1
|
Ibork H, Ait Lhaj Z, Boualam K, El Idrissi S, B Ortaakarsu A, Hajji L, Manalo Morgan A, Khallouki F, Taghzouti K, Abboussi O. Cannabidiol-Rich Cannabis sativa L. Extract Alleviates LPS-Induced Neuroinflammation Behavioral Alterations, and Astrocytic Bioenergetic Impairment in Male Mice. J Neurosci Res 2025; 103:e70035. [PMID: 40195769 DOI: 10.1002/jnr.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Neuroinflammation is a hallmark of various neurodegenerative disorders, yet effective treatments remain limited. This study investigates the neuroprotective potential of a cannabidiol (CBD)-Rich Cannabis sativa L. (CS) extract in a lipopolysaccharide (LPS)-induced neuroinflammation mouse model. The effects on anxiety-like behavior, cognitive function, and locomotor activity were assessed using behavioral tests (open field, elevated plus maze, novel object recognition, and Morris water maze). Antioxidant activity was measured by assaying glutathione (GSH) levels and lipid peroxidation by-products (TBARs). Anti-inflammatory properties were evaluated using quantitative reverse transcription polymerase chain reaction (QRt-PCR) for proinflammatory cytokines (IL-6 and TNF-α), glial fibrillary acidic protein (GFAP), and cannabinoid receptor 1 (CB1) mRNAs in the prefrontal cortex (PFC). Astrocytic bioenergetics were analyzed using extracellular flux assays. Additionally, computational inference with a deep learning approach was conducted to evaluate the synergistic interactions among CS phytocompounds on the CB1 receptors. Compared with synthetic CBD, the CS extract (20.0 mg/kg) demonstrated superior efficacy in mitigating LPS-induced anxiety-like behavior, cognitive deficits, and locomotor impairments. It also significantly mitigated oxidative stress (increased GSH, reduced TBARs) and suppressed proinflammatory cytokines and GFAP mRNAs, indicating potent anti-inflammatory properties. The extract modulated CB1 receptor expression and preserved metabolic homeostasis in cortical astrocytes, preventing their shift from glycolysis to oxidative phosphorylation under neuroinflammatory conditions. Computational modeling highlighted conformational changes in CB1 receptor residues induced by Delta-9-THC that enhanced CBD binding. These findings underscore the potential of CS extract as a therapeutic candidate for managing neuroinflammation and its associated neurodegenerative consequences, warranting further clinical exploration.
Collapse
Affiliation(s)
- Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakaria Ait Lhaj
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Khadija Boualam
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmet B Ortaakarsu
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Lhoussain Hajji
- Bioactives, Health and Environmental Laboratory, Epigenetics Research Team, Moulay Ismail University, Meknes, Morocco
| | | | - Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Biology Department, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Pagonabarraga J, Bejr-Kasem H, Martinez-Horta S, Kulisevsky J. Parkinson disease psychosis: from phenomenology to neurobiological mechanisms. Nat Rev Neurol 2024; 20:135-150. [PMID: 38225264 DOI: 10.1038/s41582-023-00918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Parkinson disease (PD) psychosis (PDP) is a spectrum of illusions, hallucinations and delusions that are associated with PD throughout its disease course. Psychotic phenomena can manifest from the earliest stages of PD and might follow a continuum from minor hallucinations to structured hallucinations and delusions. Initially, PDP was considered to be a complication associated with dopaminergic drug use. However, subsequent research has provided evidence that PDP arises from the progression of brain alterations caused by PD itself, coupled with the use of dopaminergic drugs. The combined dysfunction of attentional control systems, sensory processing, limbic structures, the default mode network and thalamocortical connections provides a conceptual framework to explain how new incoming stimuli are incorrectly categorized, and how aberrant hierarchical predictive processing can produce false percepts that intrude into the stream of consciousness. The past decade has seen the publication of new data on the phenomenology and neurobiological basis of PDP from the initial stages of the disease, as well as the neurotransmitter systems involved in PDP initiation and progression. In this Review, we discuss the latest clinical, neuroimaging and neurochemical evidence that could aid early identification of psychotic phenomena in PD and inform the discovery of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Helena Bejr-Kasem
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saul Martinez-Horta
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Bottiroli S, Greco R, Franco V, Zanaboni A, Palmisani M, Vaghi G, Sances G, De Icco R, Tassorelli C. Peripheral Endocannabinoid Components and Lipid Plasma Levels in Patients with Resistant Migraine and Co-Morbid Personality and Psychological Disorders: A Cross-Sectional Study. Int J Mol Sci 2024; 25:1893. [PMID: 38339171 PMCID: PMC10855606 DOI: 10.3390/ijms25031893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Resistant migraine characterizes those patients who have failed at least three classes of migraine prophylaxis. These difficult-to-treat patients are likely to be characterized by a high prevalence of psychological disturbances. A dysfunction of the endocannabinoid system (ECS), including alteration in the levels of endocannabinoid congeners, may underlie several psychiatric disorders and the pathogenesis of migraines. Here we explored whether the peripheral gene expression of major components of the ECS and the plasma levels of endocannabinoids and related lipids are associated with psychological disorders in resistant migraine. Fifty-one patients (age = 46.0 ± 11.7) with resistant migraine received a comprehensive psychological evaluation according to the DSM-5 criteria. Among the patients, 61% had personality disorders (PD) and 61% had mood disorders (MD). Several associations were found between these psychological disorders and peripheral ECS alterations. Lower plasma levels of palmitoiletanolamide (PEA) were found in the PD group compared with the non-PD group. The MD group was characterized by lower mRNA levels of diacylglycerol lipase α (DAGLα) and CB2 (cannabinoid-2) receptor. The results suggest the existence of peripheral dysfunction in some components of the ECS and an alteration in plasma levels of PEA in patients with resistant migraine and mood or personality disorders.
Collapse
Affiliation(s)
- Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Valentina Franco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Annamaria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Michela Palmisani
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Grazia Sances
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| |
Collapse
|
5
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
6
|
Türkoğlu Ö, Ertuğrul A. The Role of Cannabis in the Development of Psychosis. TURK PSIKIYATRI DERGISI = TURKISH JOURNAL OF PSYCHIATRY 2024; 35:234-244. [PMID: 39224996 PMCID: PMC11375744 DOI: 10.5080/u27122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cannabis is known to cause psychotic disorders, and the increasing use of cannabis constitutes an important health problem. Growing evidence that cannabis causes the development of psychosis has led to an increase in the number of studies in this field. This review aims to clarify the role of cannabis use in the development of psychosis, discuss the current literature about the underlying neurobiological mechanisms. For this purpose PubMed was searched for the keywords "cannabis use, psychosis, schizophrenia, endocannabinoid system, pathophysiology, neurobiology"; the articles published in the last 10 years were reviewed. Epidemiological studies showed that cannabis use starting at an earlier age is associated with an increased risk of psychosis, this risk is more pronounced in people with genetic predisposition and increases with heavy and high potency cannabis use. Studies showed that the endocannabinoid system, which plays a role in nervous system development and functions as a homeostatic regulator in physiological processes, is affected by cannabis use during critical periods of development like adolescence; cannabis use affects physiological processes such as synaptic pruning due to the effects of this system on neurotransmitters like glutamate and dopamine leading to long-term behavioral and psychological consequences. Additionally, evidence that dysfunctions in the endocannabinoid system play a role in the etiology of schizophrenia suggests that cannabis affects the disease process by worsening existing dysfunctions in this system. Understanding the relationship between cannabis use and the development of psychosis and underlying neurobiological mechanisms will help to identify new treatment targets, and develop appropriate preventive approaches. Keywords: Cannabis Abuse, Psychotic Disorders, Schizophrenia, Endocannabinoids, Neurobiology.
