1
|
Hosseini K, Philippot G, Salomonsson SB, Cediel-Ulloa A, Gholizadeh E, Fredriksson R. Transcriptomic characterization of maturing neurons from human neural stem cells across developmental time points. IBRO Neurosci Rep 2025; 18:679-689. [PMID: 40336753 PMCID: PMC12056963 DOI: 10.1016/j.ibneur.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Neurodevelopmental studies employing animal models encounter challenges due to interspecies differences and ethical concerns. Maturing neurons of human origin, undergoing several developmental stages, present a powerful alternative. In this study, human embryonic stem cell (H9 cell line) was differentiated into neural stem cells and subsequently matured into neurons over 30 days. Ion AmpliSeq™ was used for transcriptomic characterization of human stem cell-derived neurons at multiple time points. Data analysis revealed a progressive increase of markers associated with neuronal development and astrocyte markers, indicating the establishment of a co-culture accommodating both glial and neurons. Transcriptomic and pathway enrichment analysis also revealed a more pronounced GABAergic phenotype in the neurons, signifying their specialization toward this cell type. The findings confirm the robustness of these cells across different passages and demonstrate detailed progression through stages of development. The model is intended for neurodevelopmental applications and can be adapted to investigate how genetic modifications or exposure to chemicals, pharmaceuticals, and other environmental factors influence neurons and glial maturation.
Collapse
Affiliation(s)
- Kimia Hosseini
- Department of Pharmaceutical Bioscience, Uppsala University, Sweden
| | - Gaëtan Philippot
- Department of Pharmaceutical Bioscience, Uppsala University, Sweden
| | | | | | - Elnaz Gholizadeh
- Department of Pharmaceutical Bioscience, Uppsala University, Sweden
| | | |
Collapse
|
2
|
Harland AJ, Perks CM. IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis. Int J Mol Sci 2025; 26:4749. [PMID: 40429889 PMCID: PMC12111820 DOI: 10.3390/ijms26104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation-most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent of a neurodevelopmental hierarchy, in which neural stem and progenitor markers are widely expressed by tumour stem-like cells. However, NSC fates and the cues that drive them are poorly understood. Studying the crosstalk within NSC niches may better inform our understanding of glioblastoma initiation and development. Insulin-like growth factor binding protein 2 (IGFBP-2) has a well-established prognostic role in glioblastoma, and cell-based mechanistic studies show the independent activation of downstream oncogenic pathways. However, IGFBP-2 is more commonly recognised as a modulator of insulin-like growth factors (IGFs) for receptor tyrosine kinase signal propagation or attenuation. In the adult human brain, both IGFBP-2 and IGF-II expression are retained in the choroid plexus (ChP) and secreted into the cerebral spinal fluid (CSF). Moreover, secretion by closely associated cells and NSCs themselves position IGFBP-2 and IGF-II as interesting factors within the NSC niche. In this review, we will highlight the experimental findings that show IGFBP-2 and IGF-II influence NSC behaviour. Moreover, we will link this to glioblastoma biology and demonstrate the requirement for further analysis of these factors in glioma stem cells (GSCs).
