y (48-78) in PLS and 56y (44-68) PPMS. Absolute blood levels of the lymphocytes in the different cohorts were within normal range. Furthermore, while levels of lymphocytes T and B were not different between disease groups, NK cells were increased in the ALS cohort (ALS = 236 [158-360] vs. Controls = 174[113-240], p < 0.001). In ALS, blood levels of NK cells were not related with the main clinical-demographic variables, including the rate of disease progression. Multivariable analysis suggested that male gender and bulbar onset were independently associated with a risk of high blood NK cells levels. CONCLUSIONS We show that blood NK cells are selectively increased in ALS, though their level appear unaffected in patients with an estimated rapidly progressing disease. Being of a male gender and with a bulbar onset seems to confer higher susceptibility to have increased NK lymphocytes levels at diagnosis/referral. Our experiments provides a further clear-cut evidence of the role of the NK lymphocytes as a significant player in ALS pathogenesis.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Cognitive and Memory Disorders Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesca Castro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy.
- ALS Clinical Research Center, Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, via Gaetano La Loggia, 1, Palermo, I-90129, Italy.
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Multiple Sclerosis Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Rossella Spataro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Wyatt-Johnson SK, Kersey HN, Codocedo JF, Newell KL, Landreth GE, Lamb BT, Oblak AL, Brutkiewicz RR. Control of the temporal development of Alzheimer's disease pathology by the MR1/MAIT cell axis. J Neuroinflammation 2023; 20:78. [PMID: 36944969 PMCID: PMC10029194 DOI: 10.1186/s12974-023-02761-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Neuroinflammation is an important feature of Alzheimer's disease (AD). Understanding which aspects of the immune system are important in AD may lead to new therapeutic approaches. We study the major histocompatibility complex class I-related immune molecule, MR1, which is recognized by an innate-like T cell population called mucosal-associated invariant T (MAIT) cells. METHODS Having found that MR1 gene expression is elevated in the brain tissue of AD patients by mining the Agora database, we sought to examine the role of the MR1/MAIT cell axis in AD pathology. Brain tissue from AD patients and the 5XFAD mouse model of AD were used to analyze MR1 expression through qPCR, immunofluorescence, and flow cytometry. Furthermore, mice deficient in MR1 and MAIT cells were crossed with the 5XFAD mice to produce a model to study how the loss of this innate immune axis alters AD progression. Moreover, 5XFAD mice were also used to study brain-resident MAIT cells over time. RESULTS In tissue samples from AD patients and 5XFAD mice, MR1 expression was substantially elevated in the microglia surrounding plaques vs. those that are further away (human AD: P < 0.05; 5XFAD: P < 0.001). In 5XFAD mice lacking the MR1/MAIT cell axis, the development of amyloid-beta plaque pathology occurred at a significantly slower rate than in those mice with MR1 and MAIT cells. Furthermore, in brain tissue from 5XFAD mice, there was a temporal increase in MAIT cell numbers (P < 0.01) and their activation state, the latter determined by detecting an upregulation of both CD69 (P < 0.05) and the interleukin-2 receptor alpha chain (P < 0.05) via flow cytometry. CONCLUSIONS Together, these data reveal a previously unknown role for the MR1/MAIT cell innate immune axis in AD pathology and its potential utility as a novel therapeutic target.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Holly N Kersey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Juan F Codocedo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
18
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Princiotta Cariddi L, Mauri M, Cosentino M, Versino M, Marino F. Alzheimer's Disease: From Immune Homeostasis to Neuroinflammatory Condition. Int J Mol Sci 2022; 23:13008. [PMID: 36361799 PMCID: PMC9658357 DOI: 10.3390/ijms232113008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's Disease is the most common cause in the world of progressive cognitive decline. Although many modifiable and non-modifiable risk factors have been proposed, in recent years, neuroinflammation has been hypothesized to be an important contributing factor of Alzheimer's Disease pathogenesis. Neuroinflammation can occur through the combined action of the Central Nervous System resident immune cells and adaptive peripheral immune system. In the past years, immunotherapies for neurodegenerative diseases have focused wrongly on targeting protein aggregates Aβ plaques and NFT treatment. The role of both innate and adaptive immune cells has not been fully clarified, but several data suggest that immune system dysregulation plays a key role in neuroinflammation. Recent studies have focused especially on the role of the adaptive immune system and have shown that inflammatory markers are characterized by increased CD4+ Teff cells' activities and reduced circulating CD4+ Treg cells. In this review, we discuss the key role of both innate and adaptive immune systems in the degeneration and regeneration mechanisms in the pathogenesis of Alzheimer's Disease, with a focus on how the crosstalk between these two systems is able to sustain brain homeostasis or shift it to a neurodegenerative condition.
