1
|
Jackson J, Loughlin H, Looman C, Yu C. Pallidothalamic Circuit-Selective Manipulation Ameliorates Motor Symptoms in a Rat Model of Parkinsonian. J Neurosci 2025; 45:e0555242025. [PMID: 39837660 PMCID: PMC11905351 DOI: 10.1523/jneurosci.0555-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homolog of GPi, in a unilateral 6-hydroxydopamine lesioned female Sprague Dawley rat model of PD. We quantified behavioral effects of optogenetic EP DBS on motor symptoms and conducted single-unit recordings in EP and ventral lateral motor thalamus (VL) to examine changes in neural activity. High-frequency optogenetic EP DBS (75, 100, 130 Hz) reduced ipsilateral turning and corrected forelimb stepping, while low-frequency stimulation (5 and 20 Hz) had no effect. EP and VL neurons exhibited mixed response during stimulation, with both increased and decreased firing. The average firing rate of all recorded neurons in the EP and VL significantly increased at 130 Hz but not at other frequencies. Beta-band oscillatory activity was reduced in most EP neurons across high frequencies (75, 100, 130 Hz), while reductions in beta-band oscillations in VL occurred only at 130 Hz. These findings suggest that the neural firing rates within EP and VL circuits were differentially modulated by EP DBS; they may not fully explain the frequency-dependent behavioral effect. Instead, high-frequency optogenetic EP DBS at 130 Hz may ameliorate parkinsonian motor symptoms by reducing abnormal oscillatory activity in the EP-VL circuits. This study underscores the therapeutic potential of circuit-specific modulation in the pallidothalamic pathway using optogenetic EP DBS to alleviate motor deficits in a PD rat model.
Collapse
Affiliation(s)
- Jacob Jackson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Hannah Loughlin
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Chloe Looman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| |
Collapse
|
2
|
Park J, Ho RLM, Wang WE, Chiu SY, Shin YS, Coombes SA. Age-related changes in neural oscillations vary as a function of brain region and frequency band. Front Aging Neurosci 2025; 17:1488811. [PMID: 40040743 PMCID: PMC11876397 DOI: 10.3389/fnagi.2025.1488811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Advanced aging is associated with robust changes in neural activity. In addition to the well-established age-related slowing of the peak alpha frequency, there is a growing body of evidence showing that older age is also associated with changes in alpha power and beta power. Despite the important progress that has been made, the interacting effects of age and frequency band have not been directly tested in sensor and source space while controlling for aperiodic components. In the current study we address these limitations. We recruited 54 healthy younger and older adults and measured neural oscillations using a high-density electroencephalogram (EEG) system during resting-state with eyes closed. After preprocessing the EEG data and controlling for aperiodic components, we computed alpha and beta power in both sensor and source space. Permutation two-way ANOVAs between frequency band and age group were performed across all electrodes and across all dipoles. Our findings revealed significant interactions in sensorimotor, parietal, and occipital regions. The pattern driving the interaction varied across regions, with older age associated with a progressive decrease in alpha power and a progressive increase in beta power from parietal to sensorimotor regions. Our findings demonstrate that age-related changes in neural oscillations vary as a function of brain region and frequency band. We interpret our findings in the context of clinical and preclinical evidence of age effects on the cholinergic circuit and the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.
Collapse
Affiliation(s)
- Jinhan Park
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachel L. M. Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Y. Chiu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Young Seon Shin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephen A. Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Charles KA, Molpeceres Sierra E, Bouali-Benazzouz R, Tibar H, Oudaha K, Naudet F, Duveau A, Fossat P, Benazzouz A. Interplay between subthalamic nucleus and spinal cord controls parkinsonian nociceptive disorders. Brain 2025; 148:313-330. [PMID: 38916480 DOI: 10.1093/brain/awae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/19/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Pain is a non-motor symptom that impairs quality of life in patients with Parkinson's disease. Pathological nociceptive hypersensitivity in patients could be due to changes in the processing of somatosensory information at the level of the basal ganglia, including the subthalamic nucleus (STN), but the underlying mechanisms are not yet defined. Here, we investigated the interaction between the STN and the dorsal horn of the spinal cord (DHSC), by first examining the nature of STN neurons that respond to peripheral nociceptive stimulation and the nature of their responses under normal and pathological conditions. Next, we studied the consequences of deep brain stimulation (DBS) of the STN on the electrical activity of DHSC neurons. Then, we investigated whether the therapeutic effect of STN-DBS would be mediated by the brainstem descending pathway involving the rostral ventromedial medulla. Finally, to better understand how the STN modulates allodynia, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in the STN. The study was carried out on the 6-OHDA rodent model of Parkinson's disease, obtained by stereotactic injection of the neurotoxin into the medial forebrain bundle of rats and mice. In these animals, we used motor and nociceptive behavioural tests, in vivo electrophysiology of STN and wide dynamic range (WDR) DHSC neurons in response to peripheral stimulation, deep brain stimulation of the STN and the selective DREADD approach. Vglut2-ires-cre mice were used to specifically target and inhibit STN glutamatergic neurons. STN neurons are able to detect nociceptive stimuli, encode their intensity and generate windup-like plasticity, like WDR neurons in the DHSC. These phenomena are impaired in dopamine-depleted animals, as the intensity response is altered in both spinal and subthalamic neurons. Furthermore, as with L-DOPA, STN-DBS in rats ameliorated 6-OHDA-induced allodynia, and this effect is mediated by descending brainstem projections leading to normalization of nociceptive integration in DHSC neurons. Furthermore, this therapeutic effect was reproduced by selective inhibition of STN glutamatergic neurons in Vglut2-ires-cre mice. Our study highlights the centrality of the STN in nociceptive circuits, its interaction with the DHSC and its key involvement in pain sensation in Parkinson's disease. Furthermore, our results provide for the first-time evidence that subthalamic DBS produces analgesia by normalizing the responses of spinal WDR neurons via descending brainstem pathways. These effects are due to direct inhibition, rather than activation of glutamatergic neurons in the STN or passage fibres, as shown in the DREADDs experiment.
Collapse
Affiliation(s)
- Keri-Ann Charles
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Elba Molpeceres Sierra
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Houyam Tibar
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Khalid Oudaha
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Frédéric Naudet
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Alexia Duveau
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Park SY, Schott N. Which motor-cognitive abilities underlie the digital Trail-Making Test? Decomposing various test scores to detect cognitive impairment in Parkinson's disease-Pilot study. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:60-74. [PMID: 36412487 DOI: 10.1080/23279095.2022.2147837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since Parkinson's disease (PD) is a heterogeneous disorder with symptoms, such as tremors, gait and speech disturbances, or memory loss, individualized diagnostics are needed to optimize treatment. In their current form, the typical paper-pencil methods traditionally used to track disease progression are too coarse to capture the subtleties of clinical phenomena. For this reason, digital biomarkers that capture, for example, motor function, cognition, and behavior using apps, wearables, and tracking systems are becoming increasingly established. However, given the high prevalence of cognitive impairment in PD, digital cognitive biomarkers to predict mental progression are important in clinical practice. This pilot study aimed to identify those components of our digital version of the TMT (dTMT) that allow discrimination between PD patients with and without cognitive deficits. A total of 30 healthy control (age 66.3 ± 8.61) and 30 participants with PD (age 68.3 ± 9.66) performed the dTMT using a touch-sensitive tablet to capture enhanced performance metrics, such as the speed between and inside circles. The decomposition of cognitive abilities based on integrating additional variables in the dTMT revealed that the Parkinson's disease group was significantly more sensitive to parameters of inhibitory control. In contrast, the mild cognitive impairment group was sensitive to parameters of cognitive flexibility and working memory. The dTMT allows objective, ecologically valid, and long-term cognitive and fine-motor performance tracking, suggesting its potential as a digital biomarker in neurodegenerative disorders.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Sport Psychology & Human Movement Performance, Institute of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Nadja Schott
- Department of Sport Psychology & Human Movement Performance, Institute of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Lee H, Hikosaka O. Periaqueductal gray passes over disappointment and signals continuity of remaining reward expectancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628983. [PMID: 39763985 PMCID: PMC11702611 DOI: 10.1101/2024.12.17.628983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Disappointment is a vital factor in the learning and adjustment of strategies in reward-seeking behaviors. It helps them conserve energy in environments where rewards are scarce, while also increasing their chances of maximizing rewards by prompting them to escape to environments where richer rewards are anticipated (e.g., migration). However, another key factor in obtaining the reward is the ability to monitor the remaining possibilities of obtaining the outcome and to tolerate the disappointment in order to continue with subsequent actions. The periaqueductal gray (PAG) has been reported as one of the key brain regions in regulating negative emotions and escape behaviors in animals. The present study suggests that the PAG could also play a critical role in inhibiting escape behaviors and facilitating ongoing motivated behaviors to overcome disappointing events. We found that PAG activity is tonically suppressed by reward expectancy as animals engage in a task to acquire a reward outcome. This tonic suppression of PAG activity was sustained during a series of sequential task procedures as long as the expectancy of reward outcomes persisted. Notably, the tonic suppression of PAG activity showed a significant correlation with the persistence of animals' reward-seeking behavior while overcoming intermittent disappointing events. This finding highlights that the balance between distinct tonic signaling in the PAG, which signals remaining reward expectancy, and phasic signaling in the LHb, which signals disappointment, could play a crucial role in determining whether animals continue or discontinue reward-seeking behaviors when they encounter an unexpected negative event. This mechanism would be essential for animals to efficiently navigate complex environments with various reward volatilities and ultimately contributes to maximizing their reward acquisition.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
6
|
Yan H, Coughlin C, Smolin L, Wang J. Unraveling the Complexity of Parkinson's Disease: Insights into Pathogenesis and Precision Interventions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405309. [PMID: 39301889 PMCID: PMC11558075 DOI: 10.1002/advs.202405309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, leading to motor and non-motor symptoms. Early detection before symptom onset is crucial but challenging. This study presents a framework integrating circuit modeling, non-equilibrium dynamics, and optimization to understand PD pathogenesis and enable precision interventions. Neuronal firing patterns, particularly oscillatory activity, play a critical role in PD pathology. The basal ganglia network, specifically the subthalamic nucleus-external globus pallidus (STN-GPe) circuitry, exhibits abnormal activity associated with motor dysfunction. The framework leverages the non-equilibrium landscape and flux theory to identify key connections generating pathological activity, providing insights into disease progression and potential intervention points. The intricate STN-GPe interplay is highlighted, shedding light on compensatory mechanisms within this circuitry may initially counteract changes but later contribute to pathological alterations as disease progresses. The framework addresses the need for comprehensive evaluation methods to assess intervention outcomes. Cross-correlations between state variables provide superior early warning signals compared to traditional indicators relying on critical slowing down. By elucidating compensatory mechanisms and circuit dynamics, the framework contributes to improved management, early detection, risk assessment, and potential prevention/delay of PD development. This pioneering research paves the way for precision medicine in neurodegenerative disorders.