Collapse
Affiliation(s)
| | - Claire M. Perks
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK;
| |
Collapse
|
3
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
4
|
Shobudani M, Sakamaki Y, Karasawa A, Ojiro R, Zou X, Tang Q, Ozawa S, Jin M, Yoshida T, Shibutani M. Metabolic shift as a compensatory response to impaired hippocampal neurogenesis after developmental exposure to sodium fluoride in rats. Acta Histochem 2024; 126:152204. [PMID: 39413662 DOI: 10.1016/j.acthis.2024.152204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Fluoride affects neurodevelopment in children. In this study, we examined the effects of developmental exposure to sodium fluoride (NaF) on hippocampal neurogenesis in rats. Dams were given drinking water containing NaF at 0 (untreated controls), 30 or 100 ppm from gestational day 6 to day 21 post-delivery upon weaning, and offspring were reared until postnatal day (PND) 77. On PND 21, NaF at 100 ppm altered the numbers in subpopulations of granule cell lineages, including a decrease in type-3 neural progenitor cells (NPCs), as well as a compensatory increase in type-1 neural stem cells (NSCs) and type-2a NPCs. NaF exposure tended to increase GluR2+ mossy cells in the hilus of the dentate gyrus (DG) in a dose-dependent manner, suggesting that NaF exposure induces a compensatory neurogenic response. NaF also caused a dose-dependent increase in ARC+ granule cells, and it upregulated Ptgs2 in the DG at 100 ppm, suggesting that NaF exposure increases synaptic plasticity in granule cells. NaF at 100 ppm upregulated granule cell lineage marker genes (Nes, Eomes and Rbfox3) and an anti-apoptotic gene (Bcl2), suggesting ameliorating responses against the impaired neurogenesis during NaF exposure. Moreover, NaF at 100 ppm downregulated oxidative phosphorylation-related genes (Atp5f1b and Sdhd) and upregulated a glycolysis-related gene (Hk3), suggesting a metabolic shift in cells undergoing neurogenesis. By PND 77, the changes in granule cell lineages were no longer detected, and GABAergic interneuron marker genes (Calb2 and Reln) were upregulated, suggesting a persistent protective response in granule cell lineages. Together, these findings suggest that developmental NaF exposure causes transient disruption of hippocampal neurogenesis, which in turn induces a metabolic shift as a compensatory response.
Collapse
Affiliation(s)
- Momoka Shobudani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Yuri Sakamaki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ayumi Karasawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
5
|
Vymola P, Garcia‐Borja E, Cervenka J, Balaziova E, Vymolova B, Veprkova J, Vodicka P, Skalnikova H, Tomas R, Netuka D, Busek P, Sedo A. Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination. Brain Pathol 2024; 34:e13265. [PMID: 38705944 PMCID: PMC11483521 DOI: 10.1111/bpa.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.
Collapse
Affiliation(s)
- Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Barbora Vymolova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jana Veprkova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Helena Skalnikova
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert Tomas
- Department of NeurosurgeryNa Homolce HospitalPragueCzech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of MedicineCharles University and Military University HospitalPragueCzech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
6
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Lisjak D, Alić I, Šimunić I, Mitrečić D. Transplantation of neural stem cells improves recovery of stroke-affected mice and induces cell-specific changes in GSDMD and MLKL expression. Front Mol Neurosci 2024; 17:1439994. [PMID: 39210936 PMCID: PMC11358122 DOI: 10.3389/fnmol.2024.1439994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Stroke, the second leading cause of death and disability in Europe, is primarily caused by interrupted blood supply, leading to ischemia-reperfusion (IR) injury and subsequent neuronal death. Current treatment options are limited, highlighting the need for novel therapies. Neural stem cells (NSCs) have shown promise in treating various neurological disorders, including stroke. However, the underlying mechanisms of NSC-mediated recovery remain unclear. Methods Eighty C57Bl/6-Tyrc-Brd mice underwent ischemic stroke induction and were divided into four groups: sham, stroke-affected, stroke-affected with basal cell medium injection, and stroke-affected with NSCs transplantation. NSCs, isolated from mouse embryos, were stereotaxically transplanted into the stroke-affected brains. Magnetic resonance imaging (MRI) and neurological scoring were used to assess recovery. Immunohistochemical analysis and gene expression assays were performed to evaluate pyroptosis and necroptosis markers. Results NSC transplantation significantly improved neurological recovery compared to control groups. In addition, although not statistically significant, NSCs reduced stroke volume. Immunohistochemical analysis revealed upregulation of Gasdermin D (GSDMD) expression post-stroke, predominantly in microglia and astrocytes. However, NSC transplantation led to a reduction in GSDMD signal intensity in astrocytes, suggesting an effect of NSCs on GSDMD activity. Furthermore, NSCs downregulated Mixed Lineage Kinase Domain-Like Protein (Mlkl) expression, indicating a reduction in necroptosis. Immunohistochemistry demonstrated decreased phosphorylated MLKL (pMLKL) signal intensity in neurons while stayed the same in astrocytes following NSC transplantation, along with increased distribution in microglia. Discussion NSC transplantation holds therapeutic potential in stroke recovery by targeting pyroptosis and necroptosis pathways. These findings shed light on the mechanisms underlying NSC-mediated neuroprotection and support their further exploration as a promising therapy for stroke patients.
