1
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. BMC Genomics 2024; 25:1240. [PMID: 39716078 DOI: 10.1186/s12864-024-11162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. RESULTS We describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor (TF) CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). CONCLUSION HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David J Waxman
- Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Schot R, Ferraro F, Geeven G, Diderich KEM, Barakat TS. Re-analysis of whole genome sequencing ends a diagnostic odyssey: Case report of an RNU4-2 related neurodevelopmental disorder. Clin Genet 2024; 106:512-517. [PMID: 38859706 DOI: 10.1111/cge.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Despite increasing knowledge of disease-causing genes in human genetics, approximately half of the individuals affected by neurodevelopmental disorders remain genetically undiagnosed. Part of this missing heritability might be caused by genetic variants outside of protein-coding genes, which are not routinely diagnostically investigated. A recent preprint identified de novo variants in the non-coding spliceosomal snRNA gene RNU4-2 as a cause of a frequent novel syndromic neurodevelopmental disorder. Here we mined 164 whole genome sequencing (WGS) trios from individuals with neurodevelopmental or multiple congenital anomaly disorders that received diagnostic genomic investigations at our clinic. We identify a recurrent de novo RNU4-2 variant (NR_003137.2(RNU4-2):n.64_65insT) in a 5-year-old girl with severe global developmental delay, hypotonia, microcephaly, and seizures that likely explains her phenotype, given that extensive previous genetic investigations failed to identify an alternative cause. We present detailed phenotyping of the individual obtained during a 5-year follow-up. This includes photographs showing recognizable facial features for this novel disorder, which might allow prioritizing other currently unexplained affected individuals sharing similar facial features for targeted investigations of RNU4-2. This case illustrates the power of re-analysis to solve previously unexplained cases even when a diagnostic genome remains negative.
Collapse
Affiliation(s)
- Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Geert Geeven
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Rijckmans E, Stouffs K, Jansen AC. Diagnostic work-up in malformations of cortical development. Dev Med Child Neurol 2024; 66:974-989. [PMID: 38394064 DOI: 10.1111/dmcn.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Malformations of cortical development (MCDs) represent a heterogeneous spectrum of disorders characterized by atypical development of the cerebral cortex. MCDs are most often diagnosed on the basis of imaging, although subtle lesions, such as focal cortical dysplasia, may only be revealed on neuropathology. Different subtypes have been defined, including lissencephaly, heterotopia, cobblestone malformation, polymicrogyria, and dysgyria. Many MCDs are of genetic origin, although acquired factors, such as congenital cytomegalovirus infections and twinning sequence, can lead to similar phenotypes. In this narrative review, we provide an overview of the diagnostic approach to MCDs, which is illustrated with clinical vignettes, on diagnostic pitfalls such as somatic mosaicism and consanguinity, and recognizable phenotypes on imaging, such as tubulinopathies, the lissencephaly spectrum, tuberous sclerosis complex, and FLNA-related periventricular nodular heterotopia.
Collapse
Affiliation(s)
- Ellen Rijckmans
- Pediatric Neurology Unit, Department of Pediatrics, KidZ Health Castle, UZ Brussel, Brussels, Belgium
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Pediatric Neurology Unit, Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
- Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. RESEARCH SQUARE 2024:rs.3.rs-4559581. [PMID: 38978599 PMCID: PMC11230509 DOI: 10.21203/rs.3.rs-4559581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Results Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). Conclusions HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
|
6
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598329. [PMID: 38915578 PMCID: PMC11195054 DOI: 10.1101/2024.06.10.598329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Departments of Biology and Biomedical Engineering, and Bioinformatics program, Boston University, Boston, MA 02215
| | - David J Waxman
- Departments of Biology and Biomedical Engineering, and Bioinformatics program, Boston University, Boston, MA 02215
| |
Collapse
|
7
|
Lee ES, Woo J, Shin J, Cha BS, Kim S, Park KS. Tetrahedral DNA nanostructures enhance transcription isothermal amplification for multiplex detection of non-coding RNAs. Biosens Bioelectron 2024; 250:116055. [PMID: 38266617 DOI: 10.1016/j.bios.2024.116055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
This study introduces an innovative detection system for multiple cancer biomarkers, employing transcription isothermal amplification methods in conjunction with a tetrahedral DNA nanostructure (TDN). We demonstrate that TDN enhances various transcription isothermal amplification methods by placing DNA probes in proximity. Notably, the TDN-enhanced split T7 promoter-based isothermal transcription amplification with light-up RNA aptamer (STAR) system stands out for its optimal performance and operational simplicity, especially in identifying non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs). Multiplex detection of lncRNAs was also achieved by generating distinct light-up RNA aptamers, each emitting unique fluorescence signals. The system effectively identified the target lncRNAs, demonstrating high sensitivity and selectivity in both cell lines and clinical samples. The system, utilizing the single enzyme T7 RNA polymerase, can be easily tailored for alternative targets by substituting target-specific sequences in DNA probes and seamlessly integrated with other isothermal amplification methods for greater sensitivity and accuracy in the detection of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Ramakrishnan A, Wangensteen G, Kim S, Nestler EJ, Shen L. DeepRegFinder: deep learning-based regulatory elements finder. BIOINFORMATICS ADVANCES 2024; 4:vbae007. [PMID: 38343388 PMCID: PMC10858349 DOI: 10.1093/bioadv/vbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 06/15/2024]
Abstract
Summary Enhancers and promoters are important classes of DNA regulatory elements (DREs) that govern gene expression. Identifying them at a genomic scale is a critical task in bioinformatics. The DREs often exhibit unique histone mark binding patterns, which can be captured by high-throughput ChIP-seq experiments. To account for the variations and noises among the binding sites, machine learning models are trained on known enhancer/promoter sites using histone mark ChIP-seq data and predict enhancers/promoters at other genomic regions. To this end, we have developed a highly customizable program named DeepRegFinder, which automates the entire process of data processing, model training, and prediction. We have employed convolutional and recurrent neural networks for model training and prediction. DeepRegFinder further categorizes enhancers and promoters into active and poised states, making it a unique and valuable feature for researchers. Our method demonstrates improved precision and recall in comparison to existing algorithms for enhancer prediction across multiple cell types. Moreover, our pipeline is modular and eliminates the tedious steps involved in preprocessing, making it easier for users to apply on their data quickly. Availability and implementation https://github.com/shenlab-sinai/DeepRegFinder.
