1
|
Wang L, Gu M, Zhang X, Kong T, Liao J, Zhang D, Li J. Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413367. [PMID: 39854126 PMCID: PMC11905078 DOI: 10.1002/advs.202413367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Indexed: 01/26/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM. In this review, the underlying mechanisms of GBM pathogenesis are comprehensively discussed, emphasizing the impact of the BBB on treatment strategies. Recent advances in nanoenzyme-based approaches for GBM therapy are explored, highlighting how these nanoenzymes enhance various treatment modalities through their multifunctional capabilities and potential for precise drug delivery. Finally, the challenges and therapeutic prospects of translating nanoenzymes from laboratory research to clinical application, including issues of stability, targeting efficiency, safety, and regulatory hurdles are critically analyzed. By providing a thorough understanding of both the opportunities and obstacles associated with nanoenzyme-based therapies, future research directions are aimed to be informed and contribute to the development of more effective treatments for GBM.
Collapse
Affiliation(s)
- Liyin Wang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Min Gu
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Xiaoli Zhang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | | | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dan Zhang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Jingwu Li
- The First Hospital of China Medical University, Liaoning, 110001, China
| |
Collapse
|
2
|
Margulies A, Sahki N, Rech F, Vogin G, Blonski M, Peiffert D, Taillandier L, Lesanne G, Demogeot N. Pattern of recurrence after fractionated stereotactic reirradiation in adult glioblastoma. Radiat Oncol 2025; 20:28. [PMID: 40022217 PMCID: PMC11871646 DOI: 10.1186/s13014-025-02611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/23/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Glioblastomas all eventually relapse after initial treatment, and an option to treat these recurrences is fractionated stereotactic reirradiation (fSRT). The location of recurrences following reirradiation has not been studied for fSRT delivered by a dedicated stereotactic device. We aimed to analyze these locations to better elucidate safety margins, dose and fractionation regimens. METHODS We retrospectively analyzed the data of patients with glioblastoma recurrence that had been reirradiated by fSRT in October 2010-December 2020, in 25 Gy in 5 fractions delivered by a CyberKnife® at Institut de Cancérologie de Lorraine. We matched the images of the post-fSRT relapse with the stereotactic radiation treatment planning scan to determine the relapse location. RESULTS The location of recurrences after fSRT was "out-field" in 43.5%, "marginal" in 40.3%, and "in-field" in 16.1% of patients (N = 62). A GTV-PTV margin of 1 mm (versus 2-3 mm, HR = 0.38 [0.15-0.95], p = 0.037) and a PTV volume of ≥ 36 cc (HR = 5.18 [1.06-25.3], p = 0.042) were significantly associated with the "marginal" recurrences. Being ≥ 60 years old at initial treatment (HR = 3.06 [1.17-8.01], p = 0.023) and having one or more previous recurrences (HR = 5.29 [1.70-16.5], p = 0.004) were significantly associated with "out-field" recurrences. The median PFS from fSRT was 3.4 months, and OS from diagnosis and from fSRT were 25.7 and 10.8 months respectively. CONCLUSION Reirradiation of glioblastoma recurrence by fSRT with 25 Gy in 5 fractions provides good local control.
Collapse
Affiliation(s)
- Agathe Margulies
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France.
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France.
- Institut de Cancérologie de Lorraine - Alexis-Vautrin Cancer Center - Unicancer Academic Department of Radiation Therapy & Brachytherapy, 6 avenue de Bourgogne - CS 30 519, Vandoeuvre-lès-Nancy, cedex F-54 511, France.
| | - Nassim Sahki
- Biostatistic Unit, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
| | - Fabien Rech
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
- Department of Neurosurgery, CHRU-Nancy, Nancy, 54000, France
| | - Guillaume Vogin
- Department of Radiotherapy, Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Marie Blonski
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
- Department of Neurology, CHRU-Nancy, Nancy, 54000, France
| | - Didier Peiffert
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
| | - Luc Taillandier
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
- Department of Neurology, CHRU-Nancy, Nancy, 54000, France
| | - Grégory Lesanne
- Department of Radiology, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
| | - Nicolas Demogeot
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
| |
Collapse
|
3
|
Malik AA, Nguyen KC, Nardini JT, Krona CC, Flores KB, Nelander S. Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity. NPJ Syst Biol Appl 2025; 11:20. [PMID: 39955270 PMCID: PMC11830081 DOI: 10.1038/s41540-025-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 01/10/2025] [Indexed: 02/17/2025] Open
Abstract
In the study of brain tumors, patient-derived three-dimensional sphere cultures provide an important tool for studying emerging treatments. The growth of such spheroids depends on the combined effects of proliferation and migration of cells, but it is challenging to make accurate distinctions between increase in cell number versus the radial movement of cells. To address this, we formulate a novel model in the form of a system of two partial differential equations (PDEs) incorporating both migration and growth terms, and show that it more accurately fits our data compared to simpler PDE models. We show that traveling-wave speeds are strongly associated with population heterogeneity. Having fitted the model to our dataset we show that a subset of the cell lines are best described by a "Go-or-Grow"-type model, which constitutes a special case of our model. Finally, we investigate whether our fitted model parameters are correlated with patient age and survival.
Collapse
Affiliation(s)
- Adam A Malik
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Kyle C Nguyen
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC, USA
- Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA
| | - John T Nardini
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, USA
| | - Cecilia C Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kevin B Flores
- Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Nassour-Caswell LC, Kumar M, Stackhouse CT, Alrefai H, Schanel TL, Honan BM, Beierle AM, Hicks PH, Anderson JC, Willey CD, Peacock JS. Altering fractionation during radiation overcomes radio-resistance in patient-derived glioblastoma cells assessed using a novel longitudinal radiation cytotoxicity assay. Radiother Oncol 2025; 202:110646. [PMID: 39579870 PMCID: PMC11789619 DOI: 10.1016/j.radonc.2024.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE Current radiotherapy (RT) in glioblastoma (GBM) is delivered as constant dose fractions (CDF), which do not account for intratumoral-heterogeneity and radio-selection in GBM. These factors contribute to differential treatment response complicating the therapeutic efficacy of this principle. Our study aims to investigate an alternative dosing strategy to overcome radio-resistance using a novel longitudinal radiation cytotoxicity assay. METHODS Theoretical In-silico mathematical assumptions were combined with an in-vitro experimental strategy to investigate alternative radiation regimens. Patient-derived xenograft (PDX) brain tumor-initiating cells (BTICs) with differential radiation-sensitivities were tested individually with sham control and three regimens of the same nominal and average dose of 16 Gy (over four fractions), but with altered doses per fraction. Fractions were delivered conventionally (CDF: 4, 4, 4, 4 Gy), or as dynamic dose fractions (DDF) "ramped down" (RD: 7, 5, 3, 1 Gy), or DDF "ramped up" (RU: 1, 3, 5, 7 Gy), every 4 days. Interfraction-longitudinal data were collected by imaging cells every 5 days, and endpoint viability was taken on day 20. RESULTS The proposed method of radiosensitivity assessment allows for longitudinal-interfraction investigation in addition to endpoint analysis. Delivering four-fraction doses in an RD manner proves to be most effective at overcoming acquired radiation resistance in BTICs (Relative cell viability: CDF vs. RD: P < 0.0001; Surviving fraction: CDF: vs. RD: P < 0.0001). CONCLUSIONS Using in-silico cytotoxicity prediction modeling and an altered radiosensitivity assessment, we show DDF-RD is effective at inducing cytotoxicity in three BTIC lines with differential radiosensitivity.
Collapse
Affiliation(s)
- Lauren C Nassour-Caswell
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Manoj Kumar
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Christian T Stackhouse
- Department of Pediatrics, Division of Hematology & Oncology, Duke University Medical Center, Durham, NC 27708, USA.
| | - Hasan Alrefai
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Taylor L Schanel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Benjamin M Honan
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Andee M Beierle
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Patricia H Hicks
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Joshua C Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Christopher D Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Jeffrey S Peacock
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
5
|
Satish S, Athavale M, Kharkar PS. Targeted therapies for Glioblastoma multiforme (GBM): State-of-the-art and future prospects. Drug Dev Res 2024; 85:e22261. [PMID: 39485272 DOI: 10.1002/ddr.22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid growth and resistance to conventional therapies. The present review explores the latest advancements in targeted therapies for GBM, emphasizing the critical role of the blood-brain barrier (BBB), blood-brain-tumor barrier, tumor microenvironment, and genetic mutations in influencing treatment outcomes. The impact of the key hallmarks of GBM, for example, chemoresistance, hypoxia, and the presence of glioma stem cells on the disease progression and multidrug resistance are discussed in detail. The major focus is on the innovative strategies aimed at overcoming these challenges, such as the use of monoclonal antibodies, small-molecule inhibitors, and novel drug delivery systems designed to enhance drug penetration across the BBB. Additionally, the potential of immunotherapy, specifically immune checkpoint inhibitors and vaccine-based approaches, to improve patient prognosis was explored. Recent clinical trials and preclinical studies are reviewed to provide a comprehensive overview of the current landscape and future prospects in GBM treatment. The integration of advanced computational models and personalized medicine approaches is also considered, aiming to tailor therapies to individual patient profiles for better efficacy. Overall, while significant progress has been made in understanding and targeting the complex biology of GBM, continued research and clinical innovation are imperative to develop more effective and sustainable therapeutic options for patients battling this formidable disease.
