1
|
Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:3-32. [PMID: 37678976 DOI: 10.1016/bs.pmbts.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Stem cells have self-renewal capability and can proliferate and differentiate into a variety of functionally active cells that can serve in various tissues and organs. This review discusses the history, definition, and classification of stem cells. Human pluripotent stem cells (hPSCs) mainly include embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Embryonic stem cells are derived from the inner cell mass of the embryo. Induced pluripotent stem cells are derived from reprogramming somatic cells. Pluripotent stem cells have the ability to differentiate into cells derived from all three germ layers (endoderm, mesoderm, and ectoderm). Adult stem cells can be multipotent or unipotent and can produce tissue-specific terminally differentiated cells. Stem cells can be used in cell therapy to replace and regenerate damaged tissues or organs.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Bahi A, Dreyer JL. Lentiviral-mediated up-regulation of let-7d microRNA decreases alcohol intake through down-regulating the dopamine D3 receptor. Eur Neuropsychopharmacol 2020; 37:70-81. [PMID: 32646740 DOI: 10.1016/j.euroneuro.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that Lethal-7 (let-7) microRNA (miRNA) is involved in a wide range of psychiatric disorders such as anxiety, depression, schizophrenia, and cocaine addiction. However, the exact role of let-7d miRNA in regulating ethanol intake and preference remains to be elucidated. The aim of the present study was to clarify the role of accumbal let-7d in controlling ethanol-related behaviors in adult rats. For this purpose, stereotaxic injections of let-7d-overexpressing lentiviral vectors (LV) were administered bilaterally into the nucleus accumbens (Nacc) of Wistar rats. The ethanol-related behaviors were investigated using the two-bottle choice (TBC) access paradigm, in which the rats had access to 2.5, 5, and 10% ethanol solutions, the grid hanging test (GHT) and ethanol-induced loss-of-righting-reflex (LORR) test. The results showed that intra-accumbally administered let-7d-overexpressing LV significantly decreased ethanol intake and preference without having significant effects on body weight, consumption or preference for tastants (saccharin and quinine) or ethanol metabolism. Furthermore, accumbal let-7d increased resistance to ethanol-induced sedation in the GHT and LORR test. Most importantly, the data showed that the dopamine D3 receptor (D3R) was a candidate target of let-7d In fact, and using real time PCR, let-7d was found to directly target D3R mRNA to decrease its expression. Further analyses proved that D3R expression was negatively correlated with the levels of let-7d and ethanol-related behaviors parameters. Taken together, the data indicating that let-7d impaired ethanol-related behaviors by targeting D3R will open up new exciting possibilities and might provide potential therapeutic evidence for alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Venkatesh K, Kumari A, Sen D. MicroRNA signature changes during induction of neural stem cells from human mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:94-105. [DOI: 10.1016/j.nano.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023]
|
4
|
Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav 2019; 9:e01214. [PMID: 30747485 PMCID: PMC6422715 DOI: 10.1002/brb3.1214] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Neural stem cells (NSCs) have demonstrated multimodal therapeutic function for stroke, which is the leading cause of long-term disability and the second leading cause of death worldwide. In preclinical stroke models, NSCs have been shown to modulate inflammation, foster neuroplasticity and neural reorganization, promote angiogenesis, and act as a cellular replacement by differentiating into mature neural cell types. However, there are several key technical questions to address before NSC therapy can be applied to the clinical setting on a large scale. PURPOSE OF REVIEW In this review, we will discuss the various sources of NSCs, their therapeutic modes of action to enhance stroke recovery, and considerations for the clinical translation of NSC therapies. Understanding the key factors involved in NSC-mediated tissue recovery and addressing the current translational barriers may lead to clinical success of NSC therapy and a first-in-class restorative therapy for stroke patients.