Collapse
Affiliation(s)
- Han Yan
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Cole Coughlin
- Perimeter Institute for Theoretical Physics31 Caroline Street North, WaterlooOntarioN2J 2Y5Canada
| | - Lee Smolin
- Perimeter Institute for Theoretical Physics31 Caroline Street North, WaterlooOntarioN2J 2Y5Canada
| | - Jin Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
- Department of Chemistry and PhysicsState University of New York at Stony BrookStony BrookNY11790USA
| |
Collapse
|
7
|
Zhu Q, Han F, Yuan Y, Shen L. A TAN-dopamine interaction mechanism based computational model of basal ganglia in action selection. Cogn Neurodyn 2024; 18:2127-2144. [PMID: 39555280 PMCID: PMC11564715 DOI: 10.1007/s11571-023-10046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 11/19/2024] Open
Abstract
The basal ganglia (BG) plays a key role in action selection. Physiological experiments have suggested that the reciprocal interaction between tonically active neurons (TANs) and dopamine (DA) is closely related to reward-based behaviors. However, the functional role of TAN-DA interaction in action selection remains unclear. In this study, a cortico-BG model including TAN-DA interaction mechanism is developed to explore the action selection mechanism of BG. The results show that in the default case, direct, indirect, and hyperdirect pathways are responsible for promoting, suppressing, and stopping the formation of stimulus-action associations, respectively. In the case of reinforcement learning, a single rewarded action is selected according to the combination of the TAN-DA dependent reinforcement mechanism and Hebbian mechanism with a gradual transfer from the former to the latter. Besides, a longer exploratory phase occurs when switching the reward to a new action because additional trials are required to overcome the habituation previously induced by the Hebbian mechanism. In the Parkinsonian state, the reinforcement mechanism is disrupted, and the resting tremor occurs due to dopamine deficiency. Although the model's performance significantly improves due to the levodopa treatment, it is still inferior to the healthy state. This phenomenon is consistent with the experimental results and is explained theoretically via the TAN pause duration and phasic DA release. Furthermore, the model's performances in multi-action selection further verify the rationality of the TAN-DA-dependent reinforcement mechanism. Our work provides a more complete framework for studying the action selection mechanism of basal ganglia.
Collapse
Affiliation(s)
- Qinghua Zhu
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Yuanyuan Yuan
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Luyi Shen
- College of Science, Donghua University, Shanghai, 201620 China
| |
Collapse
|
8
|
Wu Y, Lu L, Qing T, Shi S, Fang G. Transient Increases in Neural Oscillations and Motor Deficits in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2024; 25:9545. [PMID: 39273491 PMCID: PMC11394686 DOI: 10.3390/ijms25179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms like tremors and bradykinesia. PD's pathology involves the aggregation of α-synuclein and loss of dopaminergic neurons, leading to altered neural oscillations in the cortico-basal ganglia-thalamic network. Despite extensive research, the relationship between the motor symptoms of PD and transient changes in brain oscillations before and after motor tasks in different brain regions remain unclear. This study aimed to investigate neural oscillations in both healthy and PD model mice using local field potential (LFP) recordings from multiple brain regions during rest and locomotion. The histological evaluation confirmed the significant dopaminergic neuron loss in the injection side in 6-OHDA lesioned mice. Behavioral tests showed motor deficits in these mice, including impaired coordination and increased forelimb asymmetry. The LFP analysis revealed increased delta, theta, alpha, beta, and gamma band activity in 6-OHDA lesioned mice during movement, with significant increases in multiple brain regions, including the primary motor cortex (M1), caudate-putamen (CPu), subthalamic nucleus (STN), substantia nigra pars compacta (SNc), and pedunculopontine nucleus (PPN). Taken together, these results show that the motor symptoms of PD are accompanied by significant transient increases in brain oscillations, especially in the gamma band. This study provides potential biomarkers for early diagnosis and therapeutic evaluation by elucidating the relationship between specific neural oscillations and motor deficits in PD.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lidi Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Guangzhan Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Lorek K, Mączewska J, Królicki L, Chalimoniuk M, Markowska K, Budrewicz S, Koszewicz M, Szumowski Ł, Marusiak J. Motor cortex activation mediates associations between striatal dopamine depletion and manual dexterity in Parkinson's disease. Parkinsonism Relat Disord 2024; 125:107049. [PMID: 38955097 DOI: 10.1016/j.parkreldis.2024.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) presents with a progressive decline in manual dexterity, attributed to dysfunction in the basal ganglia-thalamus-cortex loop, influenced by dopaminergic deficits in the striatum. Recent research suggests that the motor cortex may play a pivotal role in mediating the relationship between striatal dopamine depletion and motor function in PD. Understanding this connection is crucial for comprehending the origins of manual dexterity impairments in PD. Therefore, our study aimed to explore how motor cortex activation mediates the association between striatal dopamine depletion and manual dexterity in PD. MATERIALS AND METHODS We enrolled 26 mildly affected PD patients in their off-medication phase to undergo [18F]FDOPA PET/CT scans for evaluating striatal dopaminergic function. EEG recordings were conducted during bimanual anti-phase finger tapping tasks to evaluate motor cortex activity, specifically focusing on Event-Related Desynchronization in the beta band. Manual dexterity was assessed using the Purdue Pegboard Test. Regression-based mediation analysis was conducted to examine whether motor cortex activation mediates the association between striatal dopamine depletion and manual dexterity in PD. RESULTS Mediation analysis revealed a significant direct effect of putamen dopamine depletion on manual dexterity for the affected hand and assembly tasks (performed with two hands), with motor cortex activity mediating this association. In contrast, while caudate nucleus dopamine depletion showed a significant direct effect on manual dexterity, motor cortex mediation on this association was not observed. CONCLUSION Our study confirms the association between striatum dopamine depletion and impaired manual dexterity in PD, with motor cortex activity mediating this relationship.
Collapse
Affiliation(s)
- Karolina Lorek
- Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Science, Wroclaw, Poland.
| | - Joanna Mączewska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Królicki
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, Faculty in Biala Podlaska, Biala Podlaska, Poland
| | | | | | | | - Łukasz Szumowski
- Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Science, Wroclaw, Poland
| | - Jarosław Marusiak
- Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Science, Wroclaw, Poland.
| |
Collapse
|
10
|
Kim H, Kim S, Lee S, Lee K, Kim E. Exploring the Relationships Between Antipsychotic Dosage and Voice Characteristics in Relation to Extrapyramidal Symptoms. Psychiatry Investig 2024; 21:822-831. [PMID: 39111750 PMCID: PMC11321868 DOI: 10.30773/pi.2023.0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Extrapyramidal symptoms (EPS) are common side effects of antipsychotic drugs. Despite the growing interest in exploring objective biomarkers for EPS prevention and the potential use of voice in detecting clinical disorders, no studies have demonstrated the relationships between vocal changes and EPS. Therefore, we aimed to determine the associations between voice changes and antipsychotic dosage, and further investigated whether speech characteristics could be used as predictors of EPS. METHODS Forty-two patients receiving or expected to receive antipsychotic drugs were recruited. Drug-induced parkinsonism of EPS was evaluated using the Simpson-Angus Scale (SAS). Participants' voice data consisted of 16 neutral sentences and 2 second-long /Ah/utterances. Thirteen voice features were extracted from the obtained voice data. Each voice feature was compared between groups categorized based on SAS total score of below and above "0.6." The associations between antipsychotic dosage and voice characteristics were examined, and vocal trait variations according to the presence of EPS were explored. RESULTS Significant associations were observed between specific vocal characteristics and antipsychotic dosage across both datasets of 1-16 sentences and /Ah/utterances. Notably, Mel-Frequency Cepstral Coefficients (MFCC) exhibited noteworthy variations in response to the presence of EPS. Specifically, among the 13 MFCC coefficients, MFCC1 (t=-4.47, p<0.001), MFCC8 (t=-4.49, p<0.001), and MFCC12 (t=-2.21, p=0.029) showed significant group differences in the overall statistical values. CONCLUSION Our results suggest that MFCC may serve as a predictor of detecting drug-induced parkinsonism of EPS. Further research should address potential confounding factors impacting the relationship between MFCC and antipsychotic dosage, possibly improving EPS detection and reducing antipsychotic medication side effects.