Collapse
|
7
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
8
|
Rogers CI, Pacanowski CR. The relationship between cannabis and anorexia nervosa: a scoping review. J Eat Disord 2023; 11:186. [PMID: 37858278 PMCID: PMC10585887 DOI: 10.1186/s40337-023-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Relapse rates in Anorexia Nervosa (AN) remain high, warranting exploration of further treatments. Cannabinoid agonists are of interest as they have shown successful outcomes in the treatment of associated conditions, such as post-traumatic stress disorder. This scoping review explores the endocannabinoid system (ECS), benefits/harms/null effects of cannabinoid treatment, and harms of cannabis use in AN. METHODS PubMed, PsycINFO, Cochrane, and Web of Science were searched for studies published between 2010 and August 2023, with human participants that explored the ECS, cannabinoid treatment, or cannabis use, and included 1 or more keywords for both cannabis and AN in the title and or abstract. Reports describing secondary anorexia, reports not available in English, grey literature, reports combining data from AN with other conditions, and reports only reporting the prevalence of cannabis abuse/dependence were excluded. Data were extracted from 17 reports (n = 15 studies). For the ECS, outcomes included genetics such as allele expression related to the ECS, cannabinoid receptor availability, and circulating levels of endocannabinoids. For benefits/harms/null effects of cannabinoid treatment, outcomes included changes in weight, eating disorder (ED) symptoms, physical activity (PA), and hormones. For harms of cannabis use, outcomes included genetics related to cannabis use disorder and associations between cannabis use and ED symptoms. RESULTS Eight studies (n = 8 reports) found abnormalities in the ECS in AN including expression of related alleles, genotypes, and haplotypes, availability of cannabinoid receptors, and levels of endocannabinoids. Three studies (n = 5 reports) found benefits/harms/null effects of cannabinoid treatment. Benefits included weight gain, improved ED symptoms and reduced PA, while null effects included no changes in weight or ED symptoms, and harms included increased PA and lowered adipose hormones. Four studies (n = 4 reports) expanded upon harms of cannabis use, including genetic predispositions to cannabis use disorder, and compensatory behaviors related to cannabis use. CONCLUSION Limited evidence suggests that abnormalities in the ECS in AN may render cannabis a potential treatment for weight restoration and associated symptoms. Future research may wish to investigate individualized dosing approaches to maximize beneficial effects while minimizing harms. Level II Evidence: Scoping Review.
Collapse
Affiliation(s)
- Chloe I Rogers
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, Delaware, USA.
| | - Carly R Pacanowski
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Castelli V, Lavanco G, D’Amico C, Feo S, Tringali G, Kuchar M, Cannizzaro C, Brancato A. CBD enhances the cognitive score of adolescent rats prenatally exposed to THC and fine-tunes relevant effectors of hippocampal plasticity. Front Pharmacol 2023; 14:1237485. [PMID: 37583903 PMCID: PMC10424934 DOI: 10.3389/fphar.2023.1237485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Cesare D’Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Omran GA, Abd Allah ESH, Mohammed SA, El Shehaby DM. Behavioral, biochemical and histopathological toxic profiles induced by sub-chronic cannabimimetic WIN55, 212-2 administration in mice. BMC Pharmacol Toxicol 2023; 24:8. [PMID: 36750905 PMCID: PMC9906926 DOI: 10.1186/s40360-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
WIN55, 212-2 mesylate is a synthetic cannabinoid (SC) agonist of CB1 and CB2 receptors with much higher affinity to CB1 receptor than tetrahydrocannabinol and many potential therapeutic effects. Few studies have evaluated SCs effects on more complex animal behavior and sex differences in cannabinoids toxicology. The current study was undertaken for determination of behavioral (Open Field test), biochemical (liver and kidney function test plus GABA & Glutamate levels), histopathological and CB1 immunohistochemistry risks of sub-chronic administration of SC WIN55, 212-2 mesylate in male and female mice. A total of 40 healthy adult mice were randomly divided into four groups (5 mice each): a negative control group, a vehicle group, a low dose (0.05 mg/kg) group and a high dose group (0.1 mg/kg) for each gender.Open Field Test revealed dose and gender-dependent anxiogenic effect with reduced locomotor activity in both sexes especially the higher doses with female mice being less compromised. GABA and glutamate levels increased significantly in both dose groups compared to controls alongside female mice versus males. No significant biochemical alterations were found in all groups with minimal histopathological changes. The CB1 receptors immunohistochemistry revealed a significant increase in the number of CB1 positive neurons in both low and high dose groups against controls with higher expression in female brains.ConclusionsThere were sexual dimorphism effects induced by sub-chronic exposure to WIN55, 212-2 with lesser female mice affection and dose-dependent influences.
Collapse
Affiliation(s)
- Ghada A. Omran
- grid.252487.e0000 0000 8632 679XForensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman S. H. Abd Allah
- grid.252487.e0000 0000 8632 679XMedical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sherine Ahmed Mohammed
- grid.412659.d0000 0004 0621 726XMedical Histology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Doaa M. El Shehaby
- grid.252487.e0000 0000 8632 679XForensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence. Int J Mol Sci 2022; 24:ijms24010698. [PMID: 36614142 PMCID: PMC9820805 DOI: 10.3390/ijms24010698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The regular use of cannabis during adolescence has been associated with a number of negative life outcomes, including psychopathology and cognitive impairments. However, the exact molecular mechanisms that underlie these outcomes are just beginning to be understood. Moreover, very little is known about the spatio-temporal molecular changes that occur following cannabinoid exposure in adolescence. To understand these changes, we exposed mid-adolescent male rats to a synthetic cannabinoid (WIN 55,212-2 mesylate; WIN) and, following drug abstinence through late adolescence, we subjected the synaptosomal fractions of the prefrontal cortex (PFC) to proteomic analyses. A total of N = 487 differentially expressed proteins were found in WIN-exposed animals compared to controls. Gene ontology analyses revealed enrichment of terms related to the gamma-aminobutyric acid (GABA)-ergic neurotransmitter system. Among the top differentially expressed proteins was the synaptic Ras GTPase-activating protein 1 (SYNGAP1). Using Western blotting experiments, we found that the WIN-induced upregulation of SYNGAP1 was spatio-temporal in nature, arising only in the synaptosomal fractions (not in the cytosol) and only following prolonged drug abstinence (not on abstinence day 1). Moreover, the SYNGAP1 changes were found to be specific to WIN-exposure in adolescence and not adulthood. Adolescent animals exposed to a natural cannabinoid (Δ9-tetrahydrocannabinol; THC) were also found to have increased levels of SYNGAP1 in the PFC. THC exposure also led to a pronounced upregulation of SYNGAP1 in the amygdala, but without any changes in the dorsal striatum, hippocampus, or nucleus accumbens. To our knowledge, this is the first study to uncover a link between cannabinoid exposure and changes in SYNGAP1 that are spatio-temporal and developmental in nature. Future studies are needed to investigate the putative role of SYNGAP1 in the negative behavioral consequences of cannabis use in adolescence.
