1
|
Lai KO, Wong JH, Tham N, Fairley L, Naik RR, Wang Y, Langley SR, Barron AM. Age-Dependent Regulation of Hippocampal Inflammation by the Mitochondrial Translocator Protein in Mice. Aging Cell 2025:e70039. [PMID: 40275629 DOI: 10.1111/acel.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
The mitochondrial translocator protein (TSPO) is a biomarker of inflammation associated with neurodegenerative diseases, widely regarded to be upregulated in the aging brain. Here we investigated the interaction between aging and TSPO immunomodulatory function in the mouse hippocampus, a region severely affected in Alzheimer's Disease (AD). Surprisingly, we found that TSPO levels were decreased in brain innate immune populations in aging. Aging resulted in a reversal of TSPO knockout transcriptional signatures following inflammatory insult. TSPO deletion drastically exacerbated inflammatory transcriptional responses in the aging hippocampus, while dampening inflammation in the young hippocampus. This age-dependent effect of TSPO was linked to NF-kβ and interferon regulatory transcriptional networks. Drugs that disrupt the cell cycle and induce DNA damage, such as heat shock protein and topoisomerase inhibitors, were identified to mimic the inflammatory transcriptional signature characterizing aging in TSPO knockout mice most closely. These findings indicate that TSPO plays a protective role in brain aging. This TSPO-aging interaction is an important consideration in the interpretation of TSPO-targeted biomarker and therapeutic studies, as well as in vitro studies that cannot model the aging brain.
Collapse
Affiliation(s)
- Kei Onn Lai
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Hui Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Nevin Tham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Lauren Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Roshan Ratnakar Naik
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Singapore Phenome Centre, Nanyang Technological University, Singapore, Singapore
| | | | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Singh A, Shim P, Naeem S, Rahman S, Lutfy K. Pituitary adenylyl cyclase-activating polypeptide modulates the stress response: the involvement of different brain areas and microglia. Front Psychiatry 2025; 15:1495598. [PMID: 39931196 PMCID: PMC11807976 DOI: 10.3389/fpsyt.2024.1495598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025] Open
Abstract
Stress is necessary for survival. However, chronic unnecessary stress exposure leads to cardiovascular, gastrointestinal and neuropsychiatric disorders. Thus, understanding the mechanisms involved in the initiation and maintenance of the stress response is essential since it may reveal the underpinning pathophysiology of these disorders and may aid in the development of medication to treat stress-mediated diseases. Pituitary adenylyl cyclase activating polypeptide (PACAP) and its receptors (PAC1, VPAC1 and VPAC2) are expressed in the hypothalamus and other brain areas as well as in the adrenal gland. Previous research has shown that this peptide/receptor system serves as a modulator of the stress response. In addition to modulating the stress response, this system may also be connected to its emerging role as neuroprotective against hypoxia, ischemia, and neurodegeneration. This article aims to review the literature regarding the role of PACAP and its receptors in the stress response, the involvement of different brain regions and microglia in PACAP-mediated modulation of the stress response, and the long-term adaptation to stress recognizable clinically as survival with resilience while manifested in anxiety, depression and other neurobehavioral disorders.
Collapse
Affiliation(s)
- Anika Singh
- College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Paul Shim
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Sadaf Naeem
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
3
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Cola RB, Niethammer SN, Rajamannar P, Gresch A, Bhat MA, Assoumou K, Williams ET, Hauck P, Hartrampf N, Benke D, Stoeber M, Levkowitz G, Melzer S, Patriarchi T. Probing PAC1 receptor activation across species with an engineered sensor. eLife 2024; 13:RP96496. [PMID: 39145773 PMCID: PMC11326774 DOI: 10.7554/elife.96496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.
Collapse
Affiliation(s)
- Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Salome N Niethammer
- Medical University of Vienna, Center for Brain Research, Department for Neuronal Cell Biology, Vienna, Austria
| | - Preethi Rajamannar
- Department of Molecular Neuroscience & Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Kevin Assoumou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Patrick Hauck
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Gil Levkowitz
- Department of Molecular Neuroscience & Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melzer
- Medical University of Vienna, Center for Brain Research, Department for Neuronal Cell Biology, Vienna, Austria
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Zhang HL, Sun Y, Wu ZJ, Yin Y, Liu RY, Zhang JC, Zhang ZJ, Yau SY, Wu HX, Yuan TF, Zhang L, Adzic M, Chen G. Hippocampal PACAP signaling activation triggers a rapid antidepressant response. Mil Med Res 2024; 11:49. [PMID: 39044298 PMCID: PMC11265467 DOI: 10.1186/s40779-024-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.