Collapse
Affiliation(s)
- Damir Lisjak
- Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Alić
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Šimunić
- Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
9
|
Leonov G, Salikhova D, Shedenkova M, Bukharova T, Fatkhudinov T, Goldshtein D. Comparative Study of the Protective and Neurotrophic Effects of Neuronal and Glial Progenitor Cells-Derived Conditioned Media in a Model of Glutamate Toxicity In Vitro. Biomolecules 2023; 13:1784. [PMID: 38136654 PMCID: PMC10741670 DOI: 10.3390/biom13121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cell therapy represents a promising approach to the treatment of neurological diseases, offering potential benefits not only by cell replacement but also through paracrine secretory activities. However, this approach includes a number of limiting factors, primarily related to safety. The use of conditioned stem cell media can serve as an equivalent to cell therapy while avoiding its disadvantages. The present study was a comparative investigation of the antioxidant, neuroprotective and neurotrophic effects of conditioned media obtained from neuronal and glial progenitor cells (NPC-CM and GPC-CM) on the PC12 cell line in vitro. Neuronal and glial progenitor cells were obtained from iPSCs by directed differentiation using small molecules. GPC-CM reduced apoptosis, ROS levels and increased viability, expressions of the antioxidant response genes HMOX1 and NFE2L2 in a model of glutamate-induced oxidative stress. The neurotrophic effect was evidenced by a change in the morphology of pheochromocytoma cells to a neuron-like phenotype. Moreover, neurite outgrowth, expression of GAP43, TUBB3, MAP2, SYN1 genes and increased levels of the corresponding MAP2 and TUBB3 proteins. Treatment with NPC-CM showed moderate antiapoptotic effects and improved cell viability. This study demonstrated the potential application of CM in the field of regenerative medicine.
Collapse
Affiliation(s)
- Georgy Leonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.S.); (M.S.); (T.B.); (D.G.)
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, 119121 Moscow, Russia
| | - Diana Salikhova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.S.); (M.S.); (T.B.); (D.G.)
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN, 117198 Moscow, Russia;
| | - Margarita Shedenkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.S.); (M.S.); (T.B.); (D.G.)
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN, 117198 Moscow, Russia;
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.S.); (M.S.); (T.B.); (D.G.)
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN, 117198 Moscow, Russia;
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.S.); (M.S.); (T.B.); (D.G.)
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN, 117198 Moscow, Russia;
| |
Collapse
|
10
|
Stewart AN, Gensel JC, Jones L, Fouad K. Challenges in Translating Regenerative Therapies for Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2023; 29:23-43. [PMID: 38174141 PMCID: PMC10759906 DOI: 10.46292/sci23-00044s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Regenerating the injured spinal cord is a substantial challenge with many obstacles that need to be overcome to achieve robust functional benefits. This abundance of hurdles can partly explain the limited success when applying regenerative intervention treatments in animal models and/or people. In this article, we elaborate on a few of these obstacles, starting with the applicability of animal models and how they compare to the clinical setting. We then discuss the requirement for combinatorial interventions and the associated problems in experimental design, including the addition of rehabilitative training. The article expands on differences in lesion sizes and locations between humans and common animal models, and how this difference can determine the success or failure of an intervention. An additional and frequently overlooked problem in the translation of interventions that applies beyond the field of neuroregeneration is the reporting bias and the lack of transparency in reporting findings. New data mandates are tackling this problem and will eventually result in a more balanced view of the field. Finally, we will discuss strategies to negotiate the challenging course of successful translation to facilitate successful translation of regeneration promoting interventions.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Linda Jones