Collapse
Affiliation(s)
- Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
5
|
Pircs K, Petri R, Jakobsson J. Crosstalk between MicroRNAs and Autophagy in Adult Neurogenesis: Implications for Neurodegenerative Disorders. Brain Plast 2018; 3:195-203. [PMID: 30151343 PMCID: PMC6091039 DOI: 10.3233/bpl-180066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis in the mammalian brain, including in humans, occurs throughout life in distinct brain regions. Alterations in adult neurogenesis is a common phenomenon in several different neurodegenerative disorders, which is likely to contribute to the pathophysiology of these disorders. This review summarizes novel concepts related to the interplay between autophagy and microRNAs in control of adult neurogenesis, with a specific focus on its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Pircs
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rebecca Petri
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Li Q, Qian Z, Wang L. Pri-microRNA-124 rs531564 polymorphism minor allele increases the risk of pulmonary artery hypertension by abnormally enhancing proliferation of pulmonary artery smooth muscle cells. Int J Chron Obstruct Pulmon Dis 2017; 12:1351-1361. [PMID: 28496318 PMCID: PMC5422315 DOI: 10.2147/copd.s99318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-124 (miR-124) has been reported to be downregulated in the cells exposed to hypoxia, which was confirmed in our study. We then used online microRNA target prediction tools to identify GRB2, SMAD5, and JAG1 as the candidate target genes of miR-124, and we next validated GRB2 as a direct gene by using luciferase reporter system. We also established the regulatory relationship between miR-124 and GRB2 by showing the negative linear relationship between GRB2 and miR-124 expression. Furthermore, we investigated the miR-124 and GRB2 expression levels of different genotypes including CC (n=30), GC (n=18), and GG (n=4), which supported the hypothesis that the presence of minor allele (C) of rs531564 polymorphism compromised the expression of miR-124. Meanwhile, we also conducted real-time polymerase chain reaction and Western blot analysis to study the expression of GRB2 among different genotypes or pulmonary artery smooth muscle cells (PASMCs) treated with miR-124 mimics, GRB2 small interfering RNA, and miR-124 inhibitors, respectively, and found that introduction of miR-124 or GRB2 small interfering RNA could reduce the expression of GRB2 and inhibit the proliferation of PASMCs, while miR-124 upregulated the expression of GRB2 and promoted the proliferation of PASMCs. A total of 412 COPD patients with PAH (n=182) or without PAH (n=230) were recruited in this study, and more individuals carrying at least one minor allele of rs531564 were found in the COPD patients with PAH than in those without PAH (odds ratio: 0.61, 95% confidence interval: 0.41–0.91; P=0.166). In conclusion, the presence of rs531564 minor allele may increase the risk of PAH in COPD by reducing miR-124 expression, increasing GRB2 expression, and promoting the proliferation of PASMCs.
Collapse
Affiliation(s)
- Quanzhong Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Zongjie Qian
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Linqing Wang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Yang H, Liu CC, Wang CY, Zhang Q, An J, Zhang L, Hao DJ. Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques. Mol Neurobiol 2016; 53:2826-2842. [DOI: 10.1007/s12035-015-9157-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
|
8
|
Liu XS, Fan BY, Pan WL, Li C, Levin AM, Wang X, Zhang RL, Zervos TM, Hu J, Zhang XM, Chopp M, Zhang ZG. Identification of miRNomes associated with adult neurogenesis after stroke using Argonaute 2-based RNA sequencing. RNA Biol 2016; 14:488-499. [PMID: 27315491 DOI: 10.1080/15476286.2016.1196320] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis is associated with functional recovery after stroke. However, the underlying molecular mechanisms have not been fully investigated. Using an Ago2-based RNA immunoprecipitation to immunoprecipated Ago2-RNA complexes followed by RNA sequencing (Ago2 RIP-seq) approach, we profiled the miRNomes in neural progenitor cells (NPCs) harvested from the subventricular zone (SVZ) of the lateral ventricles of young adult rats. We identified more than 7 and 15 million reads in normal and ischemic NPC libraries, respectively. We found that stroke substantially changed Ago2-associated miRNA profiles in NPCs compared to those in non-ischemic NPCs. We also discovered a new complex repertoire of isomiRs and multiple miRNA-miRNA* pairs and numerous novel miRNAs in the non-ischemic and ischemic NPCs. Among them, pc-3p-17172 significantly regulated NPC proliferation and neuronal differentiation. Collectively, the present study reveals profiles of Ago2-associated miRNomes in non-ischemic and ischemic NPCs, which provide a molecular basis to further investigate the role of miRNAs in mediating adult neurogenesis under physiological and ischemic conditions.
