1
|
García-Domínguez M. Pathological and Inflammatory Consequences of Aging. Biomolecules 2025; 15:404. [PMID: 40149940 PMCID: PMC11939965 DOI: 10.3390/biom15030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Aging is a complex, progressive, and irreversible biological process that entails numerous structural and functional changes in the organism. These changes affect all bodily systems, reducing their ability to respond and adapt to the environment. Chronic inflammation is one of the key factors driving the development of age-related diseases, ultimately causing a substantial decline in the functional abilities of older individuals. This persistent inflammatory state (commonly known as "inflammaging") is characterized by elevated levels of pro-inflammatory cytokines, an increase in oxidative stress, and a perturbation of immune homeostasis. Several factors, including cellular senescence, contribute to this inflammatory milieu, thereby amplifying conditions such as cardiovascular disease, neurodegeneration, and metabolic disorders. Exploring the mechanisms of chronic inflammation in aging is essential for developing targeted interventions aimed at promoting healthy aging. This review explains the strong connection between aging and chronic inflammation, highlighting potential therapeutic approaches like pharmacological treatments, dietary strategies, and lifestyle changes.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Chen D, Xiang Y, Wu D, Wang H, Huang Y, Xiao H. Electroacupuncture Ameliorates Neuronal Damage and Neurological Deficits after Cerebral Ischemia-Reperfusion Injury via Restoring Telomerase Reverse Transcriptase. Cell Biochem Biophys 2025; 83:717-727. [PMID: 39235509 DOI: 10.1007/s12013-024-01504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The purpose of this study is to identify the therapeutic effect of electroacupuncture (EA) on cerebral ischemia-reperfusion (I/R) injury, and to clarify the regulatory mechanism related to telomerase reverse transcriptase (TERT)-mediated telomerase activity. A Middle cerebral artery occlusion/reperfusion (MCAO/R) animal model was constructed and rats were treated by EA invention at the Baihui (GV20) and Fengchi (GB20) acupoints. Neurological deficits were assessed via rotarod test and Morris water maze test. 2,3,5-Triphenyltertrazolium chloride (TTC) staining was performed to evaluate infarct volume. Histological changes were observed under H&E staining and Nissl staining. TERT expression was examined using qRT-PCR and western blot. Telomerase activity was assessed with TRAP method. Neuron apoptosis and senescence were assessed by TUNEL and immunofluorescence assays. Inflammatory cytokines and oxidative stress-indicators were examined using commercial kits. EA intervention at both GV20 and GB20 acupoints reduced infarct volumes (2.48 ± 1.89 vs. 29.56 ± 2.55), elevated the telomerase activity (0.84 ± 0.08 vs. 0.34 ± 0.09), and upregulated the levels of total TERT protein (0.61 ± 0.09 vs. 0.21 ± 0.05) and mitochondrial TERT (Mito-TERT; 0.54 ± 0.03 vs. 0.27 ± 0.03) in hippocampus tissues of MCAO/R rats. EA intervention attenuated motor dysfunction (112.00 ± 6.69 vs. 30.02 ± 2.60) and improved spatial learning (23.87 ± 1.90 vs. 16.23 ± 1.45) and memory ability (8.38 ± 1.06 vs. 4.13 ± 1.13) of rats with cerebral I/R injury. In addition, EA intervention significantly attenuated histopathological changes of injured neurons, mitigated neuron apoptosis (32.27 ± 5.52 vs. 65.83 ± 4.31) and senescence in MCAO/R rats, as well as inhibited excessive production of inflammatory cytokines and attenuated oxidative stress. However, the above therapeutic efficiency of EA intervention in MCAO/R rats was partly eliminated by TERT knockdown. EA intervention at GB20 and GV20 acupoints exerted a protective role in cerebral I/R injury partly through restoring TERT function, implying the clinical potential of EA treatment in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dan Chen
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Yunxia Xiang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Di Wu
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Hui Wang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Yaping Huang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Hongbo Xiao
- Department of Acupuncture and Moxibustion Rehabilitation, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
3
|
Konishi K, Jacobs EG, Aroner S, De Vivo I, Smith B, Scribner-Weiss B, Makris N, Seitz-Holland J, Remington A, Aizley H, Kubicki M, Goldstein JM. Leukocyte telomere length and memory circuitry and cognition in early aging: Impact of sex and menopausal status. Horm Behav 2024; 165:105631. [PMID: 39232410 PMCID: PMC11438173 DOI: 10.1016/j.yhbeh.2024.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Telomere length (TL) is an important cellular marker of biological aging impacting the brain and heart. However, how it is related to the brain (e.g., cognitive function and neuroanatomic architecture), and how these relationships may vary by sex and reproductive status, is not well established. Here we assessed the association between leukocyte TL and memory circuitry regional brain volumes and memory performance in early midlife, in relation to sex and reproductive status. Participants (N = 198; 95 females, 103 males; ages 45-55) underwent structural MRI and neuropsychological assessments of verbal, associative, and working memory. Overall, shorter TL was associated with smaller white matter volume in the parahippocampal gyrus and dorsolateral prefrontal cortex. In males, shorter TL was associated with worse working memory performance and corresponding smaller white matter volumes in the parahippocampal gyrus, anterior cingulate cortex, and dorsolateral prefrontal cortex. In females, the impact of cellular aging was revealed over the menopausal transition. In postmenopausal females, shorter TL was associated with poor associative memory performance and smaller grey matter volume in the right hippocampus. In contrast, TL was not related to memory performance or grey and white matter volumes in any memory circuitry region in pre/perimenopausal females. Results demonstrated that shorter TL is associated with worse memory function and smaller volume in memory circuitry regions in early midlife, an association that differs by sex and reproductive status. Taken together, TL may serve as an early indicator of sex-dependent brain abnormalities in early midlife.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara 93111, United States of America
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Immaculata De Vivo
- Department of Epidemiology, T.H. Chan School of Public Health, Boston, MA 02120, United States of America
| | - Brianna Smith
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Blair Scribner-Weiss
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, United States of America
| | - Nikos Makris
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Johanna Seitz-Holland
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Harlyn Aizley
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Marek Kubicki
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
4
|
Zhang Y, Tian K, Wei W, Mi W, Lu F, Liu Z, Zhu Q, Zhang X, Geng P, Qiu J, Song Y, Zha D. Translocation of telomerase reverse transcriptase coincided with ATP release in postnatal cochlear supporting cells. Neural Regen Res 2024; 19:1119-1125. [PMID: 37862217 PMCID: PMC10749606 DOI: 10.4103/1673-5374.382862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 10/22/2023] Open
Abstract
The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate (ATP) by supporting cells in the Kölliker's organ. However, the mechanisms responsible for initiating spontaneous ATP release have not been determined. Our previous study revealed that telomerase reverse transcriptase (TERT) is expressed in the basilar membrane during the first postnatal week. Its role in cochlear development remains unclear. In this study, we investigated the expression and role of TERT in postnatal cochlea supporting cells. Our results revealed that in postnatal cochlear Kölliker's organ supporting cells, TERT shifts from the nucleus into the cytoplasm over time. We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo. Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis, suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions. We observed increased ATP synthesis, release and activation of purine signaling systems in supporting cells during the first 10 postnatal days. The phenomenon that TERT translocation coincided with changes in ATP synthesis, release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system. Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
Collapse
Affiliation(s)
- Yukai Zhang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Keyong Tian
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wei Wei
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wenjuan Mi
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Fei Lu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhenzhen Liu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Qingwen Zhu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xinyu Zhang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Panling Geng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jianhua Qiu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yongli Song
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
5
|
Harley J, Santosa MM, Ng CY, Grinchuk OV, Hor JH, Liang Y, Lim VJ, Tee WW, Ong DST, Ng SY. Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes. Biogerontology 2024; 25:341-360. [PMID: 37987889 PMCID: PMC10998800 DOI: 10.1007/s10522-023-10076-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jasmine Harley
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Munirah Mohamad Santosa
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Chong Yi Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie Jingwen Lim
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Wee Wei Tee
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
6
|
Bao Y, Zhou W, Miao W, Jia G, Li C. Dopamine oxidation promoted by human telomeric DNA models in the presence of a Cu(II) terpyridine chelate. Chem Commun (Camb) 2024; 60:1172-1175. [PMID: 38193540 DOI: 10.1039/d3cc05530b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We found that under oxidative stress conditions, the coexistence of human telomeric DNA (HT-DNA) and a copper-terpyridine metallodrug can accelerate dopamine oxidation. The unwinding of HT-DNA from a duplex to cytosine-rich (C-rich) and guanine-rich (G-rich) single strands promotes dopamine oxidation in a general order of C-rich > G-rich > duplex. Along with dopamine oxidation, HT-DNA also undergoes severe damage.
