1
|
Unterauer EM, Schentarra EM, Jevdokimenko K, Boushehri SS, Marr C, Opazo F, Fornasiero EF, Jungmann R. Protocol for SUM-PAINT spatial proteomic imaging generating neuronal architecture maps in rat hippocampal neurons. STAR Protoc 2025; 6:103637. [PMID: 40048420 PMCID: PMC11928808 DOI: 10.1016/j.xpro.2025.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
To unravel the complexity of biological processes, it is necessary to resolve the underlying protein organization down to single proteins. Here, we present a protocol for secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a DNA-PAINT-based super-resolution microscopy technique that is capable of resolving virtually unlimited protein species with single-protein resolution. We describe the steps to prepare neuronal cultures, troubleshoot and conduct SUM-PAINT experiments, and analyze the resulting feature-rich neuronal cell atlases using unsupervised machine learning approaches. For complete details on the use and execution of this protocol, please refer to Unterauer et al.1.
Collapse
Affiliation(s)
- Eduard M Unterauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva-Maria Schentarra
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany; Data & Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany; NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
2
|
Milicevic KD, Ivanova VO, Brazil TN, Varillas CA, Zhu YMD, Andjus PR, Antic SD. The Impact of Optical Undersampling on the Ca 2+ Signal Resolution in Ca 2+ Imaging of Spontaneous Neuronal Activity. J Integr Neurosci 2025; 24:26242. [PMID: 39862012 DOI: 10.31083/jin26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND In neuroscience, Ca2+ imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds. METHODS Primary neuronal cultures were prepared from the cortex of newborn pups. Neurons were loaded with Oregon Green BAPTA-1 AM (OGB1-AM) fluorescent indicator. Spontaneous neuronal activity was recorded at low (14 Hz) and high (500 Hz) sampling rates, and the same neurons (n = 269) were analyzed under both conditions. We compared optical signal amplitude, duration, and frequency. RESULTS Although recurring Ca2+ transients appeared visually similar at 14 Hz and 500 Hz, quantitative analysis revealed significantly faster rise times and shorter durations (half-widths) at the higher sampling rate. Small-amplitude Ca2+ transients, undetectable at 14 Hz, became evident at 500 Hz, particularly in the neuropil (putative dendrites and axons), but not in nearby cell bodies. Large Ca2+ transients exhibited greater amplitudes and faster temporal dynamics in dendrites compared with somas, potentially due to the higher surface-to-volume ratio of dendrites. In neurons bulk-loaded with OGB1-AM, cell nucleus-mediated signal distortions were observed in every neuron examined (n = 57). Specifically, two regions of interest (ROIs) on different segments of the same cell body displayed significantly different signal amplitudes and durations due to dye accumulation in the nucleus. CONCLUSIONS Our findings reveal that Ca2+ signal undersampling leads to three types of information loss: (1) distortion of rise times and durations for large-amplitude transients, (2) failure to detect small-amplitude transients in cell bodies, and (3) omission of small-amplitude transients in the neuropil.
Collapse
Affiliation(s)
- Katarina D Milicevic
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
- Center for Laser Microscopy, Institute of Physiology and Biochemistry 'Jean Giaja' , Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Violetta O Ivanova
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Tina N Brazil
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Cesar A Varillas
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Yan M D Zhu
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Pavle R Andjus
- Center for Laser Microscopy, Institute of Physiology and Biochemistry 'Jean Giaja' , Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Srdjan D Antic
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Yang Z, Teaney NA, Buttermore ED, Sahin M, Afshar-Saber W. Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders. Front Neurosci 2025; 18:1524577. [PMID: 39844857 PMCID: PMC11750789 DOI: 10.3389/fnins.2024.1524577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 4.7% of the global population and are associated with delays in brain development and a spectrum of impairments that can lead to lifelong disability and even mortality. Identification of biomarkers for accurate diagnosis and medications for effective treatment are lacking, in part due to the historical use of preclinical model systems that do not translate well to the clinic for neurological disorders, such as rodents and heterologous cell lines. Human-induced pluripotent stem cells (hiPSCs) are a promising in vitro system for modeling NDDs, providing opportunities to understand mechanisms driving NDDs in human neurons. Functional assays, including patch clamping, multielectrode array, and imaging-based assays, are popular tools employed with hiPSC disease models for disease investigation. Recent progress in machine learning (ML) algorithms also presents unprecedented opportunities to advance the NDD research process. In this review, we compare two-dimensional and three-dimensional hiPSC formats for disease modeling, discuss the applications of functional assays, and offer insights on incorporating ML into hiPSC-based NDD research and drug screening.