Collapse
Affiliation(s)
- Hyeyoon Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Subin Lee
- Music and Audio Research Group, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kyogu Lee
- Music and Audio Research Group, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Monchi O, Pinilla-Monsalve GD, Almgren H, Ghahremani M, Kibreab M, Maarouf N, Kathol I, Boré A, Rheault F, Descoteaux M, Ismail Z. White Matter Microstructural Underpinnings of Mild Behavioral Impairment in Parkinson's Disease. Mov Disord 2024; 39:1026-1036. [PMID: 38661496 DOI: 10.1002/mds.29804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) experience changes in behavior, personality, and cognition that can manifest even in the initial stages of the disease. Previous studies have suggested that mild behavioral impairment (MBI) should be considered an early marker of cognitive decline. However, the precise neurostructural underpinnings of MBI in early- to mid-stage PD remain poorly understood. OBJECTIVE The aim was to explore the changes in white matter microstructure linked to MBI and mild cognitive impairment (MCI) in early- to mid-stage PD using diffusion magnetic resonance imaging (dMRI). METHODS A total of 91 PD patients and 36 healthy participants were recruited and underwent anatomical MRI and dMRI, a comprehensive neuropsychological battery, and the completion of the Mild Behavioral Impairment-Checklist. Metrics of white matter integrity included tissue fractional anisotropy (FAt) and radial diffusivity (RDt), free water (FW), and fixel-based apparent fiber density (AFD). RESULTS The connection between the left amygdala and the putamen was disrupted when comparing PD patients with MBI (PD-MBI) to PD-non-MBI, as evidenced by increased RDt (η2 = 0.09, P = 0.004) and both decreased AFD (η2 = 0.05, P = 0.048) and FAt (η2 = 0.12, P = 0.014). Compared to controls, PD patients with both MBI and MCI demonstrated increased FW for the connection between the left orbitofrontal gyrus (OrG) and the hippocampus (η2 = 0.22, P = 0.008), augmented RDt between the right OrG and the amygdala (η2 = 0.14, P = 0.008), and increased RDt (η2 = 0.25, P = 0.028) with decreased AFD (η2 = 0.10, P = 0.046) between the right OrG and the caudate nucleus. CONCLUSION MBI is associated with abnormal microstructure of connections involving the orbitofrontal cortex, putamen, and amygdala. To our knowledge, this is the first assessment of the white matter microstructure in PD-MBI using dMRI. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Oury Monchi
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
- Département de radiologie, radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, Quebec, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Gabriel D Pinilla-Monsalve
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
- Département de radiologie, radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, Quebec, Canada
| | - Hannes Almgren
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Maryam Ghahremani
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Psychiatry and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mekale Kibreab
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Nadia Maarouf
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Iris Kathol
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Arnaud Boré
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Rheault
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maxime Descoteaux
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Psychiatry and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Zhu Y, Jing L, Hu R, Mo F, Jia Q, Yang G, Xu Z, Han M, Wang M, Cai X, Luo J. High-Throughput Microelectrode Arrays for Precise Functional Localization of the Globus Pallidus Internus. CYBORG AND BIONIC SYSTEMS 2024; 5:0123. [PMID: 38784125 PMCID: PMC11112599 DOI: 10.34133/cbsystems.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 μm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the β-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Yuxin Zhu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiqi Han
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Prasad K, de Vries EFJ, van der Meiden E, Moraga-Amaro R, Vazquez-Matias DA, Barazzuol L, Dierckx RAJO, van Waarde A. Effects of the adenosine A 2A receptor antagonist KW6002 on the dopaminergic system, motor performance, and neuroinflammation in a rat model of Parkinson's disease. Neuropharmacology 2024; 247:109862. [PMID: 38325770 DOI: 10.1016/j.neuropharm.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Adenosine A2A-receptors (A2AR) and dopamine D2-receptors (D2R) are known to work together in a synergistic manner. Inhibiting A2ARs by genetic or pharmacological means can relief symptoms and have neuroprotective effects in certain conditions. We applied PET imaging to evaluate the impact of the A2AR antagonist KW6002 on D2R availability and neuroinflammation in an animal model of Parkinson's disease. Male Wistar rats with 6-hydroxydopamine-induced damage to the right striatum were given 3 mg/kg of KW6002 daily for 20 days. Motor function was assessed using the rotarod and cylinder tests, and neuroinflammation and dopamine receptor availability were measured using PET scans with the tracers [11C]PBR28 and [11C]raclopride, respectively. On day 7 and 22 following 6-OHDA injection, rats were sacrificed for postmortem analysis. PET scans revealed a peak in neuroinflammation on day 7. Chronic treatment with KW6002 significantly reduced [11C]PBR28 uptake in the ipsilateral striatum [normalized to contralateral striatum] and [11C]raclopride binding in both striata when compared to the vehicle group. These imaging findings were accompanied by an improvement in motor function. Postmortem analysis showed an 84% decrease in the number of Iba-1+ cells in the ipsilateral striatum [normalized to contralateral striatum] of KW6002-treated rats compared to vehicle rats on day 22 (p = 0.007), corroborating the PET findings. Analysis of tyrosine hydroxylase levels showed less dopaminergic neuron loss in the ipsilateral striatum of KW6002-treated rats compared to controls on day 7. These findings suggest that KW6002 reduces inflammation and dopaminergic neuron loss, leading to less motor symptoms in this animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Esther van der Meiden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
14
|
Masilamoni GJ, Kelly H, Swain AJ, Pare JF, Villalba RM, Smith Y. Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis. eNeuro 2024; 11:ENEURO.0241-23.2024. [PMID: 38514185 PMCID: PMC10957232 DOI: 10.1523/eneuro.0241-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Collapse
Affiliation(s)
- G J Masilamoni
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - H Kelly
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - A J Swain
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - J F Pare
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - R M Villalba
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - Y Smith
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
15
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Slow-wave sleep dysfunction in mild parkinsonism is associated with excessive beta and reduced delta oscillations in motor cortex. Front Neurosci 2024; 18:1338624. [PMID: 38449736 PMCID: PMC10915200 DOI: 10.3389/fnins.2024.1338624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence suggests slow-wave sleep (SWS) dysfunction in Parkinson's disease (PD) is associated with faster disease progression, cognitive impairment, and excessive daytime sleepiness. Beta oscillations (8-35 Hz) in the basal ganglia thalamocortical (BGTC) network are thought to play a role in the development of cardinal motor signs of PD. The role cortical beta oscillations play in SWS dysfunction in the early stage of parkinsonism is not understood, however. To address this question, we used a within-subject design in a nonhuman primate (NHP) model of PD to record local field potentials from the primary motor cortex (MC) during sleep across normal and mild parkinsonian states. The MC is a critical node in the BGTC network, exhibits pathological oscillations with depletion in dopamine tone, and displays high amplitude slow oscillations during SWS. The MC is therefore an appropriate recording site to understand the neurophysiology of SWS dysfunction in parkinsonism. We observed a reduction in SWS quantity (p = 0.027) in the parkinsonian state compared to normal. The cortical delta (0.5-3 Hz) power was reduced (p = 0.038) whereas beta (8-35 Hz) power was elevated (p = 0.001) during SWS in the parkinsonian state compared to normal. Furthermore, SWS quantity positively correlated with delta power (r = 0.43, p = 0.037) and negatively correlated with beta power (r = -0.65, p < 0.001). Our findings support excessive beta oscillations as a mechanism for SWS dysfunction in mild parkinsonism and could inform the development of neuromodulation therapies for enhancing SWS in people with PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bharadwaj Nandakumar
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Sousani M, Seydnejad SR, Ghahramani M. Insights from a model based study on optimizing non invasive brain electrical stimulation for Parkinson's disease. Sci Rep 2024; 14:2447. [PMID: 38291112 PMCID: PMC10828384 DOI: 10.1038/s41598-024-52355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Parkinson's Disease (PD) is a disorder in the central nervous system which includes symptoms such as tremor, rigidity, and Bradykinesia. Deep brain stimulation (DBS) is the most effective method to treat PD motor symptoms especially when the patient is not responsive to other treatments. However, its invasiveness and high risk, involving electrode implantation in the Basal Ganglia (BG), prompt recent research to emphasize non-invasive Transcranial Electrical Stimulation (TES). TES proves to be effective in treating some PD symptoms with inherent safety and no associated risks. This study explores the potential of using TES, to modify the firing pattern of cells in BG that are responsible for motor symptoms in PD. The research employs a mathematical model of the BG to examine the impact of applying TES to the brain. This is conducted using a realistic head model incorporating the Finite Element Method (FEM). According to our findings, the firing pattern associated with Parkinson's disease shifted towards a healthier firing pattern through the use of tACS. Employing an adaptive algorithm that continually monitored the behavior of BG cells (specifically, Globus Pallidus Pars externa (GPe)), we determined the optimal electrode number and placement to concentrate the current within the intended region. This resulted in a peak induced electric field of 1.9 v/m at the BG area. Our mathematical modeling together with precise finite element simulation of the brain and BG suggests that proposed method effectively mitigates Parkinsonian behavior in the BG cells. Furthermore, this approach ensures an improvement in the condition while adhering to all safety constraints associated with the current injection into the brain.
Collapse
Affiliation(s)
- Maryam Sousani
- Faculty of Science and Technology, University of Canberra, Bruce, Canberra, 2617, ACT, Australia.
| | - Saeid R Seydnejad
- Department of Electrical Engineering, Shahid Bahonar University of Kerman, Pajoohesh Sq., Kerman, Kerman, Iran
| | - Maryam Ghahramani
- Faculty of Science and Technology, University of Canberra, Bruce, Canberra, 2617, ACT, Australia
| |
Collapse
|
17
|
Spiliotis K, Butenko K, Starke J, van Rienen U, Köhling R. Towards an optimised deep brain stimulation using a large-scale computational network and realistic volume conductor model. J Neural Eng 2024; 20:066045. [PMID: 37988747 DOI: 10.1088/1741-2552/ad0e7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Objective. Constructing a theoretical framework to improve deep brain stimulation (DBS) based on the neuronal spatiotemporal patterns of the stimulation-affected areas constitutes a primary target.Approach. We develop a large-scale biophysical network, paired with a realistic volume conductor model, to estimate theoretically efficacious stimulation protocols. Based on previously published anatomically defined structural connectivity, a biophysical basal ganglia-thalamo-cortical neuronal network is constructed using Hodgkin-Huxley dynamics. We define a new biomarker describing the thalamic spatiotemporal activity as a ratio of spiking vs. burst firing. The per cent activation of the different pathways is adapted in the simulation to minimise the differences of the biomarker with respect to its value under healthy conditions.Main results.This neuronal network reproduces spatiotemporal patterns that emerge in Parkinson's disease. Simulations of the fibre per cent activation for the defined biomarker propose desensitisation of pallido-thalamic synaptic efficacy, induced by high-frequency signals, as one possible crucial mechanism for DBS action. Based on this activation, we define both an optimal electrode position and stimulation protocol using pathway activation modelling.Significance. A key advantage of this research is that it combines different approaches, i.e. the spatiotemporal pattern with the electric field and axonal response modelling, to compute the optimal DBS protocol. By correlating the inherent network dynamics with the activation of white matter fibres, we obtain new insights into the DBS therapeutic action.