Collapse
Affiliation(s)
- Yu Bao
- School of Physical Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Shanghai, 201210, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | - Wenqin Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| |
Collapse
|
7
|
Luo X, Ruan Z, Liu L. Causal relationship between telomere length and epilepsy: A bidirectional Mendelian randomization study. Epilepsia Open 2023; 8:1432-1439. [PMID: 37593897 PMCID: PMC10690705 DOI: 10.1002/epi4.12817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE Observational studies have suggested a link between telomere length (TL) and epilepsy, but the direction of the effect and whether it is causal or not is still being debated. The objective of this study was to investigate the causal relationship between TL and epilepsy using Mendelian randomization (MR) analysis. METHODS We performed a bidirectional two-sample MR analysis using pooled statistics from genome-wide association studies (GWAS) of TL and epilepsy. Additionally, we conducted a replication analysis using data from another GWAS study on epilepsy to validate our findings. The final results were analyzed using five MR methods, with the inverse-variance weighted (IVW) method as the primary outcome. We applied methods such as radial MR, MR pleiotropy residual and outlier test and MR Steiger filters to exclude outliers. Sensitivity analyses were also conducted to assess heterogeneity and pleiotropy. RESULTS Our analysis found no evidence of a causal relationship between epilepsy and TL (all p-values >0.05). The sensitivity analysis confirms the robustness of these results. SIGNIFICANCE In summary, our study contradicts existing observational reports by not finding any evidence to support a causal relationship between epilepsy and TL. Further research is necessary to determine the underlying mechanism behind the association observed in observational studies.
Collapse
Affiliation(s)
- Xinxin Luo
- Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Zhichao Ruan
- Beijing University of Chinese MedicineBeijingChina
| | - Ling Liu
- Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| |
Collapse
|
8
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
9
|
Cao Z, Hou Y, Xu C. Leucocyte telomere length, brain volume and risk of dementia: a prospective cohort study. Gen Psychiatr 2023; 36:e101120. [PMID: 37705928 PMCID: PMC10496649 DOI: 10.1136/gpsych-2023-101120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 09/15/2023] Open
Abstract
Background The evidence regarding the association between leucocyte telomere length (LTL) and brain health is sparse and inconclusive. Aims To investigate the associations of LTL with brain structure and the risk of dementia based on a large-scale prospective study. Methods LTL in the peripheral blood was measured by the quantitative polymerase chain reaction (qPCR) assay from 439 961 individuals in the UK Biobank recruited between 2006 and 2010 and followed up until 2020. Electronic health records were used to record the incidence of dementia, including Alzheimer's disease (AD) and vascular dementia (VD). The brain structure, including total and regional brain volume, of 38 740 participants was then assessed by magnetic resonance imaging (MRI). Results During a median follow-up of 11.6 years, a total of 5 820 (1.3%) dementia cases were documented. The restricted cubic spline model showed significant overall associations between LTL and the risk of dementia and AD (p for overall <0.05). The multivariable adjusted hazard ratios (HRs) for the lowest LTL tertile compared with the highest LTL tertile were 1.14 (95% confidence interval (CI): 1.06 to 1.21) for dementia, 1.28 (95% CI: 1.12 to 1.46) for AD and 1.18 (95% CI: 0.98 to 1.42) for VD. Furthermore, we found that shorter LTL was associated with smaller total brain volume (β=-0.012 8, p=0.003), white matter volume (β=-0.022 4, p<0.001), hippocampus volume (β=-0.017 2, p<0.001), thalamus volume (β=-0.023 9, p<0.001) and accumbens (β=-0.015 5, p=0.001). Conclusions Shorter LTL is associated with total and regional brain structure and a higher risk of incident dementia and AD, implying the potential of telomere length as a predictive biomarker of brain health.
Collapse
Affiliation(s)
- Zhi Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yabing Hou
- Yanjing Medical College, Capital Medical University, Beijing, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Rumšaitė G, Gedvilaitė G, Balnytė R, Kriaučiūnienė L, Liutkevičienė R. The Influence of TEP1 and TERC Genetic Variants on the Susceptibility to Multiple Sclerosis. J Clin Med 2023; 12:5863. [PMID: 37762804 PMCID: PMC10531829 DOI: 10.3390/jcm12185863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. According to recent studies, cellular senescence caused by telomere shortening may contribute to the development of MS. AIM OF THE STUDY Our aim was to determine the associations of TEP1 rs1760904, rs1713418, TERC rs12696304, rs35073794 gene polymorphisms with the occurrence of MS. METHODS The study included 200 patients with MS and 230 healthy controls. Genotyping of TEP1 rs1760904, rs1713418 and TERC rs12696304, rs35073794 was performed using RT-PCR. The obtained data were analysed using the program "IBM SPSS Statistics 29.0". Haplotype analysis was performed using the online program "SNPStats". RESULTS The TERC rs12696304 G allele of this SNP is associated with 1.4-fold lower odds of developing MS (p = 0.035). TERC rs35073794 is associated with approximately 2.4-fold reduced odds of MS occurrence in the codominant, dominant, overdominant, and additive models (p < 0.001; p < 0.001; p < 0.001; p < 0.001, respectively). Haplotype analysis shows that the rs1760904-G-rs1713418-A haplotype is statistically significantly associated with 1.75-fold increased odds of developing MS (p = 0.006). The rs12696304-C-rs35073794-A haplotype is statistically significantly associated with twofold decreased odds of developing MS (p = 0.008). In addition, the rs12696304-G-rs35073794-A haplotype was found to be statistically significantly associated with 5.3-fold decreased odds of developing MS (p < 0.001). CONCLUSION The current evidence may suggest a protective role of TERC SNP in the occurrence of MS, while TEP1 has the opposite effect.
