1
|
Wu D, Wang D, Tan SS, Li YQ, Hong SL, Wang T, Zheng G. Synergistic effects of lead and copper co-exposure on promoting oxidative stress and apoptosis in the neuronal cells. Toxicology 2025; 513:154103. [PMID: 40010429 DOI: 10.1016/j.tox.2025.154103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Exposure to lead (Pb) or copper (Cu) is common and has been associated with increased risk of neurodegenerative disease. However, combined neurotoxic effects of co-exposure to these elements remain unclear. This study aimed to determine the toxic effects of Pb and Cu co-exposure on HT22 cells. In this study, Pb and Cu co-exposure exhibited enhanced toxicity, including increased reactive oxygen species (ROS) and Malondialdehyde (MDA) levels, Superoxide Dismutase 1 (SOD1) activity, lower cell viability and higher apoptotic rates, compared to single-element exposure. Pb and Cu co-exposure also resulted in significantly increased cellular labile Cu level by altering the protein levels of Cu transporters, including Copper Transporter-1 (CTR1), ATPase Copper Transporting-α(ATP7A) and ATPase Copper Transporting-β (ATP7B). Treating with antioxidants or Cu chelator to the co-exposed cells blocked the reduction cell viability and elevation of apoptotic rates. This study suggests that Pb and Cu co-exposure can result in a synergistic toxicity in neuronal cells by inducing oxidative stress and apoptosis. The cellular Cu accumulation may play an important role in inducing these synergistic effects, and both antioxidation and Cu chelation may be promising control measures to alleviate the neurotoxicity of Pb and Cu co-exposure.
Collapse
Affiliation(s)
- Di Wu
- Research Institution, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Psychosomatic Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Desheng Wang
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shuang-Shuang Tan
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China; Public health school, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yu-Qi Li
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China; Public health school, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Su-Li Hong
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China; Public health school, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Tao Wang
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Mamsa SSA, Ellison G, Koehn J, Inder-Smith K, Evans CW, Graham RM, Howard DL, Hackett MJ. Correlative analysis of metallomic gene expression and metal ion content within the mouse hippocampus. Metallomics 2025; 17:mfaf009. [PMID: 40175292 DOI: 10.1093/mtomcs/mfaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 04/04/2025]
Abstract
Brain metal homeostasis is essential for healthy neurological function, and disturbed brain metal homeostasis has deleterious consequences for neurodevelopment or cognitive outcome following injury or during disease. Specific regions of the brain (e.g. the hippocampus and subregions within) are known to be enriched with transition metals (i.e. ions of iron, copper, and zinc). Neither the physiological need for localized enrichment, nor the mechanisms driving the enrichment, however, are well understood. In this study we have applied a multimodal template, incorporating elemental mapping using X-ray fluorescence microscopy with spatial transcriptomics, to help reveal a molecular basis for metallomic heterogeneity across key subregions of the hippocampus. Our results reveal that significant differences in iron, zinc, and copper enrichment are associated with regional enrichment of specific transcripts related to metal transport, metal storage, and metal regulatory proteins. In addition to providing novel biological insight into the neurometallomic profile of the hippocampus, this study also provides an important template for others to integrate transcriptomics into multimodal workflows investigating the neurometallome.
Collapse
Affiliation(s)
- Somayra S A Mamsa
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gaewyn Ellison
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Julia Koehn
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Keea Inder-Smith
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ross M Graham
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Daryl L Howard
- Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Mark J Hackett
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
3
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Hosseinpour Mashkani SM, Bishop DP, Westerhausen MT, Adlard PA, Golzan SM. Alterations in zinc, copper, and iron levels in the retina and brain of Alzheimer's disease patients and the APP/PS1 mouse model. Metallomics 2024; 16:mfae053. [PMID: 39520546 PMCID: PMC11630249 DOI: 10.1093/mtomcs/mfae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Transition metals like copper (Cu), iron (Fe), and zinc (Zn) are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches. Here, we utilized laser ablation-inductively coupled plasma-mass spectrometry and solution nebulization-inductively coupled plasma-mass spectrometry to quantitatively measure Cu, Fe, and Zn concentrations in the retina and hippocampus samples obtained from human donors (i.e. AD and healthy controls), and in the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD and wild-type (WT) controls, aged 9 and 18 months. Our findings revealed significantly elevated Cu, Fe, and Zn levels in the retina (*P < .05, P < .01, and P < .001) and hippocampus (*P < .05, *P < .05, and *P < .05) of human AD samples compared to healthy controls. Conversely, APP/PS1 mouse models exhibited notably lower metal levels in the same regions compared to WT mice-Cu, Fe, and Zn levels in the retina (**P < .01, *P < .05, and *P < .05) and hippocampus (**P < .01, **P < .01, and *P < .05). The contrasting metal profiles in human and mouse samples, yet similar patterns within each species' retina and brain, suggest the retina mirrors cerebral metal dyshomoeostasis in AD. Our findings lay the groundwork for staging pre-AD pathophysiology through assessment of transition metal levels in the retina.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
| | - S Mojtaba Golzan
- Vision Science Group (Orthoptics Discipline), Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Roy S, Lutsenko S. Mechanism of Cu entry into the brain: many unanswered questions. Neural Regen Res 2024; 19:2421-2429. [PMID: 38526278 PMCID: PMC11090436 DOI: 10.4103/1673-5374.393107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Brain tissue requires high amounts of copper (Cu) for its key physiological processes, such as energy production, neurotransmitter synthesis, maturation of neuropeptides, myelination, synaptic plasticity, and radical scavenging. The requirements for Cu in the brain vary depending on specific brain regions, cell types, organism age, and nutritional status. Cu imbalances cause or contribute to several life-threatening neurologic disorders including Menkes disease, Wilson disease, Alzheimer's disease, Parkinson's disease, and others. Despite the well-established role of Cu homeostasis in brain development and function, the mechanisms that govern Cu delivery to the brain are not well defined. This review summarizes available information on Cu transfer through the brain barriers and discusses issues that require further research.
