1
|
Yan F, Qiao Y, Pan S, Kang A, Chen H, Bai Y. RIPK1: A Promising Target for Intervention Neuroinflammation. J Neuroimmune Pharmacol 2025; 20:59. [PMID: 40418439 DOI: 10.1007/s11481-025-10208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025]
Abstract
Necroptosis is a novel mode of cell death that differs from traditional apoptosis, characterized by distinct molecular mechanisms and physiopathological features. Recent research has increasingly underscored the pivotal role of necroptosis in various neurological diseases, including stroke, Alzheimer's disease and multiple sclerosis. A defining hallmark of these conditions is neuroinflammation, a complex inflammatory response that critically influences neuronal survival. This review provides a comprehensive analysis of the mechanistic underpinnings of necroptosis and its intricate interplay with neuroinflammation, exploring the interrelationship between the two processes and their impact on neurological disorders. In addition, we discuss potential therapeutic strategies that target the intervention of necroptosis and neuroinflammation, offering novel avenues for intervention. By deepening our understanding of these interconnected processes, the development of more effective treatments approaches holds significant promise for improving patient outcomes in neurological disorders.
Collapse
Affiliation(s)
- Feixing Yan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Shunli Pan
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Anjuan Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yinliang Bai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Lu Y, Cheng L, Xiong Y, Huang C, Liu Z, Shen C, Wang H, Qiu Y, Yang SB, Wu M, Zhang X. NLRP3 Inflammasome in Vascular Dementia: Regulatory Mechanisms, Functions, and Therapeutic Implications: A Comprehensive Review. CNS Neurosci Ther 2025; 31:e70403. [PMID: 40326096 PMCID: PMC12052953 DOI: 10.1111/cns.70403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Vascular dementia, the second most common type of dementia globally after Alzheimer's disease, is associated with neuroinflammation. Activation of the NLRP3 inflammasome, an important pattern recognition receptor in human innate immunity, plays a key role in the pathogenesis of vascular dementia. RESULTS The NLRP3 inflammasome pathway destroys neuronal cells primarily through the production of IL-18 and IL-1β. Moreover, it exacerbates vascular dementia by producing IL-18, IL-1β, and the N-terminal fragment of GSDMD, which also contributes to neuronal cell death. Thus, blocking the NLRP3 inflammasome pathway presents a new therapeutic strategy for treating vascular dementia, thereby delaying or curing the disease more effectively and mitigating adverse effects. CONCLUSIONS This review explores the role and mechanisms of the NLRP3 inflammasome in vascular dementia, summarizing current research and therapeutic strategies. Investigating the activation of the NLRP3 inflammasome can reveal the pathogenesis of vascular dementia from a new perspective and propose innovative preventive and treatment strategies.
Collapse
Affiliation(s)
- Yujia Lu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of NeurologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of RehabilitationClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunyan Huang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Chunxiao Shen
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Huaying Wang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Yuemin Qiu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Seung Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanRepublic of Korea
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
3
|
Yoblinski AR, Dubey J, Myers T, Sathees N, Volk DW, Fish KN, Seney ML. Brain region and sex differences in human microglia morphology and function. Cereb Cortex 2025; 35:bhaf120. [PMID: 40420495 PMCID: PMC12106278 DOI: 10.1093/cercor/bhaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/03/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Microglia exhibit complex and dynamic morphology that is linked to function. Altered microglia function has been implicated in multiple diseases of the brain, including elevated phagocytosis of neuronal dendritic spines in schizophrenia. However, understanding the relationship between altered microglia and pathophysiology first requires a clearer picture of microglia morphology in the non-diseased brain, which has yet to be fully established. Here, we deploy immunostaining and confocal microscopy to sample over 1,300 microglia from two prefrontal cortex (PFC) subregions in postmortem human brain (3 males, 3 females). We use Neurolucida 360 to trace the 3-dimensional structure of these microglia and quantify interactions with dendritic spines. We find that PFC microglia in male subjects display overall more complex branching than in female subjects, and subgenual anterior cingulate cortex (sgACC) microglia are more complexly branched with more round somas than those in the dorsolateral PFC (DLPFC), irrespective of sex. Furthermore, a lower proportion of phagocytic burden in sgACC microglia involves engulfment of dendritic spines compared to DLPFC. Overall, our results paint a detailed and nuanced picture of microglia morphology and function in subjects unaffected by psychiatric or neurologic illness that can be used as a benchmark for future studies of the diseased brain.
Collapse
Affiliation(s)
- Andrew R Yoblinski
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
| | - Jyoti Dubey
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
| | - Tyler Myers
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
| | - Nitya Sathees
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
| | - David W Volk
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
- VISN 4 Mental Illness Research Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, University Drive C, Pittsburgh, PA 15240, United States
| | - Kenneth N Fish
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
| | - Marianne L Seney
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh Medical School, 450 Technology Drive Suite 223, Pittsburgh, PA 15213, United States
| |
Collapse
|
4
|
Nie W, Yue Y, Hu J. The role of monocytes and macrophages in the progression of Alzheimer's disease. Front Immunol 2025; 16:1590909. [PMID: 40364847 PMCID: PMC12069055 DOI: 10.3389/fimmu.2025.1590909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), and neuroinflammation. Monocytes and macrophages, particularly microglia, play a dual role in AD pathogenesis. In the early stages, they delay disease progression by phagocytosing Aβ, but chronic activation leads to Aβ accumulation and exacerbated neuroinflammation. Monocyte chemoattractant protein 1 (MCP-1) is a key regulator in neuroinflammation, Aβ deposition, and tau pathology, making it a potential therapeutic target. Moreover, recent breakthroughs in fluid and imaging biomarkers and targeted immunomodulatory agents underscore the growing importance of early diagnostic and therapeutic interventions. This review explores the complex interplay between monocytes, macrophages, and AD pathology, highlighting their roles in neuroinflammation, Aβ metabolism, and tau phosphorylation. Understanding these mechanisms offers new insights into developing effective diagnostic biomarkers and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Wenyi Nie
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yingbin Yue
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Jingqing Hu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Wendt S, Lin AJ, Ebert SN, Brennan DJ, Cai W, Bai Y, Kong DY, Sorrentino S, Groten CJ, Lee C, Frew J, Choi HB, Karamboulas K, Delhaye M, Mackenzie IR, Kaplan DR, Miller FD, MacVicar BA, Nygaard HB. A 3D human iPSC-derived multi-cell type neurosphere system to model cellular responses to chronic amyloidosis. J Neuroinflammation 2025; 22:119. [PMID: 40275379 PMCID: PMC12023538 DOI: 10.1186/s12974-025-03433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive amyloid beta (Aβ) deposition in the brain, with eventual widespread neurodegeneration. While the cell-specific molecular signature of end-stage AD is reasonably well characterized through autopsy material, less is known about the molecular pathways in the human brain involved in the earliest exposure to Aβ. Human model systems that not only replicate the pathological features of AD but also the transcriptional landscape in neurons, astrocytes and microglia are crucial for understanding disease mechanisms and for identifying novel therapeutic targets. METHODS In this study, we used a human 3D iPSC-derived neurosphere model to explore how resident neurons, microglia and astrocytes and their interplay are modified by chronic amyloidosis induced over 3-5 weeks by supplementing media with synthetic Aβ1 - 42 oligomers. Neurospheres under chronic Aβ exposure were grown with or without microglia to investigate the functional roles of microglia. Neuronal activity and oxidative stress were monitored using genetically encoded indicators, including GCaMP6f and roGFP1, respectively. Single nuclei RNA sequencing (snRNA-seq) was performed to profile Aβ and microglia driven transcriptional changes in neurons and astrocytes, providing a comprehensive analysis of cellular responses. RESULTS Microglia efficiently phagocytosed Aβ inside neurospheres and significantly reduced neurotoxicity, mitigating amyloidosis-induced oxidative stress and neurodegeneration following different exposure times to Aβ. The neuroprotective effects conferred by the presence of microglia was associated with unique gene expression profiles in astrocytes and neurons, including several known AD-associated genes such as APOE. These findings reveal how microglia can directly alter the molecular landscape of AD. CONCLUSIONS Our human 3D neurosphere culture system with chronic Aβ exposure reveals how microglia may be essential for the cellular and transcriptional responses in AD pathogenesis. Microglia are not only neuroprotective in neurospheres but also act as key drivers of Aβ-dependent APOE expression suggesting critical roles for microglia in regulating APOE in the AD brain. This novel, well characterized, functional in vitro platform offers unique opportunities to study the roles and responses of microglia to Aβ modelling key aspects of human AD. This tool will help identify new therapeutic targets, accelerating the transition from discovery to clinical applications.