Collapse
Affiliation(s)
- Smera Satish
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Maithili Athavale
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Achkasova KA, Kiseleva EB, Potapov AL, Kukhnina LS, Moiseev AA, Yashin KS, Polozova AV, Komarova AD, Gladkova ND. Attenuation coefficient as a tool to detect changes in the white matter of the rat brain caused by different types of gliomas and irradiation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6136-6155. [PMID: 39553861 PMCID: PMC11563340 DOI: 10.1364/boe.533903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
In the present work, we carried out a comparative study of the attenuation coefficient of the white matter of the rat brain during the growth of glial tumors characterized by different degrees of malignancy (glioblastoma 101/8, astrocytoma 10-17-2, glioma C6) and during irradiation. We demonstrated that some tumor models cause a pronounced decrease in white matter attenuation coefficient values due to infiltration of tumor cells, myelinated fiber destruction, and edema. In contrast, other tumors cause compression of the myelinated fibers of the corpus callosum without their ruptures and prominent invasion of tumor cells, which preserved the attenuation coefficient values changeless. In addition, for the first time, the possibility of using the attenuation coefficient to detect late radiation-induced changes in white matter characterized by focal development of edema, disruption of the integrity of myelinated fibers, and a decrease in the amount of oligodendrocytes and differentiation of these areas from tumor tissue and healthy white matter has been demonstrated. The results indicate the promise of using the attenuation coefficient estimated from OCT data for in vivo assessment of the degree of destruction of peritumoral white matter or its compression, which makes this method useful not only in primary resections but also in repeated surgical interventions for recurrent tumors.
Collapse
Affiliation(s)
- Ksenia A. Achkasova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23, Gagarin Av., Nizhny Novgorod, Russia
| | - Elena B. Kiseleva
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Arseniy L. Potapov
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Liudmila S. Kukhnina
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Alexander A. Moiseev
- Institute of Applied Physics Russian Academy of Sciences, 603155, 46, Ulyanova str., Nizhny Novgorod, Russia
| | - Konstantin S. Yashin
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Anastasia V. Polozova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23, Gagarin Av., Nizhny Novgorod, Russia
| | - Anastasia D. Komarova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23, Gagarin Av., Nizhny Novgorod, Russia
| | - Natalia D. Gladkova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Salari E, Chen X, Wynne JF, Qiu RLJ, Roper J, Shu HK, Yang X. Prediction of early recurrence of adult-type diffuse gliomas following radiotherapy using multi-modal magnetic resonance images. Med Phys 2024; 51:8638-8648. [PMID: 39221589 PMCID: PMC11530302 DOI: 10.1002/mp.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Adult-type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life-prolonging salvage therapies. PURPOSE Radiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics-based predictive model for classifying response to radiotherapy within the first 3 months post-treatment. METHODS Ninety-five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast-enhanced T1(CE T1W) and T2 fluid-attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand-crafted radiomic (HCR) features, including first- and second-order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave-one-out cross-validation was employed to tune hyperparameters and evaluate the models. RESULTS For each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top-ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively). CONCLUSIONS We developed and evaluated a radiomics-based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi-modal MRI, showed superior predictive performance compared to single-modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.
Collapse
Affiliation(s)
- Elahheh Salari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xuxin Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jacob Frank Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui-Kuo Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Onciul R, Toader C, Glavan LA, Covache-Busuioc RA, Bratu BG, Costin HP, Corlatescu AD, Ciurea AV, Grama M, Idu AA. Retrospective Analysis of Glioblastoma Outcomes. Cureus 2024; 16:e62462. [PMID: 38882229 PMCID: PMC11180423 DOI: 10.7759/cureus.62462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/18/2024] Open
Abstract
This retrospective mono-center study focuses on 144 cases of glioblastoma treated over a time span of 12 years in our clinic in Romania. We offer critical insight into the dreadful aspect of this tumor by highlighting the principal characteristics such as localization, the genetic information of each case, progression-free survival (PFS), and overall survival (OS). A tenth of our patients underwent a second surgical procedure, providing a comparable OS to the other part of our study group, proving that surgical treatment as salvage therapy is a viable option. Also, our research reinforces the fact that utilizing the Karnofsky Performance Scale is a great predictor of patient outcomes in glioblastoma patients. Even though radiotherapy and chemotherapy have mild effects in the context of this oncological disease, our research shows that O6-methylguanine-DNA methyltransferase (MGMT) methylation status and epidermal growth factor receptor (EGFR) amplification have an important effect on OS. Moreover, the particularity of our study, that our patients did not start adjuvant therapy right after surgery, highlighted by a low OS compared to the international literature, sheds light on the fact that chemotherapy and radiotherapy must be started right after the surgical procedure, according to the Stupp protocol. To sum up, our research takes into consideration the factors that influence patient survival and outcome in the battle against glioblastoma.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, University Emergency Hospital of Bucharest, Bucharest, ROU
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Corneliu Toader
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, Bucharest, ROU
| | - Luca-Andrei Glavan
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Horia-Petre Costin
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Alexandru Vladimir Ciurea
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Neurosurgery, Sanador Clinical Hospital, Bucharest, ROU
| | - Matei Grama
- Department of Software, Syndical.io, Bucharest, ROU
| | - Andreea-Anamaria Idu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| |
Collapse
|
10
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
11
|
Achkasova K, Kukhnina L, Moiseev A, Kiseleva E, Bogomolova A, Loginova M, Gladkova N. Detection of acute and early-delayed radiation-induced changes in the white matter of the rat brain based on numerical processing of optical coherence tomography data. JOURNAL OF BIOPHOTONICS 2024; 17:e202300458. [PMID: 38253332 DOI: 10.1002/jbio.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Detection of radiation-induced changes of the brain white matter is important for brain neoplasms repeated surgery. We investigated the influence of irradiation on the scattering properties of the white matter using optical coherence tomography (OCT). Healthy Wistar rats undergone the irradiation of the brain right hemisphere. At seven time points from the irradiation procedure (2-14 weeks), an ex vivo OCT study was performed with subsequent calculation of attenuation coefficient values in the corpus callosum followed by immunohistochemical analysis. As a result, we discovered acute and early-delayed changes characterized by the edema of different severity, accompanied by a statistically significant decrease in attenuation coefficient values. In particular, these changes were found at 2 weeks after irradiation in the irradiated hemisphere, while at 6- and 12-week time points they affected both irradiated and contralateral hemisphere. Thus, radiation-induced changes occurring in white matter during the first 3 months after irradiation can be detected by OCT.
Collapse
Affiliation(s)
- Ksenia Achkasova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Liudmila Kukhnina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander Moiseev
- Laboratory of Highly Sensitive Optical Measurements, Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena Kiseleva
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Bogomolova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Maria Loginova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Natalia Gladkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
13
|
Liljedahl E, Konradsson E, Linderfalk K, Gustafsson E, Petersson K, Ceberg C, Redebrandt HN. Comparable survival in rats with intracranial glioblastoma irradiated with single-fraction conventional radiotherapy or FLASH radiotherapy. Front Oncol 2024; 13:1309174. [PMID: 38322292 PMCID: PMC10845047 DOI: 10.3389/fonc.2023.1309174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Background Radiotherapy increases survival in patients with glioblastoma. However, the prescribed dose is limited by unwanted side effects on normal tissue. Previous experimental studies have shown that FLASH radiotherapy (FLASH-RT) can reduce these side effects. Still, it is important to establish an equal anti-tumor efficacy comparing FLASH-RT to conventional radiotherapy (CONV-RT). Methods Fully immunocompetent Fischer 344 rats with the GFP-positive NS1 intracranial glioblastoma model were irradiated with CONV-RT or FLASH-RT in one fraction of 20 Gy, 25 Gy or 30 Gy. Animals were monitored for survival and acute dermal side effects. The brains were harvested upon euthanasia and tumors were examined post mortem. Results Survival was significantly increased in animals irradiated with CONV-RT and FLASH-RT at 20 Gy and 25 Gy compared to control animals. The longest survival was reached in animals irradiated with FLASH-RT and CONV-RT at 25 Gy. Irradiation at 30 Gy did not lead to increased survival, despite smaller tumors. Tumor size correlated inversely with irradiation dose, both in animals treated with CONV-RT and FLASH-RT. Acute dermal side effects were mild, but only a small proportion of the animals were alive for evaluation of those side effects. Conclusion The dose response was similar for CONV-RT and FLASH-RT in the present model. Tumor size upon the time of euthanasia correlated inversely with the irradiation dose.