Collapse
Affiliation(s)
- Hai-Lou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang-Jie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rui-Yi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, 999077, China
| | - Suk-Yu Yau
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hao-Xin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai, 200030, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Miroslav Adzic
- "Vinča" Institute of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001, Belgrade, Serbia
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China.
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. Eur J Psychotraumatol 2024; 15:2335793. [PMID: 38590134 PMCID: PMC11005872 DOI: 10.1080/20008066.2024.2335793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging.Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure.Results: Higher PACAP levels were associated with greater EC NDI (β = 0.0099, q = 0.032) and lower EC ODI (β = -0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures.Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD.
Collapse
Affiliation(s)
- Steven J. Granger
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Sydney A. Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A. Olson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cameron D. Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos P. Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caitlin Ravichandran
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - William A. Carlezon
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kerry J. Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L. Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M. Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Muscat SM, Butler MJ, Bettes MN, DeMarsh JW, Scaria EA, Deems NP, Barrientos RM. Post-operative cognitive dysfunction is exacerbated by high-fat diet via TLR4 and prevented by dietary DHA supplementation. Brain Behav Immun 2024; 116:385-401. [PMID: 38145855 PMCID: PMC10872288 DOI: 10.1016/j.bbi.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Dong LG, An MQ, Gu HY, Zhang LG, Zhang JB, Li CJ, Mao CJ, Wang F, Liu CF. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson's disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 2023; 44:2418-2431. [PMID: 37563446 PMCID: PMC10692161 DOI: 10.1038/s41401-023-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.
Collapse
Affiliation(s)
- Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| |
Collapse
|
9
|
Wan X, Xiao J, Tam SST, Cai M, Sugimura R, Wang Y, Wan X, Lin Z, Wu AR, Yang C. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope. Nat Commun 2023; 14:7848. [PMID: 38030617 PMCID: PMC10687049 DOI: 10.1038/s41467-023-43629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
The rapid emergence of spatial transcriptomics (ST) technologies is revolutionizing our understanding of tissue spatial architecture and biology. Although current ST methods, whether based on next-generation sequencing (seq-based approaches) or fluorescence in situ hybridization (image-based approaches), offer valuable insights, they face limitations either in cellular resolution or transcriptome-wide profiling. To address these limitations, we present SpatialScope, a unified approach integrating scRNA-seq reference data and ST data using deep generative models. With innovation in model and algorithm designs, SpatialScope not only enhances seq-based ST data to achieve single-cell resolution, but also accurately infers transcriptome-wide expression levels for image-based ST data. We demonstrate SpatialScope's utility through simulation studies and real data analysis from both seq-based and image-based ST approaches. SpatialScope provides spatial characterization of tissue structures at transcriptome-wide single-cell resolution, facilitating downstream analysis, including detecting cellular communication through ligand-receptor interactions, localizing cellular subtypes, and identifying spatially differentially expressed genes.
Collapse
Affiliation(s)
- Xiaomeng Wan
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jiashun Xiao
- Shenzhen Research Institute of Big Data, Shenzhen, 518172, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Mingxuan Cai
- Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China
| | - Ryohichi Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Yang Wang
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Big Data Bio-Intelligence Lab, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiang Wan
- Shenzhen Research Institute of Big Data, Shenzhen, 518172, China
| | - Zhixiang Lin
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Can Yang
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Big Data Bio-Intelligence Lab, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
10
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
11
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294894. [PMID: 37693514 PMCID: PMC10491384 DOI: 10.1101/2023.08.31.23294894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been reported. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analysis), and EC (secondary analysis) using Neurite Orientation Dispersion and Density Imaging. Methods Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion- weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure. Results Higher PACAP levels in blood were associated with greater EC NDI (β=0.31, q=0.034) and lower EC ODI (β=-0.30, q=0.042) and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures. Conclusions Circulating PACAP levels were associated with altered neuronal density of the EC but not hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal- associated memory circuits.