Collapse
Affiliation(s)
- Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Sarah N Ebert
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Declan J Brennan
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Wenji Cai
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Yanyang Bai
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Da Young Kong
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Stefano Sorrentino
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher Lee
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Jonathan Frew
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Opalia Co, Montreal, QC, H2X 3Y7, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Konstantina Karamboulas
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
| | - Mathias Delhaye
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Ian R Mackenzie
- Department of Pathology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - David R Kaplan
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Freda D Miller
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| |
Collapse
|
6
|
Lietzke EE, Saeb D, Aldrich EC, Bruce KD, Sprenger KG. Synergistic reduction in interfacial flexibility of TREM2 R47H and ApoE4 may underlie AD pathology. Alzheimers Dement 2025; 21:e70120. [PMID: 40219843 PMCID: PMC11992651 DOI: 10.1002/alz.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The strongest genetic drivers of late-onset Alzheimer's disease (AD) are apolipoprotein E4 (ApoE4) and TREM2R47H. Despite their critical roles, the mechanisms underlying their interactions remain poorly understood. METHODS We conducted microsecond-long molecular dynamics simulations of TREM2-ApoE complexes, including TREM2R47H, validating our findings through comparison with published experimental data on TREM2-ApoE binding interactions. RESULTS Our simulations reveal TREM2WT can sample an "open" CDR2 conformation, challenging the prevailing notion that this conformation is pathogenic. TREM2WT exhibits greater flexibility, accessing diverse CDR2 conformations, while rigidity in TREM2R47H's CDR2 may explain its reduced ligand-binding properties. ApoE2 facilitates dynamic reconfiguration of TREM2-ApoE2 complexes, which is absent with ApoE4. TREM2R47H and ApoE4 mutually rigidify each other, suppressing interfacial flexibility. DISCUSSION Our findings suggest mechanisms underlying ApoE2's neuroprotective functions, ApoE4's pathogenicity, and the synergistic effects of ApoE4 and TREM2R47H in AD. TREM2WT's flexibility and reconfiguration with ApoE2 may support microglial activation, while rigidity in TREM2R47H-ApoE4 interactions may drive pathogenic signaling. HIGHLIGHTS TREM2WT samples diverse CDR2 conformations, challenging prior assumptions that an "open" CDR2 state is solely pathogenic. ApoE2 promotes dynamic reconfiguration of TREM2-ApoE2 complexes, preserving TREM2WT's flexibility. ApoE4's hinge forms a unique binding pocket that enhances TREM2 binding. The TREM2R47H-ApoE4 complex exhibits mutual rigidity, suppressing CDR2 and hinge flexibility.
Collapse
Affiliation(s)
- Emma E. Lietzke
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- Division of EndocrinologyMetabolism, and DiabetesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - David Saeb
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Emma C. Aldrich
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kimberley D. Bruce
- Division of EndocrinologyMetabolism, and DiabetesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kayla G. Sprenger
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
7
|
Bovis K, Davies-Branch M, Day PJR. Dysregulated Neurotransmission and the Role of Viruses in Alzheimer's Disease. ACS Chem Neurosci 2025; 16:982-987. [PMID: 40045566 PMCID: PMC11926781 DOI: 10.1021/acschemneuro.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The causes of neurodegeneration remain elusive. There is growing evidence linking viral infection to dysregulated neurotransmission as a causative factor in Alzheimer's disease. Studies suggest that viral infection may result in dysregulated glutamatergic and l-arginine/NO neurotransmission that can initiate neurodegeneration and neuroinflammation within AD. This involves viral infection (HIV-1/HSV-1) altering glutamate biosynthesis and receptor activation resulting in excessive influxes of glutamate and subsequent dysregulation of Ca2+ influx that all contribute to reduced dendrite growth and tau phosphorylation. For l-arginine/NO neurotransmission, the mechanism derives from the "protective" antiviral mechanisms of NO that correlate with pathologies such as β-amyloid peptide accumulation and functional degeneration of hippocampal neurons, respectively. More research is required to underpin the direct mechanisms that viruses might impact to induce specific pathologies.
Collapse
Affiliation(s)
- Katherine Bovis
- Division
of Evolution, Infection & Genomic Sciences, University of Manchester, Manchester M13 9PL, U.K.
| | - Martha Davies-Branch
- Division
of Evolution, Infection & Genomic Sciences, University of Manchester, Manchester M13 9PL, U.K.
| | - Philip J. R. Day
- Division
of Evolution, Infection & Genomic Sciences, University of Manchester, Manchester M13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
8
|
He S, Li X, Mittra N, Bhattacharjee A, Wang H, Song S, Zhao S, Liu F, Han X. Microglial cGAS Deletion Preserves Intercellular Communication and Alleviates Amyloid-β-Induced Pathogenesis of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410910. [PMID: 39908354 PMCID: PMC11948024 DOI: 10.1002/advs.202410910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Innate immune activation plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and related dementias (ADRD). The cytosolic DNA sensing pathway, involving cGAMP synthase (cGAS) and Stimulator of Interferon Genes (STING), has emerged as a key mediator of neurodegenerative diseases. However, the precise mechanisms through which cGAS activation influences AD progression remain poorly understood. In this study, we observed significant up-regulation of cGAS-STING signaling pathway in AD. Notably, this increase is primarily attributed to microglia, rather than non-microglial cell types. Using an inducible, microglia-specific cGAS knockout mouse model in the 5xFAD background, we demonstrated that deleting microglial cGAS at the onset of amyloid-β (Aβ) pathology profoundly restricts plaque accumulation and protects mice from Aβ-induced cognitive impairment. Mechanistically, our study revealed cGAS promotes plaque-associated microglia accumulation and is essential for inflammasome activation. Moreover, we showed that restricting cGAS-mediated innate immunity is crucial for preserving inter-cellular communication in the brain and induces pleiotrophin, a neuroprotective factor. These findings offer novel insights into the specific roles of the innate immune system in AD employing a cell-type-specific approach. The conclusions provide a foundation for targeted interventions to modulate the microglial cGAS-STING signaling pathway, offering promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Sijia He
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Xin Li
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Namrata Mittra
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shujie Song
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shangang Zhao
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Division of EndocrinologyDepartment of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Feng Liu
- Metabolic Syndrome Research CenterThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| |
Collapse
|
9
|
Bong SH, Choi H, Song HH, Kim DK, Mook-Jung I, Lee DY. Metabolic Reprogramming in Primary Microglial Cell and Extracellular Vesicle Triggered by Aβ Exposure. J Neurochem 2025; 169:e70030. [PMID: 40042046 DOI: 10.1111/jnc.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 05/12/2025]
Abstract
Microglia, key immune cells in the brain, play a pivotal role in brain homeostasis and immune responses. Emerging evidence suggests their critical involvement in Alzheimer's disease (AD) pathogenesis and propagation. The propagation of AD pathology is related to the extracellular matrix of microglia, including extracellular vesicles (EV). Recently, microglia-derived EVs are implicated in inflammatory processes and neuronal death. This study aimed to extensively profile and propose the metabolic role of microglial EVs in AD. Accordingly, we determined the significant alterations of the EV metabolome associated with the metabolites in primary microglial cells. Aβ exposure induced significant metabolic alteration of 39, 18, and 28 metabolites in microglial cells, cultured media, and EVs, respectively. Aβ exposure triggered common alteration of key metabolic pathways between microglial cells and EVs, including purine, amino acid, and fatty acid metabolisms. While most of the common metabolites showed the same directional changes among the microglial system, N-acetyl aspartic acid displayed the opposite directional change in EVs. N-acetyl aspartic acid decreased 2.3-fold and twofold in microglial cells and media, respectively, but increased 3.5-fold in EVs under Aβ exposure. Moreover, mediation analysis proposed key EV metabolites that were directly affected by the metabolic dysregulation of Aβ-exposed microglial cells. The up-regulation of cysteic acid in EVs was mediated by up-regulated IMP in microglial cells. The down-regulation of 1-16:0-lysoPE in EVs was mediated by stearoyl-L-carnitine in microglial cells. Our study sheds new light on the role of microglia and EVs in neurodegenerative diseases, offering promising avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Seong-Hun Bong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hayoung Choi