Collapse
|
13
|
Hernández-Hernández E, García-Fuster MJ. Dose-Dependent Antidepressant-Like Effects of Cannabidiol in Aged Rats. Front Pharmacol 2022; 13:891842. [PMID: 35847003 PMCID: PMC9283859 DOI: 10.3389/fphar.2022.891842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aging predisposes to late-life depression and since antidepressants are known to change their efficacy with age, novel treatment options are needed for our increased aged population. In this context, the goal of the present study was to evaluate the potential antidepressant-like effect of cannabidiol in aged rats. For this purpose, 19–21-month-old Sprague–Dawley rats were treated for 7 days with cannabidiol (dose range: 3–30 mg/kg) and scored under the stress of the forced-swim test. Hippocampal cannabinoid receptors and cell proliferation were evaluated as potential molecular markers underlying cannabidiol’s actions. The main results of the present study demonstrated that cannabidiol exerted a dose-dependent antidepressant-like effect in aged rats (U-shaped, effective at the intermediate dose of 10 mg/kg as compared to the other doses tested), without affecting body weight. None of the molecular markers analyzed in the hippocampus were altered by cannabidiol’s treatment. Overall, this study demonstrated a dose-dependent antidepressant-like response for cannabidiol at this age-window (aged rats up to 21 months old) and in line with other studies suggesting a beneficial role for this drug in age-related behavioral deficits.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - M. Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- *Correspondence: M. Julia García-Fuster,
| |
Collapse
|
14
|
Cannabinoid CB1 Receptor Involvement in the Actions of CBD on Anxiety and Coping Behaviors in Mice. Pharmaceuticals (Basel) 2022; 15:ph15040473. [PMID: 35455470 PMCID: PMC9027088 DOI: 10.3390/ph15040473] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The anxiolytic and antidepressant properties of cannabidiol (CBD) have been evaluated in several studies. However, the molecular mechanisms involved in these actions remain unclear. A total of 130 male mice were used. CBD’s ability to modulate emotional disturbances (anxiety and depressive-like behaviors) was evaluated at different doses in wild-type (CD1; 10, 20 and 30 mg/kg; i.p.) and knockout (CB1KO, CB2KO; GPR55KO; 20 mg/kg) mice. Moreover, CBD effects (20 mg/kg; i.p.) were evaluated in mice previously treated with the CB1r-antagonist SR141716A (2mg/kg; i.p.). Relative gene expression analyses of Cnr1 and Cnr2, Gpr55 and GABA(A)α2 and γ2 receptor subunits were performed in the amygdala (AMY) and hippocampus (HIPP) of CD1 mice. CBD (10 and 20 mg/kg) showed anxiolytic and antidepressant actions in CD1 mice, being more effective at 20 mg/kg. Its administration did not induce anxiolytic actions in CB1KO mice, contrary to CB2KO and GPR55KO. In all of them, the lack of cannabinoid receptors did not modify the antidepressant activity of CBD. Interestingly, the administration of the CB1r antagonist SR141716A blocked the anxiolytic-like activity of CBD. Real-time PCR studies revealed a significant reduction in Cnr1 and GABA(A)α2 and γ2 gene expression in the HIPP and AMY of CD1 mice treated with CBD. Opposite changes were observed in the Cnr2. Indeed, Gpr55 was increased in the AMY and reduced in the HIPP. CB1r appears to play a relevant role in modulating the anxiolytic actions of CBD. Moreover, this study revealed that CBD also modified the gene expression of GABA(A) subunits α2 and γ2 and CB1r, CB2r and GPR55, in a dose- and brain-region-dependent manner, supporting a multimodal mechanism of action for CBD.
Collapse
|
15
|
Vago R, Fiorio F, Trevisani F, Salonia A, Montorsi F, Bettiga A. The Mediterranean Diet as a Source of Bioactive Molecules with Cannabinomimetic Activity in Prevention and Therapy Strategy. Nutrients 2022; 14:468. [PMID: 35276827 PMCID: PMC8839035 DOI: 10.3390/nu14030468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid system is a complex lipid signaling network that has evolved to be a key regulator of pro-homeostatic pathways for the organism. Its involvement in numerous processes has rendered it a very suitable target for pharmacological studies regarding metabolic syndrome, obesity and other lifestyle-related diseases. Cannabinomimetic molecules have been found in a large variety of foods, most of which are normally present in the Mediterranean diet. The majority of these compounds belong to the terpene and polyphenol classes. While it is known that they do not necessarily act directly on the cannabinoid receptors CB1 and CB2, their ability to regulate their expression levels has already been shown in some disease-related models, as well as their ability to modulate the activity of other components of the system. In this review, evidence was gathered to support the idea that phytocannabinoid dietary intake may indeed be a viable strategy for disease prevention and may be helpful in maintaining the health status. In an era where personalized nutrition is becoming more and more a reality, having new therapeutic targets could become an important resource.
Collapse
Affiliation(s)
- Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Fiorio
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Francesco Trevisani
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Arianna Bettiga
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| |
Collapse
|
16
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
17
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
18
|
Hillmer A, Chawar C, Sanger S, D’Elia A, Butt M, Kapoor R, Kapczinski F, Thabane L, Samaan Z. Genetic basis of cannabis use: a systematic review. BMC Med Genomics 2021; 14:203. [PMID: 34384432 PMCID: PMC8359088 DOI: 10.1186/s12920-021-01035-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND With the increase in cannabis use rates, cannabis use disorder is being reported as one of the most common drug use disorders globally. Cannabis use has several known physical, psychological, and social adverse events, such as altered judgement, poor educational outcomes, and respiratory symptoms. The propensity for taking cannabis and the development of a cannabis use disorder may be genetically influenced for some individuals. Heritability estimates suggest a genetic basis for cannabis use, and several genome-wide association studies (GWASs) have identified possible regions of association, albeit with inconsistent findings. This systematic review aims to summarize the findings from GWASs investigating cannabis use and cannabis use disorder. METHODS This systematic review incorporates articles that have performed a GWAS investigating cannabis use or cannabis use disorder. MEDLINE, Web of Science, EMBASE, CINAHL, GWAS Catalog, GWAS Central, and NIH Database of Genotype and Phenotype were searched using a comprehensive search strategy. All studies were screened in duplicate, and the quality of evidence was assessed using the quality of genetic association studies (Q-Genie) tool. All studies underwent qualitative synthesis; however, quantitative analysis was not feasible. RESULTS Our search identified 5984 articles. Six studies met our eligibility criteria and were included in this review. All six studies reported results that met our significance threshold of p ≤ 1.0 × 10-7. In total 96 genetic variants were identified. While meta-analysis was not possible, this review identified the following genes, ANKFN1, INTS7, PI4K2B, CSMD1, CST7, ACSS1, and SCN9A, to be associated with cannabis use. These regions were previously reported in different mental health conditions, however not in relation to cannabis use. CONCLUSION This systematic review summarized GWAS findings within the field of cannabis research. While a meta-analysis was not possible, the summary of findings serves to inform future candidate gene studies and replication efforts. Systematic Review Registration PROSPERO CRD42020176016.