Collapse
Affiliation(s)
- Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Billings JL, Hilton JBW, Liddell JR, Hare DJ, Crouch PJ. Fundamental Neurochemistry Review: Copper availability as a potential therapeutic target in progressive supranuclear palsy: Insight from other neurodegenerative diseases. J Neurochem 2023; 167:337-346. [PMID: 37800457 DOI: 10.1111/jnc.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Since the first description of Parkinson's disease (PD) over two centuries ago, the recognition of rare types of atypical parkinsonism has introduced a spectrum of related PD-like diseases. Among these is progressive supranuclear palsy (PSP), a neurodegenerative condition that clinically differentiates through the presence of additional symptoms uncommon in PD. As with PD, the initial symptoms of PSP generally present in the sixth decade of life when the underpinning neurodegeneration is already significantly advanced. The causal trigger of neuronal cell loss in PSP is unknown and treatment options are consequently limited. However, converging lines of evidence from the distinct neurodegenerative conditions of PD and amyotrophic lateral sclerosis (ALS) are beginning to provide insights into potential commonalities in PSP pathology and opportunity for novel therapeutic intervention. These include accumulation of the high abundance cuproenzyme superoxide dismutase 1 (SOD1) in an aberrant copper-deficient state, associated evidence for altered availability of the essential micronutrient copper, and evidence for neuroprotection using compounds that can deliver available copper to the central nervous system. Herein, we discuss the existing evidence for SOD1 pathology and copper imbalance in PSP and speculate that treatments able to provide neuroprotection through manipulation of copper availability could be applicable to the treatment of PSP.
Collapse
Affiliation(s)
- Jessica L Billings
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James B W Hilton
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J Hare
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, New South Wales, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Li G, Feng Y, Cui J, Hou Q, Li T, Jia M, Lv Z, Jiang Q, Wang Y, Zhang M, Wang L, Lv Z, Li J, Guo Y, Zhang B. The ionome and proteome landscape of aging in laying hens and relation to egg white quality. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2020-2040. [PMID: 37526911 DOI: 10.1007/s11427-023-2413-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023]
Abstract
The ionome is essential for maintaining body function and health status by participating in diverse key biological processes. Nevertheless, the distribution and utilization of ionome among different organs and how aging impacts the ionome leading to a decline in egg white quality remain unknown. Thus, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze 35 elements and their isotopic contents in eight organs of laying hens at 35, 72, and 100 weeks. Moreover, the magnum proteome, amino acids in egg white, and egg white quality were analyzed in laying hens at three different ages using 4D proteomics techniques, an amino acid analyzer, and an egg quality analyzer. Across the organs, we identified varying distribution patterns among macroelements (Mg24, Ca43/44, K39, and P31), transition metals (Zn64/66, Cu63/65, Fe56/57, and Mn55), and toxic elements (Pb208, Ba137, and Sr86). We observed an organ-specific aging pattern characterized by the accumulation of toxic elements (Pb208, Ba137, and Sr86) and calcification in the small intestine. Additionally, a decrease in the utilization of essential trace elements selenium (Se78/82) and manganese (Mn55) was noted in the oviduct. By analyzing ionome in tandem with egg quality, egg white amino acids, and proteome, we unveiled that the reduction of selenium and manganese concentrations in the magnum during the aging process affected amino acid metabolism, particularly tryptophan metabolism, thereby inhibiting the amino acid synthesis in the magnum. Furthermore, it accelerated the senescence of magnum cells through necroptosis activation, leading to a decline in the albumen secretion function of the magnum and subsequently reducing egg white quality. Overall, this study provides insights into the evolution of 35 elements and their isotopes across 8 organs of laying hens with age. It also reveals the elemental composition, interactions, and utilization patterns of these organs, as well as their correlation with egg white quality. The present study highlights the significance of ionome and offers a comprehensive perspective on the selection of ionome for regulating the aging of laying hens.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Tanfang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Meiting Jia
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Ming Zhang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Lin Wang
- Sichuan Sundaily Farm Ecological Food Co., Ltd., Mianyang, 621010, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
11
|
Liu Y, Zhao ZH, Wang T, Yao JY, Wei WQ, Su LH, Tan SS, Liu ZX, Song H, Chen JY, Zheng W, Luo WJ, Zheng G. Lead exposure disturbs ATP7B-mediated copper export from brain barrier cells by inhibiting XIAP-regulated COMMD1 protein degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114861. [PMID: 37027943 DOI: 10.1016/j.ecoenv.2023.114861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The brain barrier is an important structure for metal ion homeostasis. According to studies, lead (Pb) exposure disrupts the transportation of copper (Cu) through the brain barrier, which may cause impairment of the nervous system; however, the specific mechanism is unknown. The previous studies suggested the X-linked inhibitor of apoptosis (XIAP) is a sensor for cellular Cu level which mediate the degradation of the MURR1 domain-containing 1 (COMMD1) protein. XIAP/COMMD1 axis was thought to be an important regulator in Cu metabolism maintenance. In this study, the role of XIAP-regulated COMMD1 protein degradation in Pb-induced Cu disorders in brain barrier cells was investigated. Pb exposure significantly increased Cu levels in both cell types, according to atomic absorption technology testing. Western blotting and reverse transcription PCR (RT-PCR) showed that COMMD1 protein levels were significantly increased, whereas XIAP, ATP7A, and ATP7B protein levels were significantly decreased. However, there were no significant effects at the messenger RNA (mRNA) level (XIAP, ATP7A, and ATP7B). Pb-induced Cu accumulation and ATP7B expression were reduced when COMMD1 was knocked down by transient small interfering RNA (siRNA) transfection. In addition, transient plasmid transfection of XIAP before Pb exposure reduced Pb-induced Cu accumulation, increased COMMD1 protein levels, and decreased ATP7B levels. In conclusion, Pb exposure can reduce XIAP protein expression, increase COMMD1 protein levels, and specifically decrease ATP7B protein levels, resulting in Cu accumulation in brain barrier cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China; Department of Neurology, Nanjing Meishan Hospital, Nanjing 210000, China
| | - Zai-Hua Zhao
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Wang
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Yu Yao
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Qing Wei
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Hong Su