Collapse
Affiliation(s)
- Lucia Princiotta Cariddi
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
| | - Marco Mauri
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
20
|
Wu YG, Song LJ, Yin LJ, Yin JJ, Wang Q, Yu JZ, Xiao BG, Ma CG. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regen Res 2022; 18:947-954. [PMID: 36254973 PMCID: PMC9827789 DOI: 10.4103/1673-5374.355747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Ge Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China,Correspondence to: Cun-Gen Ma, .
| |
Collapse
|
21
|
Lemke G, Huang Y. The dense-core plaques of Alzheimer's disease are granulomas. J Exp Med 2022; 219:213305. [PMID: 35731195 PMCID: PMC9225945 DOI: 10.1084/jem.20212477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Dense-core plaques, whose centers contain highly polymerized and compacted aggregates of amyloid β peptides, are one of the two defining histopathological features of Alzheimer's disease. Recent findings indicate that these plaques do not form spontaneously but are instead constructed by microglia, the tissue macrophages of the central nervous system. We discuss cellular, structural, functional, and gene expression criteria by which the microglial assembly of dense-core plaques in the Alzheimer's brain parallels the construction of granulomas by macrophages in other settings. We compare the genesis of these plaques to the macrophage assembly of mycobacterial granulomas, the defining histopathological features of tuberculosis. We suggest that if dense-core plaques are indeed granulomas, their simple disassembly may be contraindicated as an Alzheimer's therapy.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA.,Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| | - Youtong Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
22
|
Gu X, Lai D, Liu S, Chen K, Zhang P, Chen B, Huang G, Cheng X, Lu C. Hub Genes, Diagnostic Model, and Predicted Drugs Related to Iron Metabolism in Alzheimer's Disease. Front Aging Neurosci 2022; 14:949083. [PMID: 35875800 PMCID: PMC9300955 DOI: 10.3389/fnagi.2022.949083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. Meanwhile, abnormalities in iron metabolism have been demonstrated in patients and mouse models with AD. Therefore, this study sought to find hub genes based on iron metabolism that can influence the diagnosis and treatment of AD. First, gene expression profiles were downloaded from the GEO database, including non-demented (ND) controls and AD samples. Fourteen iron metabolism-related gene sets were downloaded from the MSigDB database, yielding 520 iron metabolism-related genes. The final nine hub genes associated with iron metabolism and AD were obtained by differential analysis and WGCNA in brain tissue samples from GSE132903. GO analysis revealed that these genes were mainly involved in two major biological processes, autophagy and iron metabolism. Through stepwise regression and logistic regression analyses, we selected four of these genes to construct a diagnostic model of AD. The model was validated in blood samples from GSE63061 and GSE85426, and the AUC values showed that the model had a relatively good diagnostic performance. In addition, the immune cell infiltration of the samples and the correlation of different immune factors with these hub genes were further explored. The results suggested that these genes may also play an important role in immunity to AD. Finally, eight drugs targeting these nine hub genes were retrieved from the DrugBank database, some of which were shown to be useful for the treatment of AD or other concomitant conditions, such as insomnia and agitation. In conclusion, this model is expected to guide the diagnosis of patients with AD by detecting the expression of several genes in the blood. These hub genes may also assist in understanding the development and drug treatment of AD.