Collapse
Affiliation(s)
- Emma Liljedahl
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Linderfalk
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Robinson SD, Samuels M, Jones W, Gilbert D, Critchley G, Giamas G. Shooting the messenger: a systematic review investigating extracellular vesicle isolation and characterisation methods and their influence on understanding extracellular vesicles-radiotherapy interactions in glioblastoma. BMC Cancer 2023; 23:939. [PMID: 37798728 PMCID: PMC10552223 DOI: 10.1186/s12885-023-11437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) hold promise for improving our understanding of radiotherapy response in glioblastoma due to their role in intercellular communication within the tumour microenvironment (TME). However, methodologies to study EVs are evolving with significant variation within the EV research community. METHODS We conducted a systematic review to critically appraise EV isolation and characterisation methodologies and how this influences our understanding of the findings from studies investigating radiotherapy and EV interactions in glioblastoma. 246 articles published up to 24/07/2023 from PubMed and Web of Science were identified using search parameters related to radiotherapy, EVs, and glioblastoma. Two reviewers evaluated study eligibility and abstracted data. RESULTS In 26 articles eligible for inclusion (16 investigating the effects of radiotherapy on EVs, five investigating the effect of EVs on radiation response, and five clinical studies), significant heterogeneity and frequent omission of key characterisation steps was identified, reducing confidence that the results are related to EVs and their cargo as opposed to co-isolated bioactive molecules. However, the results are able to clearly identify interactions between EVs and radiotherapy bi-directionally within different cell types within the glioblastoma TME. These interactions facilitate transferable radioresistance and oncogenic signalling, highlighting that EVs are an important component in the variability of glioblastoma radiotherapy response. CONCLUSIONS Future multi-directional investigations interrogating the whole TME are required to improve subsequent clinical translation, and all studies should incorporate up to date controls and reporting requirements to increase the validity of their findings. This would be facilitated by increased collaboration between less experienced and more experienced EV research groups.
Collapse
Affiliation(s)
- Stephen David Robinson
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG).
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK, (SDR, DG).
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG)
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG)
| | - Duncan Gilbert
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK, (SDR, DG)
- Medical Research Council Clinical Trials Unit, University College London, London, UK, (DG)
| | - Giles Critchley
- Department of Neurosurgery, University Hospitals Sussex NHS Foundation Trust, Brighton, UK, (GC)
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG)
| |
Collapse
|
15
|
Dang DD, Gong AD, Dang JV, Mugge LA, Mansinghani S, Ziu M, Cohen AL, Vyas N. Systematic Review of WHO Grade 4 Astrocytoma in the Cerebellopontine Angle: The Impact of Anatomic Corridor on Treatment Options and Outcomes. J Neurol Surg Rep 2023; 84:e129-e139. [PMID: 37854309 PMCID: PMC10580070 DOI: 10.1055/a-2172-7770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023] Open
Abstract
Background Despite advances in multimodal oncologic therapies and molecular genetics, overall survival (OS) in patients with high-grade astrocytomas remains poor. We present an illustrative case and systematic review of rare, predominantly extra-axial World Health Organization (WHO) grade 4 astrocytomas located within the cerebellopontine angle (CPA) and explore the impact of anatomic location on diagnosis, management, and outcomes. Methods A systematic review of adult patients with predominantly extra-axial WHO grade 4 CPA astrocytomas was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines through December 2022. Results Eighteen articles were included comprising 21 astrocytomas: 13 exophytic tumors arising from the cerebellopontine parenchyma and 8 tumors originating from a cranial nerve root entry zone. The median OS was 15 months with one-third of cases demonstrating delayed diagnosis. Gross total resection, molecular genetic profiling, and use of ancillary treatment were low. We report the only patient with an integrated isocitrate dehydrogenase 1 (IDH-1) mutant diagnosis, who, after subtotal resection and chemoradiation, remains alive at 40 months without progression. Conclusion The deep conical-shaped corridor and abundance of eloquent tissue of the CPA significantly limits both surgical resection and utility of device-based therapies in this region. Prompt diagnosis, molecular characterization, and systemic therapeutic advances serve as the predominant means to optimize survival for patients with rare skull base astrocytomas.
Collapse
Affiliation(s)
- Danielle D. Dang
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Andrew D. Gong
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - John V. Dang
- Department of Internal Medicine, Walter Reed Military Medical Center, Bethesda, Maryland, United States
| | - Luke A. Mugge
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Seth Mansinghani
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Mateo Ziu
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Adam L. Cohen
- Department of Neuro-Oncology, Inova Schar Cancer Institute, Inova Health System, Fairfax, Falls Church, Virginia, United States
| | - Nilesh Vyas
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| |
Collapse
|
16
|
Su T, Zhou S, Yang S, Humble N, Zhang F, Yu G, Bos PD, Cheng F, Valerie K, Zhu G. Lymph node-targeting adjuvant/neoantigen-codelivering vaccines for combination glioblastoma radioimmunotherapy. Theranostics 2023; 13:4304-4315. [PMID: 37649594 PMCID: PMC10465217 DOI: 10.7150/thno.84443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of adult brain cancer. Current GBM standard of care, including radiotherapy, often ends up with cancer recurrence, resulting in limited long-term survival benefits for GBM patients. Immunotherapy, such as immune checkpoint blockade (ICB), has thus far shown limited clinical benefit for GBM patients. Therapeutic vaccines hold great potential to elicit anti-cancer adaptive immunity, which can be synergistically combined with ICB and radiotherapy. Peptide vaccines are attractive for their ease of manufacturing and stability, but their therapeutic efficacy has been limited due to poor vaccine co-delivery and the limited ability of monovalent antigen vaccines to prevent tumor immune evasion. To address these challenges, here, we report GBM radioimmunotherapy that combines radiotherapy, ICB, and multivalent lymph-node-targeting adjuvant/antigen-codelivering albumin-binding vaccines (AAco-AlbiVax). Specifically, to codeliver peptide neoantigens and adjuvant CpG to lymph nodes (LNs), we developed AAco-AlbiVax based on a Y-shaped DNA scaffold that was site-specifically conjugated with CpG, peptide neoantigens, and albumin-binding maleimide-modified Evans blue derivative (MEB). As a result, these vaccines elicited antitumor immunity including neoantigen-specific CD8+ T cell responses in mice. In orthotopic GBM mice, the combination of AAco-AlbiVax, ICB, and fractionated radiation enhanced GBM therapeutic efficacy. However, radioimmunotherapy only trended more efficacious over radiotherapy alone. Taken together, these studies underscore the great potential of radioimmunotherapy for GBM, and future optimization of treatment dosing and scheduling would improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Ting Su
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; The Developmental Therapeutics Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; The Developmental Therapeutics Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan, Ann Arbor, MI 48109, USA
| | - Suling Yang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; The Developmental Therapeutics Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas Humble
- Department of Radiation Oncology, School of Medicine; The Developmental Therapeutics Program Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Paula D. Bos
- Department of Pathology, School of Medicine; Cancer Biology Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Furong Cheng
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; The Developmental Therapeutics Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, School of Medicine; The Developmental Therapeutics Program Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; The Developmental Therapeutics Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Smith J, Field M, Sugaya K. Suppression of NANOG Expression Reduces Drug Resistance of Cancer Stem Cells in Glioblastoma. Genes (Basel) 2023; 14:1276. [PMID: 37372456 DOI: 10.3390/genes14061276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive and incurable primary brain tumor that harbors therapy-resistant cancer stem cells (CSCs). Due to the limited effectiveness of conventional chemotherapies and radiation treatments against CSCs, there is a critical need for the development of innovative therapeutic approaches. Our previous research revealed the significant expression of embryonic stemness genes, NANOG and OCT4, in CSCs, suggesting their role in enhancing cancer-specific stemness and drug resistance. In our current study, we employed RNA interference (RNAi) to suppress the expression of these genes and observed an increased susceptibility of CSCs to the anticancer drug, temozolomide (TMZ). Suppression of NANOG expression induced cell cycle arrest in CSCs, specifically in the G0 phase, and it concomitantly decreased the expression of PDK1. Since PDK1 activates the PI3K/AKT pathway to promote cell proliferation and survival, our findings suggest that NANOG contributes to chemotherapy resistance in CSCs through PI3K/AKT pathway activation. Therefore, the combination of TMZ treatment with RNAi targeting NANOG holds promise as a therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
18
|
Grossman SA. Using historical objective response rates to design single-arm phase II trials in patients with recurrent glioblastoma. Neuro Oncol 2023; 25:1029-1030. [PMID: 36881776 PMCID: PMC10237396 DOI: 10.1093/neuonc/noad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
19
|
Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol 2023; 6:388. [PMID: 37031346 PMCID: PMC10082834 DOI: 10.1038/s42003-023-04770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Collapse
Affiliation(s)
- Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierangela Giustetto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | | | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Fabrizio Scopelliti
- Radiopharmacy Laboratory Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| |
Collapse
|
20
|
Kim Y, Kim J, An JM, Park CK, Kim D. All-Nontoxic Fluorescent Probe for Biothiols and Its Clinical Applications for Real-Time Glioblastoma Visualization. ACS Sens 2023; 8:1723-1732. [PMID: 36967520 DOI: 10.1021/acssensors.3c00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fluorescence-guided surgery (FSG) is a surgical method to selectively visualize the tumor site using fluorescent materials with instrumental setups in the operation rooms. It has been widely used in the surgery of brain tumors, such as glioblastoma (GBM), which is difficult to distinguish from normal tissue. Although FSG is crucial for GBM surgery, the commercially available fluorescent materials for FSG have shown serious adverse effects. To satisfy the clinical demand, we recently reported reaction-based fluorescent probes based on a 4-chloro-7-nitrobenzofurazan (NBD) fluorophore that can detect cysteine (Cys) and homocysteine (Hcy), a biomarker of GBM, and their applications for the GBM diagnosis and FSG. However, our probes have cellular toxicity issues arising from the leaving group (LG) that is generated after the reaction of the fluorescent probe and the analytes. In this study, we disclosed a nontoxic fluorescent probe for sensing biothiols and their clinical applications for real-time human glioblastoma visualization. Systematic toxicity analysis of several LGs was conducted on several cell lines. Among the LGs, 2-hydroxy-pyridine showed negligible toxicity, and its fluorescent probe derivative (named NPO-o-Pyr) showed high specificity and sensitivity (LOD: 0.071 ppm for Cys; 0.189 ppm for Hcy), a fast response time (<5 min) to Cys and Hcy, and high biocompatibility. In addition, NPO-o-Pyr can significantly detect the GBM site both in actual clinical samples as well as in the GBM-xenografted mouse model. We are confident that NPO-o-Pyr will become a new substitute in FSG due to its capability to overcome the limitations of the current fluorescent probes.