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuang-Shuang Tan
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi-Xuan Liu
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Song
- Department of Health Service, PLA General Hospital, Beijing 100853, China
| | - Jing-Yuan Chen
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen-Jing Luo
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Ishihara K, Kawashita E, Akiba S. Bio-Metal Dyshomeostasis-Associated Acceleration of Aging and Cognitive Decline in Down Syndrome. Biol Pharm Bull 2023; 46:1169-1175. [PMID: 37661395 DOI: 10.1248/bpb.b23-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| |
Collapse
|
13
|
Mahan B, Tacail T, Lewis J, Elliott T, Habekost M, Turner S, Chung R, Moynier F. Exploring the K isotope composition of Göttingen minipig brain regions, and implications for Alzheimer's disease. Metallomics 2022; 14:mfac090. [PMID: 36416864 PMCID: PMC9764214 DOI: 10.1093/mtomcs/mfac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Natural stable metal isotopes have shown utility in differentiation between healthy and diseased brain states (e.g. Alzheimer's disease, AD). While the AD brain accumulates some metals, it purges others, namely K (accompanied by increased serum K, suggesting brain-blood transferal). Here, K isotope compositions of Göttingen minipig brain regions for two AD models at midlife are reported. Results indicate heavy K isotope enrichment where amyloid beta (Aβ) accumulation is observed, and this enrichment correlates with relative K depletion. These results suggest preferential efflux of isotopically light K+ from the brain, a linkage between brain K concentrations and isotope compositions, and linkage to Aβ (previously shown to purge cellular brain K+). Brain K isotope compositions differ from that for serum and brain K is much more abundant than in serum, suggesting that changes in brain K may transfer a measurable K isotope excursion to serum, thereby generating an early AD biomarker.
Collapse
Affiliation(s)
- Brandon Mahan
- IsoTropics Geochemistry Lab, Earth and Environmental Science, James Cook University, Townsville, Queensland 4814, Australia
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Biomedical Research, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Theo Tacail
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Institute of Geosciences, Johannes Gutenberg University, Mainz 55099, Germany
| | - Jamie Lewis
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Tim Elliott
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Biomedical Research, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
14
|
Liu LL, van Rijn RM, Zheng W. Copper Modulates Adult Neurogenesis in Brain Subventricular Zone. Int J Mol Sci 2022; 23:ijms23179888. [PMID: 36077284 PMCID: PMC9456150 DOI: 10.3390/ijms23179888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The subventricular zone (SVZ) in lateral ventricles is the largest neurogenic region in adult brain containing high amounts of copper (Cu). This study aims to define the role of Cu in adult neurogenesis by chelating labile Cu ions using a well-established Cu chelator D-Penicillamine (D-Pen). A neurosphere model derived from adult mouse SVZ tissues was established and characterized for its functionality with regards to neural stem/progenitor cells (NSPCs). Applying D-Pen in cultured neurospheres significantly reduced intracellular Cu levels and reversed the Cu-induced suppression of NSPC’s differentiation and migration. An in vivo intracerebroventricular (ICV) infusion model was subsequently established to infuse D-Pen directly into the lateral ventricle. Metal analyses revealed a selective reduction of Cu in SVZ by 13.1% (p = 0.19) and 21.4% (p < 0.05) following D-Pen infusions at low (0.075 μg/h) and high (0.75 μg/h) doses for 28 days, respectively, compared to saline-infused controls. Immunohistochemical studies revealed that the 7-day, low-dose D-Pen infusion significantly increased Ki67(+)/Nestin(+) cell counts in SVZ by 28% (p < 0.05). Quantification of BrdU(+)/doublecortin (DCX)(+) newborn neuroblasts in the rostral migration stream (RMS) and olfactory bulb (OB) further revealed that the short-term, low-dose D-Pen infusion, as compared with saline-infused controls, resulted in more newborn neuroblasts in OB, while the high-dose D-Pen infusion showed fewer newborn neuroblasts in OB but with more arrested in the RMS. Long-term (28-day) infusion revealed similar outcomes. The qPCR data from neurosphere experiments revealed altered expressions of mRNAs encoding key proteins known to regulate SVZ adult neurogenesis, including, but not limited to, Shh, Dlx2, and Slit1, in response to the changed Cu level in neurospheres. Further immunohistochemical data indicated that Cu chelation also altered the expression of high-affinity copper uptake protein 1 (CTR1) and metallothionein-3 (MT3) in the SVZ as well as CTR1 in the choroid plexus, a tissue regulating brain Cu homeostasis. Taken together, this study provides first-hand evidence that a high Cu level in SVZ appears likely to maintain the stability of adult neurogenesis in this neurogenic zone.
Collapse
Affiliation(s)
- Luke L. Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
15
|
Chakraborty K, Kar S, Rai B, Bhagat R, Naskar N, Seth P, Gupta A, Bhattacharjee A. Copper dependent ERK1/2 phosphorylation is essential for the viability of neurons and not glia. Metallomics 2022; 14:mfac005. [PMID: 35150272 PMCID: PMC8975716 DOI: 10.1093/mtomcs/mfac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/10/2022] [Indexed: 01/24/2023]
Abstract
Intracellular copper [Cu(I)] has been hypothesized to play role in the differentiation of the neurons. This necessitates understanding the role of Cu(I) not only in the neurons but also in the glia considering their anatomical proximity, contribution towards ion homeostasis, and neurodegeneration. In this study, we did a systematic investigation of the changes in the cellular copper homeostasis during neuronal and glial differentiation and the pathways triggered by them. Our study demonstrates increased mRNA for the plasma membrane copper transporter CTR1 leading to increased Cu(I) during the neuronal (PC-12) differentiation. ATP7A is retained in the trans-Golgi network (TGN) despite high Cu(I) demonstrating its utilization towards the neuronal differentiation. Intracellular copper triggers pathways essential for neurite generation and ERK1/2 activation during the neuronal differentiation. ERK1/2 activation also accompanies the differentiation of the foetal brain derived neuronal progenitor cells. The study demonstrates that ERK1/2 phosphorylation is essential for the viability of the neurons. In contrast, differentiated C-6 (glia) cells contain low intracellular copper and significant downregulation of the ERK1/2 phosphorylation demonstrating that ERK1/2 activation does not regulate the viability of the glia. But ATP7A shows vesicular localization despite low copper in the glia. In addition to the TGN, ATP7A localizes into RAB11 positive recycling endosomes in the glial neurites. Our study demonstrates the role of copper dependent ERK1/2 phosphorylation in the neuronal viability. Whereas glial differentiation largely involves sequestration of Cu(I) into the endosomes potentially (i) for ready release and (ii) rendering cytosolic copper unavailable for pathways like the ERK1/2 activation.