Collapse
Affiliation(s)
- Xian Shuang Liu
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| | - Bao Yan Fan
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| | - Wan Long Pan
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA.,b Sichuan Key Laboratory of Medical Imaging and Department of Immunology , North Sichuan Medical University , Nanchong , Sichuan , China
| | - Chao Li
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| | - Albert M Levin
- c Department of Public Health Sciences , Henry Ford Health System , Detroit , MI , USA.,d Center for Bioinformatics , Henry Ford Health System , Detroit , MI , USA
| | - Xinli Wang
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| | - Rui Lan Zhang
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| | - Thomas M Zervos
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| | - Jiani Hu
- e Department of Radiology , Wayne State University , Detroit , MI , USA
| | - Xiao Ming Zhang
- f Sichuan Key Laboratory of Medical Imaging and Department of Radiology , Affiliated Hospital of North Sichuan Medical University , Nanchong , Sichuan , China
| | - Michael Chopp
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA.,g Department of Physics , Oakland University , Rochester , MI , USA
| | - Zheng Gang Zhang
- a Department of Neurology , Henry Ford Health System , Detroit , MI , USA
| |
Collapse
|
9
|
MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy. J Virol 2016; 90:4078-4092. [PMID: 26865716 PMCID: PMC4810567 DOI: 10.1128/jvi.02810-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
Mengovirus, a member of the Picornaviridae family, has a broad cell tropism and can cause encephalitis and myocarditis in multiple mammalian species. Attenuation has been achieved by shortening the polycytidine tract in the 5′ noncoding region (NCR). A poly(C)-truncated strain of mengovirus, vMC24, resulted in significant tumor regression in immunocompetent BALB/c mice bearing syngeneic MPC-11 plasmacytomas, but the associated toxicities were unacceptable. To enhance its safety profile, microRNA target sequences complementary to miR-124 or miR-125 (enriched in nervous tissue), miR-133 and miR-208 (enriched in cardiac tissue), or miR-142 (control; enriched in hematopoietic tissues) were inserted into the vMC24 NCRs. The microRNA-detargeted viruses showed reduced replication and cell killing specifically in cells expressing the cognate microRNAs, but certain insertions additionally were associated with nonspecific suppression of viral fitness in vivo. In vivo toxicity testing confirmed that miR-124 targets within the 5′ NCR suppressed virus replication in the central nervous system while miR-133 and miR-208 targets in the 3′ NCR suppressed viral replication in cardiac tissue. A dual-detargeted virus named vMC24-NC, with miR-124 targets in the 5′ NCR and miR-133 plus miR-208 targets in the 3′ NCR, showed the suppression of replication in both nervous and cardiac tissues but retained full oncolytic potency when administered by intratumoral (106 50% tissue culture infectious doses [TCID50]) or intravenous (107 to 108 TCID50) injection into BALB/c mice bearing MPC-11 plasmacytomas. Overall survival of vMC24-NC-treated tumor-bearing mice was significantly improved compared to that of nontreated mice. MicroRNA-detargeted mengoviruses offer a promising oncolytic virotherapy platform that merits further development for clinical translation. IMPORTANCE The clinical potential of oncolytic virotherapy for cancer treatment has been well demonstrated, justifying the continued development of novel oncolytic viruses with enhanced potency. Here, we introduce mengovirus as a novel oncolytic agent. Mengovirus is appealing as an oncolytic virotherapy platform because of its small size, simple genome structure, rapid replication cycle, and broad cell/species tropism. However, mengovirus can cause encephalomyelitis and myocarditis. It can be partially attenuated by shortening the poly(C) tract in the 5′ NCR but remains capable of damaging cardiac and nervous tissue. Here, we further enhanced the safety profile of a poly(C)-truncated mengovirus by incorporating muscle- and neuron-specific microRNA target sequences into the viral genome. This dual-detargeted virus has reduced pathogenesis but retained potent oncolytic activity. Our data show that microRNA targeting can be used to further increase the safety of an attenuated mengovirus, providing a basis for its development as an oncolytic platform.