Collapse
|
21
|
Cruz N, Herculano-Carvalho M, Roque D, Faria CC, Cascão R, Ferreira HA, Reis CP, Matela N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15030928. [PMID: 36986790 PMCID: PMC10054750 DOI: 10.3390/pharmaceutics15030928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains a challenging disease, as it is the most common and deadly brain tumour in adults and has no curative solution and an overall short survival time. This incurability and short survival time means that, despite its rarity (average incidence of 3.2 per 100,000 persons), there has been an increased effort to try to treat this disease. Standard of care in newly diagnosed glioblastoma is maximal tumour resection followed by initial concomitant radiotherapy and temozolomide (TMZ) and then further chemotherapy with TMZ. Imaging techniques are key not only to diagnose the extent of the affected tissue but also for surgery planning and even for intraoperative use. Eligible patients may combine TMZ with tumour treating fields (TTF) therapy, which delivers low-intensity and intermediate-frequency electric fields to arrest tumour growth. Nonetheless, the blood–brain barrier (BBB) and systemic side effects are obstacles to successful chemotherapy in GBM; thus, more targeted, custom therapies such as immunotherapy and nanotechnological drug delivery systems have been undergoing research with varying degrees of success. This review proposes an overview of the pathophysiology, possible treatments, and the most (not all) representative examples of the latest advancements.
Collapse
Affiliation(s)
- Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuel Herculano-Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Diogo Roque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| |
Collapse
|
22
|
Mousavi M, Koosha F, Neshastehriz A. Chemo-radiation therapy of U87-MG glioblastoma cells using SPIO@AuNP-Cisplatin-Alginate nanocomplex. Heliyon 2023; 9:e13847. [PMID: 36873545 PMCID: PMC9976303 DOI: 10.1016/j.heliyon.2023.e13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/21/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Megavoltage radiotherapy and cisplatin-based chemotherapy are the primary glioblastoma treatments. Novel nanoparticles have been designed to reduce adverse effects and boost therapeutic effectiveness. In the present study, we synthesized the SPIO@AuNP-Cisplatin-Alginate (SACA) nanocomplex, composed of a SPIO core, a gold shell, and an alginate coating. SACA was characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). U87-MG human glioblastoma cells and the HGF cell line (a healthy primary gingival fibroblast) were treated in multiple groups by a combination of SACA, cisplatin, and 6 MV X-ray. The MTT assay was used to assess the cytotoxicity of cisplatin and SACA (at various concentrations and for 4 h). Following the treatments, apoptosis and cell viability were evaluated in each treatment group using flow cytometry and the MTT assay, respectively. The findings demonstrated that the combination of SACA and 6 MV X-rays (at the doses of 2 and 4 Gy) drastically decreased the viability of U87MG cells, whereas the viability of HGF cells remained unchanged. Moreover, U87MG cells treated with SACA in combination with radiation exhibited a significant increase in apoptosis, demonstrating that this nanocomplex effectively boosted the radiosensitivity of cancer cells. Even though additional in vivo studies are needed, these findings suggest that SACA might be used as a radiosensitizer nanoparticle in the therapy of brain tumors.
Collapse
Affiliation(s)
- Mahdie Mousavi
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, school of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| |
Collapse
|
23
|
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network. Pol J Radiol 2023; 88:e31-e40. [PMID: 36819221 PMCID: PMC9907163 DOI: 10.5114/pjr.2023.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 02/09/2023] Open
Abstract
Purpose Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra- and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmentation of clinical target volume (CTV) in glioblastoma patients. Material and methods In this study, the modified Segmentation-Net (SegNet) model with deep supervision and residual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume (GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (n = 37) to perform the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was evaluated on an independent clinical test dataset (n = 15) using the Dice Similarity Coefficient (DSC) and Hausdorff distance. The impact of auto-segmented CTV definition on dosimetry was also analysed. Results The proposed model achieved the segmentation results with a DSC of 89.60 ± 3.56% and Hausdorff distance of 1.49 ± 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between manually and automatically planned doses. Conclusions The results of our study suggest that our CNN-based auto-contouring system can be used for segmentation of CTVs to facilitate the brain tumour radiotherapy workflow.
Collapse
|
24
|
Alhaddad L, Nofal Z, Pustovalova M, Osipov AN, Leonov S. Long-Term Cultured Human Glioblastoma Multiforme Cells Demonstrate Increased Radiosensitivity and Senescence-Associated Secretory Phenotype in Response to Irradiation. Int J Mol Sci 2023; 24:ijms24032002. [PMID: 36768320 PMCID: PMC9916727 DOI: 10.3390/ijms24032002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The overall effect of senescence on cancer progression and cancer cell resistance to X-ray radiation (IR) is still not fully understood and remains controversial. How to induce tumor cell senescence and which senescent cell characteristics will ensure the safest therapeutic strategy for cancer treatment are under extensive investigation. While the evidence for passage number-related effects on malignant primary cells or cell lines is compelling, much less is known about how the changes affect safety and Senescence-Associated Secretory Phenotype (SASP), both of which are needed for the senescence cell-based vaccine to be effective against cancer. The present study aimed to investigate the effects of repeated passaging on the biological (self-renewal capacity and radioresistance) and functional (senescence) characteristics of the different populations of short- and long-term passaging glioblastoma multiforme (GBM) cells responding to senescence-inducing DNA-damaging IR stress. For this purpose, we compared radiobiological effects of X-ray exposure on two isogenic human U87 cell lines: U87L, minimally cultured cells (<15 passages after obtaining from the ATCC) and U87H, long-term cultured cells (>3 years of continuous culturing after obtaining from the ATCC). U87L cells displayed IR dose-related changes in the signs of IR stress-induced premature senescence. These included an increase in the proportion of senescence-associated β-galactosidase (SA-β-Gal)-positive cells, and concomitant decrease in the proportion of Ki67-positive cells and metabolically active cells. However, reproductive survival of irradiated short-term cultured U87L cells was higher compared to long-term cultured U87H cells, as the clonogenic activity results demonstrated. In contrast, the irradiated long-term cultured U87H cells possessed dose-related increases in the proportion of multinucleated giant cancer cells (MGCCs), while demonstrating higher radiosensitivity (lower self-renewal) and a significantly reduced fraction of DNA-replicating cells compared to short-term cultured U87L cells. Conditioned culture medium from U87H cells induced a significant rise of SA-β-Gal staining in U87L cells in a paracrine manner suggesting inherent SASP. Our data suggested that low-dose irradiated long-term cultured GBM cells might be a safer candidate for a recently proposed senescence cell-based vaccine against cancer.
Collapse
Affiliation(s)
- Lina Alhaddad
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Department of Environmental Sciences, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria
| | - Zain Nofal
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Andreyan N. Osipov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
25
|
Foreman M, Patel A, Sheth S, Reddy A, Lucke-Wold B. Diabetes Mellitus Management in the Context of Cranial Tumors. BOHR INTERNATIONAL JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2022; 1:29-39. [PMID: 36700856 PMCID: PMC9872258 DOI: 10.54646/bijnn.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of the relationship between cancer and diabetes mellitus (DM) has been under investigation for many decades. Particularly in the field of neurology and neurosurgery, increasing emphasis has been put on the examination of comorbid DM in patients with cranial tumors. Namely, as the most common and invasive type of malignant adult brain tumor, glioblastoma (GBS) has been the focus of said research. Several mechanisms have been described in the attempt to elucidate the underlying association between DM and GBS, with the metabolic phenomenon known as the Warburg effect and its consequential downstream effects serving as the resounding culprits in recent literature. Since the effect seen in cancers like GBS exploits an upregulated form of aerobic glycolysis, the role of a sequela of DM, known as hyperglycemia, will be investigated. In particular, in the treatment of GBS, surgical resection and subsequent chemotherapy and/or radiotherapy are used in conjunction with corticosteroid therapy, the latter of which has been linked to hyperglycemia. Unsurprisingly, comorbid DM patients are significantly susceptible to this disposition. Further, this fact is reflected in recent literature that demonstrates the impact of hyperglycemia on cancer advancement and patient outcomes in several preclinical and clinical studies. Thus, this review will aim to underline the significance of diabetes and glycemic control via standard-of-care treatments such as metformin administration, as well as to describe emerging treatments such as the signaling modulation of insulin-like growth factor and the employment of the ketogenic diet.