Collapse
Affiliation(s)
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Bhawana Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Reshma Bhagat
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | |
Collapse
|
16
|
Liu LL, Du D, Zheng W, Zhang Y. Age-dependent decline of copper clearance at the blood-cerebrospinal fluid barrier. Neurotoxicology 2022; 88:44-56. [PMID: 34718061 PMCID: PMC8748412 DOI: 10.1016/j.neuro.2021.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
The homeostasis of copper (Cu) in the central nervous system is regulated by the blood-brain barrier and blood-cerebrospinal (CSF) barrier (BCB) in the choroid plexus. While proteins responsible for Cu uptake, release, storage and intracellular trafficking exist in the choroid plexus, the influence of age on Cu clearance from the CSF via the choroid plexus and how Cu transporting proteins contribute to the process are unelucidated. This study was designed to test the hypothesis that the aging process diminishes Cu clearance from the CSF of rats by disrupting Cu transporting proteins in the choroid plexus. Data from ventriculo-cisternal perfusion experiments demonstrated greater 64Cu radioactivity in the CSF effluents of older rats (18 months) compared to younger (1 month) and adult (2 months) rats, suggesting much slower removal of Cu by the choroid plexus in old animals. Studies utilizing qPCR and immunofluorescence revealed an age-specific expression pattern of Cu transporting proteins in the choroid plexus. Moreover, proteomic analyses unraveled age-specific proteomes in the choroid plexus with distinct pathway differences, particularly associated with extracellular matrix and neurodevelopment between young and old animals. Taken together, these findings support an age-dependent deterioration in CSF Cu clearance, which appears to be associated with altered subcellular distribution of Cu transporting proteins and proteomes in the choroid plexus.
Collapse
Affiliation(s)
- Luke L. Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - David Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA,To whom correspondences shall be sent : Wei Zheng, Ph.D. (contact corresponding author), School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907, Phone: (765) 496-6447, , Yanshu Zhang, Ph.D., School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China,
| | - Yanshu Zhang
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA,School of Public Health, North China University of Science and Technology, Tangshan, China,To whom correspondences shall be sent : Wei Zheng, Ph.D. (contact corresponding author), School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907, Phone: (765) 496-6447, , Yanshu Zhang, Ph.D., School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China,
| |
Collapse
|
17
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
18
|
Jia R, Du J, Cao L, Feng W, He Q, Xu P, Yin G. Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117240. [PMID: 33991737 DOI: 10.1016/j.envpol.2021.117240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen peroxide (H2O2), as a common disinfectant, has been extensively used in aquaculture. The toxicity of high ambient H2O2 for gills and liver of fish has received attention from many researchers. However, whether H2O2 exposure induced brain injury and neurotoxicity has not been reported in fish. Therefore, this study aimed to explore the potential mechanism of H2O2 toxicity in brain of common carp via transcriptome analysis and biochemical parameter detection. The fish were exposed to 0 (control) and 1 mM of H2O2 for 1 h per day lasting 14 days. The results showed that H2O2 exposure caused oxidative damage in brain evidenced by decreased glutathione (GSH), total antioxidant capacity (T-AOC) and nicotinamide adenine dinucleotide (NAD+) levels, and increased formation of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Meanwhile, H2O2 exposure reduced 5-hydroxytryptamine (5-HT) level, and down-regulated tryptophan hydroxylase 1 (tph1a), tph2, 5-hydroxytryptamine receptor 1A-beta (htr1ab) and htr2b expression in brain. Transcriptome analysis showed that H2O2 exposure up-regulated 604 genes and down-regulated 1209 genes in brain. Go enrichment displayed that the differently expressed genes (DEGs) were enriched mainly in cellular process, single-organism process, metabolic process, and biological regulation in the biological process category. Further, KEGG enrichment indicated that H2O2 exposure led to dysregulation of neurotransmitter signals including depression of glutamatergic synapse, GABAergic synapse and endocannabinoid signaling. Also, we found the alteration of three key pathways including calcium, cAMP and HIF-1 in brain after H2O2 exposure. In conclusion, our data indicated that H2O2 exposure induced oxidative damage and neurotoxicity, possibly related to dysregulation of neurotransmitters and calcium, cAMP and HIF-1 signaling pathways, which may adversely affect learning, memory and social responses of common carp. This study provided novel insight into biological effects and underlying mechanism of H2O2 toxicity in aquatic animal, and contributed to proper application of H2O2 in aquaculture.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
19
|
Adamson SXF, Zheng W, Agim ZS, Du S, Fleming S, Shannahan J, Cannon J. Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules 2021; 11:1315. [PMID: 34572528 PMCID: PMC8471899 DOI: 10.3390/biom11091315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.