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Ho Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dong Kyu Kim
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, Seoul, Gangwon-do, South Korea
| |
Collapse
|
10
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
11
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Alaei M, Koushki K, Taebi K, Yousefi Taba M, Keshavarz Hedayati S, Keshavarz Shahbaz S. Metal nanoparticles in neuroinflammation: impact on microglial dynamics and CNS function. RSC Adv 2025; 15:5426-5451. [PMID: 39967886 PMCID: PMC11833603 DOI: 10.1039/d4ra07798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Microglia, the primary immune cells of the central nervous system (CNS), are crucial in maintaining brain homeostasis and responding to pathological changes. While they play protective roles, their activation can lead to neuroinflammation and the progression of neurodegenerative diseases. Metal nanoparticles (NPs), due to their unique ability to cross the blood-brain barrier (BBB), have emerged as promising agents for drug delivery to the CNS. In this way, we aim to review the dual role of metal-containing NPs, gold (AuNPs), silver (AgNPs), iron oxide (IONPs), zinc oxide (ZnONPs), cobalt (CoNPs), titanium dioxide (TiO2NPs), and silica (SiO2NPs) in modulating microglial activity. Some NPs promote anti-inflammatory effects, while others exacerbate neuroinflammation. We examine how these NPs influence microglial activation, focusing on their potential therapeutic benefits and risks. A deeper understanding of NP-microglia interactions is crucial for developing safe and efficient treatments for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Masood Alaei
- Student Research Committee, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, University of Texas Houston Health Science Center (UTHealth) Houston TX USA
| | - Kimia Taebi
- Student Research Committee, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Mahdieh Yousefi Taba
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences Qazvin 34197-59811 Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| |
Collapse
|
13
|
Dang W, Hao T, Li N, Zhang H, Li Z, Yu H, Wen Y, Zheng D, Liu L. Investigating shared risk variants and genetic etiology between Alzheimer's disease and three stress-related psychiatric disorders: a large-scale genome-wide cross-trait analysis. FRONTIERS IN AGING 2025; 6:1488528. [PMID: 39975850 PMCID: PMC11837265 DOI: 10.3389/fragi.2025.1488528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Introduction Observational studies have reported that patients with Alzheimer's disease (AD) have a greater burden of comorbidities typically associated with stress-related psychiatric disorders. However, the contribution of hereditary factors to this comorbidity remains unclear. We evaluated phenotypic associations using observational data from the UK Biobank. Method Our study focused on investigating the shared risk variants and genetic etiology underlying AD and three stress-related psychiatric disorders: post-traumatic stress disorder, anxiety disorder, and major depressive disorder. By leveraging summary statistics from genome-wide association studies, we investigated global genetic correlations using linkage disequilibrium score regression, genetic covariance analysis, and high-definition likelihood. Genome-wide cross-trait analysis with association analysis based on subsets and cross-phenotype association were performed to discover genome-wide significant risk variants shared between AD and the three stress-related psychiatric disorders. Results A significant positive genetic correlation was observed between AD and major depressive disorder using linkage disequilibrium score regression (rg = 0.231; P = 0.018), genetic covariance analysis (rg = 0.138; P < 0.001), and high-definition likelihood (rg = 0.188; P < 0.001). Association analysis based on subsets and cross-phenotype association revealed thirteen risk variants in six genes shared between AD and post-traumatic stress disorder; seven risk variants in four genes shared between AD and anxiety disorder; and 23 risk variants in four genes shared between AD and major depressive disorder. Functional annotation and gene-set enrichment analysis indicated that 12 genes for comorbidity shared between patients with AD and all three stress-related psychiatric disorders were enriched in the spleen, pancreas, and whole blood. Conclusion These results advance our knowledge of the shared genetic origins of comorbidities and pave the way for advancements in the diagnosis, management, and prevention of stress-related AD.
Collapse
Affiliation(s)
- Weijia Dang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianqi Hao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Hualin Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziqi Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yalu Wen
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
14
|
AmeliMojarad M, AmeliMojarad M, Cui X. An overview on the impact of viral pathogens on Alzheimer's disease. Ageing Res Rev 2025; 104:102615. [PMID: 39631533 DOI: 10.1016/j.arr.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia which affects over than 60 million cases worldwide with higher incidence in low and middle-income countries by 2030. Based on the multifactorial nature of AD different risk factors are linked to the condition considering the brain's β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) as its primary hallmarks. Lately, viral photogenes specially after recent SARS-CoV-2 pandemic has gained a lot of attention in promoting the neurodegenerative disorder such as AD based on their capacity to increase the permeability of the blood-brain barrier, dysregulation of immune responses, and the impact on Aβ processing and phosphorylation of tau proteins. Therefore, in this review, we summarized the important association of viral pathogens and their mechanism by which they contribute with AD formation and development. AN OVERVIEW OF THE ROLES OF VIRAL PATHOGENS IN AD: According to this figure, viruses can infect neurons directly by modulating the BBB, transferring from endothelial cells to glial cells and then to neurons, increasing the Aβ deposition, and affecting the tau protein phosphorylation or indirectly through the virus's entrance and pathogenicity that can be accelerated by genetic and epigenetic factors, as well as chronic neuroinflammation caused by activated microglia and astrocytes.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| | - Mandana AmeliMojarad
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| | - Xiaonan Cui
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| |
Collapse
|
15
|
Lee E, Chang Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer's Disease. Cells 2025; 14:168. [PMID: 39936960 PMCID: PMC11817173 DOI: 10.3390/cells14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The recent approval of lecanemab highlights that the amyloid beta (Aβ) protein is an important pathological target in Alzheimer's disease (AD) and further emphasizes the significance of neuroinflammatory pathways in regulating Aβ accumulation. Indeed, Aβ accumulation triggers microglia activation, which are key mediators in neuroinflammation. The inflammatory responses in this process can lead to neuronal damage and functional decline. Microglia secrete proinflammatory cytokines that accelerate neuronal death and release anti-inflammatory cytokines and growth factors contributing to neuronal recovery and protection. Thus, microglia play a dual role in neurodegeneration and neuroprotection, complicating their function in AD. Therefore, elucidating the complex interactions between Aβ protein, microglia, and neuroinflammation is essential for developing new strategies for treating AD. This review investigates the receptors and pathways involved in activating microglia and aims to enhance understanding of how these processes impact neuroinflammation in AD, as well as how they can be regulated. This review also analyzed studies reported in the existing literature and ongoing clinical trials. Overall, these studies will contribute to understanding the regulatory mechanisms of neuroinflammation and developing new therapies that can slow the pathological progression of AD.