Collapse
Affiliation(s)
- Aarthi Ramakrishnan
- Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - George Wangensteen
- Department of Computer Science, Brown University, Providence, RI 02912, United States
| | - Sarah Kim
- Cancer Program, Broad Institute, Cambridge, MA 02142, United States
| | - Eric J Nestler
- Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
9
|
Avarlaid A, Esvald E, Koppel I, Parkman A, Zhuravskaya A, Makeyev EV, Tuvikene J, Timmusk T. An 840 kb distant upstream enhancer is a crucial regulator of catecholamine-dependent expression of the Bdnf gene in astrocytes. Glia 2024; 72:90-110. [PMID: 37632136 PMCID: PMC10952894 DOI: 10.1002/glia.24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a fundamental role in the developing and adult nervous system, contributing to neuronal survival, differentiation, and synaptic plasticity. Dysregulation of BDNF synthesis, secretion or signaling has been associated with many neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Although the transcriptional regulation of the Bdnf gene has been extensively studied in neurons, less is known about the regulation and function of BDNF in non-neuronal cells. The most abundant type of non-neuronal cells in the brain, astrocytes, express BDNF in response to catecholamines. However, genetic elements responsible for this regulation have not been identified. Here, we investigated four potential Bdnf enhancer regions and based on reporter gene assays, CRISPR/Cas9 engineering and CAPTURE-3C-sequencing we conclude that a region 840 kb upstream of the Bdnf gene regulates catecholamine-dependent expression of Bdnf in rodent astrocytes. We also provide evidence that this regulation is mediated by CREB and AP1 family transcription factors. This is the first report of an enhancer coordinating the transcription of Bdnf gene in non-neuronal cells.
Collapse
Affiliation(s)
- Annela Avarlaid
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Eli‐Eelika Esvald
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Protobios LLCTallinnEstonia
| | - Indrek Koppel
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Annabel Parkman
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Anna Zhuravskaya
- Centre for Developmental NeurobiologyKing's College LondonLondonUK
| | | | - Jürgen Tuvikene
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Protobios LLCTallinnEstonia
| | - Tõnis Timmusk
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Protobios LLCTallinnEstonia
| |
Collapse
|
10
|
Ali S, Abrar M, Hussain I, Batool F, Raza RZ, Khatoon H, Zoia M, Visel A, Shubin NH, Osterwalder M, Abbasi AA. Identification of ancestral gnathostome Gli3 enhancers with activity in mammals. Dev Growth Differ 2024; 66:75-88. [PMID: 37925606 PMCID: PMC10841732 DOI: 10.1111/dgd.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.
Collapse
Affiliation(s)
- Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Rabail Zehra Raza
- Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences Rawalpindi, Pakistan
| | - Hizran Khatoon
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Matteo Zoia
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Axel Visel
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Marco Osterwalder
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
11
|
Lee HC, Chao HT, Lee SYH, Lin CY, Tsai HJ. The Upstream 1350~1250 Nucleotide Sequences of the Human ENDOU-1 Gene Contain Critical Cis-Elements Responsible for Upregulating Its Transcription during ER Stress. Int J Mol Sci 2023; 24:17393. [PMID: 38139221 PMCID: PMC10744159 DOI: 10.3390/ijms242417393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
ENDOU-1 encodes an endoribonuclease that overcomes the inhibitory upstream open reading frame (uORF)-trap at 5'-untranslated region (UTR) of the CHOP transcript, allowing the downstream coding sequence of CHOP be translated during endoplasmic reticulum (ER) stress. However, transcriptional control of ENDOU-1 remains enigmatic. To address this, we cloned an upstream 2.1 kb (-2055~+77 bp) of human ENDOU-1 (pE2.1p) fused with reporter luciferase (luc) cDNA. The promoter strength driven by pE2.1p was significantly upregulated in both pE2.1p-transfected cells and pE2.1p-injected zebrafish embryos treated with stress inducers. Comparing the luc activities driven by pE2.1p and -1125~+77 (pE1.2p) segments, we revealed that cis-elements located at the -2055~-1125 segment might play a critical role in ENDOU-1 upregulation during ER stress. Since bioinformatics analysis predicted many cis-elements clustered at the -1850~-1250, we further deconstructed this segment to generate pE2.1p-based derivatives lacking -1850~-1750, -1749~-1650, -1649~-1486, -1485~-1350 or -1350~-1250 segments. Quantification of promoter activities driven by these five internal deletion plasmids suggested a repressor binding element within the -1649~-1486 and an activator binding element within the -1350~-1250. Since luc activities driven by the -1649~-1486 were not significantly different between normal and stress conditions, we herein propose that the stress-inducible activator bound at the -1350~-1250 segment makes a major contribution to the increased expression of human ENDOU-1 upon ER stresses.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hsuan-Te Chao
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Selina Yi-Hsuan Lee
- Faculty of Sciences and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
12
|
Johannesen KM, Tümer Z, Weckhuysen S, Barakat TS, Bayat A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023; 64:3143-3154. [PMID: 37750451 DOI: 10.1111/epi.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Edey J, Soleimani-Nouri P, Dawson-Kavanagh A, Imran Azeem MS, Episkopou V. X-linked neuronal migration disorders: Gender differences and insights for genetic screening. Int J Dev Neurosci 2023; 83:581-599. [PMID: 37574439 DOI: 10.1002/jdn.10290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical development depends on neuronal migration of both excitatory and inhibitory interneurons. Neuronal migration disorders (NMDs) are conditions characterised by anatomical cortical defects leading to varying degrees of neurocognitive impairment, developmental delay and seizures. Refractory epilepsy affects 15 million people worldwide, and it is thought that cortical developmental disorders are responsible for 25% of childhood cases. However, little is known about the epidemiology of these disorders, nor are their aetiologies fully understood, though many are associated with sporadic genetic mutations. In this review, we aim to highlight X-linked NMDs including lissencephaly, periventricular nodular heterotopia and polymicrogyria because of their mostly familial inheritance pattern. We focus on the most prominent genes responsible: including DCX, ARX, FLNA, FMR1, L1CAM, SRPX2, DDX3X, NSHDL, CUL4B and OFD1, outlining what is known about their prevalence among NMDs, and the underlying pathophysiology. X-linked disorders are important to recognise clinically, as females often have milder phenotypes. Consequently, there is a greater chance they survive to reproductive age and risk passing the mutations down. Effective genetic screening is important to prevent and treat these conditions, and for this, we need to know gene mutations and have a clear understanding of the function of the genes involved. This review summarises the knowledge base and provides clear direction for future work by both scientists and clinicians alike.