Collapse
Affiliation(s)
- Gintarė Rumšaitė
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Greta Gedvilaitė
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Neurosciences Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Renata Balnytė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Loresa Kriaučiūnienė
- Neurosciences Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Rasa Liutkevičienė
- Neurosciences Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (R.L.)
| |
Collapse
|
11
|
Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: mechanisms and rejuvenating strategies. Cell Mol Life Sci 2023; 80:190. [PMID: 37354261 DOI: 10.1007/s00018-023-04832-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Ageing is characterized by the progressive loss of cellular homeostasis, leading to an overall decline of the organism's fitness. In the brain, ageing is highly associated with cognitive decline and neurodegenerative diseases. With the rise in life expectancy, characterizing the brain ageing process becomes fundamental for developing therapeutic interventions against the increased incidence of age-related neurodegenerative diseases and to aim for an increase in human life span and, more importantly, health span. In this review, we start by introducing the molecular/cellular hallmarks associated with brain ageing and their impact on brain cell populations. Subsequently, we assess emerging evidence on how systemic ageing translates into brain ageing. Finally, we revisit the mainstream and the novel rejuvenating strategies, discussing the most successful ones in delaying brain ageing and related diseases.
Collapse
Affiliation(s)
- Filipa Gaspar-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Diogo Trigo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Magalhaes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
12
|
Ren Q, Zhang G, Dong C, Li Z, Zhou D, Huang L, Li W, Huang G, Yan J. Parental Folate Deficiency Inhibits Proliferation and Increases Apoptosis of Neural Stem Cells in Rat Offspring: Aggravating Telomere Attrition as a Potential Mechanism. Nutrients 2023; 15:2843. [PMID: 37447170 DOI: 10.3390/nu15132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.
Collapse
Affiliation(s)
- Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
13
|
Feng Y, Shen J, He J, Lu M. Schizophrenia and cell senescence candidate genes screening, machine learning, diagnostic models, and drug prediction. Front Psychiatry 2023; 14:1105987. [PMID: 37113536 PMCID: PMC10126505 DOI: 10.3389/fpsyt.2023.1105987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background Schizophrenia (SC) is one of the most common psychiatric diseases. Its potential pathogenic genes and effective treatment methods are still unclear. Cell senescence has been confirmed in mental diseases. A link exists between cellular senescence and immunity, and immune-related problems affect suicide rates in individuals suffering from schizophrenia. Therefore, the aims of this study were to identify candidate genes based on cell senescence that can affect the diagnosis and treatment of schizophrenia. Methods Two data sets of schizophrenia were provided by the Gene Expression Omnibus (GEO) database, one was taken as training and the other as a validation group. The genes related to cell senescence were obtained from the CellAge database. DEGs were identified using the Limma package and weighted gene co-expression network analysis (WGCNA). The function enrichment analysis was conducted, followed by machine learning-based identification for least absolute shrinking and selection operators (LASSO) regression. Random Forest were used to identify candidate immune-related central genes and establish artificial neural networks for verification of the candidate genes. The receiver operating characteristic curve (ROC curve) was used for the diagnosis of schizophrenia. Immune cell infiltrates were constructed to study immune cell dysregulation in schizophrenia, and relevant drugs with candidate genes were collected from the DrugBank database. Results Thirteen co-expression modules were screened for schizophrenia, of which 124 were the most relevant genes.There were 23 intersected genes of schizophrenia (including DEGs and the cellular senescence-related genes), and through machine learning six candidate genes were finally screened out. The diagnostic value was evaluated using the ROC curve data. Based on these results it was confirmed that these candidate genes have high diagnostic value.Two drugs related to candidate genes, Fostamatinib and Ritodine, were collected from the DrugBanks database. Conclusion Six potential candidate genes (SFN, KDM5B, MYLK, IRF3, IRF7, and ID1) had been identified, all of which had diagnostic significance. Fostamatinib might be a drug choice for patients with schizophrenia to develop immune thrombocytopenic purpura (ITP) after treatment, providing effective evidence for the pathogenesis and drug treatment of schizophrenia.
Collapse
Affiliation(s)
- Yu Feng
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- The University of New South Wales, Kensington, NSW, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Jing Shen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Jin He
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Minyan Lu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
14
|
Pennarun G, Picotto J, Bertrand P. Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter. Genes (Basel) 2023; 14:genes14040775. [PMID: 37107534 PMCID: PMC10137478 DOI: 10.3390/genes14040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Julien Picotto
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Liu MY, Wei LL, Zhu XH, Ding HC, Liu XH, Li H, Li YY, Han Z, Li LD, Du ZW, Zhou YP, Zhang J, Meng F, Tang YL, Liu X, Wang C, Zhou QG. Prenatal stress modulates HPA axis homeostasis of offspring through dentate TERT independently of glucocorticoids receptor. Mol Psychiatry 2023; 28:1383-1395. [PMID: 36481932 PMCID: PMC10005958 DOI: 10.1038/s41380-022-01898-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.
Collapse
Affiliation(s)
- Meng-Ying Liu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu-Lu Wei
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xian-Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hua-Chen Ding
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang-Hu Liu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huan Li
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Yuan Li
- Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhou Han
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lian-Di Li
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zi-Wei Du
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ya-Ping Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fan Meng
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Lin Tang
- Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chun Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi-Gang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China. .,The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
17
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Salih A, Galazzo IB, Petersen SE, Lekadir K, Radeva P, Menegaz G, Altmann A. Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study. PLoS One 2022; 17:e0277344. [PMID: 36399449 PMCID: PMC9674175 DOI: 10.1371/journal.pone.0277344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Recent evidence suggests that shorter telomere length (TL) is associated with neuro degenerative diseases and aging related outcomes. The causal association between TL and brain characteristics represented by image derived phenotypes (IDPs) from different magnetic resonance imaging (MRI) modalities remains unclear. Here, we use two-sample Mendelian randomization (MR) to systematically assess the causal relationships between TL and 3,935 brain IDPs. Overall, the MR results suggested that TL was causally associated with 193 IDPs with majority representing diffusion metrics in white matter tracts. 68 IDPs were negatively associated with TL indicating that longer TL causes decreasing in these IDPs, while the other 125 were associated positively (longer TL leads to increased IDPs measures). Among them, ten IDPs have been previously reported as informative biomarkers to estimate brain age. However, the effect direction between TL and IDPs did not reflect the observed direction between aging and IDPs: longer TL was associated with decreases in fractional anisotropy and increases in axial, radial and mean diffusivity. For instance, TL was positively associated with radial diffusivity in the left perihippocampal cingulum tract and with mean diffusivity in right perihippocampal cingulum tract. Our results revealed a causal role of TL on white matter integrity which makes it a valuable factor to be considered when brain age is estimated and investigated.
Collapse
Affiliation(s)
- Ahmed Salih
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Karim Lekadir
- Dept. de Matemàtiques i Informàtica, University of Barcelona, Barcelona, Spain
| | - Petia Radeva
- Dept. de Matemàtiques i Informàtica, University of Barcelona, Barcelona, Spain
| | - Gloria Menegaz
- Department of Computer Science, University of Verona, Verona, Italy
| | - André Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Genetically predicted telomere length and Alzheimer’s disease endophenotypes: a Mendelian randomization study. Alzheimers Res Ther 2022; 14:167. [PMID: 36345036 PMCID: PMC9641781 DOI: 10.1186/s13195-022-01101-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022]
Abstract
Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer’s disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-ɛ4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF Aβ and higher levels of CSF NfL only in APOE-ɛ4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations.