Collapse
Affiliation(s)
| | - Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Xie H, Yang Y, Sun Q, Li ZY, Ni MH, Chen ZH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Yu Y, Yan LF, Cui GB. Abnormalities of cerebral blood flow and the regional brain function in Parkinson's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol 2023; 14:1289934. [PMID: 38162449 PMCID: PMC10755479 DOI: 10.3389/fneur.2023.1289934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
19
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Excessive cortical beta oscillations are associated with slow-wave sleep dysfunction in mild parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564524. [PMID: 37961389 PMCID: PMC10634920 DOI: 10.1101/2023.10.28.564524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Increasing evidence associates slow-wave sleep (SWS) dysfunction with neurodegeneration. Using a within-subject design in the nonhuman primate model of Parkinson's disease (PD), we found that reduced SWS quantity in mild parkinsonism was accompanied by elevated beta and reduced delta power during SWS in the motor cortex. Our findings support excessive beta oscillations as a mechanism for SWS dysfunction and will inform development of neuromodulation therapies for enhancing SWS in PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Mısır E, Alıcı YH, Kocak OM. Functional connectivity in rumination: a systematic review of magnetic resonance imaging studies. J Clin Exp Neuropsychol 2023; 45:928-955. [PMID: 38346167 DOI: 10.1080/13803395.2024.2315312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/28/2023] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Rumination, defined as intrusive and repetitive thoughts in response to negative emotions, uncertainty, and inconsistency between goal and current situation, is a significant risk factor for depressive disorders. The rumination literature presents diverse findings on functional connectivity and shows heterogeneity in research methods. This systematic review seeks to integrate these findings and provide readers diverse perspectives. METHOD For this purpose, the literature on functional connectivity in rumination was reviewed according to the PRISMA guidelines. Regional connectivity and network connectivity results were scrutinized according to the presence of depression, research methods, and type of rumination. After screening 492 articles, a total of 36 studies were included. RESULTS The results showed that increased connectivity of the default mode network (DMN) was consistently reported. Other important findings include alterations in the connectivity between the DMN and the frontoparietal network and the salience network (SN) and impaired regulatory function of the SN. Region-level connectivity studies consistently show that increased connectivity between the posterior cingulate cortex and the prefrontal cortex is associated with rumination, which may cause the loss of control of the frontoparietal network over self-referential processes. We have seen that the number of studies examining brooding and reflective rumination as separate dimensions are relatively limited. Although there are overlaps between the connectivity patterns of the two types of rumination in these studies, it can be thought that reflective rumination is more associated with more increased functional connectivity of the prefrontal cortex. CONCLUSIONS Although there are many consistent functional connectivity outcomes associated with trait rumination, less is known about connectivity changes during state rumination. Relatively few studies have taken into account the subjective aspect of this thinking style. In order to better explain the relationship between rumination and depression, rumination induction studies during episode and remission periods of depression are needed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Yasemin Hoşgören Alıcı
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Orhan Murat Kocak
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
21
|
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ. Substantia Nigra Pars Reticulata Projections to the Pedunculopontine Nucleus Modulate Dyskinesia. Mov Disord 2023; 38:1850-1860. [PMID: 37461292 PMCID: PMC10932617 DOI: 10.1002/mds.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Thong C. Ma
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | | | - Yunmin Ding
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
22
|
Garcia PJB, Huang SKH, De Castro-Cruz KA, Leron RB, Tsai PW. In Silico Neuroprotective Effects of Specific Rheum palmatum Metabolites on Parkinson's Disease Targets. Int J Mol Sci 2023; 24:13929. [PMID: 37762232 PMCID: PMC10530814 DOI: 10.3390/ijms241813929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the large-scale health issues detrimental to human quality of life, and current treatments are only focused on neuroprotection and easing symptoms. This study evaluated in silico binding activity and estimated the stability of major metabolites in the roots of R. palmatum (RP) with main protein targets in Parkinson's disease and their ADMET properties. The major metabolites of RP were subjected to molecular docking and QSAR with α-synuclein, monoamine oxidase isoform B, catechol o-methyltransferase, and A2A adenosine receptor. From this, emodin had the greatest binding activity with Parkinson's disease targets. The chemical stability of the selected compounds was estimated using density functional theory analyses. The docked compounds showed good stability for inhibitory action compared to dopamine and levodopa. According to their structure-activity relationship, aloe-emodin, chrysophanol, emodin, and rhein exhibited good inhibitory activity to specific targets. Finally, mediocre pharmacokinetic properties were observed due to unexceptional blood-brain barrier penetration and safety profile. It was revealed that the major metabolites of RP may have good neuroprotective activity as an additional hit for PD drug development. Also, an association between redox-mediating and activities with PD-relevant protein targets was observed, potentially opening discussion on electrochemical mechanisms with biological functions.
Collapse
Affiliation(s)
- Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
| |
Collapse
|
23
|
Zhao X, Zhuang P, Hallett M, Zhang Y, Li J, Wen Y, Li J, Wang Y, Hu Y, Li Y. Differences in subthalamic oscillatory activity in the two hemispheres associated with severity of Parkinson's disease. Front Aging Neurosci 2023; 15:1185348. [PMID: 37700815 PMCID: PMC10493322 DOI: 10.3389/fnagi.2023.1185348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023] Open
Abstract
Background It is well known that motor features of Parkinson's disease (PD) commonly begin on one side of the body and extend to the other side with disease progression. The onset side generally remains more severely affected over the course of the disease. However, the pathophysiology underlying the asymmetry of motor manifestations remains unclear. The purpose of the present study is to examine whether alterations in neuronal activity in the subthalamic nucleus (STN) associate with PD severity. Methods Microelectrode recording was performed in the STN during targeting for 30 patients in the treatment of deep brain stimulation. The mean spontaneous firing rate (MSFR), power density spectral analysis, and correlations were calculated. Characteristics of subthalamic oscillatory activity were compared between two hemispheres. UPDRS III scores during "Off" and "On" states were obtained for the body side of initial symptoms (BSIS) and the body side of extended symptoms (BSES). Results There were significant differences of MSFR (41.3 ± 11.0 Hz vs 35.2 ± 10.0 Hz) and percentage of ß frequency oscillatory neurons (51.3% vs 34.9%) between BSIS and BSES. The percentage of ß frequency oscillatory neurons correlated with the bradykinesia/rigidity scores for both sides (p < 0.05). In contrast, the percentage of tremor frequency oscillatory neurons was significantly higher in the BSES than that in the BSIS. In particular, these neurons only correlated with the tremor scores of the BSES (p < 0.05). Conclusion The results suggest that increased neuronal firing rate and ß frequency oscillatory neurons in the STN are associated with contralateral side motor severity and its progression. Tremor frequency oscillatory neurons are less observed in the STN of the BSIS suggesting that ß oscillatory activity dominates and tremor frequency oscillatory activity reciprocally declines.
Collapse
Affiliation(s)
- Xuemin Zhao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Ping Zhuang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
- Center for Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Jianyu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Yi Wen
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Yunpeng Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Yongsheng Hu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Disease, Ministry of Education (Capital Medical University), Beijing, China
| |
Collapse
|
24
|
Acosta-Mejia MT, Villalobos N. Neurophysiology of Brain Networks Underlies Symptoms of Parkinson's Disease: A Basis for Diagnosis and Management. Diagnostics (Basel) 2023; 13:2394. [PMID: 37510138 PMCID: PMC10377975 DOI: 10.3390/diagnostics13142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is one of the leading neurodegenerative disorders. It is considered a movement disorder, although it is accepted that many nonmotor symptoms accompany the classic motor symptoms. PD exhibits heterogeneous and overlaying clinical symptoms, and the overlap of motor and nonmotor symptoms complicates the clinical diagnosis and management. Loss of modulation secondary to the absence of dopamine due to degeneration of the substantia nigra compacta produces changes in firing rates and patterns, oscillatory activity, and higher interneuronal synchronization in the basal ganglia-thalamus-cortex and nigrovagal network involvement in motor and nonmotor symptoms. These neurophysiological changes can be monitored by electrophysiological assessment. The purpose of this review was to summarize the results of neurophysiological changes, especially in the network oscillation in the beta-band level associated with parkinsonism, and to discuss the use of these methods to optimize the diagnosis and management of PD.
Collapse
Affiliation(s)
- Martha Teresa Acosta-Mejia
- Área Académica de Nutrición, Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda La Concepción, Sn Agustin Tlaxiaca, Estado de Hidalgo 42160, Mexico
| | - Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico, Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
25
|
Liu X, Zhang H, Li C, Chen Z, Gao Q, Han M, Zhao F, Chen D, Chen Q, Hu M, Li Z, Wei S, Geng X. The dosage of curcumin to alleviate movement symptoms in a 6-hydroxydopamine-induced Parkinson's disease rat model. Heliyon 2023; 9:e16921. [PMID: 37484231 PMCID: PMC10360947 DOI: 10.1016/j.heliyon.2023.e16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Background Curcumin is a natural compound with extensive pharmacological effects. This research is to verify the optimal dose and administration duration efficacy of curcumin in alleviating the movement symptoms of Parkinson's disease (PD). Methods Wistar rats were divided into six groups including control, model, levodopa treatment and low/middle/high (40/80/160 mg/kg/d) curcumin treatment groups. After stereotactic brain injection of 6-hydroxydopamine (6-OHDA), curcumin was given by intragastric administration for 2 weeks. To evaluate the drug effect, the rats received behavioral tests including apomorphine (APO)-induced rotation test, rotarod test and open field test. Then the rats were sacrificed and the brain slices including substantia nigra pars compacta (SNc) were used for immunofluorescence staining. Results After 6-OHDA injection, the model group showed typical movement symptoms including the severe APO-induced rotation to the healthy side, decreased latency in the rotarod with constant or accelerative mode, and decreased total distance and average speed in the open field test. In the results of immunofluorescence staining, the 6-OHDA induced a severe damage of dopaminergic neurons in SNc. The 160 mg/kg/d treatment of curcumin to intervene for 2 weeks alleviated most of the behavioral disorders but the 40/80 mg/kg/d treatment showed limitations. Then, we compared the effect of 1 week intervention to the 2 weeks with 160 mg/kg/d treatment of curcumin to intervene and results indicated that the treatment of 2 weeks could better alleviate the symptoms. Conclusions Curcumin alleviated 6-OHDA-induced movement symptoms in a PD rat model. Additionally, the effect of curcumin against PD indicated dose and duration dependent and the intervention of 160 mg/kg/d for 2 weeks showed optimally therapeutic effect.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfen Li
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Zhibin Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxuan Han
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiuyue Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
26
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
27
|
Ma YF, Lin YA, Huang CL, Hsu CC, Wang S, Yeh SR, Tsai YC. Lactiplantibacillus plantarum PS128 Alleviates Exaggerated Cortical Beta Oscillations and Motor Deficits in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Probiotics Antimicrob Proteins 2023; 15:312-325. [PMID: 34449056 DOI: 10.1007/s12602-021-09828-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by midbrain dopaminergic neuronal loss and subsequent physical impairments. Levodopa manages symptoms best, while deep brain stimulation (DBS) is effective for advanced PD patients; however, side effects occur with the diminishing therapeutic window. Recently, Lactiplantibacillus plantarum PS128 (PS128) was found to elevate dopamine levels in rodent brains, suggesting its potential to prevent PD. Here, the therapeutic efficacy of PS128 was examined in the 6-hydroxydopamine rat PD model. Suppression of the power spectral density of beta oscillations (beta PSD) in the primary motor cortex (M1) was recorded as the indicator of disease progression. We found that 6 weeks of daily PS128 supplementation suppressed M1 beta PSD as well as did levodopa and DBS. Long-term normalization of M1 beta PSD was found in PS128-fed rats, whereas levodopa and DBS showed only temporal effects. PS128 + levodopa and PS128 + DBS exhibited better therapeutic effects than did levodopa + DBS or either alone. Significantly improved motor functions in PS128-fed rats were correlated with normalization of M1 beta PSD. Brain tissue analyses further demonstrated the role of PS128 in dopaminergic neuroprotection and the enhanced availability of neurotransmitters. These findings suggest that psychobiotic PS128 might be used alongside conventional therapies to treat PD patients.