Collapse
|
12
|
Muscat SM, Butler MJ, Mackey-Alfonso SE, Barrientos RM. Young adult and aged female rats are vulnerable to amygdala-dependent, but not hippocampus-dependent, memory impairment following short-term high-fat diet. Brain Res Bull 2023; 195:145-156. [PMID: 36870621 PMCID: PMC10257807 DOI: 10.1016/j.brainresbull.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1β was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1β and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sabrina E Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
14
|
Riser M, Norrholm SD. Pituitary Adenylate Cyclase Activating Peptide and Post-traumatic Stress Disorder: From Bench to Bedside. Front Psychiatry 2022; 13:861606. [PMID: 35865299 PMCID: PMC9295898 DOI: 10.3389/fpsyt.2022.861606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with isoforms consisting of either 27 or 38 amino acids. PACAP is encoded by the adenylate cyclase activating peptide gene, ADCYAP1, in humans and the highly conserved corresponding rodent gene, Adcyap1. PACAP is known to regulate cellular stress responses in mammals. PACAP is robustly expressed in both central nervous system (CNS) and peripheral tissues. The activity of PACAP and its selective receptor, PAC1-R, has been characterized within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic division of the peripheral nervous system, two critical neurobiological systems mediating responses to stressors and threats. Findings from previous translational, empirical studies imply PACAP regulation in autonomic functions and high expressions of PACAP and PAC1 receptor in hypothalamic and limbic structures, underlying its critical role in learning and memory, as well as emotion and fear processing. The current review summarizes recent findings supporting a role of PACAP/PAC1-R regulation in key brain areas that mediate adaptive behavioral and neurobiological responses to environmental stressors and maladaptive reactions to stress including the development of fear and anxiety disorders.
Collapse
Affiliation(s)
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Neurosciences, Neuroscience Center for Anxiety, Stress, and Trauma, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
15
|
Li J, Remington JM, Liao C, Parsons RL, Schneebeli S, Braas KM, May V, Brewer M. GPCR Intracellular Loop Regulation of Beta-Arrestin-Mediated Endosomal Signaling Dynamics. J Mol Neurosci 2022; 72:1358-1373. [PMID: 35538393 PMCID: PMC9311399 DOI: 10.1007/s12031-022-02016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are currently appreciated to be routed to diverse cellular platforms to generate both G protein-dependent and -independent signals. The latter has been best studied with respect to β-arrestin-associated receptor internalization and trafficking to signaling endosomes for extracellular signal-regulated kinase (ERK) activation. However, how GPCR structural and conformational variants regulate endosomal ERK signaling dynamics, which can be central in neural development, plasticity, and disease processes, is not well understood. Among class B GPCRs, the PACAP-selective PAC1 receptor is unique in the expression of variants that can contain intracellular loop 3 (ICL3) cassette inserts. The nervous system expresses preferentially the PAC1Null (no insert) and PAC1Hop (28-amino acid Hop insert) receptor variants. Our molecular modeling and signaling studies revealed that the PAC1Null and PAC1Hop receptor variants can associate with β-arrestin differentially, resulting in enhanced receptor internalization and ERK activation for the PAC1Hop variant. The study amplifies our understandings of GPCR intracellular loop structure/function relationships with the first example of how the duration of endosomal ERK activation can be guided by ICL3. The results provide a framework for how changes in GPCR variant expression can impact developmental and homeostatic processes and may be contributory to maladaptive neuroplasticity underlying chronic pain and stress-related disorders.
Collapse
Affiliation(s)
- Jianing Li
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA.
| | - Jacob M Remington
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Severin Schneebeli
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| |
Collapse
|
16
|
Porta-Casteràs D, Cano M, Steward T, Andero R, Cardoner N. The pituitary adenylate cyclase-activating polypeptide system as a sex-specific modulator of hippocampal response to threat stimuli. Neurobiol Stress 2022; 18:100448. [PMID: 35685680 PMCID: PMC9170754 DOI: 10.1016/j.ynstr.2022.100448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) receptor gene polymorphism has been postulated as a potential sex-specific diagnostic biomarker of trauma-related disorders. However, no research to date has evaluated whether the PACAPergic system may act as a vulnerability/resilience neuromechanism to trauma-induced psychopathology in healthy participants without heightened risk to experience traumatic events. Methods Here, we compared the amygdala and hippocampus response to fearful faces in participants with at-risk genotype versus non-risk participants from the Human Connectome Project (n = 991; 53.4% female). Results Increased hippocampal response to fearful faces in the female risk group emerged in sex by genetic risk interaction. Conclusions Our findings revealed the first sex-specific neurogenetic vulnerability factor to trauma-related disorders, and emphasize the importance of prevention-based strategies to ameliorate neuropsychiatric pathophysiology.