Collapse
Affiliation(s)
- Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
16
|
Valiukas Z, Tangalakis K, Apostolopoulos V, Feehan J. Microglial activation states and their implications for Alzheimer's Disease. J Prev Alzheimers Dis 2025; 12:100013. [PMID: 39800461 DOI: 10.1016/j.tjpad.2024.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia. Current AD treatments have been largely ineffective, though emerging immunotherapies focusing on plaque removal show promise, but often overlook the role of neuroinflammation. Activated microglia display a complex range of phenotypes that can be broadly broken into pro- or anti-inflammatory states, although this dichotomy does not describe the significant overlap between states. Aβ can strongly induce inflammatory activity, triggering the production of reactive oxygen species, inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6), synapse engulfment, blood-brain barrier compromise, and impaired Aβ clearance. These processes contribute to neural tissue loss, manifesting as cognitive decline such as impaired executive function and memory. Conversely, anti-inflammatory activation exerts neuroprotective effects by suppressing inflammatory pathways and releasing neurotrophic factors that aid neuron repair and protection. Induction of anti-inflammatory states may offer a dual therapeutic approach to address both neuroinflammation and plaque accumulation in AD. This approach suggests potential strategies to modulate microglial phenotypes, aiming to restore neuroprotective functions and mitigate disease progression by simultaneously targeting inflammation and plaque pathology.
Collapse
Affiliation(s)
- Zachary Valiukas
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray VIC 3011, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, 70/104 Ballarat Road, Footscray VIC 3011, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia.
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia.
| |
Collapse
|
17
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
19
|
Freyssin A, Carles A, Moha B, Rubinstenn G, Maurice T. Long-Term Treatment with Fluoroethylnormemantine (FENM) Alleviated Memory Deficits, Amyloid Pathology, and Microglial Reaction in APP/PS1 Mice. ACS Pharmacol Transl Sci 2024; 7:4069-4082. [PMID: 39698294 PMCID: PMC11650732 DOI: 10.1021/acsptsci.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Fluoroethylnormemantine (FENM, RST-01) shows different pharmacological properties from Memantine. The drug is neuroprotective in pharmacological and transgenic mouse models of Alzheimer's disease (AD), particularly limiting the neuroinflammatory response to amyloid-β (Aβ) accumulation. In order to define early therapeutic intervention aimed at preventing AD and targeting the early activation of proinflammatory pathways, we examined the impact of chronic FENM treatment starting presymptomatically in APPswe/PSEN1∂E9 (APP/PS1) mice. APP/PS1 (32 males and 36 females) and wild-type (WT, 23 males and 36 females) mice received FENM (0, 1, and 5 mg/kg/day) in the drinking bottle between 3 and 12 months of age. They were tested once a month for spontaneous alternation and, at the end of the treatment, for object recognition, water-maze learning, and passive avoidance. Amyloid plaques, astrocytes, and microglia were assessed by immunofluorescence, and guanidine-soluble and insoluble Aβ1-40/42 levels were determined in the hippocampal formation. Spontaneous alternation performances regularly decreased in APP/PS1, but not in WT mice. The FENM treatments (1 and 5 mg/kg) prevented the deficit. At 12 months of age, APP/PS1 treated with 1 mg/kg FENM showed significant improvements in all behavioral procedures tested. The astroglial reaction was not significantly attenuated by FENM in the stratum radiatum, stratum moleculare, and polymorph layer of the dentate gyrus. The microglial reaction was significantly decreased in the two latter areas. In the polymorph layer, a significant effect on amyloid plaques was measured. Global analyses of amyloid load showed attenuations of soluble and insoluble Aβ1-40 levels and a significant decrease in the level of insoluble Aβ1-42. Moreover, significant negative correlations were observed for FENM impacts on amyloid load or microglial activation and the alternation score. FENM confirmed, under a chronic presymptomatic treatment, its neuroprotective efficacy in AD. Our data particularly suggested that an impact on Aβ and microglia could be related to the preservation of cognitive functions.
Collapse
Affiliation(s)
- Aline Freyssin
- MMDN,
University of Montpellier, EPHE, INSERM, Montpellier and ReST Therapeutics, Paris 75006, France
| | - Allison Carles
- MMDN,
University of Montpellier, EPHE, INSERM, Montpellier, Paris 75006, France
| | - Barbara Moha
- MMDN,
University of Montpellier, EPHE, INSERM, Montpellier, Paris 75006, France
| | | | - Tangui Maurice
- MMDN,
University of Montpellier, EPHE, INSERM, Montpellier, Paris 75006, France
| |
Collapse
|
20
|
Oxenkrug G. Anthranilic Acid-G-Protein Coupled Receptor109A-Cytosolic Phospholipase A2-Myelin-Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging. Int J Mol Sci 2024; 25:13269. [PMID: 39769034 PMCID: PMC11675959 DOI: 10.3390/ijms252413269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Cognitive impairment is a core feature of neurodevelopmental (schizophrenia) and aging-associated (mild cognitive impairment and Alzheimer's dementia) neurodegenerative diseases. Limited efficacy of current pharmacological treatments warrants further search for new targets for nootropic interventions. The breakdown of myelin, a phospholipids axonal sheath that protects the conduction of nerve impulse between neurons, was proposed as a neuropathological abnormality that precedes and promotes the deposition of amyloid-β in neuritic plaques. The present review of the recent literature and our own pre- and clinical data suggest (for the first time) that the anthranilic acid (AA)-induced activation of microglial-expressed G-protein coupled receptor (GPR109A) inhibits cytosolic phospholipase A2 (cPLA2), an enzyme that triggers the degradation of myelin and consequently attenuates cognitive impairment. The present review suggests that the up-regulation of AA formation is a sex-specific compensatory (adaptive) reaction aimed to prevent/treat cognitive impairment. The AA-GPR109A-cPLA2-myelin-cognition cascade suggests new nootropic interventions, e.g., the administration of pegylated kynureninase, an enzyme that catalyzes AA formation from Kynurenine (Kyn), a tryptophane catabolite; pegylated interferon-alpha; central and peripheral Kyn aminotransferase inhibitors that increase availability of Kyn as a substrate for AA formation; and vagus nerve stimulation. The cascade predicts nootropic activity of exogenous GPR109A agonists that were designed and underwent clinical trials (unsuccessful) as anti-dyslipidemia agents. The proposed cascade might contribute to the pathogenesis of cognitive impairment. Data on AA in neurodegenerative disorders are scarce, and the proposed cascade needs further exploration in pre- and clinical studies.
Collapse
Affiliation(s)
- Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
21
|
Widaja E, Pawitan JA. Integrating epigenetic modification and stem cell therapy strategies: A novel approach for advancing Alzheimer's disease treatment - A literature review. NARRA J 2024; 4:e935. [PMID: 39816083 PMCID: PMC11731673 DOI: 10.52225/narra.v4i3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development. These alterations further enact transcriptional changes relevant to the signature AD pathologies of amyloid-β deposition, tau protein malfunctioning, neuroinflammation, and neuronal death. Here, we discuss the feasibility of targeting these epigenetic alterations as a new treatment strategy due to the reversibility of epigenetics and their ability to correct faulty gene expression. We also review the combined promise of stem cell therapies and epigenetic modulation in neurodegeneration, inflammation and cognitive decline. This combined approach may provide a multifaceted strategy to slow disease progression, replace lost neurons, and restore neural function. Despite challenges, including ethical, financial, and methodological barriers, ongoing research in epigenetic modulation and stem cell therapy holds promise for pioneering therapies in AD.