Collapse
Affiliation(s)
- Yi-Fan Ma
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi-An Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- EzInstrument Technology Co., Ltd., Hsinchu, 300, Taiwan
| | - Chin-Lin Huang
- Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Bened Biomedical Co., Ltd., Taipei, 104, Taiwan
| | | | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Shih-Rung Yeh
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan.
| | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
28
|
Sun S, Wang X, Shi X, Fang H, Sun Y, Li M, Han H, He Q, Wang X, Zhang X, Zhu ZW, Chen F, Wang M. Neural pathway connectivity and discharge changes between M1 and STN in hemiparkinsonian rats. Brain Res Bull 2023; 196:1-19. [PMID: 36878325 DOI: 10.1016/j.brainresbull.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Alterations of electrophysiological activities, such as changed spike firing rates, reshaping the firing patterns, and aberrant frequency oscillations between the subthalamic nucleus (STN) and the primary motor cortex (M1), are thought to contribute to motor impairment in Parkinson's disease (PD). However, the alterations of electrophysiological characteristics of STN and M1 in PD are still unclear, especially under specific treadmill movement. To examine the relationship between electrophysiological activity in the STN-M1 pathway, extracellular spike trains and local field potential (LFPs) of STN and M1 were simultaneously recorded during resting and movement in unilateral 6-hydroxydopamine (6-OHDA) lesioned rats. The results showed that the identified STN neurons and M1 neurons exhibited abnormal neuronal activity after dopamine loss. The dopamine depletion altered the LFP power in STN and M1 whatever in rest or movement states. Furthermore, the enhanced synchronization of LFP oscillations after dopamine loss was found in 12-35 Hz (beta frequencies) between the STN and M1 during rest and movement. In addition, STN neurons were phase-locked firing to M1 oscillations at 12-35 Hz during rest epochs in 6-OHDA lesioned rats. The dopamine depletion also impaired the anatomical connectivity between the M1 and STN by injecting anterograde neuroanatomical tracing virus into M1 in control and PD rats. Collectively, impairment of' electrophysiological activity and anatomical connectivity in the M1-STN pathway may be the basis for dysfunction of the cortico-basal ganglia circuit, correlating with motor symptoms of PD.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xuenan Wang
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Xiaoman Shi
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Heyi Fang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Hongyu Han
- Weifang Middle School, Weifang 261031, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xiaojun Wang
- The First Hospital Affiliated with Shandong First Medicine University, Jinan 250014, China
| | - Xiao Zhang
- Editorial Department of Journal, Shandong Jianzhu University, Jinan 250014, China
| | - Zhi Wei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan 250014, China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China.
| |
Collapse
|
29
|
Carey G, Lopes R, Moonen AJ, Mulders AE, de Jong JJ, Kuchcinski G, Defebvre L, Kuijf ML, Dujardin K, Leentjens AF. Cognitive Behavioral Therapy for Anxiety in Parkinson's Disease Induces Functional Brain Changes. JOURNAL OF PARKINSON'S DISEASE 2023; 13:93-103. [PMID: 36591659 PMCID: PMC9912714 DOI: 10.3233/jpd-223527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) reduces anxiety symptoms in patients with Parkinson's disease (PD). OBJECTIVE The objective of this study was to identify changes in functional connectivity in the brain after CBT for anxiety in patients with PD. METHODS Thirty-five patients with PD and clinically significant anxiety were randomized over two groups: CBT plus clinical monitoring (10 CBT sessions) or clinical monitoring only (CMO). Changes in severity of anxiety symptoms were assessed with the Parkinson Anxiety Scale (PAS). Resting-state functional brain MRI was performed at baseline and after the intervention. Functional networks were extracted by an Independent Component Analysis (ICA). Functional connectivity (FC) changes between structures involved in the PD-related anxiety circuits, such as the fear circuit (involving limbic, frontal, and cingulate structures) and the cortico-striato-thalamo-cortical limbic circuit, and both within and between functional networks were compared between groups and regressed with anxiety symptoms changes. RESULTS Compared to CMO, CBT reduced the FC between the right thalamus and the bilateral orbitofrontal cortices and increased the striato-frontal FC. CBT also increased the fronto-parietal FC within the central executive network (CEN) and between the CEN and the salience network. After CBT, improvement of PAS-score was associated with an increased striato-cingulate and parieto-temporal FC, and a decreased FC within the default-mode network and between the dorsal attentional network and the language network. CONCLUSION CBT in PD-patients improves anxiety symptoms and is associated with functional changes reversing the imbalance between PD-related anxiety circuits and reinforcing cognitive control on emotional processing.
Collapse
Affiliation(s)
- Guillaume Carey
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands,Lille Neuroscience & Cognition, University of Lille, Lille, France,Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France,Correspondence to: Guillaume Carey, MD, CHU de Lille, Hôpital Roger Salengro, Avenue du Professeur Emile Laine, Service de Neurologie A, 59037, Lille, France. E-mail:
| | - Renaud Lopes
- Lille Neuroscience & Cognition, University of Lille, Lille, France,Plateformes Lilloises en Biologie & Santé, University of Lille, Lille, France
| | - Anja J.H. Moonen
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands,Department of Psychiatry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne E.P. Mulders
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands,Department of Psychiatry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joost J.A. de Jong
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands,Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gregory Kuchcinski
- Lille Neuroscience & Cognition, University of Lille, Lille, France,Department of Neuroradiology, Lille University Medical Centre, Lille, France,Plateformes Lilloises en Biologie & Santé, University of Lille, Lille, France
| | - Luc Defebvre
- Lille Neuroscience & Cognition, University of Lille, Lille, France,Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Mark L. Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kathy Dujardin
- Lille Neuroscience & Cognition, University of Lille, Lille, France,Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Albert F.G. Leentjens
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands,Department of Psychiatry, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
30
|
Bahadori-Jahromi F, Salehi S, Madadi Asl M, Valizadeh A. Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation. Front Hum Neurosci 2023; 16:1013155. [PMID: 36776221 PMCID: PMC9908610 DOI: 10.3389/fnhum.2022.1013155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/09/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a movement disorder characterized by the pathological beta band (15-30 Hz) neural oscillations within the basal ganglia (BG). It is shown that the suppression of abnormal beta oscillations is correlated with the improvement of PD motor symptoms, which is a goal of standard therapies including deep brain stimulation (DBS). To overcome the stimulation-induced side effects and inefficiencies of conventional DBS (cDBS) and to reduce the administered stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In this method, the frequency and/or amplitude of stimulation are modulated based on various disease biomarkers. Methods Here, by computational modeling of a cortico-BG-thalamic network in normal and PD conditions, we show that closed-loop aDBS of the subthalamic nucleus (STN) with amplitude modulation leads to a more effective suppression of pathological beta oscillations within the parkinsonian BG. Results Our results show that beta band neural oscillations are restored to their normal range and the reliability of the response of the thalamic neurons to motor cortex commands is retained due to aDBS with amplitude modulation. Furthermore, notably less stimulation current is administered during aDBS compared with cDBS due to a closed-loop control of stimulation amplitude based on the STN local field potential (LFP) beta activity. Discussion Efficient models of closed-loop stimulation may contribute to the clinical development of optimized aDBS techniques designed to reduce potential stimulation-induced side effects of cDBS in PD patients while leading to a better therapeutic outcome.
Collapse
Affiliation(s)
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
31
|
Dong K, Zhu X, Xiao W, Gan C, Luo Y, Jiang M, Liu H, Chen X. Comparative efficacy of transcranial magnetic stimulation on different targets in Parkinson's disease: A Bayesian network meta-analysis. Front Aging Neurosci 2023; 14:1073310. [PMID: 36688161 PMCID: PMC9845788 DOI: 10.3389/fnagi.2022.1073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background/Objective The efficacy of transcranial magnetic stimulation (TMS) on Parkinson's disease (PD) varies across the stimulation targets. This study aims to estimate the effect of different TMS targets on motor symptoms in PD. Methods A Bayesian hierarchical model was built to assess the effects across different TMS targets, and the rank probabilities and the surface under the cumulative ranking curve (SUCRA) values were calculated to determine the ranks of each target. The primary outcome was the Unified Parkinson's Disease Rating Scale part-III. Inconsistency between direct and indirect comparisons was assessed using the node-splitting method. Results Thirty-six trials with 1,122 subjects were included for analysis. The pair-wise meta-analysis results showed that TMS could significantly improve motor symptoms in PD patients. Network meta-analysis results showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC, and M1+DLPFC could significantly reduce the UPDRS-III scores compared with sham conditions. The high-frequency stimulation over both M1 and DLPFC had a more significant effect when compared with other parameters, and ranked first with the highest SCURA value. There was no significant inconsistency between direct and indirect comparisons. Conclusion Considering all settings reported in our research, high-frequency stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial effect on the improvement of motor symptoms in PD (high confidence rating). High-frequency stimulation over M1+DLPFC has a prominent beneficial effect and appears to be the most effective TMS parameter setting for ameliorating motor symptoms of PD patients (high confidence rating).