Collapse
|
17
|
Zhang H, Sun Y, Yau SY, Zhou Y, Song X, Zhang HT, Zhu B, Wu H, Chen G. Synergistic effects of two natural compounds of iridoids on rapid antidepressant action by up-regulating hippocampal PACAP signaling. Br J Pharmacol 2022; 179:4078-4091. [PMID: 35362097 DOI: 10.1111/bph.15847] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Current mainstream antidepressants have limited efficacy and a delayed onset of action. Yueju is a traditional herbal medicine conferring rapid antidepressant activity. Here we attempted to identify the effective compounds from Yueju and the underlying mechanisms. EXPERIMENTAL APPROACH A transcriptomic analysis was employed to discover key candidate molecules for rapid antidepressant response. The enriched compounds in Yueju were identified with HPLC. Antidepressant effects were evaluated periodically using various behavioral paradigms. The mechanistic signaling was assessed using site-directed pharmacological intervention or optogenetic manipulation. KEY RESULTS A transcriptomic analysis revealed that Yueju up-regulated pituitary adenylate cyclase activating polypeptide (PACAP) expression in the hippocampus. Two iridoids geniposide (GP) and shanzhiside methyl-ester (SM) were enriched in Yueju. Co-treatment of GP and SM each at an equivalent dose in Yueju synergistically increased PACAP expression and elicited rapid antidepressant effects, which were prevented by intra-hippocampal dentate gyrus (DG) infusions of a PACAP antagonist or optogenetic inactivation of PACAP-expressing neurons. GP-SM co-treatment rapidly reduced CaMKII phosphorylation and enhanced mTOR/4EBP1/P70S6k/BDNF signaling, while intra-DG infusions of a CaMKII activator blunted rapid antidepressant effects and BDNF expression up-regulation induced by GP-SM co-treatment. A single administration of GP-SM rapidly improved depression-like behaviors and up-regulated hippocampal PACAP signaling in the repeated corticosterone-induced depression model, further confirming its rapid antidepressant action and the involvement of PACAP. CONCLUSION AND IMPLICATIONS GP-SM co-treatment elicited a synergistic effect on rapid antidepressant effects via triggering hippocampal PACAP activity and associated CaMKII-BDNF signaling, shedding lights on the development of novel targeted antidepressants.
Collapse
Affiliation(s)
- Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders & School of Chinese Medicine, Jinan University, Guangzhou, China.,College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Co-innovation Center of Neurogeneration, Nantong University, Nantong, Jiangsu, China
| | - Yan Sun
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders & School of Chinese Medicine, Jinan University, Guangzhou, China.,College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xinxin Song
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Boran Zhu
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders & School of Chinese Medicine, Jinan University, Guangzhou, China.,Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, China.,Co-innovation Center of Neurogeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
19
|
Boucher MN, May V, Braas KM, Hammack SE. PACAP orchestration of stress-related responses in neural circuits. Peptides 2021; 142:170554. [PMID: 33865930 PMCID: PMC8592028 DOI: 10.1016/j.peptides.2021.170554] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic polypeptide that can activate G protein-coupled PAC1, VPAC1, and VPAC2 receptors, and has been implicated in stress signaling. PACAP and its receptors are widely distributed throughout the nervous system and other tissues and can have a multitude of effects. Human and animal studies suggest that PACAP plays a role responding to a variety of threats and stressors. Here we review the roles of PACAP in several regions of the central nervous system (CNS) as they relate to several behavioral functions. For example, in the bed nucleus of the stria terminalis (BNST), PACAP is upregulated following chronic stress and may drive anxiety-like behavior. PACAP can also influence both the consolidation and expression of fear memories, as demonstrated by studies in several fear-related areas, such as the amygdala, hippocampus, and prefrontal cortex. PACAP can also mediate the emotional component of pain, as PACAP in the central nucleus of the amygdala (CeA) is able to decrease pain sensitivity thresholds. Outside of the central nervous system, PACAP may drive glucocorticoid release via enhanced hypothalamic-pituitary-adrenal axis activity and may participate in infection-induced stress responses. Together, this suggests that PACAP exerts effects on many stress-related systems and may be an important driver of emotional behavior.