Collapse
Affiliation(s)
- Sherleen Xue-Fu Adamson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sarah Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep 2021; 8:607-616. [PMID: 33816123 PMCID: PMC8010213 DOI: 10.1016/j.toxrep.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Essential metals including iron (Fe) and manganese (Mn) with known physiological functions in human body play an important role in cell homeostasis. Excessive exposure to these essential as well as non-essential metals including mercury (Hg) and Aluminum (Al) may contribute to pathological conditions, including PD. Each metal could be toxic through specific pathways. Epidemiological evidences from occupational and ecological studies besides various in vivo and in vitro studies have revealed the possible pathogenic role and neurotoxicity of different metals. Pesticides are substances that aim to mitigate the harm done by pests to plants and crops, and are extensively used to boost agricultural production. This review provides an outline of our current knowledge on the possible association between metals and PD. We have discussed the potential association between these two, furthermore the chemical properties, biological and toxicological aspects as well as possible mechanisms of Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg and Zn in PD pathogenesis. In addition, we review recent evidence on deregulated microRNAs upon pesticide exposure and possible role of deregulated miRNA and pesticides to PD pathogenesis.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, China
| | - Yang Hai
- School of Pharmacy, Lanzhou University, China
| | | | | | - Xin Wang
- School of Pharmacy, Lanzhou University, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China
- School of Pharmacy, Lanzhou University, China
| |
Collapse
|
21
|
Kumar V, Kumar A, Singh K, Avasthi K, Kim JJ. Neurobiology of zinc and its role in neurogenesis. Eur J Nutr 2021; 60:55-64. [PMID: 33399973 DOI: 10.1007/s00394-020-02454-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Zinc (Zn) has a diverse role in many biological processes, such as growth, immunity, anti-oxidation system, homeostatic, and repairing. It acts as a regulatory and structural catalyst ion for activities of various proteins, enzymes, and signal transcription factors, as well as cell proliferation, differentiation, and survival. The Zn ion is essential for neuronal signaling and is mainly distributed within presynaptic vesicles. Zn modulates neuronal plasticity and synaptic activity in both neonatal and adult stages. Alterations in brain Zn status results in a dozen neurological diseases including impaired brain development. Numerous researchers are working on neurogenesis, however, there is a paucity of knowledge about neurogenesis, especially in neurogenesis in adults. Neurogenesis is a multifactorial process and is regulated by many metal ions (e.g. Fe, Cu, Zn, etc.). Among them, Zn has an essential role in neurogenesis. At the molecular level, Zn controls cell cycle, apoptosis, and binding of DNA and several proteins including transcriptional and translational factors. Zn is needed for protein folding and function and Zn acts as an anti-apoptotic agent; organelle stabilizer; and an anti-inflammatory agent. Zn deficiency results in aging, neurodegenerative disease, immune deficiency, abnormal growth, cancer, and other symptoms. Prenatal deficiency of Zn results in developmental disorders in humans and animals. CONCLUSION Both in vitro and in vivo studies have shown an association between Zn deficiency and increased risk of neurological disorders. This article reviews the existing knowledge on the role of Zn and its importance in neurogenesis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Ashok Kumar
- Department of Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, UP, India
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, 250002, India
| | - Kapil Avasthi
- Department of Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, UP, India
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
22
|
Mahan B, Antonelli MA, Burckel P, Turner S, Chung R, Habekost M, Jørgensen AL, Moynier F. Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain. Metallomics 2020; 12:1585-1598. [PMID: 33084720 DOI: 10.1039/d0mt00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aβ) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia. and Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael A Antonelli
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France and Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Pierre Burckel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
23
|
Leary SC, Ralle M. Advances in visualization of copper in mammalian systems using X-ray fluorescence microscopy. Curr Opin Chem Biol 2020; 55:19-25. [PMID: 31911338 DOI: 10.1016/j.cbpa.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022]
Abstract
Synchrotron-based X-ray fluorescence microscopy (XFM) has become an important imaging technique to investigate elemental concentrations and distributions in biological specimens. Advances in technology now permit imaging at resolutions rivaling that of electron microscopy, and researchers can now visualize elemental concentrations in subcellular organelles when using appropriate correlative methods. XFM is an especially valuable tool to determine the distribution of endogenous trace metals that are involved in neurodegenerative diseases. Here, we discuss the latest research on the unusual copper (Cu) storage vesicles that were originally identified in mouse brains and the involvement of Cu in Alzheimer's disease. Finally, we provide an outlook of how future improvements to XFM will drive current trace element research forward.
Collapse
Affiliation(s)
- Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
24
|
Patwa J, Thakur A, Sharma A, Flora SJS. Monoisoamyl DMSA reduced copper-induced neurotoxicity by lowering 8-OHdG level, amyloid beta and Tau protein expressions in Sprague-Dawley rats. Metallomics 2020; 12:1428-1448. [DOI: 10.1039/d0mt00083c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper dyshomeostasis has long been linked with several neurodegenerative disorders.