Collapse
Affiliation(s)
- Ziqin Yang
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole A. Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth D. Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Hao YA, Lee S, Roth RH, Natale S, Gomez L, Taxidis J, O'Neill PS, Villette V, Bradley J, Wang Z, Jiang D, Zhang G, Sheng M, Lu D, Boyden E, Delvendahl I, Golshani P, Wernig M, Feldman DE, Ji N, Ding J, Südhof TC, Clandinin TR, Lin MZ. A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events. Neuron 2024; 112:3680-3696.e8. [PMID: 39305894 PMCID: PMC11581914 DOI: 10.1016/j.neuron.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
A remaining challenge for genetically encoded voltage indicators (GEVIs) is the reliable detection of excitatory postsynaptic potentials (EPSPs). Here, we developed ASAP5 as a GEVI with enhanced activation kinetics and responsivity near resting membrane potentials for improved detection of both spiking and subthreshold activity. ASAP5 reported action potentials (APs) in vivo with higher signal-to-noise ratios than previous GEVIs and successfully detected graded and subthreshold responses to sensory stimuli in single two-photon trials. In cultured rat or human neurons, somatic ASAP5 reported synaptic events propagating centripetally and could detect ∼1-mV EPSPs. By imaging spontaneous EPSPs throughout dendrites, we found that EPSP amplitudes decay exponentially during propagation and that amplitude at the initiation site generally increases with distance from the soma. These results extend the applications of voltage imaging to the quantal response domain, including in human neurons, opening up the possibility of high-throughput, high-content characterization of neuronal dysfunction in disease.
Collapse
Affiliation(s)
- Yukun A Hao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Silvia Natale
- Department of Molecular & Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Laura Gomez
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California Berkeley, CA 94720, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Philipp S O'Neill
- Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Zeguan Wang
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Mengjun Sheng
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Di Lu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Edward Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Na Ji
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California Berkeley, CA 94720, USA
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Navarro MX, Gerstner NC, Lipman SM, Dolgonos GE, Miller EW. Improved Sensitivity in a Modified Berkeley Red Sensor of Transmembrane Potential. ACS Chem Biol 2024; 19:2214-2219. [PMID: 39358835 PMCID: PMC11648967 DOI: 10.1021/acschembio.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Voltage imaging is an important complement to traditional methods for probing cellular physiology, such as electrode-based patch clamp techniques. Unlike the related Ca2+ imaging, voltage imaging provides a direct visualization of bioelectricity changes. We have been exploring the use of sulfonated silicon rhodamine dyes (Berkeley Red Sensor of Transmembrane potential, BeRST) for voltage imaging. In this study, we explore the effect of converting BeRST to diEt BeRST, by replacing the dimethyl aniline of BeRST with a diethyl aniline group. The new dye, diEt BeRST, has a voltage sensitivity of 40% ΔF/F per 100 mV, a 33% increase compared to the original BeRST dye, which has a sensitivity of 30% ΔF/F per 100 mV. In neurons, the cellular brightness of diEt BeRST is about 20% as bright as that of BeRST, which may be due to the lower solubility of diEt BeRST (300 μM) compared to that of BeRST (800 μM). Despite this lower cellular brightness, diEt BeRST is able to record spontaneous and evoked action potentials from multiple neurons simultaneously and in single trials. Far-red excitation and emission profiles enable diEt BeRST to be used alongside existing fluorescent indicators of cellular physiology, like Ca2+-sensitive Oregon Green BAPTA. In hippocampal neurons, simultaneous voltage and Ca2+ imaging reveals neuronal spiking patterns and frequencies that cannot be resolved with traditional Ca2+ imaging methods. This study represents a first step toward describing the structural features that define voltage sensitivity and brightness in silicon rhodamine-based BeRST indicators.