Collapse
|
10
|
Malmevik J, Petri R, Knauff P, Brattås PL, Åkerblom M, Jakobsson J. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Sci Rep 2016; 6:19879. [PMID: 26813637 PMCID: PMC4728481 DOI: 10.1038/srep19879] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNA) are small, non-coding RNAs mediating post-transcriptional regulation of gene expression. miRNAs have recently been implicated in hippocampus-dependent functions such as learning and memory, although the roles of individual miRNAs in these processes remain largely unknown. Here, we achieved stable inhibition using AAV-delivered miRNA sponges of individual, highly expressed and brain-enriched miRNAs; miR-124, miR-9 and miR-34, in hippocampal neurons. Molecular and cognitive studies revealed a role for miR-124 in learning and memory. Inhibition of miR-124 resulted in an enhanced spatial learning and working memory capacity, potentially through altered levels of genes linked to synaptic plasticity and neuronal transmission. In contrast, inhibition of miR-9 or miR-34 led to a decreased capacity of spatial learning and of reference memory, respectively. On a molecular level, miR-9 inhibition resulted in altered expression of genes related to cell adhesion, endocytosis and cell death, while miR-34 inhibition caused transcriptome changes linked to neuroactive ligand-receptor transduction and cell communication. In summary, this study establishes distinct roles for individual miRNAs in hippocampal function.
Collapse
Affiliation(s)
- Josephine Malmevik
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden
| | - Rebecca Petri
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden
| | - Pina Knauff
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden
| | - Per Ludvik Brattås
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden
| | - Malin Åkerblom
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden
| |
Collapse
|
11
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 2015; 359:47-64. [PMID: 25172833 PMCID: PMC4284387 DOI: 10.1007/s00441-014-1981-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
The impressive neuronal diversity found within the nervous system emerges from a limited pool of neural progenitor cells that proceed through different gene expression programs to acquire distinct cell fates. Here, we review recent evidence indicating that microRNAs (miRNAs) are critically involved in conferring neural cell identities during neural induction, neuronal differentiation and subtype specification. Several studies have shown that miRNAs act in concert with other gene regulatory factors and genetic switches to regulate the spatial and temporal expression profiles of important cell fate determinants. So far, most studies addressing the role of miRNAs during neurogenesis were conducted using animal models. With the advent of human pluripotent stem cells and the possibility to differentiate these into neural stem cells, we now have the opportunity to study miRNAs in a human context. More insight into the impact of miRNA-based regulation during neural fate choice could in the end be exploited to develop new strategies for the generation of distinct human neuronal cell types.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Beate Roese-Koerner
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| |
Collapse
|
13
|
Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D, Wurst W, Cazalla D, Stein V, Deussing JM, Refojo D. MicroRNA-9 controls dendritic development by targeting REST. eLife 2014; 3. [PMID: 25406064 PMCID: PMC4235007 DOI: 10.7554/elife.02755] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth. DOI:http://dx.doi.org/10.7554/eLife.02755.001 Messages are sent back and forth in our brains by cells called neurons that connect to each other in complex networks. Neurons develop from stem cells in a complicated process that involves a number of different stages. In one of the final stages, tree-like structures called dendrites emerge from the neurons and connect with neighboring neurons via special junctions called synapses. A group of small RNA molecules called microRNAs have roles in controlling the development of neurons. One microRNA, called miR-9, is abundant in the brain and is known to be involved in the early stages