Collapse
Affiliation(s)
- Alannah Hillmer
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Caroul Chawar
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Stephanie Sanger
- Health Science Library, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Alessia D’Elia
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Mehreen Butt
- Integrated Science Program, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Raveena Kapoor
- Michael G. DeGroote School of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Flavio Kapczinski
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Lehana Thabane
- Department of Health Research Method, Evidence and Impact, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Zainab Samaan
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| |
Collapse
|
19
|
Brugnatelli V, Facco E, Zanette G. Lifestyle Interventions Improving Cannabinoid Tone During COVID-19 Lockdowns May Enhance Compliance With Preventive Regulations and Decrease Psychophysical Health Complications. Front Psychiatry 2021; 12:565633. [PMID: 34335317 PMCID: PMC8322115 DOI: 10.3389/fpsyt.2021.565633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
Studies investigating the psychosomatic effects of social isolation in animals have shown that one of the physiologic system that gets disrupted by this environment-affective change is the Endocannabinoid System. As the levels of endocannabinoids change in limbic areas and prefrontal cortex during stressful times, so is the subject more prone to fearful and negative thoughts and aggressive behavior. The interplay of social isolation on the hypothalamic-pituitary-adrenal axis and cannabinoid tone triggers a vicious cycle which further impairs the natural body's homeostatic neuroendocrine levels and provokes a series of risk factors for developing health complications. In this paper, we explore the psychosomatic impact of prolonged quarantine in healthy individuals, and propose management and coping strategies that may improve endocannabinoid tone, such as integration of probiotics, cannabidiol, meditation, and physical exercise interventions with the aim of supporting interpersonal, individual, and professional adherence with COVID-19 emergency public measures whilst minimizing their psycho-physical impact.
Collapse
|
20
|
Dougnon G, Ito M. Essential Oil from the Leaves of Chromolaena odorata, and Sesquiterpene Caryophyllene Oxide Induce Sedative Activity in Mice. Pharmaceuticals (Basel) 2021; 14:ph14070651. [PMID: 34358077 PMCID: PMC8308581 DOI: 10.3390/ph14070651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/17/2022] Open
Abstract
Chromolaena odorata (L.) R.M.King & H.Rob. essential oil (COEO) was investigated for its sedative activity in mice. The results showed that COEO significantly reduced mice locomotor activity and the most efficient concentrations were 0.04 and 0.00004 mg/cage (volume of the cage 61.2L). Analysis of chemical composition of the oil indicated that caryophyllene oxide (43.75%) was the major compound and bioactivity-guided fractionation of the oil was performed to isolate the compound responsible for activity. The data clearly identified sesquiterpene caryophyllene oxide as the compound inducing COEO sedative activity and it was effective in decreasing mice locomotor activity by 56% and 57% at 0.0004 and 0.04 mg/cage, respectively. In order to understand the action mechanisms, caryophyllene oxide was tested for its effects on the central nervous system (CNS) by using a caffeine pre-excited mice test and a pentobarbital sleeping-induced test in mice. The results showed that caryophyllene oxide is a potent CNS depressant. Nevertheless, it fails to potentiate the effects of pentobarbital on the GABAergic system, nor did flumazenil, a GABAA receptor antagonist, reversed its effects. It was especially interesting to note that β-caryophyllene, the precursor of caryophyllene oxide, demonstrated a similar pattern of sedative activity, and the present work further extends actual knowledge on these naturally occurring sesquiterpenes. The findings in this study reveal the new activity of caryophyllene oxide as an innovative way to manage sleep and CNS-related disorders, and demonstrates a satisfactory effect of two interesting sesquiterpene compounds on the CNS.
Collapse
|
21
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
22
|
Ibeas K, Herrero L, Mera P, Serra D. Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation. Biochem Pharmacol 2021; 190:114640. [PMID: 34087244 DOI: 10.1016/j.bcp.2021.114640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
Physical inactivity is a major public health problem that contributes to the development of several pathologies such as obesity, type 2 diabetes and cardiovascular diseases. Regular exercise mitigates the progression of these metabolic problems and contributes positively to memory and behavior. Therefore, public health agencies have incorporated exercise in the treatment of widespread disorders. The hypothalamus, specifically the ventromedial and the arcuate nuclei, responds to exercise activity and modulates energy metabolism through stimulation of the sympathetic nervous system and catecholamine secretion into the circulation. In addition, physical performance enhances cognitive functions and memory, mediated mostly by an increase in brain-derived neurotrophic factor levels in brain. During exercise training, skeletal muscle myofibers remodel their biochemical, morphological and physiological state. Moreover, skeletal muscle interacts with other organs by the release into the circulation of myokines, molecules that exhibit autocrine, paracrine and endocrine functions. Several studies have focused on the role of skeletal muscle and tissues in response to physical activity. However, how the hypothalamus could influence the skeletal muscle task in the context of exercise is less studied. Here, we review recent data about hypothalamus-skeletal muscle crosstalk in response to physical activity and focus on specific aspects such as the neuroendocrinological effects of exercise and the endocrine functions of skeletal muscle, to provide a perspective for future study directions.