Collapse
Affiliation(s)
- Edhijanto Widaja
- Master's Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Regenerative Medicine and Research Institute of Mandaya Hospital Group, Tangerang, Indonesia
| | - Jeanne A. Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo Central Hospital, Jakarta, Indonesia
| |
Collapse
|
22
|
Morasso C, Truffi M, Tinelli V, Stivaktakis P, Di Gerlando R, Francesca D, Perini G, Faisal M, Aid J, Noridov B, Lee B, Barbieri L, Negri S, Nikitovic D, Thrapsanioti LN, Tsatsakis A, Cereda C, Bonizzi A, Mazzucchelli S, Prosperi D, Hickey MA, Corsi F, Gagliardi S. Exploring the anti-inflammatory effects of curcumin encapsulated within ferritin nanocages: a comprehensive in vivo and in vitro study in Alzheimer's disease. J Nanobiotechnology 2024; 22:718. [PMID: 39551771 PMCID: PMC11571668 DOI: 10.1186/s12951-024-02897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The global demographic shift towards an aging population is generating a rise in neurodegenerative conditions, with Alzheimer's disease (AD) as the most prominent problem. In this landscape, the use of natural supplements has garnered attention for their potential in dementia prevention. Curcumin (Cur), derived from Curcuma longa, has demonstrated promising pharmacological effects against AD by reducing the levels of inflammatory mediators. However, its clinical efficacy is hindered by poor solubility and bioavailability. Our study introduces the use of H-Ferritin nanocages (HFn) as a nanoformulation vehicle for Cur, aiming to enhance its therapeutic potential for AD. In this work, we characterized a nanoformulation of Cur in HFn (HFn-CUR) by evaluating its safety, stability, and its transport across the blood-brain barrier (BBB) in vitro. Moreover, we evaluated the efficacy of HFn-CUR by transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from both AD patients and healthy controls (HC), and by using the well-established 5xFAD mouse model of AD. RESULTS Our data show that HFn-CUR exhibits improved water dispersibility, is non-toxic, and can traverse the BBB. Regarding its activity on PBMCs from AD patients, HFn-CUR enhances cellular responses to inflammation and reduces RAGE-mediated stress. Studies on an AD mouse model demonstrate that HFn-CUR exhibits mild beneficial effects on cognitive performance. Moreover, it effectively reduces microgliosis and astrogliosis and in vivo in mouse, suggesting potential neuroprotective benefits. CONCLUSIONS Our data suggest that HFn-CUR is safe and effective in reducing inflammation in both in vitro and in vivo models of AD, supporting the need for further experiments to define its optimal use.
Collapse
Affiliation(s)
- Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Veronica Tinelli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Polychronis Stivaktakis
- Department of Toxicology & Forensic Sciences, Faculty Medicine, University of Crete, Heraklion, Greece
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani" , University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, 27100, Italy
| | | | | | - Mahvish Faisal
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jana Aid
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bekzod Noridov
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Benjamin Lee
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Linda Barbieri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Sara Negri
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Dragana Nikitovic
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Lydia-Nefeli Thrapsanioti
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Aristides Tsatsakis
- Department of Toxicology & Forensic Sciences, Faculty Medicine, University of Crete, Heraklion, Greece
| | - Cristina Cereda
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, 20154, Italy
| | - Arianna Bonizzi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
| | - Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy.
| | | |
Collapse
|
23
|
Sun Z, Liu J, Chen Z, So K, Hu Y, Chiu K. Lycium barbarum Extract Enhanced Neuroplasticity and Functional Recovery in 5xFAD Mice via Modulating Microglial Status of the Central Nervous System. CNS Neurosci Ther 2024; 30:e70123. [PMID: 39564756 PMCID: PMC11576918 DOI: 10.1111/cns.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited treatment options. This study aimed to investigate the effects of Lycium barbarum extract (LBE), a Chinese herb, on the central nervous system (CNS)-including the retina, brain, and spinal cord-in 5xFAD transgenic mice after the onset of AD. METHODS Starting at 6 months of age, 5xFAD mice received daily intragastric gavage of LBE (2 g/kg) for 2 months. At 8 months, behavioral tests were conducted to assess cognition, motor function, and visual function. These included the Morris water maze, novel object recognition, and Y-maze tests for cognition; the beam walking balance and clasping tests for motor function; and electroretinogram (ERG) for visual function. Immunohistochemistry, western blotting, and ELISA were used to evaluate Aβ deposition, microglial morphology, neuroinflammation, and neuroprotective signaling pathways. Primary microglia and the IMG cell line were used to study LBE's effects on Aβ uptake and degradation in vitro. RESULTS After 2 months of LBE treatment, the decline in cognition, motor, and visual functions in 5xFAD mice was significantly slowed. Microglia in the brain, spinal cord, and retina exhibited a neuroprotective state, with reduced Aβ deposition, decreased inflammatory cytokine levels (e.g., TNF-α, IL-1β, IL-6), increased Arg-1/iNOS ratio, and enhanced phagocytic capacity. LBE also promoted Aβ uptake and degradation in primary microglia and the IMG cell line. Neuroprotective signals such as p-Akt, p-Erk1/2, and p-CREB were elevated. Additionally, LBE treatment restored synaptic protein expression and enhanced neuroplasticity. CONCLUSION The findings suggest that LBE treatment can enhance neuroplasticity, reduce systemic inflammation, and improve phagocyte clearance of Aβ deposition via inducing a neuroprotective microglial phenotype throughout CNS. As an upper-class Chinese medicine, appropriate intake of LBE may serve as a beneficial antiaging strategy for AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Innovation Research Institute, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jinfeng Liu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
| | - Zihang Chen
- Department of PsychologyThe University of Hong KongHong KongSARChina
- Department of Sports Medicine, the First Affiliated HospitalJinan UniversityChina
| | - Kwok‐Fai So
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Key Laboratory of CNS Regeneration, Guangdong‐Hongkong‐Macau CNS Regeneration Institute, Ministry of EducationJinan UniversityGuangzhouChina
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Orthopedics CenterThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of PsychologyThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
24
|
Choi JH, Lee J, Kang U, Chang H, Cho KH. Network dynamics-based subtyping of Alzheimer's disease with microglial genetic risk factors. Alzheimers Res Ther 2024; 16:229. [PMID: 39415193 PMCID: PMC11481771 DOI: 10.1186/s13195-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The potential of microglia as a target for Alzheimer's disease (AD) treatment is promising, yet the clinical and pathological diversity within microglia, driven by genetic factors, poses a significant challenge. Subtyping AD is imperative to enable precise and effective treatment strategies. However, existing subtyping methods fail to comprehensively address the intricate complexities of AD pathogenesis, particularly concerning genetic risk factors. To address this gap, we have employed systems biology approaches for AD subtyping and identified potential therapeutic targets. METHODS We constructed patient-specific microglial molecular regulatory network models by utilizing existing literature and single-cell RNA sequencing data. The combination of large-scale computer simulations and dynamic network analysis enabled us to subtype AD patients according to their distinct molecular regulatory mechanisms. For each identified subtype, we suggested optimal targets for effective AD treatment. RESULTS To investigate heterogeneity in AD and identify potential therapeutic targets, we constructed a microglia molecular regulatory network model. The network model incorporated 20 known risk factors and crucial signaling pathways associated with microglial functionality, such as inflammation, anti-inflammation, phagocytosis, and autophagy. Probabilistic simulations with patient-specific genomic data and subsequent dynamics analysis revealed nine distinct AD subtypes characterized by core feedback mechanisms involving SPI1, CASS4, and MEF2C. Moreover, we identified PICALM, MEF2C, and LAT2 as common therapeutic targets among several subtypes. Furthermore, we clarified the reasons for the previous contradictory experimental results that suggested both the activation and inhibition of AKT or INPP5D could activate AD through dynamic analysis. This highlights the multifaceted nature of microglial network regulation. CONCLUSIONS These results offer a means to classify AD patients by their genetic risk factors, clarify inconsistent experimental findings, and advance the development of treatments tailored to individual genotypes for AD.