Collapse
Affiliation(s)
- Ke Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chu Gan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulu Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manying Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Guangzhou, China,Hanjun Liu,
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xi Chen,
| |
Collapse
|
32
|
Welton T, Hartono S, Shih YC, Lee W, Chai PH, Chong SL, Ng SYE, Chia NSY, Choi X, Heng DL, Tan EK, Tan LC, Chan LL. Microstructure of Brain Nuclei in Early Parkinson's Disease: Longitudinal Diffusion Kurtosis Imaging. JOURNAL OF PARKINSON'S DISEASE 2023; 13:233-242. [PMID: 36744346 PMCID: PMC10041414 DOI: 10.3233/jpd-225095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diffusion kurtosis imaging provides in vivo measurement of microstructural tissue characteristics and could help guide management of Parkinson's disease. OBJECTIVE To investigate longitudinal diffusion kurtosis imaging changes on magnetic resonance imaging in the deep grey nuclei in people with early Parkinson's disease over two years, and whether they correlate with disease progression. METHODS We conducted a longitudinal case-control study of early Parkinson's disease. 262 people (Parkinson's disease: n = 185, aged 67.5±9.1 years; 43% female; healthy controls: n = 77, aged 66.6±8.1 years; 53% female) underwent diffusion kurtosis imaging and clinical assessment at baseline and two-year timepoints. We automatically segmented five nuclei, comparing the mean kurtosis and other diffusion kurtosis imaging indices between groups and over time using repeated-measures analysis of variance, and Pearson correlation with the two-year change in Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III. RESULTS At baseline, mean kurtosis was higher in Parkinson's disease than controls in the substantia nigra, putamen, thalamus and globus pallidus when adjusting for age, sex, and levodopa equivalent daily dose (p < 0.027). These differences grew over two years, with mean kurtosis increasing for the Parkinson's disease group while remaining stable for the control group; evident in significant "group ×time" interaction effects for the putamen, thalamus and globus pallidus (ηp2= 0.08-0.11, p < 0.015). However, we did not detect significant correlations between increasing mean kurtosis and declining motor function in the Parkinson's disease group. CONCLUSION Diffusion kurtosis imaging of specific grey matter structures shows abnormal microstructure in PD at baseline and abnormal progression in PD over two years.
Collapse
Affiliation(s)
- Thomas Welton
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Septian Hartono
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Yao-Chia Shih
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Weiling Lee
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Pik Hsien Chai
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Say Lee Chong
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Samuel Yong Ern Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Nicole Shuang Yu Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Xinyi Choi
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Dede Liana Heng
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Louis C.S. Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Ling-Ling Chan
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| |
Collapse
|
33
|
Carey G, Viard R, Lopes R, Kuchcinski G, Defebvre L, Leentjens AF, Dujardin K. Anxiety in Parkinson's Disease Is Associated with Changes in Brain Structural Connectivity. JOURNAL OF PARKINSON'S DISEASE 2023; 13:989-998. [PMID: 37599537 PMCID: PMC10578283 DOI: 10.3233/jpd-230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Anxiety in Parkinson's disease (PD) has been associated with grey matter changes and functional changes in anxiety-related neuronal circuits. So far, no study has analyzed white matter (WM) changes in patients with PD and anxiety. OBJECTIVE The aim of this study was to identify WM changes by comparing PD patients with and without anxiety, using diffusion-tensor imaging (DTI). METHODS 108 non-demented PD patients with (n = 31) and without (n = 77) anxiety as defined by their score on the Parkinson Anxiety Scale participated. DTI was used to determine the fractional anisotropy (FA) and mean diffusivity (MD) in specific tracts within anxiety-related neuronal circuits. Mean FA and MD were compared between groups and correlated with the severity of anxiety adjusted by sex, center, Hoehn & Yahr stage, levodopa equivalent daily dosage, and Hamilton depression rating scale. RESULTS Compared to patients without anxiety, PD patients with anxiety showed lower FA within the striato-orbitofrontal, striato-cingulate, cingulate-limbic, and caudate-thalamic tracts; higher FA within the striato-limbic and accumbens-thalamic tracts; higher MD within the striato-thalamic tract and lower MD within the striato-limbic tract. CONCLUSIONS Anxiety in PD is associated with microstructural alterations in anxiety-related neuronal circuits within the WM. This result reinforces the view that PD-related anxiety is linked to structural alteration within the anxiety-related brain circuits.
Collapse
Affiliation(s)
- Guillaume Carey
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Romain Viard
- Univ Lille, UMS 2014 – US 41 – PLBS – Plateformes Lilloises en Biologie & Santé, Lille, France
| | - Renaud Lopes
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Univ Lille, UMS 2014 – US 41 – PLBS – Plateformes Lilloises en Biologie & Santé, Lille, France
| | - Gregory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Univ Lille, UMS 2014 – US 41 – PLBS – Plateformes Lilloises en Biologie & Santé, Lille, France
- Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Albert F.G. Leentjens
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| |
Collapse
|
34
|
Youn J, Won JH, Kim M, Kwon J, Moon SH, Kim M, Ahn JH, Mun JK, Park H, Cho JW. Extra-Basal Ganglia Brain Structures Are Related to Motor Reserve in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:39-48. [PMID: 36565134 PMCID: PMC9912725 DOI: 10.3233/jpd-223542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The "motor reserve" is an emerging concept based on the discrepancy between the severity of parkinsonism and dopaminergic degeneration; however, the related brain structures have not yet been elucidated. OBJECTIVE We investigated brain structures relevant to the motor reserve in Parkinson's disease (PD) in this study. METHODS Patients with drug-naïve, early PD were enrolled, who then underwent dopamine transporter (DAT) scan and diffusion tensor imaging (DTI). The severity of motor symptoms was evaluated with the Unified Parkinson's Disease Rating Scale score of bradykinesia and rigidity on the more affected side and dopaminergic degeneration of DAT uptake of the more affected putamen. Individual motor reserve estimate (MRE) was evaluated based on the discrepancy between the severity of motor symptoms and dopaminergic degeneration. Using DTI and the Brainnetome atlas, brain structures correlated with MRE were identified. RESULTS We enrolled 193 patients with drug-naïve PD (mean disease duration of 15.6±13.2 months), and the MRE successfully predicted the increase of levodopa equivalent dose after two years. In the DTI analysis, fractional anisotropy values of medial, inferior frontal, and temporal lobes, limbic structures, nucleus accumbens, and thalamus were positively correlated with the MRE, while no brain structures were correlated with mean diffusivity. Additionally, degree centrality derived from the structural connectivity of the frontal and temporal lobes and limbic structures was positively correlated with the MRE. CONCLUSION Our results show empirical evidence for MR in PD and brain structures relevant to MR, particularly, the extra-basal ganglia system including the limbic and frontal structures.
Collapse
Affiliation(s)
- Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ji Hye Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Mansu Kim
- Department of Artificial Intelligence, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Junmo Kwon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Seung Hwan Moon
- Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jong Hyun Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jun Kyu Mun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
35
|
Patterned Stimulation of the Chrimson Opsin in Glutamatergic Motor Thalamus Neurons Improves Forelimb Akinesia in Parkinsonian Rats. Neuroscience 2022; 507:64-78. [PMID: 36343721 DOI: 10.1016/j.neuroscience.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD) is a motor disorder charactertised by altered neural activity throughout the basal ganglia-thalamocortical circuit. Electrical deep brain stimulation (DBS) is efficacious in alleviating motor symptoms, but has several notable side-effects, most likely reflecting the non-specific nature of electrical stimulation and/or the brain regions targeted. We determined whether specific optogenetic activation of glutamatergic motor thalamus (Mthal) neurons alleviated forelimb akinesia in a chronic rat model of PD. Parkinsonian rats (unilateral 6-hydroxydopamine injection) were injected with an adeno-associated viral vector (AAV5-CaMKII-Chrimson-GFP) to transduce glutamatergic Mthal neurons with the red-shifted Chrimson opsin. Optogenetic stimulation with orange light at 15 Hz tonic and a physiological pattern, previously recorded from a Mthal neuron in a control rat, significantly increased forelimb use in the reaching test (p < 0.01). Orange light theta burst stimulation, 15 Hz and control reaching patterns significantly reduced akinesia (p < 0.0001) assessed by the step test. In contrast, forelimb use in the cylinder test was unaffected by orange light stimulation with any pattern. Blue light (control) stimulation failed to alter behaviours. Activation of Chrimson using complex patterns in the Mthal may be an alternative treatment to recover movement in PD. These vector and opsin changes are important steps towards translating optogenetic stimulation to humans.
Collapse
|
36
|
Doyle AM, Bauer D, Hendrix C, Yu Y, Nebeck SD, Fergus S, Krieg J, Wilmerding LK, Blumenfeld M, Lecy E, Spencer C, Luo Z, Sullivan D, Brackman K, Ross D, Best S, Verma A, Havel T, Wang J, Johnson L, Vitek JL, Johnson MD. Spatiotemporal scaling changes in gait in a progressive model of Parkinson's disease. Front Neurol 2022; 13:1041934. [PMID: 36582611 PMCID: PMC9792983 DOI: 10.3389/fneur.2022.1041934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait. Design We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages. Results Parkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state. Conclusion The results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait.