Collapse
Affiliation(s)
- Jayant Patwa
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Near CRPF Camp
- Lucknow
| | - Ashima Thakur
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Lucknow
- India
| | - Abha Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Lucknow
- India
| | - S. J. S. Flora
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Near CRPF Camp
- Lucknow
| |
Collapse
|
25
|
Ashraf A, Michaelides C, Walker TA, Ekonomou A, Suessmilch M, Sriskanthanathan A, Abraha S, Parkes A, Parkes HG, Geraki K, So PW. Regional Distributions of Iron, Copper and Zinc and Their Relationships With Glia in a Normal Aging Mouse Model. Front Aging Neurosci 2019; 11:351. [PMID: 31920630 PMCID: PMC6930884 DOI: 10.3389/fnagi.2019.00351] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Microglia and astrocytes can quench metal toxicity to maintain tissue homeostasis, but with age, increasing glial dystrophy alongside metal dyshomeostasis may predispose the aged brain to acquire neurodegenerative diseases. The aim of the present study was to investigate age-related changes in brain metal deposition along with glial distribution in normal C57Bl/6J mice aged 2-, 6-, 19- and 27-months (n = 4/age). Using synchrotron-based X-ray fluorescence elemental mapping, we demonstrated age-related increases in iron, copper, and zinc in the basal ganglia (p < 0.05). Qualitative assessments revealed age-associated increases in iron, particularly in the basal ganglia and zinc in the white matter tracts, while copper showed overt enrichment in the choroid plexus/ventricles. Immunohistochemical staining showed augmented numbers of microglia and astrocytes, as a function of aging, in the basal ganglia (p < 0.05). Moreover, qualitative analysis of the glial immunostaining at the level of the fimbria and ventral commissure, revealed increments in the number of microglia but decrements in astroglia, in older aged mice. Upon morphological evaluation, aged microglia and astroglia displayed enlarged soma and thickened processes, reminiscent of dystrophy. Since glial cells have major roles in metal metabolism, we performed linear regression analysis and found a positive association between iron (R2 = 0.57, p = 0.0008), copper (R2 = 0.43, p = 0.0057), and zinc (R2 = 0.37, p = 0.0132) with microglia in the basal ganglia. Also, higher levels of iron (R2 = 0.49, p = 0.0025) and zinc (R2 = 0.27, p = 0.040) were correlated to higher astroglia numbers. Aging was accompanied by a dissociation between metal and glial levels, as we found through the formulation of metal to glia ratios, with regions of basal ganglia being differentially affected. For example, iron to astroglia ratio showed age-related increases in the substantia nigra and globus pallidus, while the ratio was decreased in the striatum. Meanwhile, copper and zinc to astroglia ratios showed a similar regional decline. Our findings suggest that inflammation at the choroid plexus, part of the blood-cerebrospinal-fluid barrier, prompts accumulation of, particularly, copper and iron in the ventricles, implying a compromised barrier system. Moreover, age-related glial dystrophy/senescence appears to disrupt metal homeostasis, likely due to induced oxidative stress, and hence increase the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Christos Michaelides
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A Walker
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Antigoni Ekonomou
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Maria Suessmilch
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Achvini Sriskanthanathan
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Semhar Abraha
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Adam Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Adamson SXF, Shen X, Jiang W, Lai V, Wang X, Shannahan JH, Cannon JR, Chen J, Zheng W. Subchronic Manganese Exposure Impairs Neurogenesis in the Adult Rat Hippocampus. Toxicol Sci 2019; 163:592-608. [PMID: 29579278 DOI: 10.1093/toxsci/kfy062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis takes place in the brain subventricular zone (SVZ) in the lateral walls of lateral ventricles and subgranular zone (SGZ) in the hippocampal dentate gyrus (HDG), and functions to supply newborn neurons for normal brain functionality. Subchronic Mn exposure is known to disrupt adult neurogenesis in the SVZ. This study was designed to determine whether Mn exposure disturbed neurogenesis within the adult HDG. Adult rats (10 weeks old) received a single dose of bromodeoxyuridine (BrdU) at the end of 4-week Mn exposure to label the proliferating cells. Immunostaining and cell counting data showed that BrdU(+) cells in Mn-exposed HDG were about 37% lower than that in the control (p < .05). The majority of BrdU(+) cells were identified as Sox2(+) cells. Another set of adult rats received BrdU injections for 3 consecutive days followed by 2- or 4-week Mn exposure to trace the fate of BrdU-labeled cells in the HDG. The time course studies indicated that Mn exposure significantly reduced the survival rate (54% at 2 weeks and 33% at 4 weeks), as compared with that in the control (80% at 2 weeks and 51% at 4 weeks) (p < .01). A significant time-dependent migration of newborn cells from the SGZ toward the granule cell layer was also observed in both control and Mn-exposed HDG. Triple-stained neuroblasts and mature neurons further revealed that Mn exposure significantly inhibited the differentiation of immature neuroblasts into mature neurons in the HDG. Taken together, these observations suggest that subchronic Mn exposure results in a reduced cell proliferation, diminished survival of adult-born neurons, and inhibited overall neurogenesis in the adult HDG. Impaired adult neurogenesis is likely one of the mechanisms contribute to Mn-induced Parkinsonian disorder.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Wei Zheng
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
27
|
Oxidative Stress-Tolerant Stem Cells from Human Exfoliated Deciduous Teeth Decrease Hydrogen Peroxide-Induced Damage in Organotypic Brain Slice Cultures from Adult Mice. Int J Mol Sci 2019; 20:ijms20081858. [PMID: 30991705 PMCID: PMC6514841 DOI: 10.3390/ijms20081858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress causes severe tissue injury of the central nervous system in ischemic brain damage (IBD), traumatic brain injury (TBI) and neurodegenerative disorders. In this study, we used hydrogen peroxide (H₂O₂) to induce oxidative stress in organotypic brain slice cultures (OBSCs), and investigated the protective effects of oxidative stress-tolerant (OST) stem cells harvested from human exfoliated deciduous teeth (SHED) which were co-cultivated with OBSCs. Using presto blue assay and immunostaining, we demonstrated that both normal SHED and OST-SHED could prevent H₂O₂-induced cell death, and increase the numbers of mature neuron and neuronal progenitors in the hippocampus of OBSCs. During co-cultivation, OST-SHED, but not normal SHED, exhibited neuronal cell morphology and expressed neuronal markers. Results from ELISA showed that both normal SHED and OST-SHED significantly decreased oxidative DNA damage in H₂O₂-treated OBSCs. SHED could also produce neurotrophic factor BDNF (brain derived neurotrophic factor) and promoted the production of IL-6 in OBSCs. Although OST-SHED had lower cell viability, the neuronal protection of OST-SHED was significantly superior to that of normal SHED. Our findings suggest that SHED, especially OST-SHED, could prevent oxidative stress induced brain damage. OST-SHED can be explored as a new therapeutic tool for IBD, TBI and neurodegenerative disorders.