of neuron development. However, its role in the formation of dendrites and synapses remains unclear. Giusti et al. studied this microRNA in mice. A length of DNA, coding for an RNA molecule that binds to miR-9 molecules and stops them performing their normal function, was inserted into the mice. These experiments showed that miR-9 is involved in controlling dendrite growth and synaptic function. To enable a neuron to produce dendrites, miR-9 binds to and interferes with the RNA molecules that are needed to make a protein called REST. This protein is a transcription factor that switches off the expression of other genes so, in effect, miR-9 allows a set of genes that are needed for dendrite growth to be switched on. The methodology developed by Giusti et al. could be used to study the functions of other microRNAs. DOI:http://dx.doi.org/10.7554/eLife.02755.002
Collapse
Affiliation(s)
- Sebastian A Giusti
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Annette M Vogl
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Marisa M Brockmann
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Claudia A Vercelli
- Department of Molecular Neurobiology, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Martin L Rein
- Department of Neurobiology of Stress and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Demian Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Valentin Stein
- Institute of Physiology, University of Bonn, Bonn, Germany
| | - Jan M Deussing
- Department of Neurobiology of Stress and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Damian Refojo
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
14
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
15
|
Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, Toro-Ramos AJ, Li J, Hart RP. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One 2014; 9:e94348. [PMID: 24714615 PMCID: PMC3979806 DOI: 10.1371/journal.pone.0094348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/13/2014] [Indexed: 12/21/2022] Open
Abstract
MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism.
Collapse
Affiliation(s)
- Jonathan L Davila
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Loyal A Goff
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Christopher L Ricupero
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Cynthia Camarillo
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Eileen N Oni
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mavis R Swerdel
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Alana J Toro-Ramos
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jiali Li
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ronald P Hart
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
16
|
Forstner AJ, Degenhardt F, Schratt G, Nöthen MM. MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Front Mol Neurosci 2013; 6:47. [PMID: 24367288 PMCID: PMC3851736 DOI: 10.3389/fnmol.2013.00047] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
The 22q11.2 deletion is the strongest known genetic risk factor for schizophrenia. Research has implicated microRNA-mediated dysregulation in 22q11.2 deletion syndrome (22q11.2DS) schizophrenia-risk. Primary candidate genes are DGCR8 (DiGeorge syndrome critical region gene 8), which encodes a component of the microprocessor complex essential for microRNA biogenesis, and MIR185, which encodes microRNA 185. Mouse models of 22q11.2DS have demonstrated alterations in brain microRNA biogenesis, and that DGCR8 haploinsufficiency may contribute to these alterations, e.g., via down-regulation of a specific microRNA subset. miR-185 was the top-scoring down-regulated microRNA in both the prefrontal cortex and the hippocampus, brain areas which are the key foci of schizophrenia research. This reduction in miR-185 expression contributed to dendritic and spine development deficits in hippocampal neurons. In addition, miR-185 has two validated targets (RhoA, Cdc42), both of which have been associated with altered expression levels in schizophrenia. These combined data support the involvement of miR-185 and its down-stream pathways in schizophrenia. This review summarizes evidence implicating microRNA-mediated dysregulation in schizophrenia in both 22q11.2DS-related and idiopathic cases.