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Karim Fouad
- Department of Physical Therapy, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Litowczenko J, Wychowaniec JK, Załęski K, Marczak Ł, Edwards-Gayle CJC, Tadyszak K, Maciejewska BM. Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing. BIOMATERIALS ADVANCES 2023; 154:213653. [PMID: 37862812 DOI: 10.1016/j.bioadv.2023.213653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 μm, 5 μm, and 10 μm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite 'stamps' using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Krzysztof Tadyszak
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Barbara M Maciejewska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| |
Collapse
|
12
|
Yin X, Liu X, Xiao X, Yi K, Chen W, Han C, Wang L, Li Y, Liu J. Human neural stem cells repress glioma cell progression in a paracrine manner by downregulating the Wnt/β-catenin signalling pathway. FEBS Open Bio 2023; 13:1772-1788. [PMID: 37410396 PMCID: PMC10476570 DOI: 10.1002/2211-5463.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neural stem cells (NSCs) play crucial roles in neurological disorders and tissue injury repair through exerting paracrine effects. However, the effects of NSC-derived factors on glioma progression remain unclear. This study aimed to evaluate the effects of human NSC-conditioned medium (NSC-CM) on the behaviour of glioma cells using an in vitro co-culture system. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays revealed that NSC-CM inhibited glioma cell proliferation and growth in a fetal bovine serum (FBS)-independent manner. In addition, our wound-healing assay demonstrated that NSC-CM repressed glioma cell migration, while results from transwell and 3D spheroid invasion assays indicated that NSC-CM also reduced the invasion capacity of glioma cells. Flow cytometry showed that NSC-CM prevented cell cycle progression from the G1 to S phase and promoted apoptosis. Western blotting was used to show that the expression of Wnt/β-catenin pathway-related proteins, including β-catenin, c-Myc, cyclin D1, CD44 and Met, was remarkably decreased in NSC-CM-treated glioma cells. Furthermore, the addition of a Wnt/β-catenin pathway activator, CHIR99021, significantly induced the expression of β-catenin and Met and increased the proliferative and invasive capabilities of control medium-treated glioma cells but not those of NSC-CM-treated glioma cells. The use of enzyme-linked immunosorbent assays (ELISA) revealed the secretion of some antitumour factors in human and rat NSCs, including interferon-α and dickkopf-1. Our data suggest that NSC-CM partially inhibits glioma cell progression by downregulating Wnt/β-catenin signalling. This study may serve as a basis for developing future antiglioma therapies based on NSC derivatives.
Collapse
Affiliation(s)
- Xiaolin Yin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Xiumei Liu
- Dalian Innovation Institute of Stem Cell and Precision MedicineChina
| | - Xiangyi Xiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Kaiyu Yi
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Weigong Chen
- Dalian Innovation Institute of Stem Cell and Precision MedicineChina
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| |
Collapse
|
13
|
Semita IN, Utomo DN, Suroto H. Mechanism of spinal cord injury regeneration and the effect of human neural stem cells-secretome treatment in rat model. World J Orthop 2023; 14:64-82. [PMID: 36844381 PMCID: PMC9945248 DOI: 10.5312/wjo.v14.i2.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Globally, complete neurological recovery of spinal cord injury (SCI) is still less than 1%, and 90% experience permanent disability. The key issue is that a pharmacological neuroprotective-neuroregenerative agent and SCI regeneration mechanism have not been found. The secretomes of stem cell are an emerging neurotrophic agent, but the effect of human neural stem cells (HNSCs) secretome on SCI is still unclear.
AIM To investigate the regeneration mechanism of SCI and neuroprotective-neuroregenerative effects of HNSCs-secretome on subacute SCI post-laminectomy in rats.