Collapse
Affiliation(s)
- Kevin Ibeas
- Regulation of Lipid Metabolism in Obesity and Diabetes, Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Laura Herrero
- Regulation of Lipid Metabolism in Obesity and Diabetes, Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Paula Mera
- Regulation of Lipid Metabolism in Obesity and Diabetes, Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Regulation of Lipid Metabolism in Obesity and Diabetes, Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
23
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Manzanares J. Role of Cannabidiol in the Therapeutic Intervention for Substance Use Disorders. Front Pharmacol 2021; 12:626010. [PMID: 34093179 PMCID: PMC8173061 DOI: 10.3389/fphar.2021.626010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Drug treatments available for the management of substance use disorders (SUD) present multiple limitations in efficacy, lack of approved treatments or alarming relapse rates. These facts hamper the clinical outcome and the quality of life of the patients supporting the importance to develop new pharmacological agents. Lately, several reports suggest that cannabidiol (CBD) presents beneficial effects relevant for the management of neurological disorders such as epilepsy, multiple sclerosis, Parkinson's, or Alzheimer's diseases. Furthermore, there is a large body of evidence pointing out that CBD improves cognition, neurogenesis and presents anxiolytic, antidepressant, antipsychotic, and neuroprotective effects suggesting potential usefulness for the treatment of neuropsychiatric diseases and SUD. Here we review preclinical and clinical reports regarding the effects of CBD on the regulation of the reinforcing, motivational and withdrawal-related effects of different drugs of abuse such as alcohol, opioids (morphine, heroin), cannabinoids, nicotine, and psychostimulants (cocaine, amphetamine). Furthermore, a special section of the review is focused on the neurobiological mechanisms that might be underlying the 'anti-addictive' action of CBD through the regulation of dopaminergic, opioidergic, serotonergic, and endocannabinoid systems as well as hippocampal neurogenesis. The multimodal pharmacological profile described for CBD and the specific regulation of addictive behavior-related targets explains, at least in part, its therapeutic effects on the regulation of the reinforcing and motivational properties of different drugs of abuse. Moreover, the remarkable safety profile of CBD, its lack of reinforcing properties and the existence of approved medications containing this compound (Sativex®, Epidiolex®) increased the number of studies suggesting the potential of CBD as a therapeutic intervention for SUD. The rising number of publications with substantial results on the valuable therapeutic innovation of CBD for treating SUD, the undeniable need of new therapeutic agents to improve the clinical outcome of patients with SUD, and the upcoming clinical trials involving CBD endorse the relevance of this review.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
24
|
Effect of moderate aerobic exercises on symptoms of functional dyspepsia. Indian J Gastroenterol 2021; 40:189-197. [PMID: 34037955 DOI: 10.1007/s12664-021-01174-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Functional dyspepsia (FD) is a commonly encountered entity worldwide and is difficult to treat. Most of the treatment modalities have low-quality evidence for use, except for proton pump inhibitors. Aerobic exercise has been shown to improve the symptoms, but its direct effect on symptoms has never been studied. The objective was to study the effects of moderate aerobic exercise on symptoms of FD and to compare the effect of conventional treatment alone vs. exercise plus conventional treatment. METHODS Out of 112 patients, 72 were randomly divided into controls (conventional treatment; n=36) and experimental (aerobic exercise for 30 min per session, 5 times a week for 6 weeks with conventional treatment; n=36) groups. Both the groups were assessed on day 1 and at the end of 6 weeks, using Glasgow Dyspepsia Severity Score (GDSS), Depression Anxiety Stress Scales-42 (DASS-42), and visual analogue scale (VAS). RESULTS Pre-treatment GDSS, DASS-42, and VAS in the experimental group were significantly different as compared to the post-treatment scores (p=0.00019, p=0.0002, p=0.00019, respectively). Even in the control group, pre- and post-treatment GDSS, DASS-42, and VAS scores were significantly different (p=0.00019, p=0.0002, p=0.00019, respectively). However, on the head-to-head comparison of the 2 groups, scores at the end of 6 weeks were significantly different (p< 0.05), in favor of the experimental group. CONCLUSION Aerobic exercise as an auxiliary therapy to conventional treatment has better outcomes in the functional well-being of dyspepsia.
Collapse
|
25
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2021; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
26
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, Bungau S. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci 2021; 71:2022-2034. [PMID: 33471311 DOI: 10.1007/s12031-020-01774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Depression is a common mental disorder and is the leading cause of suicide globally. Because of the significant diversity in mental disorders, accurate diagnosis is difficult. Hence, the investigation of novel biomarkers is a key research perspective in psychotherapy to enable an individually tailored treatment approach. The prefrontal cortex (PFC) is a vital cortical region whose circuitry has been implicated in the development of depressive disorder. The endocannabinoid system (ECS) has garnered increasing attention because of its involvement in several diverse physiological brain processes including regulation of emotional, motivational and cognitive functions. The current review article explores the function of the key elements of the ECS as a biomarker in depressive disorder. The activity of endocannabinoids is thought to be moderated by the CB1 receptors in the central nervous system (CNS). Variations in the concentration of endocannabinoids and the binding affinity of CB1 receptors and their density have been identified in the PFC of persons with depression. Such discoveries support our theory that alteration in endocannabinoid function leads to the pathophysiological features of depressive disorders. Moreover, evidence from animal and human studies has revealed that dysfunction in endocannabinoid signalling can produce depression-like behaviours; therefore, improvement of endocannabinoid signalling may represent a new therapeutic approach for the management of depressive disorders.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Distt. Shimla, Government College of Pharmacy, Himachal Pradesh, Rohru, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
27
|
Lazary J, Eszlari N, Kriko E, Tozser D, Dome P, Deakin JFW, Juhasz G, Bagdy G. Genetic analyses of the endocannabinoid pathway in association with affective phenotypic variants. Neurosci Lett 2021; 744:135600. [PMID: 33421489 DOI: 10.1016/j.neulet.2020.135600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
BACKGORUND Increasing experimental data confirm the crucial role of the endocannabinoid (eCB) system in the regulation of stress response and emotional processes. Despite of the fact, that genetically determined vulnerability for stress is a widely accepted concept in the pathomechanism of affective disorders, replicable human genetic results with interaction analyses of early life trauma and eCB genes are rare. The aim of this study is to test the associations between genetic variants of the eCB pathway, childhood trauma and affective phenotypes. METHODS We selected 18,897 SNPs in the eCB pathway of a GWAS dataset in two general population cohorts (BP sample N = 837; MN sample N = 988). Association analyses were performed on the anxious and depressive subscales of the Brief Symptom Inventory (BSI-ANX and BSI-DEP, respectively). Childhood trauma was assessed by the Childhood Adversity Questionnaire (CAQ). Association analyses were performed in the R 2.0. statistical program using the SNPassoc package. REULTS Genetic effect was more robust in the BP sample than in the MN sample. The most comprehensive results showed that SNPs in the CACNA1C gene associated with depressive phenotype in interaction with CAQ in both BP (p = 1.2 × 10-4) and MN samples (p = 1.6 × 10-4). Direct association analyses (without interaction) provided significant associations between SNPs in different genesets of the two study populations. SNPs in KCNJ3 and GNB5 genes on the BSI-DEP (p = 6.1 × 10-5; p = 7.1 × 10-4) and GNG12 gene on the BSI-ANX (p = 7.4 × 10-6) in the BP sample, while GABAergic, ADCY1 and HTR2A gene variants can be outlined from results of MN sample with less strong p-values. CONCLUSION Our results confirmed the prominent role of CACNA1C gene in the pathogenic effect of early life stress in the development of affective vulnerability in two different study populations using GxE interaction analysis. CACNA1C gene, as it encodes for L-type voltage-gated calcium channel, contributes to neuronal excitability, plasticity and neurogenesis being a crucial effector of both eCB signaling and the BDNF-CREB pathway as well. Our findings suggest that childhood trauma related depression may have more robust genetically determined basis than without early life stress.