Collapse
Affiliation(s)
- Andreas J Forstner
- Institute of Human Genetics, University of Bonn Bonn, Germany ; Department of Genomics, Life and Brain Center Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn Bonn, Germany ; Department of Genomics, Life and Brain Center Bonn, Germany
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn Bonn, Germany ; Department of Genomics, Life and Brain Center Bonn, Germany
| |
Collapse
|
17
|
Yin X, Li L, Zhang X, Yang Y, Chai Y, Han X, Feng Z. Development of neural stem cells at different sites of fetus brain of different gestational age. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2757-2764. [PMID: 24294362 PMCID: PMC3843256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVE This study aimed to investigate the development of neural stem cells (NSCs) in fetal brain, which may provide experimental evidence for the clinical treatment of brain injury in children. METHODS A total of 60 fetuses were collected after labor induction and divided into 6 groups according to the gestational age (16 w, 20 w, 24 w, 28 w, 32 w and 36 w; n=10 per group). The hippocampus, striatum, subventricular zone, frontal lobe, temporal lobe, occipital lobe and parietal lobe were harvested. In situ hybridization, immunohistochemistry and light microscopy were done to determine the morphology and quantity of NSCs. RESULTS NSCs were identified in the brain of fetuses with different gestational age. NSCs were round, oval, spindle-shaped, starlike, triangular or polygonal. NSC colony was also observed with symmetrical or asymmetrical division. Single NSC, group-like NSCs and cluster-like NSCs were found in the different sites of fetal brain, and NCSs interacted with each other via synapses. However, the distribution, morphology, growth and quantity of NSCs were different in the brain of fetuses with different gestational age. The number of NSCs reduced with the increase in gestational age, but they were always observed. CONCLUSION The morphology of NSCs in fetal brain is variable and they are widely distributed in the hippocampus, subventricular zone, striatum and cortex. The number of NSCs reduced with the increase of gestational age.
Collapse
|
18
|
Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 2013; 114:67-78. [PMID: 24122720 DOI: 10.1161/circresaha.114.301633] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.
Collapse
Affiliation(s)
- Daren Wang
- From the Department of Pediatrics (D.W., H.Z., M.L., M.G.F., A.R.F., B.A.K., M.E.Y., M.A.F.), Department of Medicine (T.A.M., C.C.S.), Department of Medicine and Pediatrics (K.R.S.), Department of Medicine (N.W.M.), Department of Lung Development and Remodeling (S.S.P., S.V., W.S.), Department of Medicine (H.Z.), University of Colorado Anschutz Medical Campus, Aurora, CO; University of Cambridge, Cambridge, United Kingdom (N.W.M.); Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom (N.W.M.); Max-Planck-Institute for Heart and Lung Research; University of Giessen and Marburg Lung Center, Bad Nauheim, Germany (S.S.P., S.V., W.S.); and Shengjing Hospital of China Medical University, Shenyang, China (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Golbert DCF, Santana-van-Vliet E, Mundstein AS, Calfo V, Savino W, de Vasconcelos ATR. Laminin-database v.2.0: an update on laminins in health and neuromuscular disorders. Nucleic Acids Res 2013; 42:D426-9. [PMID: 24106090 PMCID: PMC3965114 DOI: 10.1093/nar/gkt901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The laminin (LM)-database, hosted at http://www.lm.lncc.br, was published in the NAR database 2011 edition. It was the first database that provided comprehensive information concerning a non-collagenous family of extracellular matrix proteins, the LMs. In its first version, this database contained a large amount of information concerning LMs related to health and disease, with particular emphasis on the haemopoietic system. Users can easily access several tabs for LMs and LM-related molecules, as well as LM nomenclatures and direct links to PubMed. The LM-database version 2.0 integrates data from several publications to achieve a more comprehensive knowledge of LMs in health and disease. The novel features include the addition of two new tabs, ‘Neuromuscular Disorders’ and ‘miRNA-–LM Relationship’. More specifically, in this updated version, an expanding set of data has been displayed concerning the role of LMs in neuromuscular and neurodegenerative diseases, as well as the putative involvement of microRNAs. Given the importance of LMs in several biological processes, such as cell adhesion, proliferation, differentiation, migration and cell death, this upgraded version expands for users a panoply of information, regarding complex molecular circuitries that involve LMs in health and disease, including neuromuscular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daiane C F Golbert
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Avenue Getúlio Vargas 333, 25651-075, Petrópolis, Rio de Janeiro, Brazil and Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cerebral ischemia induces neurogenesis, including proliferation and differentiation of neural progenitor cells and migration of newly generated neuroblasts. MicroRNAs (miRNAs) are small noncoding RNAs that decrease gene expression through mRNA destabilization and/or translational repression. Emerging data indicate that miRNAs have a role in mediating processes of proliferation and differentiation of adult neural progenitor cells. This article reviews recent findings on miRNA profile changes in neural progenitor cells after cerebral infarction and the contributions of miRNAs to their ischemia-induced proliferation and differentiation. We highlight interactions between the miR-124 and the miR17-92 cluster and the Notch and Sonic hedgehog signaling pathways in mediating stroke-induced neurogenesis.