Collapse
Affiliation(s)
- Juliet Edey
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Payam Soleimani-Nouri
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | - Vasso Episkopou
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
14
|
Nakamura-García AK, Espinal-Enríquez J. Pseudogenes in Cancer: State of the Art. Cancers (Basel) 2023; 15:4024. [PMID: 37627052 PMCID: PMC10452131 DOI: 10.3390/cancers15164024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudogenes are duplicates of protein-coding genes that have accumulated multiple detrimental alterations, rendering them unable to produce the protein they encode. Initially disregarded as "junk DNA" due to their perceived lack of functionality, research on their biological roles has been hindered by this assumption. Nevertheless, recent focus has shifted towards these molecules due to their abnormal expression in cancer phenotypes. In this review, our objective is to provide a thorough overview of the current understanding of pseudogene formation, the mechanisms governing their expression, and the roles they may play in promoting tumorigenesis.
Collapse
|
15
|
Lin Q, Tam PKH, Tang CSM. Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Front Pediatr 2023; 11:1203289. [PMID: 37593442 PMCID: PMC10429173 DOI: 10.3389/fped.2023.1203289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic mutations are critical factors leading to congenital surgical diseases and can be identified through genomic analysis. Early and accurate identification of genetic mutations underlying these conditions is vital for clinical diagnosis and effective treatment. In recent years, artificial intelligence (AI) has been widely applied for analyzing genomic data in various clinical settings, including congenital surgical diseases. This review paper summarizes current state-of-the-art AI-based approaches used in genomic analysis and highlighted some successful applications that deepen our understanding of the etiology of several congenital surgical diseases. We focus on the AI methods designed for the detection of different variant types and the prioritization of deleterious variants located in different genomic regions, aiming to uncover susceptibility genomic mutations contributed to congenital surgical disorders.
Collapse
Affiliation(s)
- Qiongfen Lin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr Li Dak-Sum Research Centree, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Bai J, Lin Y, Zhang J, Chen Z, Wang Y, Li M, Li J. Profiling of Chromatin Accessibility in Pigs across Multiple Tissues and Developmental Stages. Int J Mol Sci 2023; 24:11076. [PMID: 37446255 DOI: 10.3390/ijms241311076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The study of chromatin accessibility across tissues and developmental stages is essential for elucidating the transcriptional regulation of various phenotypes and biological processes. However, the chromatin accessibility profiles of multiple tissues in newborn pigs and across porcine liver development remain poorly investigated. Here, we used ATAC-seq and rRNA-depleted RNA-seq to profile open chromatin maps and transcriptional features of heart, kidney, liver, lung, skeletal muscle, and spleen in newborn pigs and porcine liver tissue in the suckling and adult stages, respectively. Specifically, by analyzing a union set of protein-coding genes (PCGs) and two types of transcripts (lncRNAs and TUCPs), we obtained a comprehensive annotation of consensus ATAC-seq peaks for each tissue and developmental stage. As expected, the PCGs with tissue-specific accessible promoters had active transcription and were relevant to tissue-specific functions. In addition, other non-coding tissue-specific peaks were involved in both physical activity and the morphogenesis of neonatal tissues. We also characterized stage-specific peaks and observed a close association between dynamic chromatin accessibility and hepatic function transition during liver postnatal development. Overall, this study expands our current understanding of epigenetic regulation in mammalian tissues and organ development, which can benefit both economic trait improvement and improve the biomedical usage of pigs.
Collapse
Affiliation(s)
- Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyu Chen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Sandhu A, Kumar A, Rawat K, Gautam V, Sharma A, Saha L. Modernising autism spectrum disorder model engineering and treatment via CRISPR-Cas9: A gene reprogramming approach. World J Clin Cases 2023; 11:3114-3127. [PMID: 37274051 PMCID: PMC10237133 DOI: 10.12998/wjcc.v11.i14.3114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
A neurological abnormality called autism spectrum disorder (ASD) affects how a person perceives and interacts with others, leading to social interaction and communication issues. Limited and recurring behavioural patterns are another feature of the illness. Multiple mutations throughout development are the source of the neurodevelopmental disorder autism. However, a well-established model and perfect treatment for this spectrum disease has not been discovered. The rising era of the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system can streamline the complexity underlying the pathogenesis of ASD. The CRISPR-Cas9 system is a powerful genetic engineering tool used to edit the genome at the targeted site in a precise manner. The major hurdle in studying ASD is the lack of appropriate animal models presenting the complex symptoms of ASD. Therefore, CRISPR-Cas9 is being used worldwide to mimic the ASD-like pathology in various systems like in vitro cell lines, in vitro 3D organoid models and in vivo animal models. Apart from being used in establishing ASD models, CRISPR-Cas9 can also be used to treat the complexities of ASD. The aim of this review was to summarize and critically analyse the CRISPR-Cas9-mediated discoveries in the field of ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| |
Collapse
|
18
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. The non-coding genome in Autism Spectrum Disorders. Eur J Med Genet 2023; 66:104752. [PMID: 37023975 DOI: 10.1016/j.ejmg.2023.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's "missing heritability".