Collapse
Affiliation(s)
- Judit Lazary
- National Institute of Psychiatry and Addictions, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Eszter Kriko
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Hungary
| | - Dora Tozser
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Hungary
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Pinna G. Endocannabinoids and Precision Medicine for Mood Disorders and Suicide. Front Psychiatry 2021; 12:658433. [PMID: 34093274 PMCID: PMC8173054 DOI: 10.3389/fpsyt.2021.658433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Jung T, Hudson R, Rushlow W, Laviolette SR. Functional interactions between cannabinoids, omega-3 fatty acids, and peroxisome proliferator-activated receptors: Implications for mental health pharmacotherapies. Eur J Neurosci 2020; 55:1088-1100. [PMID: 33108021 DOI: 10.1111/ejn.15023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Cannabis contains a plethora of phytochemical constituents with diverse neurobiological effects. Cannabidiol (CBD) is the main non-psychotropic component found in cannabis that is capable of modulating mesocorticolimbic DA transmission and may possess therapeutic potential for several neuropsychiatric disorders. Emerging evidence also suggests that, similar to CBD, omega-3 polyunsaturated fatty acids may regulate DA transmission and possess therapeutic potential for similar neuropsychiatric disorders. Although progress has been made to elucidate the mechanisms underlying the therapeutic properties of CBD and omega-3s, it remains unclear through which receptor mechanisms they may produce their purported effects. Peroxisome proliferator-activated receptors are a group of nuclear transcription factors with multiple isoforms. PPARγ is an isoform activated by both CBD and omega-3, whereas the PPARα isoform is activated by omega-3. Interestingly, the activation of PPARγ and PPARα with selective agonists has been shown to decrease mesocorticolimbic DA activity and block neuropsychiatric symptoms similar to CBD and omega-3s, raising the possibility that CBD and omega-3s produce their effects through PPAR signaling. This review will examine the relationship between CBD, omega-3s, and PPARs and how they may be implicated in the modulation of mesocorticolimbic DAergic abnormalities and associated neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Tony Jung
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
31
|
Gil-Beltrán E, Meneghel I, Llorens S, Salanova M. Get Vigorous with Physical Exercise and Improve Your Well-Being at Work! INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176384. [PMID: 32887334 PMCID: PMC7503999 DOI: 10.3390/ijerph17176384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study is to investigate whether people who exercise regularly have higher levels of psychological well-being at work. Doing physical exercise is a habit that not only has consequences for physical and mental health, but it can also have positive consequences for organizations because physical exercise makes it easier for the employee to recover from physical, mental, and emotional effort during the workday, thus showing higher levels of engagement the next day. Through the analysis of structural equation models in a sample of 485 workers from different Spanish and Latin American companies, this study shows that subjects who exercise more have higher levels of vigor in physical exercise, which is positively related to high levels of well-being at work. This means that organizations that promote activities related to physical exercise among their employees are building a process of resource recovery, which, through the vigor of these activities, makes workers feel less stressed and more satisfied, thus experiencing greater well-being at work. Therefore, at a practical level, these results suggest that the practice of physical exercise is a tool for organizations that want to promote their employees’ psychological well-being.
Collapse
Affiliation(s)
- Ester Gil-Beltrán
- WANT Research Team, Universitat Jaume I, Av. Vicent Sos Baynat, s/n Castellón de la Plana, 12071 Castellón, Spain; (S.L.); (M.S.)
- Correspondence: ; Tel.: +34-964-729571
| | - Isabella Meneghel
- Àrea de Psicologia i Salut Mental, Universitat Internacional de Catalunya, San Cugat del Vallés, 08195 Barcelona, Spain;
| | - Susana Llorens
- WANT Research Team, Universitat Jaume I, Av. Vicent Sos Baynat, s/n Castellón de la Plana, 12071 Castellón, Spain; (S.L.); (M.S.)
| | - Marisa Salanova
- WANT Research Team, Universitat Jaume I, Av. Vicent Sos Baynat, s/n Castellón de la Plana, 12071 Castellón, Spain; (S.L.); (M.S.)
| |
Collapse
|
32
|
Rusconi F, Battaglioli E, Venturin M. Psychiatric Disorders and lncRNAs: A Synaptic Match. Int J Mol Sci 2020; 21:ijms21093030. [PMID: 32344798 PMCID: PMC7246907 DOI: 10.3390/ijms21093030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders represent a heterogeneous class of multifactorial mental diseases whose origin entails a pathogenic integration of genetic and environmental influences. Incidence of these pathologies is dangerously high, as more than 20% of the Western population is affected. Despite the diverse origins of specific molecular dysfunctions, these pathologies entail disruption of fine synaptic regulation, which is fundamental to behavioral adaptation to the environment. The synapses, as functional units of cognition, represent major evolutionary targets. Consistently, fine synaptic tuning occurs at several levels, involving a novel class of molecular regulators known as long non-coding RNAs (lncRNAs). Non-coding RNAs operate mainly in mammals as epigenetic modifiers and enhancers of proteome diversity. The prominent evolutionary expansion of the gene number of lncRNAs in mammals, particularly in primates and humans, and their preferential neuronal expression does represent a driving force that enhanced the layering of synaptic control mechanisms. In the last few years, remarkable alterations of the expression of lncRNAs have been reported in psychiatric conditions such as schizophrenia, autism, and depression, suggesting unprecedented mechanistic insights into disruption of fine synaptic tuning underlying severe behavioral manifestations of psychosis. In this review, we integrate literature data from rodent pathological models and human evidence that proposes the biology of lncRNAs as a promising field of neuropsychiatric investigation.
Collapse
Affiliation(s)
- Francesco Rusconi
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| | | | - Marco Venturin
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| |
Collapse
|
33
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
34
|
Peiró AM, García-Gutiérrez MS, Planelles B, Femenía T, Mingote C, Jiménez-Treviño L, Martínez-Barrondo S, García-Portilla MP, Saiz PA, Bobes J, Manzanares J. Association of cannabinoid receptor genes ( CNR1 and CNR2) polymorphisms and panic disorder. ANXIETY STRESS AND COPING 2020; 33:256-265. [PMID: 32114795 DOI: 10.1080/10615806.2020.1732358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and objectives: Panic disorder (PD) is an anxiety disorder characterized by recurrent and unexpected panic attacks along with sudden onset of apprehension, fear or terror. The endocannabinoid system (ECS) has a role in stress recovery, regulating anxiety. The aim of this study was to analyze potential genetic alterations in key ECS targets in patients suffering from panic disorders.Design and methods: We analyzed single nucleotide polymorphisms (SNPs) of the cannabinoid receptors (CNR1; CNR2) and the endocannabinoid hydrolytic enzyme fatty acid amide hydrolase (FAAH) genes in 164 Spanish PD patients and 320 matched controls.Results: No significant differences were observed in the SNPs of the CNR2 and FAAH genes tested. However, when analyzing genotype-by-sex interaction at A592G (rs2501431) and C315T (rs2501432) in the CNR2 gene, the presence of the G-allele in males was associated with a protective haplotype. Genotyping analysis revealed that variants in CNR1 confer vulnerability to PD, with a significantly increased risk associated with the G-allele (rs12720071) and C-allele (rs806368). This finding was consistent when analyzing genotype-by-sex interaction, where females presented a greater PD risk.Conclusions: Polymorphisms at the CNR1 gene may be a risk factor for PD contributing to sex-specific dysfunction in females.