METHODS An experimental study was conducted with 45 Rattus norvegicus, divided into 15 normal, 15 control (10 mL physiologic saline), and 15 treatment (30 μL HNSCs-secretome, intrathecal T10, three days post-traumatic). Locomotor function was evaluated weekly by blinded evaluators. Fifty-six days post-injury, specimens were collected, and spinal cord lesion, free radical oxidative stress (F2-Isoprostanes), nuclear factor-kappa B (NF-κB), matrix metallopeptidase 9 (MMP9), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), transforming growth factor-beta (TGF-β), vascular endothelial growth factor (VEGF), B cell lymphoma-2 (Bcl-2), nestin, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) were analyzed. The SCI regeneration mechanism was analyzed using partial least squares structural equation modeling (PLS SEM).
RESULTS HNSCs-secretome significantly improved locomotor recovery according to Basso, Beattie, Bresnahan (BBB) scores and increased neurogenesis (nestin, BDNF, and GDNF), neuroangiogenesis (VEGF), anti-apoptotic (Bcl-2), anti-inflammatory (IL-10 and TGF-β), but decreased pro-inflammatory (NF-κB, MMP9, TNF-α), F2-Isoprostanes, and spinal cord lesion size. The SCI regeneration mechanism is valid by analyzed outer model, inner model, and hypothesis testing in PLS SEM, started with pro-inflammation followed by anti-inflammation, anti-apoptotic, neuroangiogenesis, neurogenesis, and locomotor function.
CONCLUSION HNSCs-secretome as a potential neuroprotective-neuroregenerative agent for the treatment of SCI and uncover the SCI regeneration mechanism.
Collapse
Affiliation(s)
- I Nyoman Semita
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Orthopedic and Traumatology, Faculty of Medicine, University of Jember, Jember 68121, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya 60118, East Java, Indonesia
| | - Heri Suroto
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya 60118, East Java, Indonesia
| |
Collapse
|
14
|
Vaidya M, Sreerama S, Gonzalez-Vega M, Smith J, Field M, Sugaya K. Coculture with Neural Stem Cells May Shift the Transcription Profile of Glioblastoma Multiforme towards Cancer-Specific Stemness. Int J Mol Sci 2023; 24:ijms24043242. [PMID: 36834653 PMCID: PMC9962301 DOI: 10.3390/ijms24043242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) possesses a small but significant population of cancer stem cells (CSCs) thought to play a role in its invasiveness, recurrence, and metastasis. The CSCs display transcriptional profiles for multipotency, self-renewal, tumorigenesis, and therapy resistance. There are two possible theories regarding the origin of CSCs in the context of neural stem cells (NSCs); i.e., NSCs modify cancer cells by conferring them with cancer-specific stemness, or NSCs themselves are transformed into CSCs due to the tumor environment created by cancer cells. To test the theories and to investigate the transcriptional regulation of the genes involved in CSC formation, we cocultured NSC and GBM cell lines together. Where genes related to cancer stemness, drug efflux, and DNA modification were upregulated in GBM, they were downregulated in NSCs upon coculture. These results indicate that cancer cells shift the transcriptional profile towards stemness and drug resistance in the presence of NSCs. Concurrently, GBM triggers NSCs differentiation. Because the cell lines were separated by a membrane (0.4 µm pore size) to prevent direct contact between GBM and NSCs, cell-secreted signaling molecules and extracellular vesicles (EVs) are likely involved in reciprocal communication between NSCs and GBM, causing transcription modification. Understanding the mechanism of CSC creation will aid in the identification of precise molecular targets within the CSCs to exterminate them, which, in turn, will increase the efficacy of chemo-radiation treatment.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Maxine Gonzalez-Vega
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
15
|
Identifying Genes that Affect Differentiation of Human Neural Stem Cells and Myelination of Mature Oligodendrocytes. Cell Mol Neurobiol 2022:10.1007/s10571-022-01313-5. [DOI: 10.1007/s10571-022-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