Collapse
Affiliation(s)
- Melissa N Boucher
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States.
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| |
Collapse
|
20
|
May V, Johnson GC, Hammack SE, Braas KM, Parsons RL. PAC1 Receptor Internalization and Endosomal MEK/ERK Activation Is Essential for PACAP-Mediated Neuronal Excitability. J Mol Neurosci 2021; 71:1536-1542. [PMID: 33675454 PMCID: PMC8450765 DOI: 10.1007/s12031-021-01821-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) can significantly increase the excitability of diverse neurons through differential mechanisms. For guinea pig cardiac neurons, the modulation of excitability can be mediated in part by PAC1 receptor plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades. By contrast, PAC1 receptor-mediated excitability of hippocampal dentate gyrus granule cells appears independent of membrane-delimited AC/cAMP/PKA and PLC/PKC signaling. For both neuronal types, there is mechanistic convergence demonstrating that endosomal PAC1 receptor signaling has prominent roles. In these models, neuronal exposure to Pitstop2 to inhibit β-arrestin/clathrin-mediated PAC1 receptor internalization eliminates PACAP modulation of excitability. β-arrestin is a scaffold for a number of effectors especially MEK/ERK and notably, paradigms that inhibit PAC1 receptor endosome formation and ERK signaling also blunt the PACAP-induced increase in excitability. Detailed PAC1 receptor internalization and endosomal ERK signaling mechanisms have been confirmed in HEK PAC1R-EGFP cells and shown to be long lasting which appear to recapitulate the sustained electrophysiological responses. Thus, PAC1 receptor internalization/endosomal recruitment efficiently and efficaciously activates MEK/ERK signaling and appears to represent a singular and critical common denominator in regulating neuronal excitability by PACAP.
Collapse
Affiliation(s)
- Victor May
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Karen M Braas
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Rodney L Parsons
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
21
|
Ago Y, Asano S, Hashimoto H, Waschek JA. Probing the VIPR2 Microduplication Linkage to Schizophrenia in Animal and Cellular Models. Front Neurosci 2021; 15:717490. [PMID: 34366784 PMCID: PMC8339898 DOI: 10.3389/fnins.2021.717490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) is a multifunctional neuropeptide involved in brain development and synaptic plasticity. With respect to PACAP function, most attention has been given to that mediated by its specific receptor PAC1 (ADCYAP1R1). However, PACAP also binds tightly to the high affinity receptors for vasoactive intestinal peptide (VIP, VIP), called VPAC1 and VPAC2 (VIPR1 and VIPR2, respectively). Depending on innervation patterns, PACAP can thus interact physiologically with any of these receptors. VPAC2 receptors, the focus of this review, are known to have a pivotal role in regulating circadian rhythms and to affect multiple other processes in the brain, including those involved in fear cognition. Accumulating evidence in human genetics indicates that microduplications at 7q36.3, containing VIPR2 gene, are linked to schizophrenia and possibly autism spectrum disorder. Although detailed molecular mechanisms have not been fully elucidated, recent studies in animal models suggest that overactivation of the VPAC2 receptor disrupts cortical circuit maturation. The VIPR2 linkage can thus be potentially explained by inappropriate control of receptor signaling at a time when neural circuits involved in cognition and social behavior are being established. Alternatively, or in addition, VPAC2 receptor overactivity may disrupt ongoing synaptic plasticity during processes of learning and memory. Finally, in vitro data indicate that PACAP and VIP have differential activities on the maturation of neurons via their distinct signaling pathways. Thus perturbations in the balance of VPAC2, VPAC1, and PAC1 receptors and their ligands may have important consequences in brain development and plasticity.