Collapse
Affiliation(s)
- Ana M Peiró
- Clinical Pharmacology Unit and Neuropharmacology on Pain and Functional Diversity (NED), Department of Health of Alicante - General Hospital, ISABIAL, Alicante, Spain
| | - María S García-Gutiérrez
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain.,Cooperative Networking in Health Research (RETICS-addictive disorders), Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Teresa Femenía
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain
| | | | - Luis Jiménez-Treviño
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Sara Martínez-Barrondo
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - M Paz García-Portilla
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Pilar A Saiz
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Julio Bobes
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Jorge Manzanares
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain.,Cooperative Networking in Health Research (RETICS-addictive disorders), Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
35
|
Ito Y, Tomizawa M, Suzuki K, Shirakawa Y, Ono H, Adachi K, Suzuki H, Shimomura K, Nabeshima T, Kamijima M. Organophosphate Agent Induces ADHD-Like Behaviors via Inhibition of Brain Endocannabinoid-Hydrolyzing Enzyme(s) in Adolescent Male Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2547-2553. [PMID: 31995978 DOI: 10.1021/acs.jafc.9b08195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anticholinergic organophosphate (OP) agents act on the diverse serine hydrolases, thereby revealing unexpected biological effects. Epidemiological studies indicate a relationship between the OP exposure and development of attention-deficit/hyperactivity disorder (ADHD)-like symptoms, whereas no plausible mechanism for the OP-induced ADHD has been established. The present investigation employs ethyl octylphosphonofluoridate (EOPF) as an OP-probe, which is an extremely potent inhibitor of endocannabinoid (EC, anandamide and 2-arachidonoylglycerol)-hydrolyzing enzymes: that is, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). An ex vivo experiment shows that EOPF treatment decreases FAAH and MAGL activities and conversely increases EC levels in the rat brain. Subsequently, EOPF (treated intraperitoneally once at 0, 1, 2, or 3 mg/kg) clearly induces ADHD-like behaviors (in elevated plus-maze test) in both Wistar and spontaneously hypertensive rats. The EOPF-induced behaviors are reduced by a concomitant administration of cannabinoid receptor inverse agonist SLV-319. Accordingly, the EC system is a feasible target for OP-caused ADHD-like behaviors in adolescent rats.
Collapse
Affiliation(s)
- Yuki Ito
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences , Tokyo University of Agriculture , Setakaya , Tokyo 156-8502 , Japan
| | - Kazutaka Suzuki
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Yuichi Shirakawa
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Hiromasa Ono
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Keishi Adachi
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Himiko Suzuki
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Kenji Shimomura
- Department of Chemistry, Faculty of Life Sciences , Tokyo University of Agriculture , Setakaya , Tokyo 156-8502 , Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory , Fujita Health University , Nagoya , Aichi 470-1192 , Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| |
Collapse
|
36
|
The Effect of Combined Aerobic Exercise and Calorie Restriction on Mood, Cognition, and Motor Behavior in Overweight and Obese Women. J Phys Act Health 2020; 17:204-210. [PMID: 31899888 DOI: 10.1123/jpah.2019-0373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/06/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND The benefits of weight loss programs on mood, cognitive, and motor behavior are largely limited to those of calorie restriction or exercise alone. Our aim was to investigate the effect of combined calorie restriction and aerobic exercise intervention on mood, brain activity, and cognitive and motor behavior in overweight and obese women. METHODS Participants aged 36-56 years were randomized to either a control or an experimental group (aerobic exercise + 12.5% energy intake reduction) for a 6-month period. Changes in brain-derived neurotrophic factor levels, mood, prefrontal cortex activity, cognitive and motor performance were assessed. RESULTS Confusion and depression increased in the control group (P < .05), whereas tension decreased in the experimental group (P < .05). Brain-derived neurotrophic factor level and learning of a speed-accuracy task remained unchanged. Although prefrontal cortex activity and executive functions were not affected, the reaction time of visual scanning and associative learning were improved in the experimental group (P < .05). An improvement in reaction time during the speed-accuracy task was observed (P < .05). CONCLUSION Combined calorie restriction and aerobic exercise intervention improved the psychosocial state, had little impact on cognition, and no effect on brain activity and learning of the speed-accuracy task.
Collapse
|
37
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
38
|
Bedse G, Centanni SW, Winder DG, Patel S. Endocannabinoid Signaling in the Central Amygdala and Bed Nucleus of the Stria Terminalis: Implications for the Pathophysiology and Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2014-2027. [PMID: 31373708 PMCID: PMC6779484 DOI: 10.1111/acer.14159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence. In the first part of this 2-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In Part 2, we focus on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics. This review details the recent advances in our understanding of eCB signaling in 2 key regions of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect. Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect. In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.
Collapse
Affiliation(s)
- Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
39
|
Penn A. Cannabinoids and Mental Health, Part 1: The Endocannabinoid System and Exogenous Cannabinoids. J Psychosoc Nurs Ment Health Serv 2019; 57:7-10. [PMID: 31461513 DOI: 10.3928/02793695-20190813-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increasing public acceptance of cannabis and the proliferation of cannabis products in the marketplace has coincided with more patients using the drug as a substitute for psychiatric medications or as an adjunctive treatment modality for psychiatric conditions, despite limited evidence of efficacy. With a goal of furthering harm-reduction efforts in psychiatric nursing, the current article reviews the fundamentals of the endocannabinoid system in humans and the exogenous phytocannabinoids that act on this regulatory neurotransmitter system. The basics of cannabis botany are also reviewed to help nurse clinicians understand the heterogeneous nature of cannabis products. This foundational knowledge will help improve clinical interactions with patients who use cannabis and provide the necessary understanding of cannabinoids needed to undertake further scientific query into their purported benefits in psychiatric disease states. [Journal of Psychosocial Nursing and Mental Health Services, 57(9), 7-10.].
Collapse
|
40
|
Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. Cannabidiol (CBD) use in psychiatric disorders: A systematic review. Neurotoxicology 2019; 74:282-298. [PMID: 31412258 DOI: 10.1016/j.neuro.2019.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/21/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are the most represented phytocannabinoids in Cannabis sativa plants. However, CBD may present with a different activity compared with the psychotomimetic THC. Most typically, CBD is reported to be used in some medical conditions, including chronic pain. Conversely, the main aim of this systematic review is to assess and summarise the available body of evidence relating to both efficacy and safety of CBD as a treatment for psychiatric disorders, alone and/or in combination with other treatments. Eligible studies included randomized controlled trials (RCT) assessing the effect of CBD in a range of psychopathological conditions, such as substance use; psychosis, anxiety, mood disturbances, and other psychiatric (e.g., cognitive impairment; sleep; personality; eating; obsessive-compulsive; post-traumatic stress/PTSD; dissociative; and somatic) disorders. For data gathering purposes, the PRISMA guidelines were followed. The initial search strategy identified some n = 1301 papers; n = 190 studies were included after the abstract's screening and n = 27 articles met the inclusion criteria. There is currently limited evidence regarding the safety and efficacy of CBD for the treatment of psychiatric disorders. However, available trials reported potential therapeutic effects for specific psychopathological conditions, such as substance use disorders, chronic psychosis, and anxiety. Further large-scale RCTs are required to better evaluate the efficacy of CBD in both acute and chronic illnesses, special categories, as well as to exclude any possible abuse liability.