Collapse
Affiliation(s)
- Jae Hyuk Choi
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jonghoon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Uiryong Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongjun Chang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
25
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
27
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Nabizadeh F, Seyedmirzaei H, Karami S. Neuroimaging biomarkers and CSF sTREM2 levels in Alzheimer's disease: a longitudinal study. Sci Rep 2024; 14:15318. [PMID: 38961148 PMCID: PMC11222555 DOI: 10.1038/s41598-024-66211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the exact pathophysiological mechanisms underlying the involvement of triggering receptor expressed on myeloid cells 2 (TREM2) related microglia activation is crucial for the development of clinical trials targeting microglia activation at different stages of Alzheimer's disease (AD). Given the contradictory findings in the literature, it is imperative to investigate the longitudinal alterations in cerebrospinal fluid (CSF) soluble TREM2 (sTREM2) levels as a marker for microglia activation, and its potential association with AD biomarkers, in order to address the current knowledge gap. In this study, we aimed to assess the longitudinal changes in CSF sTREM2 levels within the framework of the A/T/N classification system for AD biomarkers and to explore potential associations with AD pathological features, including the presence of amyloid-beta (Aβ) plaques and tau aggregates. The baseline and longitudinal (any available follow-up visit) CSF sTREM2 levels and processed tau-PET and Aβ-PET data of 1001 subjects were recruited from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A+ /TN+ , A+ /TN- , A- /TN+ , and A- /TN- . Linear regression analyses were conducted to assess the relationship between CSF sTREM2 with cognitive performance, tau and Aβ-PET adjusting for age, gender, education, and APOE ε4 status. Based on our analysis there was a significant difference in baseline and rate of change of CSF sTREM2 between ATN groups. While there was no association between baseline CSF sTREM2 and cognitive performance (ADNI-mem), we found that the rate of change of CSF sTREM2 is significantly associated with cognitive performance in the entire cohort but not the ATN groups. We found that the baseline CSF sTREM2 is significantly associated with baseline tau-PET and Aβ-PET rate of change only in the A+ /TN+ group. A significant association was found between the rate of change of CSF sTREM2 and the tau- and Aβ-PET rate of change only in the A+ /TN- group. Our study suggests that the TREM2-related microglia activation and their relations with AD markers and cognitive performance vary the in presence or absence of Aβ and tau pathology. Furthermore, our findings revealed that a faster increase in the level of CSF sTREM2 might attenuate future Aβ plaque formation and tau aggregate accumulation only in the presence of Aβ pathology.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
29
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
30
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
31
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 PMCID: PMC11847495 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
33
|
Ramakrishnan GS, Berry WL, Pacherille A, Kerr WG, Chisholm JD, Pedicone C, Humphrey MB. SHIP inhibition mediates select TREM2-induced microglial functions. Mol Immunol 2024; 170:35-45. [PMID: 38613944 PMCID: PMC11097602 DOI: 10.1016/j.molimm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Microglia play a pivotal role in the pathology of Alzheimer's Disease (AD), with the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) central to their neuroprotective functions. The R47H variant of TREM2 has emerged as a significant genetic risk factor for AD, leading to a loss-of-function phenotype in mouse AD models. This study elucidates the roles of TREM2 in human microglia-like HMC3 cells and the regulation of these functions by SH2-containing inositol-5'-phosphatase 1 (SHIP1). Using stable cell lines expressing wild-type TREM2, the R47H variant, and TREM2-deficient lines, we found that functional TREM2 is essential for the phagocytosis of Aβ, lysosomal capacity, and mitochondrial activity. Notably, the R47H variant displayed increased phagocytic activity towards apoptotic neurons. Introducing SHIP1, known to modulate TREM2 signaling in other cells, revealed its role as a negative regulator of these TREM2-mediated functions. Moreover, pharmacological inhibition of both SHIP1 and its isoform SHIP2 amplified Aβ phagocytosis and lysosomal capacity, independently of TREM2 or SHIP1 expression, suggesting a potential regulatory role for SHIP2 in these functions. The absence of TREM2, combined with the presence of both SHIP isoforms, suppressed mitochondrial activity. However, pan-SHIP1/2 inhibition enhanced mitochondrial function in these cells. In summary, our findings offer a deeper understanding of the relationship between TREM2 variants and SHIP1 in microglial functions, and emphasize the therapeutic potential of targeting the TREM2 and SHIP1 pathways in microglia for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gautham S Ramakrishnan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, Oklahoma City, OK, USA
| | | | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Chiara Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City Veteran's Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
34
|
Zozulya SA, Akopyan AA, Tenditnik MV, Ovsyukova MV, Korolenko TA, Klyushnik TP, Tikhonova MA, Pupyshev AB. Effect of Trehalose Disaccharide on Activation of Microglia and Indices of Systemic Inflammation in an Experimental Model of Alzheimer's Disease. Bull Exp Biol Med 2024; 177:207-211. [PMID: 39090471 DOI: 10.1007/s10517-024-06157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 08/04/2024]
Abstract
In an experimental model of Alzheimer's disease in mice, oral administration of trehalose disaccharide reduces neuroinflammation assessed by the expression level of microglia activation marker Iba1 and affects the neutrophil degranulation activity. A potential anti-inflammatory effect of 4% trehalose solution associated with a decrease in the activity of leukocyte elastase in plasma was revealed.
Collapse
Affiliation(s)
- S A Zozulya
- Mental Health Research Center, Moscow, Russia.
| | - A A Akopyan
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - M V Tenditnik
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - M V Ovsyukova
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - T A Korolenko
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | | | - M A Tikhonova
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - A B Pupyshev
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| |
Collapse
|
35
|
Hodgson L, Li Y, Iturria-Medina Y, Stratton JA, Wolf G, Krishnaswamy S, Bennett DA, Bzdok D. Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer's disease progression. Commun Biol 2024; 7:591. [PMID: 38760483 PMCID: PMC11101463 DOI: 10.1038/s42003-024-06273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Late onset Alzheimer's disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain's major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject's progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci.
Collapse
Affiliation(s)
- Liam Hodgson
- School of Computer Science, McGill University, Montréal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Yue Li
- School of Computer Science, McGill University, Montréal, QC, Canada
| | - Yasser Iturria-Medina
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montréal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montréal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Canada
| | - Jo Anne Stratton
- Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montréal, Canada
| | - Guy Wolf
- Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Mathematics & Statistics, Université de Montréal, Montréal, Canada
| | - Smita Krishnaswamy
- Department of Computer Science, Department of Genetics, Yale University, New Haven, CT, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Danilo Bzdok
- Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada.
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, QC, Canada.
- The Neuro - Montréal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
36
|
Pei MQ, Xu LM, Yang YS, Chen WC, Chen XL, Fang YM, Lin S, He HF. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res 2024; 1830:148821. [PMID: 38401770 DOI: 10.1016/j.brainres.2024.148821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.