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Jabraili M, Moniri-Javadhesari S, Pouladi N, Hosseinpour-Feizi MA. Evaluating the association of rs6983267 polymorphism of the CCAT2 gene with thyroid cancer susceptibility in the Iranian Azeri population. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2023; 12:127-131. [PMID: 37525664 PMCID: PMC10387174 DOI: 10.22099/mbrc.2023.47622.1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system. LncRNAs play critical role in various cellular processes and are associated with several diseases. CCAT2 is a lncRNA molecule overexpressed in thyroid cancer. Single nucleotide polymorphisms in CCAT2 gene can cause changes in the structure and function of CCAT2 transcripts and susceptibility to several diseases. This study aimed to evaluate the association of rs6983267 in CCAT2 gene with thyroid cancer susceptibility in the Azeri population of Iran. In this "case-control" study, genomic DNA was extracted from peripheral blood of 102 individuals affected by thyroid cancer and 103 healthy individuals as controls. Genotyping was performed using TETRA-ARMS polymerase chain reaction. Statistical analysis showed no significant association between genotypes and/or alleles with the occurrence of thyroid cancer in the studied population, patients' gender, and tumor type. Nevertheless, we found that the allelic and genotypic distribution of this SNP was associated with the size of thyroid tumors in patients. It is assumed that investigating more individuals from both case and control group may further determine the genotypic and allelic frequencies of this SNP locus in Iranian-Azeri population.
Collapse
Affiliation(s)
- Masoud Jabraili
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Solmaz Moniri-Javadhesari
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Nasser Pouladi
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | |
Collapse
|
20
|
Griffin A, Mahesh A, Tiwari VK. Disruption of the gene regulatory programme in neurodevelopmental disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194860. [PMID: 36007842 DOI: 10.1016/j.bbagrm.2022.194860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cortical development consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. It is becoming clear that gene expression programs governing these events rely on the interplay between signalling molecules, transcription factors and epigenetic mechanisms. When genetic or environmental factors disrupt expression of genes involved in important brain development processes, neurodevelopmental disorders can occur. This review aims to highlight how recent advances in technologies have helped uncover and imitate the gene regulatory mechanisms commonly disrupted in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
21
|
Rhodes CT, Thompson JJ, Mitra A, Asokumar D, Lee DR, Lee DJ, Zhang Y, Jason E, Dale RK, Rocha PP, Petros TJ. An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Nat Commun 2022; 13:4196. [PMID: 35858915 PMCID: PMC9300614 DOI: 10.1038/s41467-022-31793-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
A comprehensive characterization of epigenomic organization in the embryonic mouse forebrain will enhance our understanding of neurodevelopment and provide insight into mechanisms of neurological disease. Here we collected single-cell chromatin accessibility profiles from four distinct neurogenic regions of the embryonic mouse forebrain using single nuclei ATAC-Seq (snATAC-Seq). We identified thousands of differentially accessible peaks, many restricted to distinct progenitor cell types or brain regions. We integrated snATAC-Seq and single cell transcriptome data to characterize changes of chromatin accessibility at enhancers and promoters with associated transcript abundance. Multi-modal integration of histone modifications (CUT&Tag and CUT&RUN), promoter-enhancer interactions (Capture-C) and high-order chromatin structure (Hi-C) extended these initial observations. This dataset reveals a diverse chromatin landscape with region-specific regulatory mechanisms and genomic interactions in distinct neurogenic regions of the embryonic mouse brain and represents an extensive public resource of a 'ground truth' epigenomic landscape at this critical stage of neurogenesis.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Daniel J Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Eva Jason
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,National Cancer Institute (NCI), NIH, Bethesda, MD, 20982, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, Campbell C, Downes K, Ellard S, Duff-Farrier C, FitzPatrick DR, Greally JM, Ingles J, Krishnan N, Lord J, Martin HC, Newman WG, O'Donnell-Luria A, Ramsden SC, Rehm HL, Richardson E, Singer-Berk M, Taylor JC, Williams M, Wood JC, Wright CF, Harrison SM, Whiffin N. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med 2022; 14:73. [PMID: 35850704 PMCID: PMC9295495 DOI: 10.1186/s13073-022-01073-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts. METHODS We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups. RESULTS We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants. CONCLUSIONS These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.
Collapse
Affiliation(s)
- Jamie M Ellingford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, M13 9PT, UK.
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
- Genomics England, London, UK.
| | - Joo Wook Ahn
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Chris Campbell
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- South West Genomic Laboratory Hub, Exeter Genomic Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Celia Duff-Farrier
- South West NHS Genomic Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic, Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert, Einstein College of Medicine, Bronx, NY, USA
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - William G Newman
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ebony Richardson
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Maggie Williams
- South West NHS Genomic Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Jordan C Wood
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Steven M Harrison
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Nicola Whiffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
23
|
Farrell CM, Goldfarb T, Rangwala SH, Astashyn A, Ermolaeva OD, Hem V, Katz KS, Kodali VK, Ludwig F, Wallin CL, Pruitt KD, Murphy TD. RefSeq Functional Elements as experimentally assayed nongenic reference standards and functional interactions in human and mouse. Genome Res 2022; 32:175-188. [PMID: 34876495 PMCID: PMC8744684 DOI: 10.1101/gr.275819.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recombination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in traditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent experimentally validated human and mouse nongenic elements derived from the literature. The curated data set is comprised of richly annotated sequence records, descriptive records in the NCBI Gene database, reference genome feature annotation, and activity-based interactions between nongenic regions, target genes, and each other. The data set provides succinct functional details and transparent experimental evidence, leverages data from multiple experimental sources, is readily accessible and adaptable, and uses a flexible data model. The data have multiple uses for basic functional discovery, bioinformatics studies, genetic variant interpretation; as known positive controls for epigenomic data evaluation; and as reference standards for functional interactions. Comparisons to other gene regulatory data sets show that the RefSeqFE data set includes a wider range of feature types representing more areas of biology, but it is comparatively smaller and subject to data selection biases. RefSeqFEs thus provide an alternative and complementary resource for experimentally assayed functional elements, with future data set growth expected.