Collapse
Affiliation(s)
- Marco Foreman
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Sohum Sheth
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Akshay Reddy
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
26
|
Jin K, Brennan PM, Poon MTC, Figueroa JD, Sudlow CLM. Impact of tumour characteristics and cancer treatment on cerebrovascular mortality after glioma diagnosis: Evidence from a population-based cancer registry. Front Oncol 2022; 12:1025398. [PMID: 36568237 PMCID: PMC9780584 DOI: 10.3389/fonc.2022.1025398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Objective We aimed to examine brain tumour grade, a marker of biological aggressiveness, tumour size and cancer treatment are associated with cerebrovascular mortality among patients with malignant glioma, the most common and aggressive type of brain tumour. Methods We conducted a retrospective, observational cohort study using the US National Cancer Institute's state and regional population-based cancer registries. We identified adult patients with glioma in 2000 to 2018 (N=72,916). The primary outcome was death from cerebrovascular disease. Cox regression modelling was used to estimate the associations with cerebrovascular mortality of tumour grade, tumour size and treatment (surgery, radiotherapy, chemotherapy), calculating hazard ratios (HR) adjusted for these factors as well as for age, sex, race, marital status and calendar year. Results Higher grade (Grade IV vs Grade II: HR=2.47, 95% CI=1.69-3.61, p<0.001) and larger brain tumours (size 3 to <6 cm: HR=1.40, 95% CI=1.03 -1.89, p<0.05; size ≥ 6 cm: HR=1.47, 95% CI=1.02-2.13, p<0.05 compared to size < 3cm) were associated with increased cerebrovascular mortality. Cancer treatment was associated with decreased risk (surgery: HR= 0.60, p<0.001; chemotherapy: HR=0.42, p<0.001; radiation: HR= 0.69, p<0.05). However, among patents surviving five years or more from cancer diagnosis radiotherapy was associated with higher risk of cerebrovascular mortality (HR 2.73, 95% CI 1.49-4.99, p<0.01). Conclusion More aggressive tumour characteristics are associated with increased cerebrovascular mortality. Radiotherapy increased risk of cerebrovascular mortality five-year after cancer diagnosis. Further research is needed to better understand the long-term cardiovascular consequences of radiation therapy, and whether the consequent risk can be mitigated.
Collapse
Affiliation(s)
- Kai Jin
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Brain Tumour Centre of Excellence, Cancer Research United Kingdom Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul M. Brennan
- Brain Tumour Centre of Excellence, Cancer Research United Kingdom Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael T. C. Poon
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Brain Tumour Centre of Excellence, Cancer Research United Kingdom Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonnie D. Figueroa
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Brain Tumour Centre of Excellence, Cancer Research United Kingdom Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Cathie L. M. Sudlow
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Brain Tumour Centre of Excellence, Cancer Research United Kingdom Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Impact of fractionated stereotactic radiotherapy on activity of daily living and performance status in progressive/recurrent glioblastoma: a retrospective study. Radiat Oncol 2022; 17:201. [PMID: 36474245 PMCID: PMC9727986 DOI: 10.1186/s13014-022-02169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prognosis of recurrent glioblastoma (GBM) is poor, with limited options of palliative localized or systemic treatments. Survival can be improved by a second localized treatment; however, it is not currently possible to identify which patients would benefit from this approach. This study aims to evaluate which factors lead to a lower Karnofsky performance status (KPS) score after fractionated stereotactic RT (fSRT). METHODS We retrospectively collected data from patients treated with fSRT for recurrent GBM at the Institut de Cancérologie de Lorraine between October 2010 and November 2017 and analyzed which factors were associated with a lower KPS score. RESULTS 59 patients received a dose of 25 Gy in 5 sessions spread over 5-7 days (80% isodose). The median time from the end of primary radiotherapy to the initiation of fSRT was 10.7 months. The median follow-up after fSRT initiation was 8.8 months. The incidence of KPS and ADL impairment in all patients were 51.9% and 37.8% respectively with an adverse impact of PTV size on KPS (HR = 1.57 [95% CI 1.19-2.08], p = 0.028). Only two patients showed early grade 3 toxicity and none showed grade 4 or late toxicity. The median overall survival time, median overall survival time after fSRT, median progression-free survival and institutionalization-free survival times were 25.8, 8.8, 3.9 and 7.7 months, respectively. Initial surgery was associated with better progression-free survival (Hazard ratio (HR) = 0.48 [95% CI 0.27-0.86], p = 0.013). CONCLUSIONS A larger PTV should predicts lower KPS in the treatment of recurrent GBM using fSRT.
Collapse
|
28
|
Wang E, Xiang K, Zhang Y, Wang XF. Patient-derived organoids (PDOs) and PDO-derived xenografts (PDOXs): New opportunities in establishing faithful pre-clinical cancer models. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:263-276. [PMID: 39036550 PMCID: PMC11256726 DOI: 10.1016/j.jncc.2022.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
One of the major bottlenecks in advancing basic cancer research and developing novel cancer therapies is the lack of in vitro pre-clinical models that faithfully recapitulate tumor properties in the patients. Monolayer cultures of cancer cell lines usually lose the heterogeneity of the parental tumors, while patient-derived xenograft (PDX) suffers from its time- and resource-intensive nature. The emergence of organoid culture system and its application in cancer research provides a unique opportunity to develop novel in vitro cancer pre-clinical models. Here we review the recent advances in utilizing organoids culture system and other related three-dimensional culture systems in studying cancer biology, performing drug screening, and developing cancer therapies. In particular, we discuss the advantages of applying xenograft initiated from patient-derived organoids (PDOs) as a faithful cancer pre-clinical model in basic cancer research and precision medicine.
Collapse
Affiliation(s)
- Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| | - Yun Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| |
Collapse
|
29
|
Wang K, Jalil AT, Saleh MM, Talaei S, Wang L. Glutathione (GSH) conjugated Bi2S3 NPs as a promising radiosensitizer against glioblastoma cancer cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Vorobyev PO, Kochetkov DV, Chumakov PM, Zakirova NF, Zotova-Nefedorova SI, Vasilenko KV, Alekseeva ON, Kochetkov SN, Bartosch B, Lipatova AV, Ivanov AV. 2-Deoxyglucose, an Inhibitor of Glycolysis, Enhances the Oncolytic Effect of Coxsackievirus. Cancers (Basel) 2022; 14:5611. [PMID: 36428704 PMCID: PMC9688421 DOI: 10.3390/cancers14225611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.
Collapse
Affiliation(s)
- Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia I. Zotova-Nefedorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Konstantin V. Vasilenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of General Medicine, Pirogov Russian National Medical University, 117997 Moscow, Russia
| | - Olga N. Alekseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69003 Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), 69001 Lyon, France
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
31
|
Elitas M, Islam M, Korvink JG, Sengul E, Sharbati P, Ozogul B, Kaymaz SV. Quantifying Deformation and Migration Properties of U87 Glioma Cells Using Dielectrophoretic Forces. BIOSENSORS 2022; 12:946. [PMID: 36354455 PMCID: PMC9688500 DOI: 10.3390/bios12110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma multiforme is one of the most aggressive malignant primary brain tumors. To design effective treatment strategies, we need to better understand the behavior of glioma cells while maintaining their genetic and phenotypic stability. Here, we investigated the deformation and migration profile of U87 Glioma cells under the influence of dielectrophoretic forces. We fabricated a gold microelectrode array within a microfluidic channel and applied sinusoidal wave AC potential at 3 Vpp, ranging from 30 kHz to 10 MHz frequencies, to generate DEP forces. We followed the dielectrophoretic movement and deformation changes of 100 glioma cells at each frequency. We observed that the mean dielectrophoretic displacements of glioma cells were significantly different at varying frequencies with the maximum and minimum traveling distances of 13.22 µm and 1.37 µm, respectively. The dielectrophoretic deformation indexes of U87 glioma cells altered between 0.027-0.040. It was 0.036 in the absence of dielectrophoretic forces. This approach presents a rapid, robust, and sensitive characterization method for quantifying membrane deformation of glioma cells to determine the state of the cells or efficacy of administrated drugs.