Collapse
|
20
|
Schreiber WB, Robinson-Drummer PA. Opportunities to Discuss Diversity-Related Topics in Neuroscience Courses. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2022; 20:A361-A375. [PMID: 39036724 PMCID: PMC11256382 DOI: 10.59390/aoin4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 07/23/2024]
Abstract
Diversity is a foundational topic in psychology, and APA recommends that diversity is covered across the psychology curriculum. Neuroscience courses face challenges with incorporating diversity-related topics owing to the historical lack of neuroscience research that focuses on diversity and the restricted range of diversity-related topics that neuroscience is typically associated with (i.e., health and disability status). This may limit students' learning of neuroscience's contributions towards understanding diversity. We review some specific examples of diversity-related topics that can be incorporated into neuroscience courses. These examples have been selected to include topics across the three major content domains of neuroscience (cellular/molecular, neuroanatomy/systems, and cognitive/behavioral), as well as across multiple diversity-related topics. Neuroscience instructors can use these examples to incorporate greater coverage of diversity-related topics within their courses and/or as points of inspiration for their own curricular additions. Providing systematic coverage of diversity-related topics in neuroscience courses highlights the ways neuroscience advances our understanding of human diversity and contributes to the educational objectives of psychology and neuroscience programs.
Collapse
|
21
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
22
|
Yu EY, Cheung NKV, Lue NF. Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells. J Hematol Oncol 2022; 15:117. [PMID: 36030273 PMCID: PMC9420296 DOI: 10.1186/s13045-022-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA-in order to sustain cell proliferation-is well established, recent studies suggest that the neural crest origin of neuroblastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal neural crest development. This review summarizes recent advances in the characterization of telomere structure and telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential applications to other pediatric malignancies.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
23
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Abstract
SignificanceUsing CMV as a gene therapy vector we illustrated that CMV can be used therapeutically as a monthly inhaled or intraperitoneally delivered treatment for aging-associated decline. Exogenous telomerase reverse transcriptase or follistatin genes were safely and effectively delivered in a murine model. This treatment significantly improved biomarkers associated with healthy aging, and the mouse lifespan was increased up to 41% without an increased risk of cancer. The impact of this research on an aging population cannot be understated as the global aging-related noncommunicable disease burden quickly rises.
Collapse
|
25
|
Cai NN, Geng Q, Jiang Y, Zhu WQ, Yang R, Zhang BY, Xiao YF, Tang B, Zhang XM. Schisandrin A and B affect the proliferation and differentiation of neural stem cells. J Chem Neuroanat 2021; 119:102058. [PMID: 34896558 DOI: 10.1016/j.jchemneu.2021.102058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Schisandrin A and B (Sch A and B) are the important components of Asian dietary supplement and phytomedicine Schisandra chinensis (S. chinensis). They can enhance adult neurogenesis in vivo; however, these effects still need to be verified. Here NE-4 C neural stem cells (NSCs) were employed as the in vitro model and treated with Sch A and B at 0.1 μg/mL. EdU (5-Ethynyl-2'-deoxyuridine) labeling showed that both Sch A and B treatments enhanced NSC proliferation. Real-time PCR analysis showed the mRNA abundances of telomerase gene Tert and cell cycle gene Cyclin D1 were significantly up-regulated after the treatments. During the neurosphere induction, Sch B enhanced the neurosphere formation and neuronal differentiation, and increased the neurosphere semidiameters. Detection of the neuron differentiation marker Mapt indicates that both Sch A and B, especially Sch B, benefits the induced neuronal differentiation. Sch B treatment also enhanced mRNA expressions of the neurosphere-specific adhesion molecule Cdh2 and Wnt pathway-related genes including Mmp9, Cyclin D1 and β-catenin. Together, Sch A especially Sch B, promotes the proliferation, affects the survival, differentiation and neurogenesis of NSCs, which is consistent with their in vivo effects. This study provides further clue on the potential neuropharmacological effects of S. chinensis.
Collapse
Affiliation(s)
- Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, China.
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Jiang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wen-Qian Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo-Yang Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu-Feng Xiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue-Ming Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
26
|
Zhou Q, Lin L, Li H, Wang H, Jiang S, Huang P, Lin Q, Chen X, Deng Y. Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide. Mol Neurobiol 2021; 58:6552-6576. [PMID: 34585328 PMCID: PMC8639545 DOI: 10.1007/s12035-021-02568-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.
Collapse
Affiliation(s)
- Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfen Lin
- Department of Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peixian Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiongyu Lin
- Department of Critical Care Medicine, Jieyang People's Hospital, Jieyang, 522000, Guangdong, China
| | - Xuan Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College (FCS), Shantou, 515063, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Bazaz MR, Balasubramanian R, Monroy-Jaramillo N, Dandekar MP. Linking the Triad of Telomere Length, Inflammation, and Gut Dysbiosis in the Manifestation of Depression. ACS Chem Neurosci 2021; 12:3516-3526. [PMID: 34547897 DOI: 10.1021/acschemneuro.1c00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Telomere length is an indispensable marker for cellular and biological aging, and it also represents an individual's physical and mental health status. Telomere shortening has been observed in chronic inflammatory conditions, which in turn accelerates aging and risk for psychiatric disorders, including depression. Considering the influence of inflammation and telomere shortening on the gut-brain axis, herein we describe a plausible interplay between telomere attrition, inflammation, and gut dysbiosis in the neurobiology of depression. Telomere shortening and hyperinflammation are well reported in depression. A negative impact of augmented inflammation has been noted on the intestinal permeability and microbial consortia and their byproducts in depressive patients. Moreover, gut dysbiosis provokes host-immune responses. As the gut microbiome is gaining importance in the manifestation and management of depression, herein we discuss whether telomere attrition is connected with the perturbation of commensal microflora. We also describe a pathological connection of cortisol with hyperinflammation, telomere shortening, and gut dysbiosis occurring in depression. This review summarizes how the triad of telomere attrition, inflammation, and gut dysbiosis is interconnected and modulates the risk for depression by regulating the systemic cortisol levels.
Collapse
Affiliation(s)
- Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Ramya Balasubramanian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez (NINN), Mexico City, Mexico, 14269
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| |
Collapse
|
28
|
Xie X, Li M, Zhou M, Chow SF, Tsang CK. Pharmacological preconditioning by TERT inhibitor BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming. J Neurochem 2021; 159:690-709. [PMID: 34532857 DOI: 10.1111/jnc.15515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
After a sublethal ischemic preconditioning (IPC) stimulus, the brain has a remarkable capability of acquiring tolerance to subsequent ischemic insult by establishing precautionary self-protective mechanism. Understanding this endogenous mechanism would reveal novel and effective neuroprotective targets for ischemic brain injury. Our previous study has implied that telomerase reverse transcriptase (TERT) is associated with IPC-induced tolerance. Here, we investigated the mechanism of TERT-mediated ischemic tolerance. Preconditioning was modeled by oxygen-glucose deprivation (OGD) and by TERT inhibitor BIBR1532 in primary neurons. We found that ischemic tolerance was conferred by BIBR1532 preconditioning. We used the Cleavage-Under-Targets-And-Tagmentation approach, a recently developed method with superior signal-to-noise ratio, to comprehensively map the genomic binding sites of TERT in primary neurons, and showed that more than 50% of TERT-binding sites were located at the promoter regions. Mechanistically, we demonstrated that under normal conditions TERT physically bound to many previously unknown genomic loci in neurons, whereas BIBR1532 preconditioning significantly altered TERT-chromatin-binding profile. Intriguingly, we found that BIBR1532-preconditioned neurons showed significant up-regulation of promoter binding of TERT to the mitochondrial anti-oxidant genes, which were correlated with their elevated expression. Functional analysis further indicated that BIBR1532-preconditioning significantly reduced ROS levels and enhanced tolerance to severe ischemia-induced mitochondrial oxidative stress in neurons in a TERT-dependent manner. Together, these results demonstrate that BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming for up-regulation of mitochondrial anti-oxidation gene expression, suggesting the translational potential of BIBR1532 as a therapeutic agent for the treatment of cerebral ischemic injury and oxidative stress-induced neurological disorders.