Collapse
Affiliation(s)
- Alex M. Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Devyn Bauer
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Claudia Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Shane D. Nebeck
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sinta Fergus
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lucius K. Wilmerding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Madeline Blumenfeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Emily Lecy
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Chelsea Spencer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ziling Luo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Disa Sullivan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Krista Brackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Dylan Ross
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sendréa Best
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ajay Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
37
|
Aghakhanyan G, Rullmann M, Rumpf J, Schroeter ML, Scherlach C, Patt M, Brendel M, Koglin N, Stephens AW, Classen J, Hoffmann KT, Sabri O, Barthel H. Interplay of tau and functional network connectivity in progressive supranuclear palsy: a [ 18F]PI-2620 PET/MRI study. Eur J Nucl Med Mol Imaging 2022; 50:103-114. [PMID: 36048259 DOI: 10.1007/s00259-022-05952-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Progressive supranuclear palsy (PSP) is primary 4-repeat tauopathy. Evidence spanning from imaging studies indicate aberrant connectivity in PSPs. Our goal was to assess functional connectivity network alterations in PSP patients and the potential link between regional tau-burden and network-level functional connectivity using the next-generation tau PET tracer [18F]PI-2620 and resting-state functional MRI (fMRI). MATERIAL AND METHODS Twenty-four probable PSP patients (70.9 ± 6.9 years, 13 female), including 14 Richardson syndrome (RS) and 10 non-RS phenotypes, underwent [18F]PI-2620 PET/MRI imaging. Distribution volume ratios (DVRs) were estimated using non-invasive pharmacokinetic modeling. Resting-state fMRI was also acquired in these patients as well as in thirteen older non-AD MCI reference group (64 ± 9 years, 4 female). The functional network was constructed using 141 by 141 region-to-region functional connectivity metrics (RRC) and network-based statistic was carried out (connection threshold p < 0.001, cluster threshold pFDR < 0.05). RESULTS In total, 9870 functional connections were analyzed. PSPs compared to aged non-AD MCI reference group expressed aberrant connectivity evidenced by the significant NBS network consisting of 89 ROIs and 118 connections among them (NBS mass 4226, pFDR < 0.05). Tau load in the right globus pallidus externus (GPe) and left dentate nucleus (DN) showed significant effects on functional network connectivity. The network linked with increased tau load in the right GPe was associated with hyperconnectivity of low-range intra-opercular connections (NBS mass 356, pFDR < 0.05), while the network linked with increased tau load in the left cerebellar DN was associated with cerebellar hyperconnectivity and cortico-cerebellar hypoconnectivity (NBS mass 517, pFDR < 0.05). CONCLUSIONS PSP patients show altered functional connectivity. Network incorporating deep gray matter structures demonstrate hypoconnectivity, cerebellum hyperconnectivity, while cortico-cortical connections show variable changes. Tau load in the right GPe and left DN is associated with functional networks which strengthen low-scale intra-opercular and intra-cerebellar connections and weaken opercular-cerebellar connections. These findings support the concept of tau load-dependent functional network changes in PSP, by that providing evidence for downstream effects of neuropathology on brain functionality in this primary tauopathy.
Collapse
Affiliation(s)
- Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - M Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - J Rumpf
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - M L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - C Scherlach
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - M Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - M Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - N Koglin
- Life Molecular Imaging GmbH, Berlin, Germany
| | | | - J Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - K T Hoffmann
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - O Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - H Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Barbiero JK, Ramos DC, Boschen S, Bassani T, Da Cunha C, Vital MABF. Fenofibrate promotes neuroprotection in a model of rotenone-induced Parkinson's disease. Behav Pharmacol 2022; 33:513-526. [PMID: 36094044 DOI: 10.1097/fbp.0000000000000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is a neurodegenerative disease, the etiology of which remains unknown, but some likely causes include oxidative stress, mitochondrial dysfunction and neuroinflammation. Peroxisome-proliferator-activated receptor (PPAR) agonists have been studied in animal models of Parkinson's disease and have shown neuroprotective effects. In this study, we aimed to (1) confirm the neuroprotective effects of PPAR-alpha agonist fenofibrate. To this end, male rats received fenofibrate (100 mg/kg) orally for 15 days, 5 days before the intraperitoneal injections of rotenone (2.5 mg/kg for 10 days). After finishing the treatment with rotenone and fenofibrate, animals were subjected to the open field, the forced swim test and the two-way active avoidance task. Subsequently, rats were euthanized for measurement of dopamine and metabolites levels in the striatum and quantification of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (SNpc). In addition, we aimed to (2) evaluate the neuroprotective effects of fenofibrate on the accumulation of α-synuclein aggregates. Here, rats were treated for 5 days with fenofibrate continuing for over 28 days with rotenone. Then, animals were perfused for immunohistochemistry analysis of α-synuclein. The results showed that fenofibrate reduced depressive-like behavior and memory impairment induced by rotenone. Moreover, fenofibrate diminished the depletion of striatal dopamine and protected against dopaminergic neuronal death in the SNpc. Likewise, the administration of fenofibrate attenuated the aggregation of α-synuclein in the SNpc and striatum in the rotenone-lesioned rats. Our study confirmed that fenofibrate exerted neuroprotective effects because parkinsonian rats exhibited reduced behavioral, neurochemical and immunohistochemical changes, and importantly, a lower number of α-synuclein aggregates.
Collapse
Affiliation(s)
- Janaína K Barbiero
- Departamento de Farmacologia, Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Bosch TJ, Espinoza AI, Mancini M, Horak FB, Singh A. Functional Connectivity in Patients With Parkinson’s Disease and Freezing of Gait Using Resting-State EEG and Graph Theory. Neurorehabil Neural Repair 2022; 36:715-725. [DOI: 10.1177/15459683221129282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Although many studies have shown abnormalities in brain structure and function in people with Parkinson’s disease (PD), we still have a poor understanding of how brain structure and function relates to freezing of gait (FOG). Graph theory analysis of electroencephalography (EEG) can explore the relationship between brain network structure and gait function in PD. Methods Scalp EEG signals of 83 PD (42 PDFOG+ and 41 PDFOG−) and 42 healthy controls were recorded in an eyes-opened resting-state. The phase lag index was calculated for each electrode pair in different frequency bands, but we focused our analysis on the theta-band and performed global analyses along with nodal analyses over a midfrontal channel. The resulting connectivity matrices were converted to weighted graphs, whose structure was characterized using strength and clustering coefficient measurements, our main outcomes. Results We observed increased global strength and increased global clustering coefficient in people with PD compared to healthy controls in the theta-band, though no differences were observed in midfrontal nodal strength and midfrontal clustering coefficient. Furthermore, no differences in global nor midfrontal nodal strength nor global clustering coefficients were observed between PDFOG+ and PDFOG− in the theta-band. However, PDFOG+ exhibited a significantly diminished midfrontal nodal clustering coefficient in the theta-band compared to PDFOG−. Furthermore, FOG scores were negatively correlated with midfrontal nodal clustering coefficient in the theta-band. Conclusion The present findings support the involvement of midfrontal theta oscillations in FOG symptoms in PD and the sensitivity of graph metrics to characterize functional networks in PDFOG+.
Collapse
Affiliation(s)
- Taylor J. Bosch
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Martina Mancini
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Fay B. Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
41
|
Xie J, Chen Z, He T, Zhu H, Chen T, Liu C, Fu X, Shen H, Li T. Deep brain stimulation in the globus pallidus alleviates motor activity defects and abnormal electrical activities of the parafascicular nucleus in parkinsonian rats. Front Aging Neurosci 2022; 14:1020321. [PMID: 36248005 PMCID: PMC9555567 DOI: 10.3389/fnagi.2022.1020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD). The most common sites targeted for DBS in PD are the globus pallidus internal (GPi) and subthalamic nucleus (STN). However, STN-DBS and GPi-DBS have limited improvement in some symptoms and even aggravate disease symptoms. Therefore, discovering new targets is more helpful for treating refractory symptoms of PD. Therefore, our study selected a new brain region, the lateral globus pallidus (GP), as the target of DBS, and the study found that GP-DBS can improve motor symptoms. It has been reported that the thalamic parafascicular (PF) nucleus is strongly related to PD pathology. Moreover, the PF nucleus and GP have very close direct and indirect fiber connections. However, whether GP-DBS can change the activity of the PF remains unclear. Therefore, in this study, we monitored the activity changes in the PF nucleus in PD rats during a quiet awake state after GP-DBS. We found that GP-DBS could reverse the electrical activity of the PF nucleus in PD model rats, including the discharge pattern of the neurons and the local field potential (0.7–12 and 12–70 Hz). Based on the results mentioned above, PF activity in PD model rats could be changed by GP-DBS. Thus, the normalization of PF neuronal activity may be a potential mechanism for GP-DBS in the treatment of PD; these findings lay the foundation for PD treatment strategies.
Collapse
Affiliation(s)
- Jinlu Xie
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tingting He
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hengya Zhu
- Department of Neurology, Huzhou Central Hospital, Affiliated Center Hospital of Huzhou University, Huzhou, China
| | - Tingyu Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Chongbin Liu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Hong Shen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tao Li
- Department of Physical Education, Kyungnam University, Changwon, South Korea
- *Correspondence: Tao Li,
| |
Collapse
|
42
|
Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol 2022; 13:945836. [PMID: 36120297 PMCID: PMC9479130 DOI: 10.3389/fphar.2022.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets. Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD). The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated. The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA. The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eliud Morales Dávila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Arana Del Carmen
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Aguilera
- Departament de Bioquímica i de Biologia Molecular, Facultad de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Ilhuicamina Daniel Limón, ,
| |
Collapse
|
43
|
Vegas-Suárez S, Morera-Herreras T, Requejo C, Lafuente JV, Moratalla R, Miguélez C, Ugedo L. Motor cortico-nigral and cortico-entopeduncular information transmission and its modulation by buspirone in control and after dopaminergic denervation. Front Pharmacol 2022; 13:953652. [PMID: 36133803 PMCID: PMC9483552 DOI: 10.3389/fphar.2022.953652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical information is transferred to the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), the output structures of the basal ganglia (BG), through three different pathways: the hyperdirect trans-subthalamic and the direct and indirect trans-striatal pathways. The nigrostriatal dopamine (DA) and the activation of 5-HT1A receptors, distributed all along the BG, may modulate cortical information transmission. We aimed to investigate the effect of buspirone (5-HT1A receptor partial agonist) and WAY-100635 (5-HT1A receptor antagonist) on cortico-nigral and cortico-entopeduncular transmission in normal and DA loss conditions. Herein, simultaneous electrical stimulation of the motor cortex and single-unit extracellular recordings of SNr or EP neurons were conducted in urethane-anesthetized sham and 6-hydroxydopamine (6-OHDA)-lesioned rats before and after drug administrations. Motor cortex stimulation evoked monophasic, biphasic, or triphasic responses, combination of an early excitation, an inhibition, and a late excitation in both the SNr and EP, while an altered pattern of evoked response was observed in the SNr after 6-OHDA lesion. Systemic buspirone potentiated the direct cortico-SNr and cortico-EP transmission in sham animals since increased duration of the inhibitory response was observed. In DA denervated animals, buspirone administration enhanced early excitation amplitude in the cortico-SNr transmission. In both cases, the observed effects were mediated via a 5-HT1A-dependent mechanism as WAY-100635 administration blocked buspirone's effect. These findings suggest that in control condition, buspirone potentiates direct pathway transmission and DA loss modulates responses related to the hyperdirect pathway. Overall, the results may contribute to understanding the role of 5-HT1A receptors and DA in motor cortico-BG circuitry functionality.