Collapse
Affiliation(s)
- Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Gilmartin MR, Ferrara NC. Pituitary Adenylate Cyclase-Activating Polypeptide in Learning and Memory. Front Cell Neurosci 2021; 15:663418. [PMID: 34239418 PMCID: PMC8258392 DOI: 10.3389/fncel.2021.663418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/02/2021] [Indexed: 02/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved neuropeptide that regulates neuronal physiology and transcription through Gs/Gq-coupled receptors. Its actions within hypothalamic, limbic, and mnemonic systems underlie its roles in stress regulation, affective processing, neuroprotection, and cognition. Recently, elevated PACAP levels and genetic disruption of PAC1 receptor signaling in humans has been linked to maladaptive threat learning and pathological stress and fear in post-traumatic stress disorder (PTSD). PACAP is positioned to integrate stress and memory in PTSD for which memory of the traumatic experience is central to the disorder. However, PACAP's role in memory has received comparatively less attention than its role in stress. In this review, we consider the evidence for PACAP-PAC1 receptor signaling in learning and plasticity, discuss emerging data on sex differences in PACAP signaling, and raise key questions for further study toward elucidating the contribution of PACAP to adaptive and maladaptive fear learning.
Collapse
Affiliation(s)
| | - Nicole C Ferrara
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
23
|
Ponomareva OY, Ressler KJ. Genomic factors underlying sex differences in trauma-related disorders. Neurobiol Stress 2021; 14:100330. [PMID: 33997155 PMCID: PMC8102626 DOI: 10.1016/j.ynstr.2021.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating illness with treatment that is effective in only approximately half of the population. This limited rate of response highlights the necessity for research into underlying individual biological mechanisms that mediate development and progression of this disease, allowing for identification of patient-specific treatments. PTSD has clear sex differences in both risk and symptom patterns. Thus, one approach is to characterize trauma-related changes between men and women who exhibit differences in treatment efficacy and response to trauma. Recent technological advances in sequencing have identified several genomic loci and transcriptional changes that are associated with post-trauma symptomatology. However, although the diagnosis of PTSD is more prevalent in women, the genetic factors underlying sex differences remain poorly understood. Here, we review recent work that highlights current understanding and limitations in the field of sex differences in PTSD and related symptomatology.
Collapse
Affiliation(s)
- Olga Y Ponomareva
- Neuropsychiatry Translational Research Fellowship Program, Boston VA Healthcare System, Boston, MA, USA.,McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
24
|
Wang L, Zhang J, Li G, Cao C, Fang R, Liu P, Luo S, Zhao G, Zhang Y, Zhang K. The ADCYAP1R1 Gene Is Correlated With Posttraumatic Stress Disorder Symptoms Through Diverse Epistases in a Traumatized Chinese Population. Front Psychiatry 2021; 12:665599. [PMID: 34163384 PMCID: PMC8216487 DOI: 10.3389/fpsyt.2021.665599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
The adenylate cyclase activating polypeptide 1 (pituitary) receptor (ADCYAP1R1) gene is associated with the hypothalamic-pituitary-adrenal (HPA) axis, which controls stress responses. The single-nucleotide polymorphism of ADCYAP1R1, rs2267735, has been investigated in many studies to test its association with posttraumatic stress disorder (PTSD), but the results have not been consistent. It is worth systematically exploring the role of rs2267735 in PTSD development. In this study, we analyzed rs2267735 in 1,132 trauma-exposed Chinese individuals (772 females and 360 males). We utilized the PTSD checklist for DSM-5 (PCL-5) to measure the PTSD symptoms. Then, we analyzed the main, G × E (rs2267735 × trauma exposure), and G × G (with other HPA axis gene polymorphisms) effects of rs2267735 on PTSD severity (total symptoms). There were no significant main or G × E effects (P > 0.05). The G × G ADCYAP1R1-FKBP5 interaction (rs2267735 × rs1360780) was associated with PTSD severity (beta = -1.31 and P = 0.049) based on all subjects, and the G × G ADCYAP1R1-CRHR1 interaction (rs2267735 × rs242924) was correlated with PTSD severity in men (beta = -4.72 and P = 0.023). Our study indicated that the ADCYAP1R1 polymorphism rs2267735 may affect PTSD development through diverse gene-gene interactions.