Collapse
Affiliation(s)
- Marisol X. Navarro
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA
| | - Nels C. Gerstner
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA
| | - Soren M. Lipman
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA
| | - Gabby E. Dolgonos
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, California, 94720-1460, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, 94720-1460, USA
| |
Collapse
|
6
|
Milicevic KD, Ivanova VO, Lovic DD, Platisa J, Andjus PR, Antic SD. Plateau depolarizations in spontaneously active neurons detected by calcium or voltage imaging. Sci Rep 2024; 14:22787. [PMID: 39367010 PMCID: PMC11452489 DOI: 10.1038/s41598-024-70319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/14/2024] [Indexed: 10/06/2024] Open
Abstract
In calcium imaging studies, Ca2+ transients are commonly interpreted as neuronal action potentials (APs). However, our findings demonstrate that robust optical Ca2+ transients primarily stem from complex "AP-Plateaus", while simple APs lacking underlying depolarization envelopes produce much weaker photonic signatures. Under challenging in vivo conditions, these "AP-Plateaus" are likely to surpass noise levels, thus dominating the Ca2+ recordings. In spontaneously active neuronal culture, optical Ca2+ transients (OGB1-AM, GCaMP6f) exhibited approximately tenfold greater amplitude and twofold longer half-width compared to optical voltage transients (ArcLightD). The amplitude of the ArcLightD signal exhibited a strong correlation with the duration of the underlying membrane depolarization, and a weaker correlation with the presence of a fast sodium AP. Specifically, ArcLightD exhibited robust responsiveness to the slow "foot" but not the fast "trunk" of the neuronal AP. Particularly potent stimulators of optical signals in both Ca2+ and voltage imaging modalities were APs combined with plateau potentials (AP-Plateaus), resembling dendritic Ca2+ spikes or "UP states" in pyramidal neurons. Interestingly, even the spikeless plateaus (amplitude > 10 mV, duration > 200 ms) could generate conspicuous Ca2+ optical signals in neurons. Therefore, in certain circumstances, Ca2+ transients should not be interpreted solely as indicators of neuronal AP firing.
Collapse
Affiliation(s)
- Katarina D Milicevic
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute of Physiology and Biochemistry 'Jean Giaja', Center for Laser Microscopy, University of Belgrade, Faculty of Biology, 11000, Belgrade, Serbia
| | - Violetta O Ivanova
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Darko D Lovic
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute of Physiology and Biochemistry 'Jean Giaja', Center for Laser Microscopy, University of Belgrade, Faculty of Biology, 11000, Belgrade, Serbia
| | - Jelena Platisa
- The John B. Pierce Laboratory, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Pavle R Andjus
- Institute of Physiology and Biochemistry 'Jean Giaja', Center for Laser Microscopy, University of Belgrade, Faculty of Biology, 11000, Belgrade, Serbia
| | - Srdjan D Antic
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Fitzgerald MQ, Chu T, Puppo F, Blanch R, Chillón M, Subramaniam S, Muotri AR. Generation of 'semi-guided' cortical organoids with complex neural oscillations. Nat Protoc 2024; 19:2712-2738. [PMID: 38702386 PMCID: PMC11380594 DOI: 10.1038/s41596-024-00994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/22/2024] [Indexed: 05/06/2024]
Abstract
Temporal development of neural electrophysiology follows genetic programming, similar to cellular maturation and organization during development. The emergent properties of this electrophysiological development, namely neural oscillations, can be used to characterize brain development. Recently, we utilized the innate programming encoded in the human genome to generate functionally mature cortical organoids. In brief, stem cells are suspended in culture via continuous shaking and naturally aggregate into embryoid bodies before being exposed to media formulations for neural induction, differentiation and maturation. The specific culture format, media composition and duration of exposure to these media distinguish organoid protocols and determine whether a protocol is guided or unguided toward specific neural fate. The 'semi-guided' protocol presented here has shorter induction and differentiation steps with less-specific patterning molecules than most guided protocols but maintains the use of neurotrophic factors such as brain-derived growth factor and neurotrophin-3, unlike unguided approaches. This approach yields