Collapse
Affiliation(s)
- Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Monsur Islam
- Institute for Microstructure Technology, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Jan G. Korvink
- Institute for Microstructure Technology, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Esra Sengul
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Pouya Sharbati
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Beyzanur Ozogul
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Sumeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
32
|
Neth BJ, Lachance DH, Uhm JH, Ruff MW. Management and Long-Term Outcomes of Patients With Recurrent Stroke-Like Episodes After Cranial Radiotherapy. Neurologist 2022:00127893-990000000-00042. [DOI: 10.1097/nrl.0000000000000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Resveratrol Enhances the Radiosensitivity by Inducing DNA Damage and Antitumor Immunity in a Glioblastoma Rat Model under 3 T MRI Monitoring. JOURNAL OF ONCOLOGY 2022; 2022:9672773. [PMID: 36276282 PMCID: PMC9584721 DOI: 10.1155/2022/9672773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is the most common intracranial tumor with characteristic of malignancy. Resveratrol, a natural originated polyphenolic compound, has been reported to act as a potential radiosensitizer in cancer therapy. Magnetic resonance imaging (MRI) is the first choice for the diagnosis, pathological grading, and efficacy evaluation of GBM. In this study, MRI was applied to observe whether resveratrol could intensify the anti-GBM tumor effect by enhancing antitumor immunity during radiotherapy. We established an intracranial C6 GBM model in SD rats, treated with radiation and resveratrol. The increased body weight, the inhibition on mortality, and tumor volume in radiated- GBM rats were further enhanced by resveratrol addition, while the pathological damage of brain was alleviated. The modulation of radiation on inflammation, cell cycle, and apoptosis was strengthened by resveratrol; and Ki-67, PD-L1, and cell cycle- and apoptosis-related protein expressions were also improved by cotreatment. Besides, cotreatment attenuated DNA damage and induced G0/G1-phase cell arrest of GBM rats, accompanied with the changed expression of ATM-AKT-STAT3 pathway-related proteins. Moreover, the percentages of CD3+CD8+T cells and IFN-γ+CD8+T cells were enhanced, while (CD4+CD25+Foxp3)/CD4+T cells were decreased by radiation or resveratrol, which was strengthened by cotreatment. The modulation effect of cotreatment on CD3, Foxp3, and IFN-γ levels was also stronger than radiation or resveratrol alone. To conclude, resveratrol enhanced the effect of radiotherapy by inducing DNA damage and antitumor immunity in the intracranial C6 GBM.
Collapse
|
34
|
Shin E, Kang H, Lee H, Lee S, Jeon J, Seong K, Youn H, Youn B. Exosomal Plasminogen Activator Inhibitor-1 Induces Ionizing Radiation-Adaptive Glioblastoma Cachexia. Cells 2022; 11:cells11193102. [PMID: 36231065 PMCID: PMC9564109 DOI: 10.3390/cells11193102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cachexia is a muscle-wasting syndrome that leads to a severely compromised quality of life and increased mortality. A strong association between cachexia and poor prognosis has been demonstrated in intractable cancers, including glioblastoma (GBM). In the present study, it was demonstrated that ionizing radiation (IR), the first-line treatment for GBM, causes cancer cachexia by increasing the exosomal release of plasminogen activator inhibitor-1 (PAI-1) from glioblastoma cells. Exosomal PAI-1 delivered to the skeletal muscle is directly penetrated in the muscles and phosphorylates STAT3 to intensify muscle atrophy by activating muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (Atrogin1); furthermore, it hampers muscle protein synthesis by inhibiting mTOR signaling. Additionally, pharmacological inhibition of PAI-1 by TM5441 inhibited muscle atrophy and rescued muscle protein synthesis, thereby providing survival benefits in a GBM orthotopic xenograft mouse model. In summary, our data delineated the role of PAI-1 in the induction of GBM cachexia associated with radiotherapy-treated GBM. Our data also indicated that targeting PAI-1 could serve as an attractive strategy for the management of GBM following radiotherapy, which would lead to a considerable improvement in the quality of life of GBM patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Jaewan Jeon
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Kimoon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Hyesook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Buhyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2264
| |
Collapse
|
35
|
Walter Y, Hubbard A, Benoit A, Jank E, Salas O, Jordan D, Ekpenyong A. Development of In Vitro Assays for Advancing Radioimmunotherapy against Brain Tumors. Biomedicines 2022; 10:biomedicines10081796. [PMID: 35892697 PMCID: PMC9394411 DOI: 10.3390/biomedicines10081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Due to high resistance to treatment, local invasion, and a high risk of recurrence, GBM patient prognoses are often dismal, with median survival around 15 months. The current standard of care is threefold: surgery, radiation therapy, and chemotherapy with temozolomide (TMZ). However, patient survival has only marginally improved. Radioimmunotherapy (RIT) is a fourth modality under clinical trials and aims at combining immunotherapeutic agents with radiotherapy. Here, we develop in vitro assays for the rapid evaluation of RIT strategies. Using a standard cell irradiator and an Electric Cell Impedance Sensor, we quantify cell migration following the combination of radiotherapy and chemotherapy with TMZ and RIT with durvalumab, a PD-L1 immune checkpoint inhibitor. We measure cell survival using a cloud-based clonogenic assay. Irradiated T98G and U87 GBM cells migrate significantly (p < 0.05) more than untreated cells in the first 20−40 h post-treatment. Addition of TMZ increases migration rates for T98G at 20 Gy (p < 0.01). Neither TMZ nor durvalumab significantly change cell survival in 21 days post-treatment. Interestingly, durvalumab abolishes the enhanced migration effect, indicating possible potency against local invasion. These results provide parameters for the rapid supplementary evaluation of RIT against brain tumors.
Collapse
Affiliation(s)
- Yohan Walter
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Anne Hubbard
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Allie Benoit
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Erika Jank
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Olivia Salas
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Destiny Jordan
- Department of Biology, Creighton University, Omaha, NE 68178, USA;
| | - Andrew Ekpenyong
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
- Correspondence: ; Tel.: +1-402-280-2208
| |
Collapse
|
36
|
Guerra DB, Oliveira EMN, Sonntag AR, Sbaraine P, Fay AP, Morrone FB, Papaléo RM. Intercomparison of radiosensitization induced by gold and iron oxide nanoparticles in human glioblastoma cells irradiated by 6 MV photons. Sci Rep 2022; 12:9602. [PMID: 35688846 PMCID: PMC9187689 DOI: 10.1038/s41598-022-13368-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, an intercomparison of sensitization effects produced by gold (GNP) and dextran-coated iron oxide (SPION-DX) nanoparticles in M059J and U87 human glioblastoma cells was performed using 6 MV-photons. Three variables were mapped: the nanoparticle material, treatment concentration, and cell radiosensitivity. For U87, GNP treatments resulted in high sensitization enhancement ratios (SER[Formula: see text] up to 2.04). More modest effects were induced by SPION-DX, but still significant reductions in survival were achieved (maximum SER[Formula: see text] ). For the radiosensitive M059J, sensitization by both NPs was poor. SER[Formula: see text] increased with the degree of elemental uptake in the cells, but not necessarily with treatment concentration. For GNP, where exposure concentration and elemental uptake were found to be proportional, SER[Formula: see text] increased linearly with concentration in both cell lines. For SPION-DX, saturation of sensitization enhancement and metal uptake occurred at high exposures. Fold change in the [Formula: see text] ratios extracted from survival curves are reduced by the presence of SPION-DX but strongly increased by GNPs , suggesting that sensitization by GNPs occurs mainly via promotion of lethal damage, while for SPION-DX repairable damage dominates. The NPs were more effective in eliminating the radioresistant glioblastoma cells, an interesting finding, as resistant cells are key targets to improve treatment outcome.
Collapse
Affiliation(s)
- Danieli B Guerra
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil.
| | - Elisa M N Oliveira
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Amanda R Sonntag
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Patricia Sbaraine
- Division of Radiotherapy, São Lucas Hospital of PUCRS, Porto Alegre, 90610-000, Brazil
| | - Andre P Fay
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Fernanda B Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ricardo M Papaléo
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| |
Collapse
|
37
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
38
|
McAleavey PG, Walls GM, Chalmers AJ. Radiotherapy-drug combinations in the treatment of glioblastoma: a brief review. CNS Oncol 2022; 11:CNS86. [PMID: 35603818 PMCID: PMC9134931 DOI: 10.2217/cns-2021-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) accounts for over 50% of gliomas and carries the worst prognosis of all solid tumors. Owing to the limited local control afforded by surgery alone, efficacious adjuvant treatments such as radiotherapy (RT) and chemotherapy are fundamental in achieving durable disease control. The best clinical outcomes are achieved with tri-modality treatment consisting of surgery, RT and systemic therapy. While RT-chemotherapy combination regimens are well established in oncology, this approach was largely unsuccessful in GBM until the introduction of temozolomide. The success of this combination has stimulated the search for other candidate drugs for concomitant use with RT in GBM. This review seeks to collate the current evidence for these agents and synthesize possible future directions for the field.