Collapse
Affiliation(s)
- Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Mingxi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Mengyao Zhou
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Core Research Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Schroder JD, de Araújo JB, de Oliveira T, de Moura AB, Fries GR, Quevedo J, Réus GZ, Ignácio ZM. Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications. Rev Neurosci 2021; 33:227-255. [PMID: 34388328 DOI: 10.1515/revneuro-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.
Collapse
Affiliation(s)
- Jessica Daniela Schroder
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Julia Beatrice de Araújo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Airam Barbosa de Moura
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Gabriel Rodrigo Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| |
Collapse
|
30
|
Baik SH, Selvaraji S, Fann DY, Poh L, Jo DG, Herr DR, Zhang SR, Kim HA, Silva MD, Lai MK, Chen CLH, Drummond GR, Lim KL, Sobey CG, Arumugam TV. Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging (Albany NY) 2021; 13:14651-14674. [PMID: 34074801 PMCID: PMC8221317 DOI: 10.18632/aging.203123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Vascular dementia (VaD) is a progressive cognitive impairment of vascular etiology. VaD is characterized by cerebral hypoperfusion, increased blood-brain barrier permeability and white matter lesions. An increased burden of VaD is expected in rapidly aging populations. The hippocampus is particularly susceptible to hypoperfusion, and the resulting memory impairment may play a crucial role in VaD. Here we have investigated the hippocampal gene expression profile of young and old mice subjected to cerebral hypoperfusion by bilateral common carotid artery stenosis (BCAS). Our data in sham-operated young and aged mice reveal an age-associated decline in cerebral blood flow and differential gene expression. In fact, BCAS and aging caused broadly similar effects. However, BCAS-induced changes in hippocampal gene expression differed between young and aged mice. Specifically, transcriptomic analysis indicated that in comparison to young sham mice, many pathways altered by BCAS in young mice resembled those already present in sham aged mice. Over 30 days, BCAS in aged mice had minimal effect on either cerebral blood flow or hippocampal gene expression. Immunoblot analyses confirmed these findings. Finally, relative to young sham mice the cell type-specific profile of genes in both young BCAS and old sham animals further revealed common cell-specific genes. Our data provide a genetic-based molecular framework for hypoperfusion-induced hippocampal damage and reveal common cellular signaling pathways likely to be important in the pathophysiology of VaD.
Collapse
Affiliation(s)
- Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Deron R. Herr
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Shenpeng R. Zhang
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Mitchell K.P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grant R. Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
31
|
Subasri M, Shooshtari P, Watson AJ, Betts DH. Analysis of TERT Isoforms across TCGA, GTEx and CCLE Datasets. Cancers (Basel) 2021; 13:cancers13081853. [PMID: 33924498 PMCID: PMC8070023 DOI: 10.3390/cancers13081853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Reactivation of the multi-subunit ribonucleoprotein telomerase is the primary telomere maintenance mechanism in cancer, but it is rate-limited by the enzymatic component, telomerase reverse transcriptase (TERT). While regulatory in nature, TERT alternative splice variant/isoform regulation and functions are not fully elucidated and are further complicated by their highly diverse expression and nature. Our primary objective was to characterize TERT isoform expression across 7887 neoplastic and 2099 normal tissue samples using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Project (GTEx), respectively. We confirmed the global overexpression and splicing shift towards full-length TERT in neoplastic tissue. Stratifying by tissue type we found uncharacteristic TERT expression in normal brain tissue subtypes. Stratifying by tumor-specific subtypes, we detailed TERT expression differences potentially regulated by subtype-specific molecular characteristics. Focusing on β-deletion splicing regulation, we found the NOVA1 trans-acting factor to mediate alternative splicing in a cancer-dependent manner. Of relevance to future tissue-specific studies, we clustered cancer cell lines with tumors from related origin based on TERT isoform expression patterns. Taken together, our work has reinforced the need for tissue and tumour-specific TERT investigations, provided avenues to do so, and brought to light the current technical limitations of bioinformatic analyses of TERT isoform expression.
Collapse
Affiliation(s)
- Mathushan Subasri
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (A.J.W.)
| | - Parisa Shooshtari
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada;
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Computer Science, The University of Western Ontario, London, ON N6A 5C1, Canada
- The Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Andrew J. Watson
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (A.J.W.)
- The Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (A.J.W.)
- The Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 83786)
| |
Collapse
|
32
|
Pathak GA, Wendt FR, Levey DF, Mecca AP, van Dyck CH, Gelernter J, Polimanti R. Pleiotropic effects of telomere length loci with brain morphology and brain tissue expression. Hum Mol Genet 2021; 30:1360-1370. [PMID: 33831179 PMCID: PMC8255129 DOI: 10.1093/hmg/ddab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have reported association between leukocyte telomere length (LTL) and neuropsychiatric disorders. Although telomere length is affected by environmental factors, genetic variants in certain loci are strongly associated with LTL. Thus, we aimed to identify the genomic relationship between genetic variants of LTL with brain-based regulatory changes and brain volume. We tested genetic colocalization of seven and nine LTL loci in two ancestry groups, European (EUR) and East-Asian (EAS), respectively, with brain morphology measures for 101 T1-magnetic resonance imaging-based region of interests (n = 21 821). The posterior probability (>90%) was observed for 'fourth ventricle', 'gray matter' and 'cerebellar vermal lobules I-IV' volumes. We then tested causal relationship using LTL loci for gene and methylation expression. We found causal pleiotropy for gene (EAS = four genes; EUR = five genes) and methylation expression (EUR = 17 probes; EAS = 4 probes) of brain tissues (P ≤ 2.47 × 10-6). Integrating chromatin profiles with LTL-single nucleotide polymorphisms identified 45 genes (EUR) and 79 genes (EAS) (P ≤ 9.78×10-7). We found additional 38 LTL-genes using chromatin-based gene mapping for EUR ancestry population. Gene variants in three LTL-genes-GPR37, OBFC1 and RTEL1/RTEL1-TNFRSF6B-show convergent evidence of pleiotropy with brain morphology, gene and methylation expression and chromatin association. Mapping gene functions to drug-gene interactions, we identified process 'transmission across chemical synapses' (P < 2.78 × 10-4). This study provides evidence that genetic variants of LTL have pleiotropic roles with brain-based effects that could explain the phenotypic association of LTL with several neuropsychiatric traits.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Renato Polimanti
- To whom correspondence should be addressed at: VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Tel: +1 2039375711 ext. 5745; Fax: +1 2039373897;
| |
Collapse
|
33
|
Abstract
PURPOSE One of the most important serious malignancies is gastric cancer (GC) with a high mortality globally. In this way, beside the environmental factors, genetic parameter has a remarkable effective fluctuation in GC. Correspondingly, telomeres are nucleoprotein structures measuring the length of telomeres and they have special potential in diagnosis of various types of cancers. Defect protection of the telomeric length initiates the instability of the genome during cancer, including gastric cancer. The most common way of maintaining telomere length is the function of the telomerase enzyme that replicates the TTAGGG to the end of the 3' chromosome. METHODS In this review, we want to discuss the alterations of hTERT repression on the modification of TERRA gene expression in conjunction with the importance of telomere and telomerase in GC. RESULTS The telomerase enzyme contains two essential components called telomerase reverse transcriptase (hTERT) and RNA telomerase (hTR, hTERC). Deregulation of hTERT plays a key role in the multistage process of tumorigenicity and anticancer drug resistance. The direct relationship between telomerase activity and hTERT has led to hTERT to be considered a key target for cancer treatment. Recent results show that telomeres are transcribed into telomeric repeat-containing RNA (TERRA) in mammalian cells and are long noncoding RNAs (lncRNAs) identified in different tissues. In addition, most chemotherapy methods have a lot of side effects on normal cells. CONCLUSION Telomere and telomerase are useful therapeutic goal. According to the main roles of hTERT in tumorigenesis, growth, migration, and cancer invasion, hTERT and regulatory mechanisms that control the expression of hTERT are attractive therapeutic targets for cancer treatment.