Collapse
|
21
|
Li L, Xiao B, Tong H, Xie F, Zhang Z, Xiao GG. Regulation of breast cancer tumorigenesis and metastasis by miRNAs. Expert Rev Proteomics 2013; 9:615-25. [PMID: 23256672 DOI: 10.1586/epr.12.64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miRNAs are a family of 17- to 23-nucleotide noncoding small RNAs that primarily function as gene expression fine regulators. A number of studies have shown that miRNAs play an important role in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer stem cells. This short review summarizes the progression of miRNA-mediated breast tumorigenesis and metastasis through various signaling pathways associated with drug resistance.
Collapse
Affiliation(s)
- Lianhong Li
- Dalian Medical University, Dalian, 116000, China
| | | | | | | | | | | |
Collapse
|
22
|
Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 2013; 13:1637-53. [PMID: 23335344 DOI: 10.1002/pmic.201200373] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/04/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), membrane vesicles that are secreted by a variety of mammalian cell types, have been shown to play an important role in intercellular communication. The contents of EVs, including proteins, microRNAs, and mRNAs, vary according to the cell type that secreted them. Accordingly, researchers have demonstrated that EVs derived from various cell types play different roles in biological phenomena. Considering the ubiquitous presence of mesenchymal stem cells (MSCs) in the body, MSC-derived EVs may take part in a wide range of events. In particular, MSCs have recently attracted much attention due to the therapeutic effects of their secretory factors. MSC-derived EVs may therefore provide novel therapeutic approaches. In this review, we first summarize the wide range of functions of EVs released from different cell types, emphasizing that EVs echo the phenotype of their parent cell. Then, we describe the various therapeutic effects of MSCs and pay particular attention to the significance of their paracrine effect. We then survey recent reports on MSC-derived EVs and consider the therapeutic potential of MSC-derived EVs. Finally, we discuss remaining issues that must be addressed before realizing the practical application of MSC-derived EVs, and we provide some suggestions for enhancing their therapeutic efficiency.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Insights on the functional impact of microRNAs present in autism-associated copy number variants. PLoS One 2013; 8:e56781. [PMID: 23451085 PMCID: PMC3581547 DOI: 10.1371/journal.pone.0056781] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder is a complex neurodevelopmental disorder that appears during the first three years of infancy and lasts throughout a person’s life. Recently a large category of genomic structural variants, denoted as copy number variants (CNVs), were established to be a major contributor of the pathophysiology of autism. To date almost all studies have focussed only on the genes present in the CNV loci, but the impact of non-coding regulatory microRNAs (miRNAs) present in these regions remain largely unexplored. Hence we attempted to elucidate the biological and functional significance of miRNAs present in autism-associated CNV loci and their target genes by using a series of computational tools. We demonstrate that nearly 11% of the CNV loci harbor miRNAs and a few of these miRNAs were previously reported to be associated with autism. A systematic analysis of the CNV-miRNAs based on their interactions with the target genes enabled the identification of top 10 miRNAs namely hsa-miR-590-3p, hsa-miR-944, hsa-miR-570, hsa-miR-34a, hsa-miR-124, hsa-miR-548f, hsa-miR-429, hsa-miR-200b, hsa-miR-195 and hsa-miR-497 as hub molecules. Further, the CNV-miRNAs formed a regulatory loop with transcription factors and their downstream target genes, and annotation of these target genes indicated their functional involvement in neurodevelopment and synapse. Moreover, miRNAs present in deleted and duplicated CNV loci may explain the difference in dosage of the crucial genes controlled by them. These CNV-miRNAs can also impair the global processing and biogenesis of all miRNAs by targeting key molecules in the miRNA pathway. To our knowledge, this is the first report to highlight the significance of CNV-microRNAs and their target genes to contribute towards the genetic heterogeneity and phenotypic variability of autism.