Collapse
Affiliation(s)
- Sergio Vegas-Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Catalina Requejo
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Cristina Miguélez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
44
|
Orth L, Meeh J, Gur RC, Neuner I, Sarkheil P. Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Front Hum Neurosci 2022; 16:933718. [PMID: 36092647 PMCID: PMC9449529 DOI: 10.3389/fnhum.2022.933718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Synergistic effect of serotonin 1A and serotonin 1B/D receptor agonists in the treatment of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Exp Neurol 2022; 358:114209. [PMID: 35988699 DOI: 10.1016/j.expneurol.2022.114209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The gold standard for symptomatic relief of Parkinson's disease (PD) is L-DOPA. However, long-term treatment often leads to motor complications such as L-DOPA-induced dyskinesia (LID). While amantadine (Gocovri™) is the only approved therapy for dyskinesia in PD patients on the American market, it is associated with neurological side effects and limited efficacy. Thus, there remains a high unmet need for addressing LID in PD patients worldwide. OBJECTIVE The objective of this study was to evaluate the efficacy, safety and performance compared to approved treatments of the serotonin receptor 1A (5-HT1A) and 5-HT1B/D agonists buspirone and zolmitriptan in the 6-hydroxydopamine unilaterally lesioned rat model for PD. METHODS The hemiparkinsonian 6-OHDA-lesioned rats underwent chronic treatment with L-DOPA to induce dyskinesia and were subsequently used for efficacy testing of buspirone, zolmitriptan and comparison with amantadine, measured as abnormal involuntary movement (AIM) scores after L-DOPA challenge. Safety testing was performed in model and naïve animals using forelimb adjusting, rotarod and open field tests. RESULTS 5-HT1A and 5-HT1B/D agonism effectively reduced AIM scores in a synergistic manner. The drug combination of buspirone and zolmitriptan was safe and did not lead to tolerance development following sub-chronic administration. Head-to-head comparison with amantadine showed superior performance of buspirone and zolmitriptan in the model. CONCLUSIONS The strong anti-dyskinetic effect found with combined 5-HT1A and 5-HT1B/D agonism renders buspirone and zolmitriptan together a meaningful treatment for LID in PD.
Collapse
|
46
|
Madadi Asl M, Asadi A, Enayati J, Valizadeh A. Inhibitory Spike-Timing-Dependent Plasticity Can Account for Pathological Strengthening of Pallido-Subthalamic Synapses in Parkinson's Disease. Front Physiol 2022; 13:915626. [PMID: 35665225 PMCID: PMC9160312 DOI: 10.3389/fphys.2022.915626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with dysfunction of the basal ganglia (BG) circuitry. Dopamine (DA) depletion in experimental PD models leads to the pathological strengthening of pallido-subthalamic synaptic connections, contributing to the emergence of abnormally synchronized neuronal activity in the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN). Augmented GPe-STN transmission following loss of DA was attributed to heterosynaptic plasticity mechanisms induced by cortico-subthalamic inputs. However, synaptic plasticity may play a role in this process. Here, by employing computational modeling we show that assuming inhibitory spike-timing-dependent plasticity (iSTDP) at pallido-subthalamic synapses can account for pathological strengthening of pallido-subthalamic synapses in PD by further promoting correlated neuronal activity in the GPe-STN network. In addition, we show that GPe-STN transmission delays can shape bistable activity-connectivity states due to iSTDP, characterized by strong connectivity and strong synchronized activity (pathological states) as opposed to weak connectivity and desynchronized activity (physiological states). Our results may shed light on how abnormal reshaping of GPe-STN connectivity by synaptic plasticity during parkinsonism is related to the PD pathophysiology and contribute to the development of therapeutic brain stimulation techniques targeting plasticity-induced rewiring of network connectivity.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Atefeh Asadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Jamil Enayati
- Physics Department, College of Education, University of Garmian, Kalar, Iraq
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
47
|
Alavi SM, Mirzaei A, Valizadeh A, Ebrahimpour R. Excitatory deep brain stimulation quenches beta oscillations arising in a computational model of the subthalamo-pallidal loop. Sci Rep 2022; 12:7845. [PMID: 35552409 PMCID: PMC9098470 DOI: 10.1038/s41598-022-10084-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is associated with abnormal \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β band oscillations (13–30 Hz) in the cortico-basal ganglia circuits. Abnormally increased striato-pallidal inhibition and strengthening the synaptic coupling between subthalamic nucleus (STN) and globus pallidus externa (GPe), due to the loss of dopamine, are considered as the potential sources of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations in the basal ganglia. Deep brain stimulation (DBS) of the basal ganglia subregions is known as a way to reduce the pathological \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations and motor deficits related to PD. Despite the success of the DBS, its underlying mechanism is poorly understood and, there is controversy about the inhibitory or excitatory role of the DBS in the literature. Here, we utilized a computational network model of basal ganglia which consists of STN, GPe, globus pallidus interna, and thalamic neuronal population. This model can reproduce healthy and pathological \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations similar to what has been observed in experimental studies. Using this model, we investigated the effect of DBS to understand whether its effect is excitatory or inhibitory. Our results show that the excitatory DBS is able to quench the pathological synchrony and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations, while, applying inhibitory DBS failed to quench the PD signs. In light of simulation results, we conclude that the effect of the DBS on its target is excitatory.
Collapse
Affiliation(s)
- Seyed Mojtaba Alavi
- Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Alireza Valizadeh
- Department of Physics, Institute for Advance Studies in Basic Sciences (IASBS), Zanjan, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Reza Ebrahimpour
- Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran. .,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
48
|
Sanmartino F, Cruz-Gómez ÁJ, Rashid-López R, Lozano-Soto E, López-Sosa F, Zuazo A, Riqué-Dormido J, Espinosa-Rosso R, González-Rosa JJ. Subthalamic Beta Activity in Parkinson's Disease May Be Linked to Dorsal Striatum Gray Matter Volume and Prefrontal Cortical Thickness: A Pilot Study. Front Neurol 2022; 13:799696. [PMID: 35401426 PMCID: PMC8985754 DOI: 10.3389/fneur.2022.799696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive oscillations at beta frequencies (13–35 Hz) in the subthalamic nucleus (STN) represent a pathophysiological hallmark of Parkinson's disease (PD), which correlates well with parkinsonian symptoms and is reduced in response to standard disease treatments. However, the association of disease-specific regional gray matter (GM) atrophy or cortical thickness (CT) with the presence of STN beta oscillatory activity has been poorly investigated but is of relevance given the potential of these variables for extracting information about PD pathophysiology. This exploratory study investigated the involvement of regional GM volume and CT in the basal ganglia-cortical network and its potential association with the presence of STN beta oscillatory activity in PD. Methods We acquired preoperative GM densities on T1-weighted magnetic resonance imaging scans and we carried out regional estimation of GM volume and CT. LFP activities from the STN were recorded post-operatively in 7 cognitively preserved PD patients off dopaminergic medication undergoing deep-brain stimulation surgery. Oscillatory beta power was determined by power spectral density of 4-min resting state STN LFP activity. Spearman partial correlations and regression analysis were used to screen the presence of STN beta power for their relationship with GM volume and CT measurements. Results After controlling for the effects of age, educational level, and disease duration, and after correcting for multiple testing, enhanced STN beta power showed significant and negative correlations between, first, volume of the right putamen and left caudate nucleus, and second, smaller CT in frontal regions involving the left rostral middle frontal gyrus (MFG) and left medial orbitofrontal gyrus. A lower volume in the right putamen and a lower CT in the left MFG demonstrated the strongest associations with increased STN beta power. Conclusions These tentative results seem to suggest that STN LFP beta frequencies may be mainly linked to different but ongoing parallel neurodegenerative processes, on the one hand, to GM volume reduction in dorsal striatum, and on the other hand, to CT reduction of prefrontal-“associative” regions. These findings could further delineate the brain structural interactions underpinning the exaggerated STN beta activity commonly observed in PD patients.
Collapse
Affiliation(s)
- Florencia Sanmartino
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Álvaro J Cruz-Gómez
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Raúl Rashid-López
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain.,Department of Neurology, Puerta del Mar University Hospital, Cádiz, Spain
| | - Elena Lozano-Soto
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Fernando López-Sosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Amaya Zuazo
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cádiz, Spain
| | - Jesús Riqué-Dormido
- Department of Neurosurgery, Puerta del Mar University Hospital, Cádiz, Spain
| | - Raúl Espinosa-Rosso
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain.,Department of Neurology, Puerta del Mar University Hospital, Cádiz, Spain.,Department of Neurology, Jerez de la Frontera University Hospital, Jerez de la Frontera, Spain
| | - Javier J González-Rosa
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| |
Collapse
|
49
|
The Origin of Abnormal Beta Oscillations in the Parkinsonian Corticobasal Ganglia Circuits. PARKINSON'S DISEASE 2022; 2022:7524066. [PMID: 35251590 PMCID: PMC8896962 DOI: 10.1155/2022/7524066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with motor and nonmotor symptoms. Exaggerated beta band (15–30 Hz) neuronal oscillations are widely observed in corticobasal ganglia (BG) circuits during parkinsonism. Abnormal beta oscillations have been linked to motor symptoms of PD, but their exact relationship is poorly understood. Nevertheless, reduction of beta oscillations can induce therapeutic effects in PD patients. While it is widely believed that the external globus pallidus (GPe) and subthalamic nucleus (STN) are jointly responsible for abnormal rhythmogenesis in the parkinsonian BG, the role of other cortico-BG circuits cannot be ignored. To shed light on the origin of abnormal beta oscillations in PD, here we review changes of neuronal activity observed in experimental PD models and discuss how the cortex and different BG nuclei cooperate to generate and stabilize abnormal beta oscillations during parkinsonism. This may provide further insights into the complex relationship between abnormal beta oscillations and motor dysfunction in PD, which is crucial for potential target-specific therapeutic interventions in PD patients.
Collapse
|
50
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|