Collapse
|
34
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
35
|
Fani L, Hilal S, Sedaghat S, Broer L, Licher S, Arp PP, van Meurs JBJ, Ikram MK, Ikram MA. Telomere Length and the Risk of Alzheimer's Disease: The Rotterdam Study. J Alzheimers Dis 2020; 73:707-714. [PMID: 31839608 PMCID: PMC7029372 DOI: 10.3233/jad-190759] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a wide interest in biomarkers that capture the burden of detrimental factors as these accumulate with the passage of time, i.e., increasing age. Telomere length has received considerable attention as such a marker, because it is easily quantified and it may aid in disentangling the etiology of dementia or serve as predictive marker. We determined the association of telomere length with risk of Alzheimer’s disease and all-cause dementia in a population-based setting. Within the Rotterdam Study, we performed quantitative PCR to measure mean leukocyte telomere length in blood. We determined the association of telomere length with risk of Alzheimer’s disease until 2016, using Cox regression models. Of 1,961 participants (mean age 71.4±9.3 years, 57.1% women) with a median follow-up of 8.3 years, 237 individuals were diagnosed with Alzheimer’s disease. We found a U-shaped association between telomere length and risk of Alzheimer’s disease: compared to the middle tertile the adjusted hazard ratio was 1.59 (95% confidence interval (CI), 1.13–2.23) for the lowest tertile and 1.47 (1.03–2.10) for the highest tertile. Results were similarly U-shaped but slightly attenuated for all-cause dementia. In conclusion, shorter and longer telomere length are both associated with an increased risk of Alzheimer’s disease in the general population.
Collapse
Affiliation(s)
- Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Saima Hilal
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Preventive Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Silvan Licher
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
37
|
Kumari B, Mandal M, Dholaniya PS. Analysis of multiple transcriptome data to determine age-associated genes for the progression of Parkinson's disease. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 2020; 21:62. [PMID: 32811563 PMCID: PMC7437006 DOI: 10.1186/s40360-020-00440-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Acrylamide (ACR) formed during heating of tobacco and carbohydrate-rich food as well as widely applied in industries has been known as a well-established neurotoxic pollutant. Although the precise mechanism is unclear, enhanced apoptosis, oxidative stress and inflammation have been demonstrated to contribute to the ACR-induced neurotoxicity. In this study, we assessed the possible anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin, the most active component in a popular spice known as turmeric, on the neurotoxicity caused by ACR in rats. Methods Curcumin at the dose of 50 and 100 mg/kg was orally given to ACR- intoxicated Sprague-Dawley rats exposed by ACR at 40 mg/kg for 4 weeks. All rats were subjected to behavioral analysis. The HE staining and terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) staining were used to detect histopathological changes and apoptotic cells, respectively. The mRNA and protein expressions of apoptosis-related molecule telomerase reverse transcriptase (TERT) were detected using real-time PCR and immunohistochemistry, respectively. The contents of malondialdehyde (MDA) and glutathione (GSH) as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured as the indicators for evaluating the level of oxidative stress in brain. The levels of pro-inflammatory cytokinestumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the cerebral homogenates were detected using ELISA assay. Results ACR-induced weigh loss, deficits in motor function as well as pathological alterations in brains were significantly improved in rats administrated with 50 and 100 mg/kg curcumin. TUNEL-positive apoptotic cells in curcumin-treated ACR intoxicated brains were less than those in the ACR model group. Curcumin administration especially at the dose of 100 mg/kg upregulated the TERT mRNA expression and enhanced the number of TERT-positive cells in ACR-intoxicated cortex tissues. Moreover, curcumin treatment reduced the concentrations of TNF-α, IL-1β and MDA, while increased the GSH contents as well as the SOD and GSH-Px activities in the cerebral homogenates, in comparison to ACR control group. Conclusions These data suggested the anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on ACR-induced neurotoxicity in rats. Maintaining TERT-related anti-apoptotic function might be one mechanism underlying the protective effect of curcumin on ACR-intoxicated brains.
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaolu Cao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
39
|
Qin Y, An D, Xu W, Qi X, Wang X, Chen L, Chen L, Sha S. Estradiol Replacement at the Critical Period Protects Hippocampal Neural Stem Cells to Improve Cognition in APP/PS1 Mice. Front Aging Neurosci 2020; 12:240. [PMID: 32903757 PMCID: PMC7438824 DOI: 10.3389/fnagi.2020.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that there is a critical window for estrogen replacement therapy (ERT) in postmenopausal women with Alzheimer’s disease (AD); however, supporting evidence is lacking. To address this issue, we investigated the effective period for estradiol (E2) treatment using a mouse model of AD. Four-month-old female APPswe/PSEN1dE9 (APP/PS1) mice were ovariectomized (OVX) and treated with E2 for 2 months starting at the age of 4 months (early period), 6 months (mid-period), or 8 months (late period). We then evaluated hippocampal neurogenesis, β-amyloid (Aβ) accumulation, telomerase activity, and hippocampal-dependent behavior. Compared to age-matched wild type mice, APP/PS1 mice with intact ovaries showed increased proliferation of hippocampal neural stem cells (NSCs) at 8 months of age and decreased proliferation of NSCs at 10 months of age; meanwhile, Aβ accumulation progressively increased with age, paralleling the reduced survival of immature neurons. OVX-induced depletion of E2 in APP/PS1 mice resulted in elevated Aβ levels accompanied by elevated p75 neurotrophin receptor (p75NTR) expression and increased NSC proliferation at 6 months of age, which subsequently declined; accelerated reduction of immature neurons starting from 6 months of age, and reduced telomerase activity and worsened memory performance at 10 months of age. Treatment with E2 in the early period post-OVX, rather than in the mid or late period, abrogated these effects, and p75NTR inhibition reduced the overproliferation of NSCs in 6-month-old OVX-APP/PS1 mice. Thus, E2 deficiency in young APP/PS1 mice exacerbates cognitive deficits and depletes the hippocampal NSC pool in later life; this can be alleviated by E2 treatment in the early period following OVX, which prevents Aβ/p75NTR-induced NSC overproliferation and preserves telomerase activity.
Collapse
Affiliation(s)
- Yaoyao Qin
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dong An
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiuting Qi
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Levstek T, Kozjek E, Dolžan V, Trebušak Podkrajšek K. Telomere Attrition in Neurodegenerative Disorders. Front Cell Neurosci 2020; 14:219. [PMID: 32760251 PMCID: PMC7373805 DOI: 10.3389/fncel.2020.00219] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Telomere attrition is increased in various disorders and is therefore a potential biomarker for diagnosis and/or prognosis of these disorders. The contribution of telomere attrition in the pathogenesis of neurodegenerative disorders is yet to be fully elucidated. We are reviewing the current knowledge regarding the telomere biology in two common neurodegenerative disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). Furthermore, we are discussing future prospective of telomere research in these disorders. The majority of studies reported consistent evidence of the accelerated telomere attrition in AD patients, possibly in association with elevated oxidative stress levels. On the other hand in PD, various studies reported contradictory evidence regarding telomere attrition. Consequently, due to the low specificity and sensitivity, the clinical benefit of telomere length as a biomarker of neurodegenerative disease development and progression is not yet recognized. Nevertheless, longitudinal studies in large carefully selected cohorts might provide further elucidation of the complex involvement of the telomeres in the pathogenesis of neurodegenerative diseases. Telomere length maintenance is a complex process characterized by environmental, genetic, and epigenetic determinants. Thus, in addition to the selection of the study cohort, also the selection of analytical methods and types of biological samples for evaluation of the telomere attrition is of utmost importance.