the cell type diversity of unguided approaches while maintaining reproducibility for disease modeling. Importantly, we characterized the electrophysiology of these organoids and found that they recapitulate the maturation of neural oscillations observed in the developing human brain, a feature not shown with other approaches. This protocol represents the potential first steps toward bridging molecular and cellular biology to human cognition, and it has already been used to discover underlying features of human brain development, evolution and neurological conditions. Experienced cell culture technicians can expect the protocol to take 1 month, with extended maturation, electrophysiology recording, and adeno-associated virus transduction procedure options.
Collapse
Affiliation(s)
- Michael Q Fitzgerald
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Tiffany Chu
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Francesca Puppo
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Rebeca Blanch
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Institut de Recerca Vall d'Hebron and Institut de Neurociències, Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillón
- Institut de Recerca Vall d'Hebron and Institut de Neurociències, Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA.
- Center for Academic Research and Training in Anthropogeny and Archealization, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Education and Integrated Space Stem Cell Orbital Research Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Sandoval SO, Cappuccio G, Kruth K, Osenberg S, Khalil SM, Méndez-Albelo NM, Padmanabhan K, Wang D, Niciu MJ, Bhattacharyya A, Stein JL, Sousa AMM, Waxman EA, Buttermore ED, Whye D, Sirois CL, Williams A, Maletic-Savatic M, Zhao X. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Reports 2024; 19:796-816. [PMID: 38759644 PMCID: PMC11297560 DOI: 10.1016/j.stemcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gerarda Cappuccio
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karina Kruth
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Sivan Osenberg
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Saleh M Khalil
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Center for Visual Science, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark J Niciu
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA.
| | - Mirjana Maletic-Savatic
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Le Floch P, Li Q, Lin Z, Zhao S, Liu R, Tasnim K, Jiang H, Liu J. Stretchable Mesh Nanoelectronics for 3D Single-Cell Chronic Electrophysiology from Developing Brain Organoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106829. [PMID: 35014735 PMCID: PMC8930507 DOI: 10.1002/adma.202106829] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/26/2021] [Indexed: 05/13/2023]
Abstract
Human induced pluripotent stem cell derived brain organoids have shown great potential for studies of human brain development and neurological disorders. However, quantifying the evolution of the electrical properties of brain organoids during development is currently limited by the measurement techniques, which cannot provide long-term stable 3D bioelectrical interfaces with developing brain organoids. Here, a cyborg brain organoid platform is reported, in which "tissue-like" stretchable mesh nanoelectronics are designed to match the mechanical properties of brain organoids and to be folded by the organogenetic process of progenitor or stem cells, distributing stretchable electrode arrays across the 3D organoids. The tissue-wide integrated stretchable electrode arrays show no interruption to brain organoid development, adapt to the volume and morphological changes during brain organoid organogenesis, and provide long-term stable electrical contacts with neurons within brain organoids during development. The seamless and noninvasive coupling of electrodes to neurons enables long-term stable, continuous recording and captures the emergence of single-cell action potentials from early-stage brain organoid development.
Collapse
Affiliation(s)
- Paul Le Floch
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Qiang Li
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Zuwan Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Siyuan Zhao
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Ren Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kazi Tasnim
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Han Jiang
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| |
Collapse
|
10
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|