Collapse
Affiliation(s)
- Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Xuefeng Gu
| | - Donglin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Gang Huang
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Xiaoqin Cheng
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Changlian Lu
| |
Collapse
|
23
|
Zhao C, Jiang Z, Tian L, Tang L, Zhou A, Dong T. Bioinformatics-Based Approach for Exploring the Immune Cell Infiltration Patterns in Alzheimer's Disease and Determining the Intervention Mechanism of Liuwei Dihuang Pill. Dose Response 2022; 20:15593258221115563. [PMID: 35898725 PMCID: PMC9310246 DOI: 10.1177/15593258221115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Traditional Chinese medicine (TCM) compounds have recently garnered attention for the regulation of immune cell infiltration and the prevention and treatment of Alzheimer's disease (AD). The Liuwei Dihuang Pill (LDP) has potential in this regard; however, its specific molecular mechanism currently remains unclear. Therefore, we adopted a bioinformatics approach to investigate the infiltration patterns of different types of immune cells in AD and explored the molecular mechanism of LDP intervention, with the aim of providing a new basis for improving the clinical immunotherapy of AD patients. We found that M1 macrophages showed significantly different degrees of infiltration between the hippocampal tissue samples of AD patients and healthy individuals. Four immune intersection targets of LDP in the treatment of AD were identified; they were enriched in 206 biological functions and 30 signaling pathways. Quercetin had the best docking effect with the core immune target PRKCB. Our findings suggest that infiltrated immune cells may influence the course of AD and that LDP can regulate immune cell infiltration through multi-component, multi-target, and multi-pathway approaches, providing a new research direction regarding AD immunotherapy.
Collapse
Affiliation(s)
- Chenling Zhao
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zhangsheng Jiang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Liwei Tian
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
24
|
Li K, Ly K, Mehta S, Braithwaite A. Importance of crosstalk between the microbiota and the neuroimmune system for tissue homeostasis. Clin Transl Immunology 2022; 11:e1394. [PMID: 35620584 PMCID: PMC9125509 DOI: 10.1002/cti2.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
The principal function of inflammation is cellular defence against ‘danger signals’ such as tissue injury and pathogen infection to maintain the homeostasis of the organism. The initiation and progression of inflammation are not autonomous as there is substantial evidence that inflammation is known to be strongly influenced by ‘neuroimmune crosstalk’, involving the production and expression of soluble signalling molecules that interact with cell surface receptors. In addition, microbiota have been found to be involved in the development and function of the nervous and immune systems and play an important role in health and disease. Herein, we provide an outline of the mechanisms of neuroimmune communication in the regulation of inflammation and immune response and then provide evidence for the involvement of microbiota in the development and functions of the host nervous and immune systems. It appears that the nervous and immune systems in multicellular organisms have co‐evolved with the microbiota, such that all components are in communication to maximise the ability of the organism to adapt to a wide range of environmental stresses to maintain or restore tissue homeostasis.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Kevin Ly
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Sunali Mehta
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Antony Braithwaite
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| |
Collapse
|
25
|
Jiang Y, Guo J, Tang X, Wang X, Hao D, Yang H. The Immunological Roles of Olfactory Ensheathing Cells in the Treatment of Spinal Cord Injury. Front Immunol 2022; 13:881162. [PMID: 35669779 PMCID: PMC9163387 DOI: 10.3389/fimmu.2022.881162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating type of neurological disorder of the central nervous system (CNS) with high mortality and disability. The pathological processes of SCI can usually be described as two stages, namely, primary and acute secondary injuries. Secondary injury produces more significant exacerbations of the initial injury. Among all the mechanisms of secondary damage, infection and inflammatory responses, as the principle culprits in initiating the second phase of SCI, can greatly contribute to the severity of SCI and numerous sequelae after SCI. Therefore, effectively antagonizing pro-inflammatory responses may be a promising treatment strategy to facilitate functional recovery after SCI. Olfactory ensheathing cells (OECs), a unique type of glial cells, have increasingly become potential candidates for cell-based therapy in the injured CNS. Strikingly, there is growing evidence that the mechanisms underlying the anti-inflammatory role of OECs are associated with the immune properties and secretory functions of these cells responsible for anti-neuroinflammation and immunoregulatory effects, leading to maintenance of the internal microenvironment. Accordingly, a more profound understanding of the mechanism of OEC immunological functions in the treatment of SCI would be beneficial to improve the therapeutic clinical applications of OECs for SCI. In this review, we mainly summarize recent research on the cellular and molecular immune attributes of OECs. The unique biological functions of these cells in promoting neural regeneration are discussed in relation of the development of novel therapies for CNS injury.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