Collapse
Affiliation(s)
- Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Sanjida H Rangwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Alexander Astashyn
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Olga D Ermolaeva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Vichet Hem
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kenneth S Katz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Frank Ludwig
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Craig L Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
24
|
Liu Y, Henkel J, Beaurepaire A, Evans JD, Neumann P, Huang Q. Comparative genomics suggests local adaptations in the invasive small hive beetle. Ecol Evol 2021; 11:15780-15791. [PMID: 34824789 PMCID: PMC8601931 DOI: 10.1002/ece3.8242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Invasive species are a major driver of ecological and environmental changes that affect human health, food security, and natural biodiversity. The success and impact of biological invasions depend on adaptations to novel abiotic and biotic selective pressures. However, the molecular mechanisms underlying adaptations in invasive parasitic species are inadequately understood. Small hive beetles, Aethina tumida, are parasites of bee nests. Originally endemic to sub-Saharan Africa, they are now found nearly globally. Here, we investigated the molecular bases of the adaptations to novel environments underlying their invasion routes. Genomes of historic and recent adults A. tumida from both the endemic and introduced ranges were compared. Analysis of gene-environment association identified 3049 candidate loci located in 874 genes. Functional annotation showed a significant bias toward genes linked to growth and reproduction. One of the genes from the apoptosis pathway encodes an "ecdysone-related protein," which is a crucial regulator in controlling body size in response to environmental cues for holometabolous insects during cell death and renewal. Genes whose proteins regulate organ size, ovary activation, and oviposition were also detected. Functions of these enriched pathways parallel behavioral differences between introduced and native A. tumida populations, which may reflect patterns of local adaptation. The results considerably improve our understanding of the underlying mechanisms and ecological factors driving adaptations of invasive species. Deep functional investigation of these identified loci will help clarify the mechanisms of local adaptation in A. tumida.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Jan Henkel
- Vetsuisse FacultyInstitute of GeneticsUniversity of BernBernSwitzerland
| | - Alexis Beaurepaire
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Jay D. Evans
- USDA‐ARS Beltsville Bee Research LaboratoryBeltsvilleMarylandUSA
| | - Peter Neumann
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
- AgroscopeSwiss Bee Research CentreBernSwitzerland
| | - Qiang Huang
- Honeybee Research InstituteJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
25
|
Nair VD, Vasoya M, Nair V, Smith GR, Pincas H, Ge Y, Douglas CM, Esser KA, Sealfon SC. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics 2021; 113:3827-3841. [PMID: 34547403 DOI: 10.1016/j.ygeno.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Chromatin accessibility is a key factor influencing gene expression. We optimized the Omni-ATAC-seq protocol and used it together with RNA-seq to investigate cis-regulatory elements in rat white adipose and skeletal muscle, two tissues with contrasting metabolic functions. While promoter accessibility correlated with RNA expression, integration of the two datasets identified tissue-specific differentially accessible regions (DARs) that predominantly localized in intergenic and intron regions. DARs were mapped to differentially expressed (DE) genes enriched in distinct biological processes in each tissue. Randomly selected DE genes were validated by qPCR. Top enriched motifs in DARs predicted binding sites for transcription factors (TFs) showing tissue-specific up-regulation. The correlation between differential chromatin accessibility at a given TF binding motif and differential expression of target genes further supported the functional relevance of that motif. Our study identified cis-regulatory regions that likely play a major role in the regulation of tissue-specific gene expression in adipose and muscle.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishnu Nair
- Department of Computer Sciences, Columbia University, New York, NY 10027, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
The non-coding genome in genetic brain disorders: new targets for therapy? Essays Biochem 2021; 65:671-683. [PMID: 34414418 PMCID: PMC8564736 DOI: 10.1042/ebc20200121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
The non-coding genome, consisting of more than 98% of all genetic information in humans and once judged as ‘Junk DNA’, is increasingly moving into the spotlight in the field of human genetics. Non-coding regulatory elements (NCREs) are crucial to ensure correct spatio-temporal gene expression. Technological advancements have allowed to identify NCREs on a large scale, and mechanistic studies have helped to understand the biological mechanisms underlying their function. It is increasingly becoming clear that genetic alterations of NCREs can cause genetic disorders, including brain diseases. In this review, we concisely discuss mechanisms of gene regulation and how to investigate them, and give examples of non-coding alterations of NCREs that give rise to human brain disorders. The cross-talk between basic and clinical studies enhances the understanding of normal and pathological function of NCREs, allowing better interpretation of already existing and novel data. Improved functional annotation of NCREs will not only benefit diagnostics for patients, but might also lead to novel areas of investigations for targeted therapies, applicable to a wide panel of genetic disorders. The intrinsic complexity and precision of the gene regulation process can be turned to the advantage of highly specific treatments. We further discuss this exciting new field of ‘enhancer therapy’ based on recent examples.