Collapse
Affiliation(s)
- Patrick G McAleavey
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, N. Ireland
| | - Gerard M Walls
- Cancer Centre Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, N. Ireland
- Patrick G Johnston Centre for Cancer Research, Jubilee Road, Belfast, BT9 7AE, N. Ireland
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1QH, Scotland
| |
Collapse
|
39
|
Sengul E, Sharbati P, Elitas M, Islam M, Korvink JG. Analysis of U87 glioma cells by dielectrophoresis. Electrophoresis 2022; 43:1357-1365. [PMID: 35366348 DOI: 10.1002/elps.202100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme is the most aggressive and invasive brain cancer consisting of genetically and phenotypically altering glial cells. It has massive heterogeneity due to its highly complex and dynamic microenvironment. Here, electrophysiological properties of U87 human glioma cell line were measured based on a dielectrophoresis phenomenon to quantify the population heterogeneity of glioma cells. Dielectrophoretic forces were generated using a gold-microelectrode array within a microfluidic channel when 3 Vpp and 100, 200, 300, 400, 500 kHz, 1, 2, 5, and 10 MHz frequencies were applied. We analyzed the dielectrophoretic behavior of 500 glioma cells, and revealed that the crossover frequency of glioma cells was around 140 kHz. A quantifying dielectrophoretic movement of the glioma cells exhibited three distinct glioma subpopulations: 50% of the glioma cells experienced strong, 30% of the cells were spread in the microchannel by moderate, and the rest of the cells experienced very weak positive dielectrophoretic forces. Our results demonstrated the dielectrophoretic spectra of U87 glioma cell line. Dielectrophoretic responses of glioma cells linked population heterogeneity to membrane properties of glioma cells rather than their size distribution in the population.
Collapse
Affiliation(s)
- Esra Sengul
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Pouya Sharbati
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center, Istanbul, Turkey
| | - Monsur Islam
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
40
|
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. J Neurol Sci 2022; 440:120316. [DOI: 10.1016/j.jns.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
41
|
Lao Y, Ruan D, Vassantachart A, Fan Z, Ye JC, Chang EL, Chin R, Kaprealian T, Zada G, Shiroishi MS, Sheng K, Yang W. Voxelwise Prediction of Recurrent High-Grade Glioma via Proximity Estimation-Coupled Multidimensional Support Vector Machine. Int J Radiat Oncol Biol Phys 2022; 112:1279-1287. [PMID: 34963559 PMCID: PMC8923952 DOI: 10.1016/j.ijrobp.2021.12.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE To provide early and localized glioblastoma (GBM) recurrence prediction, we introduce a novel postsurgery multiparametric magnetic resonance-based support vector machine (SVM) method coupling with stem cell niche (SCN) proximity estimation. METHODS AND MATERIALS This study used postsurgery magnetic resonance imaging (MRI) scans from 50 patients with recurrent GBM, obtained approximately 2 months before clinically diagnosed recurrence. The main prediction pipeline consisted of a proximity-based estimator to identify regions with high risk of recurrence (HRRs) and an SVM classifier to provide voxelwise prediction in HRRs. The HRRs were estimated using the weighted sum of inverse distances to 2 possible origins of recurrence-the SCN and the tumor cavity. Subsequently, multiparametric voxels (from T1, T1 contrast-enhanced, fluid-attenuated inversion recovery, T2, and apparent diffusion coefficient) within the HRR were grouped into recurrent (warped from the clinical diagnosis) and nonrecurrent subregions and fed into the proximity estimation-coupled SVM classifier (SVMPE). The cohort was randomly divided into 40% and 60% for training and testing, respectively. The trained SVMPE was then extrapolated to an earlier time point for earlier recurrence prediction. As an exploratory analysis, the SVMPE predictive cluster sizes and the image intensities from the 5 magnetic resonance sequences were compared across time to assess the progressive subclinical traces. RESULTS On 2-month prerecurrence MRI scans from 30 test cohort patients, the SVMPE classifier achieved a recall of 0.80, a precision of 0.69, an F1-score of 0.73, and a mean boundary distance of 7.49 mm. Exploratory analysis at early time points showed spatially consistent but significantly smaller subclinical clusters and significantly increased T1 contrast-enhanced and apparent diffusion coefficient values over time. CONCLUSIONS We demonstrated a novel voxelwise early prediction method, SVMPE, for GBM recurrence based on clinical follow-up MR scans. The SVMPE is promising in localizing subclinical traces of recurrence 2 months ahead of clinical diagnosis and may be used to guide more effective personalized early salvage therapy.
Collapse
Affiliation(s)
- Yi Lao
- Department of Radiation Oncology, University of California - Los Angeles, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California - Los Angeles, USA
| | - April Vassantachart
- Department of Radiation Oncology, Keck School of Medicine of USC, Los Angeles, USA
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, USA
| | - Jason C. Ye
- Department of Radiation Oncology, Keck School of Medicine of USC, Los Angeles, USA
| | - Eric L. Chang
- Department of Radiation Oncology, Keck School of Medicine of USC, Los Angeles, USA
| | - Robert Chin
- Department of Radiation Oncology, University of California - Los Angeles, USA
| | - Tania Kaprealian
- Department of Radiation Oncology, University of California - Los Angeles, USA
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, USA
| | - Mark S Shiroishi
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California - Los Angeles, USA
| | - Wensha Yang
- Department of Radiation Oncology, Keck School of Medicine of USC, Los Angeles, USA
| |
Collapse
|
42
|
Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat Rev Neurol 2022; 18:221-236. [PMID: 35277681 PMCID: PMC10359969 DOI: 10.1038/s41582-022-00621-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Despite advances in neurosurgery, chemotherapy and radiotherapy, glioblastoma remains one of the most treatment-resistant CNS malignancies, and the tumour inevitably recurs. The majority of recurrences appear in or near the resection cavity, usually within the area that received the highest dose of radiation. Many new therapies focus on combatting these local recurrences by implementing treatments directly in or near the tumour bed. In this Review, we discuss the latest developments in local therapy for glioblastoma, focusing on recent preclinical and clinical trials. The approaches that we discuss include novel intraoperative techniques, various treatments of the surgical cavity, stereotactic injections directly into the tumour, and new developments in convection-enhanced delivery and intra-arterial treatments.
Collapse
|
43
|
Tian T, Liang R, Erel-Akbaba G, Saad L, Obeid PJ, Gao J, Chiocca EA, Weissleder R, Tannous BA. Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles. ACS NANO 2022; 16:1940-1953. [PMID: 35099172 PMCID: PMC9020451 DOI: 10.1021/acsnano.1c05505] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.
Collapse
Affiliation(s)
- Tian Tian
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States; Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruyu Liang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gulsah Erel-Akbaba
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Lorenzo Saad
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Pierre J. Obeid
- Department of Chemistry, University of Balamand, Deir El-Balamand, Tripoli, Lebanon
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
44
|
Ho KT, Chen PF, Chuang JY, Gean PW, Hsueh YS. A heat shock protein 90 inhibitor reduces oncoprotein expression and induces cell death in heterogeneous glioblastoma cells with EGFR, PDGFRA, CDK4, and NF1 aberrations. Life Sci 2022; 288:120176. [PMID: 34848192 DOI: 10.1016/j.lfs.2021.120176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
AIMS Glioblastoma (GBM) is a highly malignant brain tumor. After treatment with the first-line drug temozolomide, only 50% of patients are responsive. Recent literature shows that the difficulty in treating GBM is mainly due to the heterogeneity of its four major cellular states, which are characterized by differences in EGFR, PDGFRA, CDK4, and NF1. Therefore, development of a multitarget drug is a potential strategy for treating heterogeneous GBM. MAIN METHODS In this study, the antitumor ability of a potent heat shock protein 90 inhibitor, NVP-AUY922 (AUY922), was evaluated in GBM cell lines (U-87 MG and T98G cells) and patient-derived GBM cell lines [P#5 and P#5 temozolomide-resistant (TMZ-R) cells]. KEY FINDINGS We found that AUY922 significantly reduced cell viability and colony formation in four GBM cell lines. AUY922 also significantly induced apoptosis by increasing PARP1 cleavage and the number of annexin V-positive cells. The autophagy indicators as MAP1LC3B cleavage and MAP1LC3B puncta were increased after AUY922 treatment. AUY922-induced cell death could be partially reversed by pharmacological inhibition of either apoptotic inhibitor or autophagy inhibitor. Moreover, AUY922 reduced the mRNA and protein expressions of EGFR, PDGFRA, CDK4, and NF1, which contribute to the four cellular state subtypes in GBM cells. In addition, the downstream signaling proteins of these four proteins, AKT/p-AKT, MAPK/p-MAPK, and BRAF, were downregulated after AUY922 treatment. SIGNIFICANCE Taken together, AUY922 led to GBM cell death via apoptosis and autophagy, and reduced the mRNA and protein expression of EGFR, PDGFRA, CDK4, and NF1in heterogeneous GBM cells.
Collapse
Affiliation(s)
- Kuan-Ta Ho
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fan Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Shuo Hsueh
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan.
| |
Collapse
|
45
|
Multiple Irradiation Affects Cellular and Extracellular Components of the Mouse Brain Tissue and Adhesion and Proliferation of Glioblastoma Cells in Experimental System In Vivo. Int J Mol Sci 2021; 22:ijms222413350. [PMID: 34948147 PMCID: PMC8703639 DOI: 10.3390/ijms222413350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.