26
|
Guo P, Zeng M, Wang S, Cao B, Liu M, Zhang Y, Jia J, Zhang Q, Zhang B, Wang R, Zheng X, Feng W. Eriodictyol and Homoeriodictyol Improve Memory Impairment in Aβ 25-35-Induced Mice by Inhibiting the NLRP3 Inflammasome. Molecules 2022; 27:2488. [PMID: 35458684 PMCID: PMC9025671 DOI: 10.3390/molecules27082488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Alzheimer's disease (AD) is a neurodegenerative disorder, and it is now widely accepted that neuroinflammation plays a key role in its pathogenesis. Eriodictyol (Eri) and homoeriodictyol (Hom), dihydroflavonoids extracted from a variety of plants, have been confirmed to display a relationship with neuroprotection. (2) Methods: An AD mouse model was constructed by intracerebroventricular (ICV) injection of the Aβ25-35 peptide, and Eri and Hom were administered orally for 4 weeks. UPLC-MS/MS was used to determine whether Eri and Hom cross the blood-brain barrier to exert their therapeutic effects. Histological changes in the brain and levels of Aβ were evaluated, and Y-maze and new object recognition experiments were conducted to assess the effects of Eri and Hom on Aβ25-35-induced memory impairment in mice. The levels of oxidative stress and apoptosis in peripheral immune cells and progenitor cells in the hippocampal region were analyzed by flow cytometry and in vitro assays. Western blotting and enzyme-linked immunosorbent assays (ELISA) were used to measure the expression levels of NLRP3 inflammasome-related proteins and inflammatory factors in the brain. The effect of nigericin (an agonist of the NLRP3 inflammasome) on Eri and Hom intervention in LPS-induced N9 microglia was examined using a High Content Screening System. (3) Results: Eri and Hom reduced neuronal damage in mouse brain tissue, decreased Aβ levels in the brain, downregulated oxidative stress and apoptosis levels, and improved learning and memory capacity by crossing the blood-brain barrier to exert its effects. Moreover, Eri and Hom inhibited NLRP3 inflammasome activation and ameliorated immune cell disorder. Furthermore, the effect of Eri and Hom on LPS-induced N9 microglia disappeared after the addition of nigericin to agonize NLRP3 receptors. (4) Conclusions: Eri and Hom improved Aβ25-35-induced memory impairment in mice by inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; (P.G.); (M.Z.); (S.W.); (B.C.); (M.L.); (Y.Z.); (J.J.); (Q.Z.); (B.Z.); (R.W.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| |
Collapse
|
27
|
[64Cu]Cu-Albumin Clearance Imaging to Evaluate Lymphatic Efflux of Cerebrospinal Space Fluid in Mouse Model. Nucl Med Mol Imaging 2022; 56:137-146. [DOI: 10.1007/s13139-022-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022] Open
|
28
|
Zhang PF, Wang ZT, Liu Y, Hu H, Sun Y, Hu HY, Ma YH, Tan L, Yu JT. Peripheral Immune Cells and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2022; 87:721-730. [PMID: 35342094 DOI: 10.3233/jad-220057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Inflammation plays a role in occurrence and progression of Alzheimer's disease (AD). Whether peripheral immune cells are involved in major pathological processes including amyloid-β plaques and tau tangles is still controversial. OBJECTIVE We aimed to examine whether peripheral immune cells counts were associated with early changes in cerebrospinal fluid (CSF) biomarkers of AD pathology in cognitively intact older adults. METHODS This study included 738 objective cognitive normal participants from the Chinese Alzheimer's Biomarker and Lifestyle (CABLE) database. Group comparisons of peripheral immune cells counts were tested by analysis of covariance. Multiple linear regression models were used to examine the associations of peripheral immune cells counts with CSF AD biomarkers. RESULTS In preclinical AD, peripheral lymphocytes and eosinophils changed dynamically along with disease progression. Consistently, regression analysis showed that lymphocytes and eosinophils were associated with Aβ pathology. There were no interaction effects of peripheral immune cells counts with APOE ɛ4, gender, age, and educate. Eosinophil to lymphocyte ratio were also significantly associated with Aβ-related biomarkers. CONCLUSION Our findings showed the relationship between peripheral immune cells and Aβ pathological biomarkers, which indicated that peripheral immune might play a role in progression of AD pathology.