AbstractHuman neural stem cells (NSCs) are self-renewing, multipotent cells of the central nervous system (CNS). They are characterized by their ability to differentiate into a range of cells, including oligodendrocytes (OLs), neurons, and astrocytes, depending on exogenous stimuli. An efficient and easy directional differentiation method was developed for obtaining large quantities of high-quality of human OL progenitor cells (OPCs) and OLs from NSCs. RNA sequencing, immunofluorescence staining, flow cytometry, western blot, label-free proteomic sequencing, and qPCR were performed in OL lines differentiated from NSC lines. The changes in the positive rate of typical proteins were analyzed expressed by NSCs, neurons, astrocytes, OPCs, and OLs. We assessed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of differentially expressed (DE) messenger RNAs (mRNAs) related to the differentiation of NSCs and the maturation of OLs. The percentage of NSCs differentiated into neurons, astrocytes, and OLs was 82.13%, 80.19%, and 90.15%, respectively. We found that nestin, PAX6, Musashi, and vimentin were highly expressed in NSCs; PDGFR-α, A2B5, NG2, OLIG2, SOX10, and NKX2-2 were highly expressed in OPCs; and CNP, GALC, PLP1, and MBP were highly expressed in OLs. RNA sequencing, western blot and qPCR revealed that ERBB4 and SORL1 gradually increased during NSC–OL differentiation. In conclusion, NSCs can differentiate into neurons, astrocytes, and OLs efficiently. PDGFR-α, APC, ID4, PLLP, and other markers were related to NSC differentiation and OL maturation. Moreover, we refined a screening method for ERBB4 and SORL1, which may underlie NSC differentiation and OL maturation.
Graphical Abstract
Potential unreported genes and proteins may regulate differentiation of human neural stem cells into oligodendrocyte lineage. Neural stem cells (NSCs) can differentiate into neurons, astrocytes, and oligodendrocyte (OLs) efficiently. By analyzing the DE mRNAs and proteins of NSCs and OLs lineage, we could identify reported markers and unreported markers of ERBB4 and SORL1 that may underlie regulate NSC differentiation and OL maturation.
Collapse
|
16
|
Kim DH, Cho HJ, Park CY, Cho MS, Kim DW. Transplantation of PSA-NCAM-Positive Neural Precursors from Human Embryonic Stem Cells Promotes Functional Recovery in an Animal Model of Spinal Cord Injury. Tissue Eng Regen Med 2022; 19:1349-1358. [PMID: 36036887 PMCID: PMC9679075 DOI: 10.1007/s13770-022-00483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) results in permanent impairment of motor and sensory functions at and below the lesion site. There is no therapeutic option to the functional recovery of SCI involving diverse injury responses of different cell types in the lesion that limit endogenous nerve regeneration. In this regard, cell replacement therapy utilizing stem cells or their derivatives has become a highly promising approach to promote locomotor recovery. For this reason, the demand for a safe and efficient multipotent cell source that can differentiate into various neural cells is increasing. In this study, we evaluated the efficacy and safety of human polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive neural precursor cells (hNPCsPSA-NCAM+) as a treatment for SCI. METHODS One hundred thousand hNPCsPSA-NCAM+ isolated from human embryonic stem cell-derived NPCs were transplanted into the lesion site by microinjection 7 days after contusive SCI at the thoracic level. We examined the histological characteristics of the graft and behavioral improvement in the SCI rats 10 weeks after transplantation. RESULTS Locomotor activity improvement was estimated by the Basso-Beattie-Bresnahan locomotor rating scale. Behavioral tests revealed that the transplantation of the hNPCsPSA-NCAM+ into the injured spinal cords of rats significantly improved locomotor function. Histological examination showed that hNPCsPSA-NCAM+ had differentiated into neural cells and successfully integrated into the host tissue with no evidence of tumor formation. We investigated cytokine expressions, which led to the early therapeutic effect of hNPCsPSA-NCAM+, and found that some undifferentiated NPCs still expressed midkine, a well-known neurotrophic factor involved in neural development and inflammatory responses, 10 weeks after transplantation. CONCLUSION Our results demonstrate that hNPCsPSA-NCAM+ serve as a safe and efficient cell source which has the potential to improve impaired motor function following SCI.