Collapse
|
27
|
Yousefi S, Deng R, Lanko K, Salsench EM, Nikoncuk A, van der Linde HC, Perenthaler E, van Ham TJ, Mulugeta E, Barakat TS. Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Med 2021; 13:162. [PMID: 34663447 PMCID: PMC8524963 DOI: 10.1186/s13073-021-00980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. METHODS Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. RESULTS Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. CONCLUSION This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Zhao Y, Cai H, Zhang Z, Tang J, Li Y. Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data. Nat Commun 2021; 12:5261. [PMID: 34489404 PMCID: PMC8421403 DOI: 10.1038/s41467-021-25534-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Computer Science, McGill University, Montreal, QC, Canada
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | - Huiyu Cai
- Department of Machine Intelligence, Peking University, Beijing, China
| | - Zuobai Zhang
- School of Computer Science, Fudan University, Shanghai, China
| | | | - Yue Li
- School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Gill PS, Clothier JL, Veerapandiyan A, Dweep H, Porter-Gill PA, Schaefer GB. Molecular Dysregulation in Autism Spectrum Disorder. J Pers Med 2021; 11:848. [PMID: 34575625 PMCID: PMC8466026 DOI: 10.3390/jpm11090848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA;
| | - Jeffery L. Clothier
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Aravindhan Veerapandiyan
- Pediatric Neurology, Arkansas Children’s Hospital, 1 Children’s Way, Little Rock, AR 72202, USA;
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA;
| | | | - G. Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Genetics and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Hospital NW, Springdale, AR 72762, USA
| |
Collapse
|
30
|
Monfils K, Barakat TS. Models behind the mystery of establishing enhancer-promoter interactions. Eur J Cell Biol 2021; 100:151170. [PMID: 34246183 DOI: 10.1016/j.ejcb.2021.151170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
Enhancers and promoters are transcriptional regulatory elements whose facilitated interactions increase gene expression. Enhancer DNA sequences can be located far away from the promoter sequences that they regulate. Currently, the mechanism facilitating the establishment of enhancer-promoter interactions remains unclear. However, mutations causing errors in these interactions have been linked to cancer and disease, further conveying the need to understand the full mechanism. This review discusses multiple models that have been proposed to describe how enhancers go the distance to interact with promoters. Evidence supporting loop formation models is reviewed in addition to more complex hypotheses involving aspects of 3D chromatin organization and phase separation.
Collapse
Affiliation(s)
- Kathryn Monfils
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
31
|
Chaudhuri T, Chintalapati J, Hosur MV. Identification of 3'-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients. PLoS One 2021; 16:e0252475. [PMID: 34086756 PMCID: PMC8177469 DOI: 10.1371/journal.pone.0252475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022] Open
Abstract
The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified 1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which 655 are already known to be associated with epilepsy. Large number of variants occur in the 3'-UTR, which is one of the regions involved in the regulation of protein translation through binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the structure-function relationship of the 3'-UTR SNVs that are common to at-least 10 of the 35 patient samples. For the first time we find SNVs exclusively in the 3'-UTR of FGF12, FAR1, NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling reveals that the variant 3'-UTR segments possess altered secondary and tertiary structures which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein (RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding sites, and molecular modeling reveals that, where binding sites are created, the additional miRNAs bind strongly to 3'-UTR of only variant mRNAs. These two factors affect protein production thereby creating an imbalance in the amounts of select proteins in the cell. We suggest that in the absence of missense and nonsense variants, protein-activity imbalances associated with MTLE patients can be caused through 3'-UTR variants in relevant genes by the mechanisms mentioned above. 3'-UTR SNV has already been identified as causative variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the present study, SNV-mediated destruction of miRNA binding site in the 3'-UTR of the gene encoding glutamate receptor subunit, and, interestingly, overexpression of one of this receptor subunit is also associated with Febrile Seizures.
Collapse
Affiliation(s)
- Tanusree Chaudhuri
- Department of Natural Sciences and Engineering, National Institute of Advanced Studies, IISc campus, Bangalore, India
| | - Janaki Chintalapati
- CDAC-Centre for Development of Advanced Computing, Byappanahalli, Bangalore, India
| | | |
Collapse
|
32
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
33
|
Mantsoki A, Parussel K, Joshi A. Identification and Characterisation of Putative Enhancer Elements in Mouse Embryonic Stem Cells. Bioinform Biol Insights 2021; 15:1177932220974623. [PMID: 33623376 PMCID: PMC7876754 DOI: 10.1177/1177932220974623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Enhancer elements control mammalian transcription largely in a cell-type-specific
manner. The genome-wide identification of enhancer elements and their activity
status in a cellular context is therefore fundamental to understanding cell
identity and function. We determined enhancer activity in mouse embryonic stem
(ES) cells using chromatin modifications and characterised their global
properties. Specifically, we first grouped enhancers into 5 groups using
multiple H3K4me1, H3K27ac, and H3K27me3 modification data sets. Active enhancers
(simultaneous presence of H3K4me1 and H3K27ac) were enriched for binding of
pluripotency factors and were found near pluripotency-related genes. Although
both H3K4me1-only and active enhancers were enriched for super-enhancers and a
TATA box like motif, active enhancers were preferentially bound by RNA polII
(s2) and were enriched for bidirectional transcription, while H3K4me1-only
enhancers were enriched for RNA polII (8WG16) suggesting they were likely
poised. Bivalent enhancers (simultaneous presence of H3K4me1 and H3K27me3) were
preferentially in the vicinity of bivalent genes. They were enriched for binding
of components of polycomb complex as well as Tcf3 and Oct4. Moreover, a
‘CTTTCTC’ de-novo motif was enriched at bivalent enhancers, previously
identified at bivalent promoters in ES cells. Taken together, 3 histone
modifications successfully demarcated active, bivalent, and poised enhancers
with distinct sequence and binding features.
Collapse
Affiliation(s)
- Anna Mantsoki
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Karla Parussel
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Anagha Joshi
- Computational Biology Unit, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
34
|
Eleftheriadou M, Medici-van den Herik E, Stuurman K, van Bever Y, Hellebrekers DMEI, van Slegtenhorst M, Ruijter G, Barakat TS. Isobutyryl-CoA dehydrogenase deficiency associated with autism in a girl without an alternative genetic diagnosis by trio whole exome sequencing: A case report. Mol Genet Genomic Med 2021; 9:e1595. [PMID: 33432785 PMCID: PMC8077115 DOI: 10.1002/mgg3.1595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Background Isobutyryl‐CoA dehydrogenase (IBD) is a mitochondrial enzyme catalysing the third step in the degradation of the essential branched‐chain amino acid valine and is encoded by ACAD8. ACAD8 mutations lead to isobutyryl‐CoA dehydrogenase deficiency (IBDD), which is identified by increased C4‐acylcarnitine levels. Affected individuals are either asymptomatic or display a variety of symptoms during infancy, including speech delay, cognitive impairment, failure to thrive, hypotonia, and emesis. Methods Here, we review all previously published IBDD patients and describe a girl diagnosed with IBDD who was presenting with autism as the main disease feature. Results To assess whether a phenotype‐genotype correlation exists that could explain the development or absence of clinical symptoms in IBDD, we compared CADD scores, in silico mutation predictions, LoF tolerance scores and C4‐acylcarnitine levels between symptomatic and asymptomatic individuals. Statistical analysis of these parameters did not establish significant differences amongst both groups. Conclusion As in our proband, trio whole exome sequencing did not establish an alternative secondary genetic diagnosis for autism, and reported long‐term follow‐up of IBDD patients is limited, it is possible that autism spectrum disorders could be one of the disease‐associated features. Further long‐term follow‐up is suggested in order to delineate the full clinical spectrum associated with IBDD.