Collapse
|
28
|
Ishihara K, Kawashita E, Shimizu R, Nagasawa K, Yasui H, Sago H, Yamakawa K, Akiba S. Copper accumulation in the brain causes the elevation of oxidative stress and less anxious behavior in Ts1Cje mice, a model of Down syndrome. Free Radic Biol Med 2019; 134:248-259. [PMID: 30660502 DOI: 10.1016/j.freeradbiomed.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
Abstract
Elevated oxidative stress (OS) is widely accepted to be involved in the pathogenesis of Down syndrome (DS). However, the mechanisms underlying the elevation of OS in DS are poorly understood. Biometals, in particular copper and iron, play roles in OS. We therefore focused on biometals in the brain with DS. In this study, we analyzed the profile of elements, including biometals, in the brain of Ts1Cje mice, a widely used genetic model of DS. An inductively coupled plasma-mass spectrometry (ICP-MS)-based comparative metallomic/elementomic analysis of Ts1Cje mouse brain revealed a higher level of copper in the hippocampus and cerebral cortex, but not in the striatum, in comparison to wild-type littermates. The expression of the copper transporter CTR1, which is involved in the transport of copper into cells, was decreased in the ependymal cells of Ts1Cje mice, suggesting a decrease in the CTR1-mediated transport of copper into the ependymal cells, which excrete copper into the cerebrospinal fluid. To evaluate the pathological significance of the accumulation of copper in the brain of Ts1Cje mice, we examined the effects of a diet with a low copper content (LoCD) on the elevated lipid peroxidation, the accumulation of hyperphosphorylated tau, and some behavioral anomalies. Reducing the copper concentration in the brain by an LoCD restored the enhanced lipid peroxidation and phosphorylation of tau in the brain and reduced anxiety-like behavior, but not hyperactivity or impaired spatial leaning, in Ts1Cje mice. The findings highlight the reduction of accumulation of copper in the brain may be a novel therapeutic strategy for DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan.
| | - Eri Kawashita
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Ryohei Shimizu
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medecine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto-shi, Kyoto 607-8414, Japan
| |
Collapse
|
29
|
Neely CLC, Lippi SLP, Lanzirotti A, Flinn JM. Localization of Free and Bound Metal Species through X-Ray Synchrotron Fluorescence Microscopy in the Rodent Brain and Their Relation to Behavior. Brain Sci 2019; 9:E74. [PMID: 30925761 PMCID: PMC6523809 DOI: 10.3390/brainsci9040074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
Biometals in the brain, such as zinc, copper, and iron, are often discussed in cases of neurological disorders; however, these metals also have important regulatory functions and mediate cell signaling and plasticity. With the use of synchrotron X-ray fluorescence, our lab localized total, both bound and free, levels of zinc, copper, and iron in a cross section of one hemisphere of a rat brain, which also showed differing metal distributions in different regions within the hippocampus, the site in the brain known to be crucial for certain types of memory. This review discusses the several roles of these metals in brain regions with an emphasis on hippocampal cell signaling, based on spatial mapping obtained from X-ray fluorescence microscopy. We also discuss the localization of these metals and emphasize different cell types and receptors in regions with metal accumulation, as well as the potential relationship between this physiology and behavior.
Collapse
Affiliation(s)
- Caroline L C Neely
- Department of Psychology, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Stephen L P Lippi
- Department of Psychology & Sociology, Angelo State University, 2601 W. Avenue N, ASU Station #10907, San Angelo, TX 76909, USA.
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Argonne, IL 60439, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| |
Collapse
|
30
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
31
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
32
|
Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem 2018; 293:20085-20098. [PMID: 30341172 DOI: 10.1074/jbc.ra118.004889] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
The copper (Cu) transporters ATPase copper-transporting alpha (ATP7A) and ATPase copper-transporting beta (ATP7B) are essential for the normal function of the mammalian central nervous system. Inactivation of ATP7A or ATP7B causes the severe neurological disorders, Menkes disease and Wilson disease, respectively. In both diseases, Cu imbalance is associated with abnormal levels of the catecholamine-type neurotransmitters dopamine and norepinephrine. Dopamine is converted to norepinephrine by dopamine-β-hydroxylase (DBH), which acquires its essential Cu cofactor from ATP7A. However, the role of ATP7B in catecholamine homeostasis is unclear. Here, using immunostaining of mouse brain sections and cultured cells, we show that DBH-containing neurons express both ATP7A and ATP7B. The two transporters are located in distinct cellular compartments and oppositely regulate the export of soluble DBH from cultured neuronal cells under resting conditions. Down-regulation of ATP7A, overexpression of ATP7B, and pharmacological Cu depletion increased DBH retention in cells. In contrast, ATP7B inactivation elevated extracellular DBH. Proteolytic processing and the specific activity of exported DBH were not affected by changes in ATP7B levels. These results establish distinct regulatory roles for ATP7A and ATP7B in neuronal cells and explain, in part, the lack of functional compensation between these two transporters in human disorders of Cu imbalance.
Collapse
Affiliation(s)
- Katharina Schmidt
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Thomas Schaffer
- the Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Samuel Jayakanthan
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bilal Bari
- the Department of Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Abigael Muchenditsi
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,.
| |
Collapse
|
33
|
Rodríguez-Pérez C, Vrhovnik P, González-Alzaga B, Fernández MF, Martin-Olmedo P, Olea N, Fiket Ž, Kniewald G, Arrebola JP. Socio-demographic, lifestyle, and dietary determinants of essential and possibly-essential trace element levels in adipose tissue from an adult cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:878-888. [PMID: 29021094 DOI: 10.1016/j.envpol.2017.09.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
There is increasing evidence linking levels of trace elements (TEs) in adipose tissue with certain chronic conditions (e.g., diabetes or obesity). The objectives of this study were to assess concentrations of a selection of nine essential and possibly-essential TEs in adipose tissue samples from an adult cohort and to explore their socio-demographic, dietary, and lifestyle determinants. Adipose tissue samples were intraoperatively collected from 226 volunteers recruited in two public hospitals from Granada province. Trace elements (Co, Cr, Cu, Fe, Mn, Mo, Se, V, and Zn) were analyzed in adipose tissue by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Data were collected on socio-demographic characteristics, lifestyle, diet, and health status by face-to-face interview. Predictors of TE concentrations were assessed by using multivariable linear and logistic regression. All TEs were detected in all samples with the exception of Se (53.50%). Iron, zinc, and copper showed the highest concentrations (42.60 mg/kg, 9.80 mg/kg, and 0.68 mg/kg, respectively). Diet was the main predictor of Cr, Fe, Mo, and Se concentrations. Body mass index was negatively associated with all TEs (β coefficients = -0.018 to -0.593, p = 0.001-0.090) except for Mn and V. Age showed a borderline-significant positive correlation with Cu (β = 0.004, p = 0.089). Residence in a rural or semi-rural area was associated with increased Co, Cr, Fe, Mo, Mn, V and Zn concentrations and with β coefficients ranging from 0.196 to 0.544 (p < 0.05). Furthermore, individuals with higher educational level showed increased Cr, Co, Fe and V concentrations (β coefficients = 0.276-0.368, p = 0.022-0.071). This is the first report on the distribution of these TEs in adipose tissue and on their determinants in a human cohort and might serve as an initial step in the elucidation of their clinical relevance.