Collapse
Affiliation(s)
- Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Li-Ming Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Xin-Li Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Ming Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China.
| |
Collapse
|
37
|
Battaglini M, Marino A, Montorsi M, Carmignani A, Ceccarelli MC, Ciofani G. Nanomaterials as Microglia Modulators in the Treatment of Central Nervous System Disorders. Adv Healthc Mater 2024; 13:e2304180. [PMID: 38112345 DOI: 10.1002/adhm.202304180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Microglia play a pivotal role in the central nervous system (CNS) homeostasis, acting as housekeepers and defenders of the surrounding environment. These cells can elicit their functions by shifting into two main phenotypes: pro-inflammatory classical phenotype, M1, and anti-inflammatory alternative phenotype, M2. Despite their pivotal role in CNS homeostasis, microglia phenotypes can influence the development and progression of several CNS disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injuries, and even brain cancer. It is thus clear that the possibility of modulating microglia activation has gained attention as a therapeutic tool against many CNS pathologies. Nanomaterials are an unprecedented tool for manipulating microglia responses, in particular, to specifically target microglia and elicit an in situ immunomodulation activity. This review focuses the discussion on two main aspects: analyzing the possibility of using nanomaterials to stimulate a pro-inflammatory response of microglia against brain cancer and introducing nanostructures able to foster an anti-inflammatory response for treating neurodegenerative disorders. The final aim is to stimulate the analysis of the development of new microglia nano-immunomodulators, paving the way for innovative and effective therapeutic approaches for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Alessio Carmignani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
38
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Hu Y, Zhao Z, Xu F, Ren X, Liu M, Zheng Z, Wang Q. Transcriptome and Animal Model Integration Reveals Inhibition of Calcium Homeostasis-Associated Gene ITPKB Alleviates Amyloid Plaque Deposition. J Mol Neurosci 2024; 74:42. [PMID: 38613644 DOI: 10.1007/s12031-024-02221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Alzheimer's disease (AD) is a severe neurological illness that causes memory loss and is a global problem. The calcium hypothesis recently steadily evolved in AD. The prospective targets for calcium homeostasis therapy, however, are limited, and gene expression-level research connected to calcium homeostasis in AD remains hazy. In this study, we analyzed the microarray dataset (GSE132903) taken from the Gene Expression Omnibus (GEO) database to investigate calcium homeostasis-related genes for AD. Using immunoblot analysis, we examined the association of ITPKB with inflammation in AD. Additionally, the immunofluorescence technique was employed to assess the impact of pharmacological inhibition of ITPKB on the amyloid-β (Aβ) plaque deposition in APP/PS1 mice. This article's further exploration of calcium homeostasis-related genes has propelled the validation of the calcium homeostasis theory in AD.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Zijun Zhao
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
- Department of Anesthesiology, Hebei Provincial Chest Hospital, Shijiazhuang, Hebei, 050047, China
| | - Fang Xu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Xiaoqin Ren
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Menglin Liu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Zilei Zheng
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
- Department of Anesthesiology, Zhangjiakou Fourth Hospital, Zhangjiakou, Hebei, 075000, China
| | - Qiujun Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China.
| |
Collapse
|
40
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
41
|
Zota I, Chanoumidou K, Charalampopoulos I, Gravanis A. Dynamics of myelin deficits in the 5xFAD mouse model for Alzheimer's disease and the protective role of BDNF. Glia 2024; 72:809-827. [PMID: 38205694 DOI: 10.1002/glia.24505] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Recent findings highlight myelin breakdown as a decisive early event in Alzheimer's Disease (AD) acting as aggravating factor of its progression. However, it is still unclear whether myelin loss is attributed to increased oligodendrocyte vulnerability, reduced repairing capacity or toxic stimuli. In the present study, we sought to clarify the starting point of myelin disruption accompanied with Oligodendrocyte Progenitor Cell (OPC) elimination in the brain of the 5xFAD mouse model of AD at 6 months of age in Dentate Gyrus of the hippocampus in relation to neurotrophin system. Prominent inflammation presence was detected since the age of 6 months playing a key role in myelin disturbance and AD progression. Expression analysis of neurotrophin receptors in OPCs was performed to identify new targets that could increase myelination in health and disease. OPCs in both control and 5xFAD mice express TrkB, TrkC and p75 receptors but not TrkA. Brain-derived neurotrophic factor (BDNF) that binds to TrkB receptor is well-known about its pro-myelination effect, promoting oligodendrocytes proliferation and differentiation, so we focused our investigation on its effects in OPCs under neurodegenerative conditions. Our in vitro results showed that BDNF rescues OPCs from death and promotes their proliferation and differentiation in presence of the toxic Amyloid-β 1-42. Collectively, our results indicate that BDNF possess an additional neuroprotective role through its actions on oligodendrocytic component and its use could be proposed as a drug-based myelin-enhancing strategy, complementary to amyloid and tau centered therapies in AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| |
Collapse
|
42
|
Chamberland É, Moravveji S, Doyon N, Duchesne S. A computational model of Alzheimer's disease at the nano, micro, and macroscales. Front Neuroinform 2024; 18:1348113. [PMID: 38586183 PMCID: PMC10995318 DOI: 10.3389/fninf.2024.1348113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Mathematical models play a crucial role in investigating complex biological systems, enabling a comprehensive understanding of interactions among various components and facilitating in silico testing of intervention strategies. Alzheimer's disease (AD) is characterized by multifactorial causes and intricate interactions among biological entities, necessitating a personalized approach due to the lack of effective treatments. Therefore, mathematical models offer promise as indispensable tools in combating AD. However, existing models in this emerging field often suffer from limitations such as inadequate validation or a narrow focus on single proteins or pathways. Methods In this paper, we present a multiscale mathematical model that describes the progression of AD through a system of 19 ordinary differential equations. The equations describe the evolution of proteins (nanoscale), cell populations (microscale), and organ-level structures (macroscale) over a 50-year lifespan, as they relate to amyloid and tau accumulation, inflammation, and neuronal death. Results Distinguishing our model is a robust foundation in biological principles, ensuring improved justification for the included equations, and rigorous parameter justification derived from published experimental literature. Conclusion This model represents an essential initial step toward constructing a predictive framework, which holds significant potential for identifying effective therapeutic targets in the fight against AD.
Collapse
Affiliation(s)
- Éléonore Chamberland
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Seyedadel Moravveji
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Nicolas Doyon
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Radiologie et Médecine Nucléaire, Université Laval, Québec, QC, Canada
- Centre de Recherche de l'Institut Universitaire en Cardiologie et Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
43
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 PMCID: PMC10928768 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
44
|
Izadi S, Abdolrezaei M, Soukhaklari R, Moosavi M. Memory impairment induced by aluminum nanoparticles is associated with hippocampal IL-1 and IBA-1 upregulation in mice. Neurol Res 2024; 46:284-290. [PMID: 38145565 DOI: 10.1080/01616412.2023.2298137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Increasing evidence indicates a link between aluminum (Al) intake and Alzheimer's disease (AD). The main entry of Al into the human body is through oral route, and in the digestive tract, under the influence of the pH change, Al can be transformed into Al nanoparticles (Al-NP). However, studies related to the effect of Al-NP on the brain are limited and need further investigation. Neuro-inflammation is considered as one of the principal features of AD. Microglial activation and expression of the inflammatory cytokine IL-1β (interleukin-1β) in the brain have been used as hallmarks of brain inflammation. Therefore, in the present study, the hippocampal levels of ionized calcium-binding adaptor molecule 1 (IBA-1), as the marker of microglia activation, and IL-1β were assessed. METHODS Adult male NMRI mice were treated with Al-NP (5 or 10 mg/kg) for 5 days. A novel object recognition (NOR) test was used to assess memory. Following cognitive assessments, the hippocampal tissues were isolated to analyze the levels of IL-1β and IBA-1 as well as beta actin proteins using western blot technique. RESULTS Al-NP in both doses of 5 and 10 mg/kg impaired NOR memory in mice. In addition, Al-NP increased IL-1β and IBA-1 in the hippocampus. DISCUSSION These findings indicate that the memory impairing effect of Al-NP coincides with hippocampal inflammation. According to the proposed relationship between AD and Al toxicity, this study can increase the knowledge about the toxic effects of Al-NP and highlight the need to limit the use of this nanoparticle.