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ying Liu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Liu C, Zhang X, Chai H, Xu S, Liu Q, Luo Y, Li S. Identification of Immune Cells and Key Genes associated with Alzheimer's Disease. Int J Med Sci 2022; 19:112-125. [PMID: 34975305 PMCID: PMC8692117 DOI: 10.7150/ijms.66422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive impairment and memory loss, for which there is no effective cure to date. In the past several years, numerous studies have shown that increased inflammation in AD is a major cause of cognitive impairment. This study aimed to reveal 22 kinds of peripheral immune cell types and key genes associated with AD. The prefrontal cortex transcriptomic data from Gene Expression Omnibus (GEO) database were collected, and CIBERSORT was used to assess the composition of 22 kinds of immune cells in all samples. Weighted gene co-expression network analysis (WGCNA) was used to construct gene co-expression networks and identified candidate module genes associated with AD. The least absolute shrinkage and selection operator (LASSO) and random forest (RF) models were constructed to analyze candidate module genes, which were selected from the result of WGCNA. The results showed that the immune infiltration in the prefrontal cortex of AD patients was different from healthy samples. Of all 22 kinds of immune cells, M1 macrophages were the most relevant cell type to AD. We revealed 10 key genes associated with AD and M1 macrophages by LASSO and RF analysis, including ARMCX5, EDN3, GPR174, MRPL23, RAET1E, ROD1, TRAF1, WNT7B, OR4K2 and ZNF543. We verified these 10 genes by logistic regression and k-fold cross-validation. We also validated the key genes in an independent dataset, and found GPR174, TRAF1, ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and EDN3 were significantly different between the AD and healthy controls. Moreover, in the 5XFAD transgenic mice, the differential expression trends of Wnt7b, Gpr174, Ptbp3, Mrpl23, Armcx5 and Raet1e are consistent with them in independent dataset. Our results provided potential therapeutic targets for AD patients.
Collapse
Affiliation(s)
- Chenming Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sutong Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Lu Y, Li K, Hu Y, Wang X. Expression of Immune Related Genes and Possible Regulatory Mechanisms in Alzheimer's Disease. Front Immunol 2021; 12:768966. [PMID: 34804058 PMCID: PMC8602845 DOI: 10.3389/fimmu.2021.768966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Immune infiltration of peripheral natural killer (NK) cells in the brain has been observed in Alzheimer's disease (AD). Immunity-related genes (IRGs) play an essential role in immune infiltration; however, the expression of IRGs and possible regulatory mechanisms involved in AD remain unclear. The peripheral blood mononuclear cells (PBMCs) single-cell RNA (scRNA) sequencing data from patients with AD were analyzed and PBMCs obtained from the ImmPort database were screened for cluster marker genes. IRG activity was calculated using the AUCell package. A bulk sequencing dataset of AD brain tissues was analyzed to explore common IRGs between PBMCs and the brain. Relevant regulatory transcription factors (TFs) were identified from the Human TFDB database. The protein-protein interaction network of key TFs were generated using the STRING database. Eight clusters were identified, including memory CD4 T, NKT, NK, B, DC, CD8 T cells, and platelets. NK cells were significantly decreased in patients with AD, while CD4 T cells were increased. NK and DC cells exhibited the highest IRG activity. GO and KEGG analyses of the scRNA and bulk sequencing data showed that the DEGs focused on the immune response. Seventy common IRGs were found in both peripheral NK cells and the brain. Seventeen TFs were associated with IRG expression, and the PPI network indicated that STAT3, IRF1, and REL were the hub TFs. In conclusion, we propose that peripheral NK cells may infiltrate the brain and contribute to neuroinflammatory changes in AD through bioinformatic analysis of scRNA and bulk sequencing data. Moreover, STAT3 may be involved in the transcriptional regulation of IRGs in NK cells.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Van Acker ZP, Perdok A, Bretou M, Annaert W. The microglial lysosomal system in Alzheimer's disease: Guardian against proteinopathy. Ageing Res Rev 2021; 71:101444. [PMID: 34391945 DOI: 10.1016/j.arr.2021.101444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Microglia, the brain-resident immune cells, play an essential role in the upkeep of brain homeostasis. They actively adapt into specific activation states based on cues from the microenvironment. One of these encompasses the activated response microglia (ARMs) phenotype. It arises along a healthy aging process and in a range of neurodegenerative diseases, including Alzheimer's disease (AD). As the phenotype is characterized by an increased lipid metabolism, phagocytosis rate, lysosomal protease content and secretion of neuroprotective agents, it leaves to reason that the phenotype is adapted in an attempt to restore homeostasis. This is important to the conundrum of inflammatory processes. Inflammation per se may not be deleterious; it is only when microglial reactions become chronic or the microglial subtype is made dysfunctional by (multiple) risk proteins with single-nucleotide polymorphisms that microglial involvement becomes deleterious instead of beneficial. Interestingly, the ARMs up- and downregulate many late-onset AD-associated risk factor genes, the products of which are particularly active in the endolysosomal system. Hence, in this review, we focus on how the endolysosomal system is placed at the crossroad of inflammation and microglial capacity to keep pace with degradation.