Collapse
Affiliation(s)
- Tina Levstek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kozjek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Thompson CA, Wong JM. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance. Curr Top Med Chem 2020; 20:498-507. [DOI: 10.2174/1568026620666200131125110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere
repeat synthesis activity, telomerase may have other biologically important functions. The canonical
roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic
stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase
(TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative
mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed
at higher levels than necessary for maintaining functional telomere length, suggesting other possible
adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric
DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics,
and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily
show cellular protective effects, and nuclear TERT has been shown to protect against cell death
following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT
has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of
gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent
RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria,
TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial
integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased
proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding
the spectrum of non-canonical functions of telomerase may have important implications for the rational
design of anti-cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Connor A.H. Thompson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Judy M.Y. Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
42
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Smith-Sonneborn J. Telomerase Biology Associations Offer Keys to Cancer and Aging Therapeutics. Curr Aging Sci 2020; 13:11-21. [PMID: 31544708 PMCID: PMC7403649 DOI: 10.2174/1874609812666190620124324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although telomerase has potential for age-related disease intervention, the overexpression of telomerase in about 90% of cancers, and in HIV virus reservoirs, cautions against se in anti-aging telomerase therapeutics. While multiple reviews document the canonical function of telomerase for maintenance of telomeres, as well as an increasing numbers of reviews that reveal new non-canonical functions of telomerase, there was no systematic review that focuses on the array of associates of the subunit of Telomerase Reverse transcriptase protein (TERT) as pieces of the puzzle to assemble a picture of the how specific TERT complexes uniquely impact aging and age-related diseases and more can be expected. METHODS A structured search of bibliographic data on TERT complexes was undertaken using databases from the National Center for Biotechnology Information Pubmed with extensive access to biomedical and genomic information in order to obtain a unique documented and cited overview of TERT complexes that may uniquely impact aging and age-related diseases. RESULTS The TERT associations include proper folding, intracellular TERT transport, metabolism, mitochondrial ROS (Reactive Oxygen Species) regulation, inflammation, cell division, cell death, and gene expression, in addition to the well-known telomere maintenance. While increase of cell cycle inhibitors promote aging, in cancer, the cell cycle check-point regulators are ambushed in favor of cell proliferation, while cytoplasmic TERT protects a cell cycle inhibitor in oxidative stress. The oncogene cMyc regulates gene expression for overexpression of TERT, and reduction of cell cycle inhibitors-the perfect storm for cancer promotion. TERT binds with the oncogene RMRP RNA, and TERT-RMRP function can regulate levels of that oncogene RNA, and TERT in a TBN complex can regulate heterochromatin. Telomerase benefit and novel function in neurology and cardiology studies open new anti- aging hope. GV1001, a 16 amino acid peptide of TERT that associates with Heat Shock Proteins (HSP's), bypasses the cell membrane with remarkable anti disease potential. CONCLUSIONS TERT "associates" are anti-cancer targets for downregulation, but upregulation in antiaging therapy. The overview revealed that unique TERT associations that impact all seven pillars of aging identified by the Trans-NIH Geroscience Initiative that influence aging and urge research for appropriate targeted telomerase supplements/ stimulation, and inclusion in National Institute on Aging Intervention Testing Program. The preference for use of available "smart drugs", targeted to only cancer, not off-target anti- aging telomerase is implied by the multiplicity of TERT associates functions.
Collapse
Affiliation(s)
- Joan Smith-Sonneborn
- Department Zoology and Physiology, University of Wyoming, Laramie, Wyoming, WY, USA
| |
Collapse
|
44
|
Navarro-Mateu F, Rubio-Aparicio M, Cayuela P, Álvarez FJ, Roca-Vega A, Chirlaque MD, Cayuela ML, Husky M, Martínez S, Sánchez-Meca J. The association of telomere length with substance use disorders: systematic review and meta-analysis protocol. Syst Rev 2019; 8:298. [PMID: 31787100 PMCID: PMC6886210 DOI: 10.1186/s13643-019-1199-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The present protocol was designed for a systematic review and meta-analysis aimed at determining the association of telomere length with substance use disorders with the exclusion of nicotine addiction, and to identify potential moderators of the effect of telomere length. Such methodological information may provide guidance to improve the quality of future research on this important topic. METHODS Potential studies will be identified through electronic databases (PubMed/MEDLINE, EMBASE, PsycINFO, and Web of Science) up from inception onwards. The inclusion criteria will include published or unpublished observational studies (cohort, case-control, and cross-sectional studies) reporting telomere length in adult patients with substance use disorder compared with a control group. Non-human studies or other study designs such as reviews, case-only, family-based, and/or population studies with only healthy participants will be excluded, as well as those focused solely on nicotine addiction. The main outcome will be telomere length in adults with substance use disorder (primary) and, specifically, in those with alcohol use disorder (secondary). Two investigators will independently evaluate the preselected studies for possible inclusion and will extract data following a standardized protocol. Disagreements will be resolved by consensus. The risk of bias of all included studies will be assessed using the Newcastle-Ottawa Quality Assessment Scale for non-randomized studies. Data will be converted into standardized mean differences as effect size index, and random-effects models will be used for the meta-analysis. Cochran's Q statistic, I2 index, and visual inspection of the forest plot will be used to verify study heterogeneity. Subgroup analyses and meta-regressions will be conducted to ascertain heterogeneity. Several sensitivity analyses will be conducted to address the influence of potential confounding factors. Publication bias will be examined using the "funnel plot" method with Duval and Tweedie's trim-and-fill method and Egger test. DISCUSSION This systematic review will assess the association of telomere length with substance use disorders aside from nicotine addiction. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42019119785.
Collapse
Affiliation(s)
- Fernando Navarro-Mateu
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, c/ Lorca, n° 58, 30120, Murcia, Spain. .,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,IMIB-Arrixaca, Murcia, Spain. .,Departamento de Psicología Básica y Metodología, University of Murcia, Murcia, Spain.
| | | | - Pedro Cayuela
- Escuela Universitaria de Enfermería de Cartagena, University of Murcia, Murcia, Spain
| | - Francisco-Javier Álvarez
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, c/ Lorca, n° 58, 30120, Murcia, Spain
| | - Agustín Roca-Vega
- Biblioteca Virtual MurciaSalud, Centro Tecnológico de Información y Documentación Sanitaria, Servicio Murciano de Salud, Murcia, Spain
| | - María Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMIB-Arrixaca, Murcia, Spain.,Servicio de Epidemiología, Consejería de Salud, Murcia, Spain.,Departamento de Ciencias Sociosanitarias, University of Murcia, Murcia, Spain
| | - María Luisa Cayuela
- IMIB-Arrixaca, Murcia, Spain.,Grupo Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Mathilde Husky
- Laboratoire de Psychologie EA4139, Université de Bordeaux, Bordeaux, France
| | | | - Julio Sánchez-Meca
- Departamento de Psicología Básica y Metodología, University of Murcia, Murcia, Spain
| |
Collapse
|
45
|
Telomerase Reverse Transcriptase and p53 Regulate Mammalian Peripheral Nervous System and CNS Axon Regeneration Downstream of c-Myc. J Neurosci 2019; 39:9107-9118. [PMID: 31597725 DOI: 10.1523/jneurosci.0419-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.SIGNIFICANCE STATEMENT Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration in vivo Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.