Collapse
Affiliation(s)
| | - Angelo Ricciardi
- Camden and Islington NHS Mental Health Foundation Trust, London, UK; Department of Mental Health, ASL Roma 1, Rome, Italy
| | - Caroline Zangani
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Stefania Chiappini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
41
|
Acevedo-Canabal A, Colón-Cruz L, Rodriguez-Morales R, Varshney GK, Burgess S, González-Sepúlveda L, Yudowski G, Behra M. Altered Swimming Behaviors in Zebrafish Larvae Lacking Cannabinoid Receptor 2. Cannabis Cannabinoid Res 2019; 4:88-101. [PMID: 31236475 PMCID: PMC6590727 DOI: 10.1089/can.2018.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives: The cannabinoid receptor 2 (CB2) was previously implicated in brain functions, including complex behaviors. Here, we assessed the role of CB2 in selected swimming behaviors in zebrafish larvae and developed an in vivo upscalable whole-organism approach for CB2 ligand screening. Experimental Approach: Using CRISPR-Cas9 technology, we generated a novel null allele (cnr2upr1) and a stable homozygote-viable loss-of-function (CB2-KO) line. We measured in untreated wild-type and cnr2upr1/upr1 larvae, photo-dependent (swimming) responses (PDR) and center occupancy (CO) to establish quantifiable anxiety-like parameters. Next, we measured PDR alteration and CO variation while exposing wild-type and mutant animals to an anxiolytic drug (valproic acid [VPA]) or to an anxiogenic drug (pentylenetetrazol [PTZ]). Finally, we treated wild-type and mutant larvae with two CB2-specific agonists (JWH-133 and HU-308) and two CB2-specific antagonists, inverse agonists (AM-630 and SR-144528). Results: Untreated CB2-KO showed a different PDR than wild-type larvae as well as a decreased CO. VPA treatments diminished swimming activity in all animals but to a lesser extend in mutants. CO was strongly diminished and even more in mutants. PTZ-induced inverted PDR was significantly stronger in light and weaker in dark periods and the CO lower in PTZ-treated mutants. Finally, two of four tested CB2 ligands had a detectable activity in the assay. Conclusions: We showed that larvae lacking CB2 behave differently in complex behaviors that can be assimilated to anxiety-like behaviors. Mutant larvae responded differently to VPA and PTZ treatments, providing in vivo evidence of CB2 modulating complex behaviors. We also established an upscalable combined genetic/behavioral approach in a whole organism that could be further developed for high-throughput drug discovery platforms.
Collapse
Affiliation(s)
- Agnes Acevedo-Canabal
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico (MSC-UPR), San Juan, Puerto Rico.,Department of Anatomy and Neurobiology, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Luis Colón-Cruz
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico (MSC-UPR), San Juan, Puerto Rico
| | - Roberto Rodriguez-Morales
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico (MSC-UPR), San Juan, Puerto Rico
| | | | - Shawn Burgess
- National Human Genome Research Institute, NHGRI/NIH, Bethesda, Maryland
| | - Lorena González-Sepúlveda
- Puerto Rico Clinical and Translational Research Consortium, Medical Sciences Campus, University of Puerto Rico (MSC-UPR), San Juan, Puerto Rico
| | - Guillermo Yudowski
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico (MSC-UPR), San Juan, Puerto Rico.,Department of Anatomy and Neurobiology, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Martine Behra
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico (MSC-UPR), San Juan, Puerto Rico
| |
Collapse
|
42
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|
43
|
Pinky PD, Bloemer J, Smith WD, Moore T, Hong H, Suppiramaniam V, Reed MN. Prenatal cannabinoid exposure and altered neurotransmission. Neuropharmacology 2019; 149:181-194. [PMID: 30771373 DOI: 10.1016/j.neuropharm.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 11/26/2022]
Abstract
Marijuana is one of the most commonly used illicit drugs worldwide. In addition, use of synthetic cannabinoids is increasing, especially among adolescents and young adults. Although human studies have shown that the use of marijuana during pregnancy leads to adverse behavioral effects, such as deficiencies in attention and executive function in affected offspring, the rate of marijuana use among pregnant women is steadily increasing. Various aspects of human behavior including emotion, learning, and memory are dependent on complex interactions between multiple neurotransmitter systems that are especially vulnerable to alterations during the developmental period. Thus, exploration of neurotransmitter changes in response to prenatal cannabinoid exposure is crucial to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral deficits manifest following the abuse of marijuana or other synthetic cannabinoids during pregnancy. Current literature confirms that vast alterations to neurotransmitter systems are present following prenatal cannabinoid exposure, and many of these alterations within the brain are region specific, time-dependent, and sexually dimorphic. In this review, we aim to provide a summary of observed changes to various neurotransmitter systems following cannabinoid exposure during pregnancy and to draw possible correlations to reported behavioral alterations in affected offspring.
Collapse
Affiliation(s)
- Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Warren D Smith
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
44
|
Watkins BA. Endocannabinoids, exercise, pain, and a path to health with aging. Mol Aspects Med 2018; 64:68-78. [DOI: 10.1016/j.mam.2018.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
|
45
|
Ismail Z. Dispensary cannabidiol marijuana and first-episode mania. J Psychiatry Neurosci 2018; 43:215-216. [PMID: 29688878 PMCID: PMC5915243 DOI: 10.1503/jpn.180034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Zahinoor Ismail
- From the Mathison Centre for Mental Health Research & Education; Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada
| |
Collapse
|
46
|
Seillier A, Giuffrida A. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release. Neuropharmacology 2018; 130:1-9. [DOI: 10.1016/j.neuropharm.2017.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023]
|
47
|
Shi QX, Yang LK, Shi WL, Wang L, Zhou SM, Guan SY, Zhao MG, Yang Q. The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress. Mol Brain 2017; 10:38. [PMID: 28800762 PMCID: PMC5553743 DOI: 10.1186/s13041-017-0318-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/30/2017] [Indexed: 01/30/2023] Open
Abstract
The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.
Collapse
Affiliation(s)
- Qi-xin Shi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Liu-kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Wen-long Shi
- Department of Pharmacy, The 155th Central Hospital of PLA, Kaifeng, China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shi-meng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shao-yu Guan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
48
|
Essential Oils and Their Constituents: An Alternative Source for Novel Antidepressants. Molecules 2017; 22:molecules22081290. [PMID: 28771213 PMCID: PMC6152054 DOI: 10.3390/molecules22081290] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023] Open
Abstract
Depression is a disease that has affected a high proportion of the world’s population and people of different ages, incapacitating them from good performance at work and in social relationships, and causing emotional disorders to millions of families. Therefore, the search for new therapeutic agents is considered a priority for the discovery of more effective forms of treatment. In this review, studies of essential oils and their constituents in experimental models related to depression are discussed. The mechanisms of action of the oils and the presence of psychoactive constituents in their chemical compositions are discussed. The data in the review show the therapeutic potential of essential oils and their chemical constituents for use in depressive disorders. Advanced studies using humans are needed to confirm the antidepressant properties described in animals.
Collapse
|
49
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
50
|
Marco EM, Ballesta JA, Irala C, Hernández MD, Serrano ME, Mela V, López-Gallardo M, Viveros MP. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav 2017; 152:68-80. [DOI: 10.1016/j.pbb.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023]
|