Collapse
Affiliation(s)
- Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Hyun-Ju Cho
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Myung Soo Cho
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea.
| |
Collapse
|
17
|
Hur HJ, Lee JY, Kim DH, Cho MS, Lee S, Kim HS, Kim DW. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int J Mol Sci 2022; 23:7787. [PMID: 35887140 PMCID: PMC9319001 DOI: 10.3390/ijms23147787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that early therapeutic events of neural precursor cells (NPCs) transplantation to animals with acute ischemic stroke readily protected neuronal cell damage and improved behavioral recovery through paracrine mechanisms. In this study, we tested the hypothesis that administration of conditioned medium from NPCs (NPC-CMs) could recapitulate the beneficial effects of cell transplantation. Rats with permanent middle cerebral artery occlusion (pMCAO) were randomly assigned to one of the following groups: PBS control, Vehicle (medium) controls, single (NPC-CM(S)) or multiple injections of NPC-CM(NPC-CM(M)) groups. A single intravenous injection of NPC-CM exhibited strong neuroregenerative potential to induce behavioral recovery, and multiple injections enhanced this activity further by suppressing inflammatory damage and inducing endogenous neurogenesis leading to histopathological and functional recovery. Proteome analysis of NPC-CM identified a number of proteins that are known to be associated with nervous system development, neurogenesis, and angiogenesis. In addition, transcriptome analysis revealed the importance of the inflammatory response during stroke recovery and some of the key hub genes in the interaction network were validated. Thus, our findings demonstrated that NPC-CM promoted functional recovery and reduced cerebral infarct and inflammation with enhanced endogenous neurogenesis, and the results highlighted the potency of NPC-CM in stroke therapy.
Collapse
Affiliation(s)
- Hye-Jin Hur
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Yong Lee
- Research Institute of Hyperbaric Medicine and Science, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea;
| | - Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- S. Biomedics Co., Ltd., Seoul 04979, Korea;
| | | | - Sangsik Lee
- Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea;
| | - Han-Soo Kim
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
18
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
19
|
Li Y, Schor J, Bartko J, Albert G, Halterman MW. The transcription factor C/EBPβ promotes vascular endothelial growth factor A expression and neural stem cell expansion. FEBS Lett 2022; 596:1661-1671. [PMID: 35593120 DOI: 10.1002/1873-3468.14405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/28/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
The bZIP transcription factor CCAAT enhancer-binding protein β (C/EBPβ) exhibits neurogenic, neuritogenic, and pro-survival effects in the central nervous system. Here, we show that C/EBPβ regulates neural stem cell (NSC) expansion and vascular endothelial growth factor A (VEGF-A) level by acting on a C/EBPβ-responsive element within the Vegf-a promoter. As predicted, C/EBPβ depletion reduced VEGF-A production, NSC number, and average neurosphere size in proliferating cultures. Conversely, deletion of the C/EBPβ repressor CHOP-10 induced C/EBPβ and VEGF-A expression, while stimulating NSC expansion. These data highlight the role of C/EBPβ in regulating VEGF-A production and the growth of NSCs and suggest CHOP-dependent antagonism of C/EBPβ may function as a transcriptional rheostat linking stress-associated cues with stem cell quiescence among other pathological responses affecting the neurogenic niche.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Jonathan Schor
- Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, 14642
| | - Jonathan Bartko
- Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, 14642
| | - George Albert
- Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, 14642
| | - Marc W Halterman
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
20
|
Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma. Int J Mol Sci 2022; 23:ijms23105598. [PMID: 35628406 PMCID: PMC9147436 DOI: 10.3390/ijms23105598] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Huntington’s disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients’ plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.