Collapse
|
46
|
Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. NATURE CANCER 2021; 2:1136-1151. [PMID: 35122055 PMCID: PMC8809483 DOI: 10.1038/s43018-021-00267-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) contains abundant tumor-associated macrophages (TAMs). The majority of TAMs are tumor-promoting macrophages (pTAMs), while tumor-suppressive macrophages (sTAMs) are the minority. Thus, reprogramming pTAMs into sTAMs represents an attractive therapeutic strategy. By screening a collection of small-molecule compounds, we find that inhibiting β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) with MK-8931 potently reprograms pTAMs into sTAMs and promotes macrophage phagocytosis of glioma cells; moreover, low-dose radiation markedly enhances TAM infiltration and synergizes with MK-8931 treatment to suppress malignant growth. BACE1 is preferentially expressed by pTAMs in human GBMs and is required to maintain pTAM polarization through trans-interleukin 6 (IL-6)-soluble IL-6 receptor (sIL-6R)-signal transducer and activator of transcription 3 (STAT3) signaling. Because MK-8931 and other BACE1 inhibitors have been developed for Alzheimer's disease and have been shown to be safe for humans in clinical trials, these inhibitors could potentially be streamlined for cancer therapy. Collectively, this study offers a promising therapeutic approach to enhance macrophage-based therapy for malignant tumors.
Collapse
|
47
|
Tresch NS, Fuchs D, Morandi L, Tonon C, Rohrer Bley C, Nytko KJ. Temozolomide is additive with cytotoxic effect of irradiation in canine glioma cell lines. Vet Med Sci 2021; 7:2124-2134. [PMID: 34477324 PMCID: PMC8604143 DOI: 10.1002/vms3.620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Similar to human glioblastoma patients, glial tumours in dogs have high treatment resistance and a guarded prognosis. In human medicine, the addition of temozolomide to radiotherapy leads to a favourable outcome in vivo as well as a higher antiproliferative effect on tumour cells in vitro. OBJECTIVES The aim of the study was to determine the radio- and temozolomide-sensitivity of three canine glial tumour cell lines and to investigate a potential additive cytotoxic effect in combined treatment. Additionally, we wanted to detect the level of MGMT promoter methylation in these cell lines and to investigate a potential association between MGMT promoter methylation and treatment resistance. METHODS Cells were treated with various concentrations of temozolomide and/or irradiated with 4 and 8 Gy. Radiosensitization by temozolomide was evaluated using proliferation assay and clonogenic assay, and MGMT DNA methylation was investigated using bisulfite next-generation sequencing. RESULTS In all tested canine cell lines, clonogenicity was inhibited significantly in combined treatment compared to radiation alone. All canine glial cell lines tested in this study were found to have high methylation levels of MGMT promoter. CONCLUSIONS Hence, an additive effect of combined treatment in MGMT negative canine glial tumour cell lines in vitro was detected. This motivates to further investigate the association between treatment resistance and MGMT, such as MGMT promoter methylation status.
Collapse
Affiliation(s)
- Nina Simona Tresch
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Daniel Fuchs
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Luca Morandi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- Functional and Molecular Neuroimaging UnitIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Caterina Tonon
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- Functional and Molecular Neuroimaging UnitIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Carla Rohrer Bley
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Katarzyna J. Nytko
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| |
Collapse
|
48
|
Sabanathan D, Lund ME, Campbell DH, Walsh BJ, Gurney H. Radioimmunotherapy for solid tumors: spotlight on Glypican-1 as a radioimmunotherapy target. Ther Adv Med Oncol 2021; 13:17588359211022918. [PMID: 34646364 PMCID: PMC8504276 DOI: 10.1177/17588359211022918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.
Collapse
Affiliation(s)
- Dhanusha Sabanathan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW 2109, Australia
| |
Collapse
|
49
|
Moradmand H, Aghamiri SMR, Ghaderi R, Emami H. The role of deep learning-based survival model in improving survival prediction of patients with glioblastoma. Cancer Med 2021; 10:7048-7059. [PMID: 34453413 PMCID: PMC8525162 DOI: 10.1002/cam4.4230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022] Open
Abstract
This retrospective study has been conducted to validate the performance of deep learning‐based survival models in glioblastoma (GBM) patients alongside the Cox proportional hazards model (CoxPH) and the random survival forest (RSF). Furthermore, the effect of hyperparameters optimization methods on improving the prediction accuracy of deep learning‐based survival models was investigated. Of the 305 cases, 260 GBM patients were included in our analysis based on the following criteria: demographic information (i.e., age, Karnofsky performance score, gender, and race), tumor characteristic (i.e., laterality and location), details of post‐surgical treatment (i.e., time to initiate concurrent chemoradiation therapy, standard treatment, and radiotherapy techniques), and last follow‐up time as well as the molecular markers (i.e., O‐6‐methylguanine methyltransferase and isocitrate dehydrogenase 1 status). Experimental results have demonstrated that age (Elderly > 65: hazard ratio [HR] = 1.63; 95% confidence interval [CI]: 1.213–2.18; p value = 0.001) and tumors located at multiple lobes ([HR] = 1.75; 95% [CI]: 1.177–2.61; p value = 0.006) were associated with poorer prognosis. In contrast, age (young < 40: [HR] = 0.57; 95% [CI]: 0.343–0.96; p value = 0.034) and type of radiotherapy (others include stereotactic and brachytherapy: [HR] = 0.5; 95%[CI]: 0.266–0.95; p value = 0.035) were significantly related to better prognosis. Furthermore, the proposed deep learning‐based survival model (concordance index [c‐index] = 0.823 configured by Bayesian hyperparameter optimization), outperformed the RSF (c‐index = 0.728), and the CoxPH model (c‐index = 0.713) in the training dataset. Our results show the ability of deep learning in learning a complex association of risk factors. Moreover, the remarkable performance of the deep‐learning‐based survival model could be promising to support decision‐making systems in personalized medicine for patients with GBM.
Collapse
Affiliation(s)
- Hajar Moradmand
- Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Reza Ghaderi
- Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| | - Hamid Emami
- Department of Radiation Oncology, Isfahan University of Medical Sciences, Seyed Al-Shohada Charity Hospital, Isfahan, Iran
| |
Collapse
|
50
|
Lao Y, Yu V, Pham A, Wang T, Cui J, Gallogly A, Chang E, Fan Z, Kaprealian T, Yang W, Sheng K. Quantitative Characterization of Tumor Proximity to Stem Cell Niches: Implications on Recurrence and Survival in GBM Patients. Int J Radiat Oncol Biol Phys 2021; 110:1180-1188. [PMID: 33600888 PMCID: PMC8238898 DOI: 10.1016/j.ijrobp.2021.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Emerging evidence has linked glioblastoma multiforme (GBM) recurrence and survival to stem cell niches (SCNs). However, the traditional tumor-ventricle distance is insufficiently powered for an accurate prediction. We aimed to use a novel inverse distance map for improved prediction. METHODS AND MATERIALS Two T1-magnetic resonance imaging data sets were included for a total of 237 preoperative scans for prognostic stratification and 55 follow-up scans for recurrent pattern identification. SCN, including the subventricular zone (SVZ) and subgranular zone (SGZ), were manually defined on a standard template. A proximity map was generated using the summed inverse distances to all SCN voxels. The mean and maximum proximity scores (PSm-SCN and PSmax-SCN) were calculated for each primary/recurrent tumor, deformably transformed into the template. The prognostic capacity of proximity score (PS)-derived metrics was assessed using Cox regression and log-rank tests. To evaluate the impact of SCNs on recurrence patterns, we performed group comparisons of PS-derived metrics between the primary and recurrent tumors. For comparison, the same analyses were conducted on PS derived from SVZ alone and traditional edge/center-to-ventricle metrics. RESULTS Among all SCN-derived features, PSm-SCN was the strongest survival predictor (P < .0001). PSmax-SCN was the best in risk stratification, using either evenly sorted (P = .0001) or k-means clustering methods (P = .0045). PS metrics based on SVZ only also correlated with overall survival and risk stratification, but to a lesser degree of significance. In contrast, edge/center-to-ventricle metrics showed weak to no prediction capacities in either task. Moreover, PSm-SCN,PSm-SVZ, and center-to-ventricle metrics revealed a significantly closer SCN distribution of recurrence than primary tumors. CONCLUSIONS We introduced a novel inverse distance-based metric to comprehensively capture the anatomic relationship between GBM tumors and SCN zones. The derived metrics outperformed traditional edge or center distance-based measurements in overall survival prediction, risk stratification, and recurrent pattern differentiation. Our results reveal the potential role of SGZ in recurrence aside from SVZ.
Collapse
Affiliation(s)
- Yi Lao
- Department of Radiation Oncology, University of California - Los Angeles, California
| | - Victoria Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Pham
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Theodore Wang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Jing Cui
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Audrey Gallogly
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Eric Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Zhaoyang Fan
- Department of Radiology, University of Southern California, Los Angeles, California
| | - Tania Kaprealian
- Department of Radiation Oncology, University of California - Los Angeles, California
| | - Wensha Yang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California.
| | - Ke Sheng
- Department of Radiation Oncology, University of California - Los Angeles, California.
| |
Collapse
|