Collapse
Affiliation(s)
- Sadegh Izadi
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Abdolrezaei
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roksana Soukhaklari
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Tolar M, Hey JA, Power A, Abushakra S. The Single Toxin Origin of Alzheimer's Disease and Other Neurodegenerative Disorders Enables Targeted Approach to Treatment and Prevention. Int J Mol Sci 2024; 25:2727. [PMID: 38473975 PMCID: PMC10932387 DOI: 10.3390/ijms25052727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
New data suggest that the aggregation of misfolded native proteins initiates and drives the pathogenic cascade that leads to Alzheimer's disease (AD) and other age-related neurodegenerative disorders. We propose a unifying single toxin theory of brain neurodegeneration that identifies new targets and approaches to the development of disease-modifying treatments. An extensive body of genetic evidence suggests soluble aggregates of beta-amyloid (Aβ) as the primary neurotoxin in the pathogenesis of AD. New insights from fluid biomarkers, imaging, and clinical studies provide further evidence for the decisive impact of toxic Aβ species in the initiation and progression of AD. Understanding the distinct roles of soluble and insoluble amyloid aggregates on AD pathogenesis has been the key missing piece of the Alzheimer's puzzle. Data from clinical trials with anti-amyloid agents and recent advances in the diagnosis of AD demonstrate that the driving insult in biologically defined AD is the neurotoxicity of soluble Aβ aggregates, called oligomers and protofibrils, rather than the relatively inert insoluble mature fibrils and amyloid plaques. Amyloid oligomers appear to be the primary factor causing the synaptic impairment, neuronal stress, spreading of tau pathology, and eventual cell death that lead to the clinical syndrome of AD dementia. All other biochemical effects and neurodegenerative changes in the brain that are observed in AD are a response to or a downstream effect of this initial toxic insult by oligomers. Other neurodegenerative disorders follow a similar pattern of pathogenesis, in which normal brain proteins with important biological functions become trapped in the aging brain due to impaired clearance and then misfold and aggregate into neurotoxic species that exhibit prion-like behavior. These aggregates then spread through the brain and cause disease-specific neurodegeneration. Targeting the inhibition of this initial step in neurodegeneration by blocking the misfolding and aggregation of healthy proteins has the potential to slow or arrest disease progression, and if treatment is administered early in the course of AD and other neurodegenerative disorders, it may delay or prevent the onset of clinical symptoms.
Collapse
|
46
|
Adhikari A, Chauhan K, Adhikari M, Tiwari AK. Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorg Med Chem 2024; 100:117628. [PMID: 38330850 DOI: 10.1016/j.bmc.2024.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aβ) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India.
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California 22860, Mexico
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb, Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
47
|
Ye Y, Gao M, Shi W, Gao Y, Li Y, Yang W, Zheng X, Lu X. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer's disease. Front Immunol 2024; 14:1325530. [PMID: 38259476 PMCID: PMC10800421 DOI: 10.3389/fimmu.2023.1325530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation has been identified as another significant pathogenic factor in Alzheimer's disease following Aβ amyloid deposition and tau protein hyperphosphorylation, activated in the central nervous system by glial cells in response to injury-related and pathogen-related molecular patterns. Moderate glial cell activity can be neuroprotective; however, excessive glial cell activation advances the pathology of Alzheimer's disease and is accompanied by structural changes in the brain interface, with peripheral immune cells entering the brain through the blood-brain barrier, creating a vicious circle. The immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic inflammatory and immune processes by transferring nucleic acids, proteins and lipids from the parent cell to the recipient cell, thus MSC-EVs retain their immunomodulatory capacity while avoiding the safety issues associated with living cell therapy, making them a promising focus for immunomodulatory therapy. In this review, we discuss the modulatory effects of MSC-EVs on Alzheimer's disease-associated immune cells and the mechanisms involved in their treatment of the condition. We have found a clinical trial of MSC-EVs in Alzheimer's disease treatment and outlined the challenges of this approach. Overall, MSC-EVs have the potential to provide a safe and effective treatment option for Alzheimer's disease by targeting neuroinflammation.
Collapse
Affiliation(s)
- Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingzhu Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| | - Wentao Shi
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaomin Zheng
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
48
|
Lu J, Wang Z, He Z, Hu Y, Duan H, Liu Z, Li D, Zhong S, Ren J, Zhao G, Mou Y, Yao M. Oligomer-Aβ42 suppress glioma progression via potentiating phagocytosis of microglia. CNS Neurosci Ther 2024; 30:e14495. [PMID: 37849438 PMCID: PMC10805446 DOI: 10.1111/cns.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
AIMS Glioma is characterized by an immunosuppressed environment and a poor prognosis. The accumulation of Amyloid β (Aβ) leads to an active environment during the early stages of Alzheimer's disease (AD). Aβ is also present in glioma tissues; however, the biological and translational implications of Aβ in glioma are elusive. METHODS Immunohistochemical (IHC) staining, Kaplan-Meier (KM) survival analysis and Cox regression analysis on a cohort of 79 patients from our institution were performed to investigate the association between Aβ and the malignancy of glioma. Subsequently, the potential of oligomer-Aβ42 (OAβ42) to inhibit glioma growth was investigated in vivo and in vitro. Immunofluorescence staining and phagocytosis assays were performed to evaluate the activation of microglia. Finally, RNA-seq was utilized to identify the predominant signaling involved in this process and in vitro studies were performed to validate them. RESULTS A positive correlation between Aβ and a favorable prognosis was observed in glioma. Furthermore, OAβ42 suppressed glioma growth by enhancing the phagocytic activity of microglia. Insulin-like growth factor 1 (IGF-1) secreted by OAβ42-activated microglia was essential in the engulfment process. CONCLUSION Our study proved an anti-glioma effect of Aβ, and microglia could serve as a cellular target for treating glioma with OAβ42.
Collapse
Affiliation(s)
- Jie Lu
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Zhenning Wang
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital)Southern Medical UniversityDongguanChina
| | - Zhenqiang He
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Hu
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Hao Duan
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zihao Liu
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Depei Li
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sheng Zhong
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jiaoyan Ren
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Guojun Zhao
- Laboratory Animal CenterThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
| | - Yonggao Mou
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| |
Collapse
|
49
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Alghamdi M, Braidy N. Functional Magnetic Resonance Imaging in Alzheimer's Disease Drug Trials: A Mini-Review. J Alzheimers Dis 2024; 101:S567-S578. [PMID: 39422944 DOI: 10.3233/jad-231276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative pathology that leads to cognitive decline and dementia, particularly in older adults. It disrupts brain structure and function, with neurotoxic amyloid-β (Aβ) plaques being a primary pathological hallmark. Pharmacotherapeutic trials targeting Aβ and other AD pathological features aim to slow disease progression. Functional magnetic resonance imaging (fMRI) is a non-invasive tool that visualizes brain functional activity, aiding in evaluating the efficacy of AD drugs in clinical trials. Objective This mini-review explores the role of fMRI in evaluating the impact of AD pharmacotherapeutic clinical trials conducted in the past seven years. Methods Literature was systematically searched using two databases. The risk of bias was assessed with the Revised Cochrane risk-of-bias tool (RoB-2) for randomized clinical trials (RCTs). Results Four studies using fMRI to investigate AD drug efficacy were included. Cholinesterase, glutamatergic, and serotonergic drugs showed significant positive effects on brain functional activity, especially within the default mode network. Functional connectivity (FC) changes due to drug intake were linked to cerebellar and cholinergic decline in AD, correlating with improved global cognition and fMRI task performance. Conclusions Recent RCTs demonstrate fMRI's ability to reveal longitudinal FC pattern changes in response to AD drug treatments across disease stages. Positive FC changes in distinct brain regions suggest potential compensatory mechanisms from drug intake. However, these drugs have limited efficacy, necessitating further research to enhance specific pharmacological interventions for clinical application.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|