Collapse
Affiliation(s)
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), Ljubljana, Slovenia
| | - Beatriz González-Alzaga
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada, Spain; Andalusian School of Public Health (EASP), Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada, Spain; University of Granada, Centro de Investigación Biomédica, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Piedad Martin-Olmedo
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada, Spain; Andalusian School of Public Health (EASP), Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada, Spain; University of Granada, Centro de Investigación Biomédica, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Željka Fiket
- Ruđer Bošković, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Goran Kniewald
- Ruđer Bošković, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Oncology Unit, Virgen de las Nieves University Hospital, Granada, Spain.
| |
Collapse
|
34
|
Sauzéat L, Laurençon A, Balter V. Metallome evolution in ageing C. elegans and a copper stable isotope perspective. Metallomics 2018. [DOI: 10.1039/c7mt00318h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ageing is accompanied by important chemical deregulations that could serve as biomarkers of premature ageing conditions.
Collapse
Affiliation(s)
| | - Anne Laurençon
- UMR 5534
- Institut de Génomique Fonctionelle de Lyon (IGFL)
- CNRS
- Université Claude Bernard (Lyon 1)
- France
| | | |
Collapse
|
35
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
36
|
Scudiero R, Cigliano L, Verderame M. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. C R Biol 2016; 340:13-17. [PMID: 27939232 DOI: 10.1016/j.crvi.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy.
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Mariailaria Verderame
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
37
|
Fu S, Jiang W, Gao X, Zeng A, Cholger D, Cannon J, Chen J, Zheng W. Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure. Toxicol Sci 2016; 150:347-68. [PMID: 26794142 DOI: 10.1093/toxsci/kfw007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adult neurogenesis occurs in brain subventricular zone (SVZ). Our recent data reveal an elevated proliferation of BrdU(+) cells in SVZ following subchronic manganese (Mn) exposure in rats. This study was designed to distinguish Mn effect on the critical stage of adult neurogenesis, ie, proliferation, migration, survival and differentiation from the SVZ via the rostral migratory stream to the olfactory bulb (OB). Adult rats received a single ip-dose of BrdU at the end of 4-week Mn exposure to label proliferating cells. Immunostaining and cell-counting showed a 48% increase of BrdU(+) cells in Mn-exposed SVZ than in controls (P< .05). These BrdU(+) cells were identified as a mixed population of mainly GFAP(+) type-B neural stem cells, Nestin(+) type-C transit progenitor cells, DCX(+) migratory neuroblasts and Iba1(+) microglial cells. Another group of adult rats received 3 daily ip-injections of BrdU followed by subchronic Mn exposure. By 4-week post BrdU labeling, most of the surviving BrdU(+) cells in the OB were differentiated into NeuN(+) matured neurons. However, survival rates of BrdU/NeuN/DAPI triple-labeled cells in OB were 33% and 64% in Mn-exposed and control animals, respectively (P< .01). Infusion of Cu directly into the lateral ventricle significantly decreased the cell proliferation in the SVZ. Taken together, these results suggest that Mn exposure initially enhances the cell proliferation in adult SVZ. In the OB, however, Mn exposure significantly reduces the surviving adult-born cells and markedly inhibits their differentiation into mature neurons, resulting in an overall decreased adult neurogenesis in the OB.
Collapse
Affiliation(s)
- Sherleen Fu
- *School of Health Sciences, Purdue University, West Lafayette, Indiana 47907; and
| | - Wendy Jiang
- *School of Health Sciences, Purdue University, West Lafayette, Indiana 47907; and
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Andrew Zeng
- *School of Health Sciences, Purdue University, West Lafayette, Indiana 47907; and
| | - Daniel Cholger
- *School of Health Sciences, Purdue University, West Lafayette, Indiana 47907; and
| | - Jason Cannon
- *School of Health Sciences, Purdue University, West Lafayette, Indiana 47907; and
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Wei Zheng
- *School of Health Sciences, Purdue University, West Lafayette, Indiana 47907; and
| |
Collapse
|
38
|
Gueguen N, Desquiret-Dumas V, Leman G, Chupin S, Baron S, Nivet-Antoine V, Vessières E, Ayer A, Henrion D, Lenaers G, Reynier P, Procaccio V. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice. PLoS One 2015; 10:e0144290. [PMID: 26684010 PMCID: PMC4694087 DOI: 10.1371/journal.pone.0144290] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022] Open
Abstract
Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed.
Collapse
Affiliation(s)
- Naïg Gueguen
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
- * E-mail:
| | - Valérie Desquiret-Dumas
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Géraldine Leman
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Stéphanie Chupin
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Stéphanie Baron
- EA 4466, Université Paris Descartes, Faculté de Pharmacie, Paris, F-75270, France
| | | | - Emilie Vessières
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Audrey Ayer
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Daniel Henrion
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Guy Lenaers
- Université d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Pascal Reynier
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| | - Vincent Procaccio
- Université d’Angers, Angers, F-49000, France
- Département de Biochimie et Génétique, CHU d’Angers, Angers, F-49000, France
- UMR CNRS 6214-INSERM U1083, Angers, F-49000, France
| |
Collapse
|