Collapse
|
32
|
Lombardi G, Paganelli R, Abate M, Ireland A, Molino-Lova R, Sorbi S, Macchi C, Pellegrino R, Di Iorio A, Cecchi F. Leukocyte-derived ratios are associated with late-life any type dementia: a cross-sectional analysis of the Mugello study. GeroScience 2021; 43:2785-2793. [PMID: 34674153 PMCID: PMC8529862 DOI: 10.1007/s11357-021-00474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/11/2021] [Indexed: 11/01/2022] Open
Abstract
Immunosenescence, vascular aging, and brain aging, all characterized by elevated levels of inflammatory markers, are thought to share a common pathogenetic pathway: inflamm-aging. Retrospective cross-sectional analysis was conducted using data from the Mugello study (Tuscany, Italy), a representative Italian cohort of free-living nonagenarians. to assess the association between specific peripheral inflammation markers derived from white blood cell counts, and the diagnosis of dementia. All the variables of interest were reported for 411 subjects (110 males and 301 females) out of 475 enrolled in the study. Anamnestic dementia diagnosis was obtained from clinical certificate and confirmed by a General Practitioner, whereas leukocyte ratios were directly calculated from white blood cell counts. Body mass index and comorbidities were considered potential confounders. Diagnosis of any type dementia was certified in 73 cases (17.8%). Subjects affected by dementia were older, more frequently reported a previous stroke, had lower body mass index, and lower Mini-Mental-State-Examination score. Moreover, they had a higher lymphocyte count and lymphocyte-to-monocyte ratio compared to the non-demented nonagenarians. We found that higher levels of lymphocyte counts are cross-sectionally associated with a clinical diagnosis of dementia. Furthermore, lymphocyte-to-monocyte ratio is directly associated with any type of dementia, independently of age, sex, lymphocyte count, and comorbidities. Lymphocyte-to-monocyte ratio may be considered a marker of immunological changes in the brain of dementia patients; moreover, it is low-cost, and easily available, thus enabling comparisons among different studies and populations, although the timeline and the extent of lymphocyte-to-monocyte ratio role in dementia development must be further investigated.
Collapse
Affiliation(s)
- Gemma Lombardi
- IRCCS Fondazione Don Carlo Gnocchi, Via di Scandicci 269, 50143, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Paganelli
- Department of Medicine and Science of Aging, Laboratory of Clinical Epidemiology and Aging, University Centre of Sports Medicine, University "G. d'Annunzio, Viale Abruzzo 322, Chieti, Italy.,Institute of Clinical Immunotherapy and Advanced Biological Treatments, YDA, Pescara, Italy
| | - Michele Abate
- Department of Medicine and Science of Aging, Laboratory of Clinical Epidemiology and Aging, University Centre of Sports Medicine, University "G. d'Annunzio, Viale Abruzzo 322, Chieti, Italy
| | - Alex Ireland
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
| | - Raffaele Molino-Lova
- IRCCS Fondazione Don Carlo Gnocchi, Via di Scandicci 269, 50143, Florence, Italy
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, Via di Scandicci 269, 50143, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi, Via di Scandicci 269, 50143, Florence, Italy.,Department of Experimental and Clinical Medicine, Università Di Firenze, Largo Brambilla 3, 50100, Florence, Italy
| | - Raffaello Pellegrino
- Department of Medicine and Science of Aging, Laboratory of Clinical Epidemiology and Aging, University Centre of Sports Medicine, University "G. d'Annunzio, Viale Abruzzo 322, Chieti, Italy
| | - Angelo Di Iorio
- Department of Medicine and Science of Aging, Laboratory of Clinical Epidemiology and Aging, University Centre of Sports Medicine, University "G. d'Annunzio, Viale Abruzzo 322, Chieti, Italy.
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi, Via di Scandicci 269, 50143, Florence, Italy.,Department of Experimental and Clinical Medicine, Università Di Firenze, Largo Brambilla 3, 50100, Florence, Italy
| |
Collapse
|
33
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
34
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|