Collapse
|
46
|
Muneer A, Minhas FA. Telomere Biology in Mood Disorders: An Updated, Comprehensive Review of the Literature. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:343-363. [PMID: 31352701 PMCID: PMC6705109 DOI: 10.9758/cpn.2019.17.3.343] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Major psychiatric disorders are linked to early mortality and patients afflicted with these ailments demonstrate an increased risk of developing physical diseases that are characteristically seen in the elderly. Psychiatric conditions like major depressive disorder, bipolar disorder and schizophrenia may be associated with accelerated cellular aging, indicated by shortened leukocyte telomere length (LTL), which could underlie this connection. Telomere shortening occurs with repeated cell division and is reflective of a cell’s mitotic history. It is also influenced by cumulative exposure to inflammation and oxidative stress as well as the availability of telomerase, the telomere-lengthening enzyme. Precariously short telomeres can cause cells to undergo senescence, apoptosis or genomic instability; shorter LTL correlates with compromised general health and foretells mortality. Important data specify that LTL may be reduced in principal psychiatric illnesses, possibly in proportion to exposure to the ailment. Telomerase, as measured in peripheral blood monocytes, has been less well characterized in psychiatric illnesses, but a role in mood disorder has been suggested by preclinical and clinical studies. In this manuscript, the most recent studies on LTL and telomerase activity in mood disorders are comprehensively reviewed, potential mediators are discussed, and future directions are suggested. An enhanced comprehension of cellular aging in psychiatric illnesses could lead to their re-conceptualizing as systemic ailments with manifestations both inside and outside the brain. At the same time this paradigm shift could identify new treatment targets, helpful in bringing about lasting cures to innumerable sufferers across the globe.
Collapse
Affiliation(s)
- Ather Muneer
- Department of Psychiatry, Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| | - Fareed Aslam Minhas
- Department of Psychiatry, WHO Collaborating Center, Rawalpindi Medical University, Rawalpindi, Pakistan
| |
Collapse
|
47
|
Anitha A, Thanseem I, Vasu MM, Viswambharan V, Poovathinal SA. Telomeres in neurological disorders. Adv Clin Chem 2019; 90:81-132. [PMID: 31122612 DOI: 10.1016/bs.acc.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ever since their discovery, the telomeres and the telomerase have been topics of intensive research, first as a mechanism of cellular aging and later as an indicator of health and diseases in humans. By protecting the chromosome ends, the telomeres play a vital role in preserving the information in our genome. Telomeres shorten with age and the rate of telomere erosion provides insight into the proliferation history of cells. The pace of telomere attrition is known to increase at the onset of several pathological conditions. Telomere shortening has been emerging as a potential contributor in the pathogenesis of several neurological disorders including autism spectrum disorders (ASD), schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD) and depression. The rate of telomere attrition in the brain is slower than that of other tissues owing to the low rate of cell proliferation in brain. Telomere maintenance is crucial for the functioning of stem cells in brain. Taking together the studies on telomere attrition in various neurological disorders, an association between telomere shortening and disease status has been demonstrated in schizophrenia, AD and depression, in spite of a few negative reports. But, studies in ASD and PD have failed to produce conclusive results. The cause-effect relationship between TL and neurological disorders is yet to be elucidated. The factors responsible for telomere erosion, which have also been implicated in the pathogenesis of neurological disorders, need to be explored in detail. Telomerase activation is now being considered as a potential therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Ismail Thanseem
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mahesh Mundalil Vasu
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Vijitha Viswambharan
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Suresh A Poovathinal
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| |
Collapse
|
48
|
|
49
|
Powell TR, De Jong S, Breen G, Lewis CM, Dima D. Telomere length as a predictor of emotional processing in the brain. Hum Brain Mapp 2018; 40:1750-1759. [PMID: 30511786 PMCID: PMC6492163 DOI: 10.1002/hbm.24487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 12/24/2022] Open
Abstract
Shorter telomere length (TL) has been associated with the development of mood disorders as well as abnormalities in brain morphology. However, so far, no studies have considered the role TL may have on brain function during tasks relevant to mood disorders. In this study, we examine the relationship between TL and functional brain activation and connectivity, while participants (n = 112) perform a functional magnetic resonance imaging (fMRI) facial affect recognition task. Additionally, because variation in TL has a substantial genetic component we calculated polygenic risk scores for TL to test if they predict face‐related functional brain activation. First, our results showed that TL was positively associated with increased activation in the amygdala and cuneus, as well as increased connectivity from posterior regions of the face network to the ventral prefrontal cortex. Second, polygenic risk scores for TL show a positive association with medial prefrontal cortex activation. The data support the view that TL and genetic loading for shorter telomeres, influence the function of brain regions known to be involved in emotional processing.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Simone De Jong
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience at the Maudsley Hospital and King's College London, London, United Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience at the Maudsley Hospital and King's College London, London, United Kingdom
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience at the Maudsley Hospital and King's College London, London, United Kingdom.,Department of Medical and Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
50
|
Degl'Innocenti D, Ramazzotti M, Sarchielli E, Monti D, Chevanne M, Vannelli GB, Barletta E. Oxadiazon affects the expression and activity of aldehyde dehydrogenase and acylphosphatase in human striatal precursor cells: A possible role in neurotoxicity. Toxicology 2018; 411:110-121. [PMID: 30391265 DOI: 10.1016/j.tox.2018.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Exposure to herbicides can induce long-term chronic adverse effects such as respiratory diseases, malignancies and neurodegenerative diseases. Oxadiazon, a pre-emergence or early post-emergence herbicide, despite its low acute toxicity, may induce liver cancer and may exert adverse effects on reproductive and on endocrine functions. Unlike other herbicides, there are no indications on neurotoxicity associated with long-term exposure to oxadiazon. Therefore, we have analyzed in primary neuronal precursor cells isolated from human striatal primordium the effects of non-cytotoxic doses of oxadiazon on neuronal cell differentiation and migration, and on the expression and activity of the mitochondrial aldehyde dehydrogenase 2 (ALDH2) and of the acylphosphatase (ACYP). ALDH2 activity protects neurons against neurotoxicity induced by toxic aldehydes during oxidative stress and plays a role in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. ACYP is involved in ion transport, cell differentiation, programmed cell death and cancer, and increased levels of ACYP have been revealed in fibroblasts from patients affected by Alzheimer's disease. In this study we demonstrated that non-cytotoxic doses of oxadiazon were able to inhibit neuronal striatal cell migration and FGF2- and BDNF-dependent differentiation towards neuronal phenotype, and to inhibit the expression and activity of ALDH2 and to increase the expression and activity of ACYP2. In addition, we have provided evidence that in human primary neuronal precursor striatal cells the inhibitory effects of oxadiazon on cell migration and differentiation towards neuronal phenotype were achieved through modulation of ACYP2. Taken together, our findings reveal for the first time that oxadiazon could exert neurotoxic effects by impairing differentiative capabilities of primary neuronal cells and indicate that ALDH2 and ACYP2 are relevant molecular targets for the neurotoxic effects of oxadiazon, suggesting a potential role of this herbicide in the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Marta Chevanne
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|