Collapse
|
24
|
Poltronieri P, D'Urso PI, Mezzolla V, D'Urso OF. Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des 2013; 81:79-84. [PMID: 22834637 DOI: 10.1111/cbdd.12002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MicroRNAs are aberrantly expressed in many cancers and can exert tumour-suppressive or oncogenic functions. As oncomirs promote growth of cancer cells and support survival during chemotherapy, thus microRNA-silencing therapies could be a valuable approach to be associated with anticancer drugs and chemotherapy treatments. miR-155 microRNA was found overexpressed in different types of cancer, such as leukaemias (PML, B-cell lymphomas), lung cancer and glioblastoma. GABA-A receptor downregulation was found correlated with glioma grading, with decreasing levels associated with higher grade of malignancies. A relationship between knock-down of miR-155 and re-expression of GABRA 1 protein in vivo was recently individuated. This finding has implication on the effectiveness of RNA-silencing approaches against miR-155 with the scope to control proliferation and signalling pathways regulated by GABA-A receptor. Applying microRNAs for treatment of brain tumours poses several problems, and fields to be solved are mainly the passage of the brain-blood barrier and the targeted delivery to specific cell types. Glioblastoma multiforme cells bud off microvesicles that deliver cytoplasmic contents to nearby cells. Thus, the exploitation of these mechanisms to deliver antagomir therapeutics targeting microvescicles in the brain could take the lead in the near future in the treatment for brain cancers in substitution of invasive surgical intervention.
Collapse
|
25
|
Asuelime GE, Shi Y. The little molecules that could: a story about microRNAs in neural stem cells and neurogenesis. Front Neurosci 2012; 6:176. [PMID: 23233833 PMCID: PMC3516804 DOI: 10.3389/fnins.2012.00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/21/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Grace E Asuelime
- Department of Neurosciences, Beckman Research Institute of City of Hope Duarte, CA, USA ; Department of Biological Sciences, California State Polytechnic University Pomona Pomona, CA, USA
| | | |
Collapse
|
26
|
Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D. Convergent repression of Foxp2 3'UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 2012; 139:3332-42. [PMID: 22874921 DOI: 10.1242/dev.078063] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are rapidly emerging as a new layer of regulation of mammalian brain development. However, most of the miRNA target genes remain unidentified. Here, we explore gene expression profiling upon miRNA depletion and in vivo target validation as a strategy to identify novel miRNA targets in embryonic mouse neocortex. By this means, we find that Foxp2, a transcription factor associated with speech and language development and evolution, is a novel miRNA target. In particular, we find that miR-9 and miR-132 are able to repress ectopic expression of Foxp2 protein by targeting its 3' untranslated region (3'UTR) in vivo. Interestingly, ectopic expression of Foxp2 in cortical projection neurons (a scenario that mimics the absence of miRNA-mediated silencing of Foxp2 expression) delays neurite outgrowth in vitro and impairs their radial migration in embryonic mouse neocortex in vivo. Our results uncover a new layer of control of Foxp2 expression that may be required for proper neuronal maturation.
Collapse
Affiliation(s)
- Yoanne M Clovis
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | | | | | | |
Collapse
|