Collapse
Affiliation(s)
- Maria Eleftheriadou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Kyra Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - George Ruijter
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Lambert JT, Su-Feher L, Cichewicz K, Warren TL, Zdilar I, Wang Y, Lim KJ, Haigh JL, Morse SJ, Canales CP, Stradleigh TW, Castillo Palacios E, Haghani V, Moss SD, Parolini H, Quintero D, Shrestha D, Vogt D, Byrne LC, Nord AS. Parallel functional testing identifies enhancers active in early postnatal mouse brain. eLife 2021; 10:69479. [PMID: 34605404 PMCID: PMC8577842 DOI: 10.7554/elife.69479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/02/2021] [Indexed: 01/07/2023] Open
Abstract
Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.
Collapse
Affiliation(s)
- Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Linda Su-Feher
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Iva Zdilar
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Yurong Wang
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Kenneth J Lim
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Jessica L Haigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Sarah J Morse
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tyler W Stradleigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Erika Castillo Palacios
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Viktoria Haghani
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Spencer D Moss
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Hannah Parolini
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diana Quintero
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diwash Shrestha
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Grand Rapids Research Center, Michigan State UniversityGrand RapidsUnited States
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States,Departments of Ophthalmology and Neurobiology, University of PittsburghPittsburghUnited States
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| |
Collapse
|
36
|
Web-Based Bioinformatics Approach Towards Analysis of Regulatory Sequences. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Barish S, Barakat TS, Michel BC, Mashtalir N, Phillips JB, Valencia AM, Ugur B, Wegner J, Scott TM, Bostwick B, Murdock DR, Dai H, Perenthaler E, Nikoncuk A, van Slegtenhorst M, Brooks AS, Keren B, Nava C, Mignot C, Douglas J, Rodan L, Nowak C, Ellard S, Stals K, Lynch SA, Faoucher M, Lesca G, Edery P, Engleman KL, Zhou D, Thiffault I, Herriges J, Gass J, Louie RJ, Stolerman E, Washington C, Vetrini F, Otsubo A, Pratt VM, Conboy E, Treat K, Shannon N, Camacho J, Wakeling E, Yuan B, Chen CA, Rosenfeld JA, Westerfield M, Wangler M, Yamamoto S, Kadoch C, Scott DA, Bellen HJ. BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms. Am J Hum Genet 2020; 107:1096-1112. [PMID: 33232675 PMCID: PMC7820627 DOI: 10.1016/j.ajhg.2020.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Brittany C Michel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nazar Mashtalir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology Program, Harvard University, Cambridge, MA 02138, USA
| | - Berrak Ugur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeremy Wegner
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Tiana M Scott
- Department of Microbiology and Molecular Biology, College of Life Science, Brigham Young University, Provo, UT 84602, USA
| | - Brett Bostwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, 75006 Paris, France
| | - Caroline Nava
- APHP Sorbonne Université, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, 75006 Paris, France
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, 75006 Paris, France
| | - Jessica Douglas
- Department of Pediatrics, Boston Children's at Waltham, Waltham, MA 02453, USA
| | - Lance Rodan
- Department of Pediatrics, Boston Children's at Waltham, Waltham, MA 02453, USA
| | - Catherine Nowak
- Department of Pediatrics, Boston Children's at Waltham, Waltham, MA 02453, USA
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin D12 N512, Ireland
| | - Marie Faoucher
- Department of Medical Genetics, Lyon University Hospital, Université Claude bernard Lyon 1, Lyon 69100, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude bernard Lyon 1, Lyon 69100, France
| | - Patrick Edery
- Department of Medical Genetics, Lyon University Hospital, Université Claude bernard Lyon 1, Lyon 69100, France
| | - Kendra L Engleman
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Dihong Zhou
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Isabelle Thiffault
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - John Herriges
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Jennifer Gass
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Raymond J Louie
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Elliot Stolerman
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Camerun Washington
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Francesco Vetrini
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Aiko Otsubo
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Victoria M Pratt
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Erin Conboy
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Kayla Treat
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Nora Shannon
- Regional Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Jose Camacho
- Pediatric Genetics and Metabolism, Loma Linda University Children's Hospital, Loma Linda, CA 92354, USA
| | - Emma Wakeling
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Monte Westerfield
- Department of Biology, University of Oregon, Eugene, OR 97403, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|
39
|
Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat Rev Neurol 2020; 16:674-688. [PMID: 33077944 DOI: 10.1038/s41582-020-0409-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Over the last decade, advances in genetics, neuroimaging and EEG have enabled the aetiology of epilepsy to be identified earlier in the disease course than ever before. At the same time, progress in the study of experimental models of epilepsy has provided a better understanding of the mechanisms underlying the condition and has enabled the identification of therapies that target specific aetiologies. We are now witnessing the impact of these advances in our daily clinical practice. Thus, now is the time for a paradigm shift in epilepsy treatment from a reactive attitude, treating patients after the onset of epilepsy and the initiation of seizures, to a proactive attitude that is more broadly integrated into a 'P4 medicine' approach. This P4 approach, which is personalized, predictive, preventive and participatory, puts patients at the centre of their own care and, ultimately, aims to prevent the onset of epilepsy. This aim will be achieved by adapting epilepsy treatments not only to a given syndrome but also to a given patient and moving from the usual anti-seizure treatments to personalized treatments designed to target specific aetiologies. In this Review, we present the current state of this ongoing revolution, emphasizing the impact on clinical practice.