Collapse
|
21
|
Baxi AB, Pade LR, Nemes P. Cell-Lineage Guided Mass Spectrometry Proteomics in the Developing (Frog) Embryo. J Vis Exp 2022:10.3791/63586. [PMID: 35532271 PMCID: PMC9513837 DOI: 10.3791/63586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Characterization of molecular events as cells give rise to tissues and organs raises a potential to better understand normal development and design efficient remedies for diseases. Technologies enabling accurate identification and quantification of diverse types and large numbers of proteins would provide still missing information on molecular mechanisms orchestrating tissue and organism development in space and time. Here, we present a mass spectrometry-based protocol that enables the measurement of thousands of proteins in identified cell lineages in Xenopus laevis (frog) embryos. The approach builds on reproducible cell-fate maps and established methods to identify, fluorescently label, track, and sample cells and their progeny (clones) from this model of vertebrate development. After collecting cellular contents using microsampling or isolating cells by dissection or fluorescence-activated cell sorting, proteins are extracted and processed for bottom-up proteomic analysis. Liquid chromatography and capillary electrophoresis are used to provide scalable separation for protein detection and quantification with high-resolution mass spectrometry (HRMS). Representative examples are provided for the proteomic characterization of neural-tissue fated cells. Cell-lineage-guided HRMS proteomics is adaptable to different tissues and organisms. It is sufficiently sensitive, specific, and quantitative to peer into the spatio-temporal dynamics of the proteome during vertebrate development.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland; Department of Anatomy & Cell Biology, The George Washington University
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland; Department of Anatomy & Cell Biology, The George Washington University;
| |
Collapse
|
22
|
Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS. Methods Mol Biol 2022; 2520:335-360. [PMID: 35579839 DOI: 10.1007/7651_2022_462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The unique properties of stem cells to self-renew and differentiate hold great promise in disease modelling and regenerative medicine. However, more information about basic stem cell biology and thorough characterization of available stem cell lines is needed. This is especially essential to ensure safety before any possible clinical use of stem cells or partially committed cell lines. As proteins are the key effector molecules in the cell, the proteomic characterization of cell lines, cell compartments or cell secretome and microenvironment is highly beneficial to answer above mentioned questions. Nowadays, method of choice for large-scale discovery-based proteomic analysis is mass spectrometry (MS) with data-independent acquisition (DIA). DIA is a robust, highly reproducible, high-throughput quantitative MS approach that enables relative quantification of thousands of proteins in one sample. In the current protocol, we describe a specific variant of DIA known as SWATH-MS for characterization of neural stem cell differentiation. The protocol covers the whole process from cell culture, sample preparation for MS analysis, the SWATH-MS data acquisition on TTOF 5600, the complete SWATH-MS data processing and quality control using Skyline software and the basic statistical analysis in R and MSstats package. The protocol for SWATH-MS data acquisition and analysis can be easily adapted to other samples amenable to MS-based proteomics.
Collapse
|
23
|
Stem cells characterization: OMICS reinforcing analytics. Curr Opin Biotechnol 2021; 71:175-181. [PMID: 34425321 DOI: 10.1016/j.copbio.2021.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Stem cells hold outstanding potential to model and treat disease and are valuable tools in pharmacology and toxicology. Characterization of stem cells and derivatives still poses many challenges to ensure safe, efficacious, and reliable therapies. Regulatory agencies have defined key mandatory attributes related to identity, purity, sterility, and genomic integrity, however robust analytics to determine cell's potency are still a major challenge, in most cases assessed case-by-case. Importantly, the application of high-throughput 'omic tools is opening new perspectives on stem cell's research and development. Here, analytical methodologies currently employed to characterize stem cells' quality attributes are discussed, with special focus on 'omics as relevant tools for definition of cell's mechanism of action, and for potency assay development and assessment.
Collapse
|
24
|
Sucha R, Kubickova M, Cervenka J, Hruska-Plochan M, Bohaciakova D, Vodickova Kepkova K, Novakova T, Budkova K, Susor A, Marsala M, Motlik J, Kovarova H, Vodicka P. Targeted mass spectrometry for monitoring of neural differentiation. Biol Open 2021; 10:271174. [PMID: 34357391 PMCID: PMC8353267 DOI: 10.1242/bio.058727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.
Collapse
Affiliation(s)
- Rita Sucha
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martina Kubickova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Tereza Novakova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Katerina Budkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martin Marsala
- Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, Department of Anesthesiology, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA 92037, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Hana Kovarova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| |
Collapse
|