Collapse
Affiliation(s)
- Li Wang
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Zhang
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chengqi Cao
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruojiao Fang
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Liu
- People's Hospital of Deyang City, Deyang, China
| | - Shu Luo
- People's Hospital of Deyang City, Deyang, China
| | - Guangyi Zhao
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yingqian Zhang
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Kunlin Zhang
- Laboratory for Traumatic Stress Studies and Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
26
|
Zhang Y, Fan D, Liu X, Liu X, He J, Zhang N, Tang L. hTBK1-c.978T>A mutation promotes the ferroptosis in NSC-34 cells via mediation of KEAP1/NRF2/p62 signaling. Am J Transl Res 2020; 12:7386-7394. [PMID: 33312375 PMCID: PMC7724361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) can result in the dysfunction of upper and lower motor neurons. A previous study has indicated that TBK1 mutation (hTBK1-c.978T>A) is involved in progression of ALS. However, the mechanism by which TBK1 mutation mediates the progression of ALS remains unclear. METHODS NSC-34 cells with hTBK1-c.978T>A mutation (TBK1 mutation status) was used to mimic ALS in vitro. In addition, cell proliferation was detected by Ki67 staining. Gene and protein expressions in NSC-34 cells were detected by RT-qPCR and western blot, respectively. ROS and PGSK levels in NSC-34 cells were detected by flow cytometry. RESULTS hTBK1-c.978T>A mutation significantly inhibited the proliferation of NSC-34 cells via inducing cell ferroptosis, while the effect of TBK1 mutation was notably reversed by Ferrostatin-1 or p62 siRNA. Meanwhile, hTBK1-c.978T>A mutation significantly increased the expression of KEAP1 in NSC-34 cells, while this phenomenon was partially reversed by p62 knockdown. CONCLUSION hTBK1-c.978T>A mutation promoted promotes the ferroptosis in NSC-34 cells via regulation of KEAP1/NRF2/p62 signaling. Thus, hTBK1-c.978T>A mutation may serve as a possible target for the treatment of ALS.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Xiaolu Liu
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| |
Collapse
|
27
|
Gurel NZ, Jiao Y, Wittbrodt MT, Ko YA, Hankus A, Driggers EG, Ladd SL, Shallenberger L, Murrah N, Huang M, Haffar A, Alkhalaf M, Levantsevych O, Nye JA, Vaccarino V, Shah AJ, Inan OT, Bremner JD, Pearce BD. Effect of transcutaneous cervical vagus nerve stimulation on the pituitary adenylate cyclase-activating polypeptide (PACAP) response to stress: A randomized, sham controlled, double blind pilot study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4:100012. [PMID: 35755625 PMCID: PMC9216713 DOI: 10.1016/j.cpnec.2020.100012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/17/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that plays a key role in the neurobiology of the stress response, and prior studies suggest that its function is dysregulated in post-traumatic stress disorder (PTSD). Transcutaneous cervical vagus nerve stimulation (tcVNS) acts through PACAP and other neurobiological systems to modulate stress responses and/or symptoms of PTSD. In this pilot study, we examined the effects of tcVNS on PACAP in a three day chronic stress laboratory paradigm involving serial traumatic and mental stress exposures in healthy individuals with a history of exposure to psychological trauma (n = 18) and patients with PTSD (n = 12). Methods A total of 30 subjects with a history of exposure to psychological trauma experience were recruited (12 with PTSD diagnosis) for a three-day randomized double-blinded study of tcVNS or sham stimulation. Subjects underwent a protocol that included both personalized trauma recall and non-personalized mental stressors (public speaking, mental arithmetic) paired to tcVNS or sham stimulation over three days. Blood was collected at baseline and multiple time points after exposure to stressors. Linear mixed-effects models were used to assess changes in PACAP over time (in response to stressors) and its relation to active tcVNS or sham stimulation. Results PACAP blood levels increased over the course of three days for both active tcVNS and sham groups. This increase was statistically-significant in the sham group at the end of the second (Cohen's drm = 0.35, p = 0.04), and third days (drm = 0.41, p = 0.04), but not in the active tcVNS group (drm = 0.21, drm = 0.18, and p > 0.20). Conclusion These pilot findings suggest tcVNS may attenuate this neurobiological stress-response. Larger studies are needed to investigate gender and interaction effects.
Collapse
Affiliation(s)
- Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yunshen Jiao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Allison Hankus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Emily G. Driggers
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
| | - Stacy L. Ladd
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory School of Medicine, Atlanta, GA, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ammer Haffar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mhmtjamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Oleksiy Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jonathon A. Nye
- Department of Radiology, Emory School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory School of Medicine, Atlanta, GA, USA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|