Collapse
|
40
|
Wojcik MH, Agrawal PB. Deciphering congenital anomalies for the next generation. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005504. [PMID: 32826208 PMCID: PMC7552931 DOI: 10.1101/mcs.a005504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Congenital anomalies are common, with 2%-3% of infants estimated to have at least one major congenital malformation and countless others with minor malformations of lesser cosmetic or medical importance. As congenital malformations are major drivers of morbidity and mortality, representing the leading cause of infant mortality in the United States, there is substantial interest in understanding the underlying etiologies-particularly if modifiable causes may be identified or pre- or postnatal treatments can be offered. Recent research has begun to reveal the spectrum of monogenic disorders that commonly result in birth defects, and newer approaches have revealed non-Mendelian genetic contributions including gene-environment interactions. Our experience suggests that increased efforts to sequence and analyze cases of perinatal death, as well as continued global collaboration, will be essential in understanding the genomic landscape of structural anomalies.
Collapse
Affiliation(s)
- Monica H Wojcik
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet Med 2020; 23:34-46. [PMID: 32973355 PMCID: PMC7790743 DOI: 10.1038/s41436-020-00974-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of novel sequencing technologies has greatly improved the identification of structural variation, revealing that a human genome harbors tens of thousands of structural variants (SVs). Since these SVs primarily impact noncoding DNA sequences, the next challenge is one of interpretation, not least to improve our understanding of human disease etiology. However, this task is severely complicated by the intricacy of the gene regulatory landscapes embedded within these noncoding regions, their incomplete annotation, as well as their dependence on the three-dimensional (3D) conformation of the genome. Also in the context of neurodevelopmental disorders (NDDs), reports of putatively causal, noncoding SVs are accumulating and understanding their impact on transcriptional regulation is presenting itself as the next step toward improved genetic diagnosis.
Collapse
|
42
|
Loesch R, Chenane L, Colnot S. ARID2 Chromatin Remodeler in Hepatocellular Carcinoma. Cells 2020; 9:cells9102152. [PMID: 32977645 PMCID: PMC7598172 DOI: 10.3390/cells9102152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin remodelers are found highly mutated in cancer including hepatocellular carcinoma. These mutations frequently occur in ARID (AT-rich Interactive Domain) genes, encoding subunits of the ATP-dependent SWI/SNF remodelers. The increasingly prevalent complexity that surrounds the functions and specificities of the highly modular BAF (BG1/BRM-associated factors) and PBAF (polybromo-associated BAF) complexes, including ARID1A/B or ARID2, is baffling. The involvement of the SWI/SNF complexes in diverse tissues and processes, and especially in the regulation of gene expression, multiplies the specific outcomes of specific gene alterations. A better understanding of the molecular consequences of specific mutations impairing chromatin remodelers is needed. In this review, we summarize what we know about the tumor-modulating properties of ARID2 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Robin Loesch
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
| | - Linda Chenane
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
| | - Sabine Colnot
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
43
|
International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nat Rev Neurol 2020; 16:618-635. [PMID: 32895508 PMCID: PMC7790753 DOI: 10.1038/s41582-020-0395-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
Collapse
|
44
|
Spreafico R, Soriaga LB, Grosse J, Virgin HW, Telenti A. Advances in Genomics for Drug Development. Genes (Basel) 2020; 11:E942. [PMID: 32824125 PMCID: PMC7465049 DOI: 10.3390/genes11080942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Drug development (target identification, advancing drug leads to candidates for preclinical and clinical studies) can be facilitated by genetic and genomic knowledge. Here, we review the contribution of population genomics to target identification, the value of bulk and single cell gene expression analysis for understanding the biological relevance of a drug target, and genome-wide CRISPR editing for the prioritization of drug targets. In genomics, we discuss the different scope of genome-wide association studies using genotyping arrays, versus exome and whole genome sequencing. In transcriptomics, we discuss the information from drug perturbation and the selection of biomarkers. For CRISPR screens, we discuss target discovery, mechanism of action and the concept of gene to drug mapping. Harnessing genetic support increases the probability of drug developability and approval.
Collapse
Affiliation(s)
| | | | | | | | - Amalio Telenti
- Vir Biotechnology, Inc., San Francisco, CA 94158, USA; (R.S.); (L.B.S.); (J.G.); (H.W.V.)
| |
Collapse
|
45
|
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of severe, early onset epilepsies characterized by refractory seizures, developmental delay or regression associated with ongoing epileptic activity, and generally poor prognosis. DEE is genetically and phenotypically heterogeneous, and there is a plethora of genetic testing options to investigate the rapidly growing list of epilepsy genes. However, more than 50% of patients with DEE remain without a genetic diagnosis despite state-of-the-art genetic testing. In this review, we discuss the major advances in epilepsy genomics that have surfaced in recent years. The goal of this review is to reach a larger audience and build a better understanding of pathogenesis and genetic testing options in DEE.
Collapse
Affiliation(s)
- Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
46
|
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol 2020; 139:415-442. [PMID: 31820119 PMCID: PMC7035241 DOI: 10.1007/s00401-019-02109-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Collapse
Affiliation(s)
- Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Woutje M Berdowski
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ivan Capo
- Department for Histology and Embryology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Darija Putar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mehrnaz Ghazvini
- iPS Cell Core Facility, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Walter G de Valk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | | | | | | | - Amna Al Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Renjith Mani
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohammad Doosti
- Department Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | | | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, and College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | | | - Mohammed A AlMuhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Wafa Qubbaj
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khaled O Alahmadi
- Radiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Muddathir H A Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Salem Alwadaee
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khalid Awartani
- Obstetrics/Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Anas M Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Futwan Almohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Murat Gunel
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Gouri Rao Passi
- Department of Pediatrics, Pediatric Neurology Clinic, Choithram Hospital and Research Centre, Indore, Madhya Pradesh, India
| | - Huma Arshad Cheema
- Pediatric Gastroenterology Department, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|