1
|
Wang X, Yi Z, Shi M, Sun Y. The Diverse Functions of the Calcium- and Integrin-Binding Protein Family. Int J Mol Sci 2025; 26:2223. [PMID: 40076845 PMCID: PMC11900603 DOI: 10.3390/ijms26052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The calcium- and integrin-binding protein (CIB) family, comprising four evolutionarily conserved members (CIB1, CIB2, CIB3, and CIB4), is characterized by canonical EF-hand motifs. The functions of CIBs in the inner ear have been investigated, although further research is still necessary to gain a comprehensive understanding of them. Among the CIB family members, CIB2 is essential for auditory function. CIB3 and CIB2 jointly participate in the regulation of balance. Beyond their sensory roles, CIBs exhibit multifunctionality through calcium-dependent interactions with diverse molecular partners, contributing to the pathogenesis of various conditions, including neurological disorders, cardiovascular diseases, cancer, and male infertility. In this review, we discuss the conserved structure of the CIB family, highlighting its contributions to various biological functions. We also summarize the distribution and function of the CIB family, emphasizing the pivotal roles of CIB2 and CIB3 in hearing and balance.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangyi Yi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinic Research Center for Deafness and Vertigo, Wuhan 430022, China
| |
Collapse
|
2
|
Li Y, Chen J, Jiang W, Ye J, Zhang X, Wang C. Structural insights into calcium-dependent CIB2-TMC1 interaction in hair cell mechanotransduction. Commun Biol 2025; 8:306. [PMID: 40000792 PMCID: PMC11861898 DOI: 10.1038/s42003-025-07761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Calcium- and integrin-binding protein 2 (CIB2) plays a crucial role in mechanoelectrical transduction (MET) in cochlear hair cells, particularly in modulating the function and localization of the core components of MET channels TMC1/2. CIB2, along with its homolog CIB3, interacts with TMC1/2 through two distinct sites. Here, our study unveils CIB2/3's role as a calcium sensor in its interaction with TMC1. Utilizing X-ray crystallography, we elucidate the high-resolution structure of the mammalian CIB2-TMC1 complex. Structural analyses reveal that cation-bound CIB2 forms a negatively charged surface that aligns with a positively charged surface on the TMC1 N-terminus. Moreover, our data suggest that Ca²⁺ modulates CIB2's interaction with both the N-terminal domain and the loop 1 region of TMC1, and that Ca²⁺-bound CIB2 is capable of simultaneously binding to both regions of TMC1. Critically, we examine pathogenic variants of CIB2 associated with hearing loss, discovering that these variants have differential impacts on CIB2's interactions with TMC1's dual binding sites, displaying diminished calcium-binding affinities for several of these CIB2 mutations. These findings provide a deeper understanding of the molecular mechanisms underlying CIB2 function and its implications in hearing loss, offering potential avenues for therapeutic interventions in deafness.
Collapse
Affiliation(s)
- Yahong Li
- Department of Neurology, the First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiasheng Chen
- Department of Neurology, the First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenli Jiang
- Department of Neurology, the First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jin Ye
- Department of Neurology, the First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Wu S, Lin L, Hu Q, Yao X, Wang H, Liu S, Liu Q, Xi Y, Lin Y, Gong J, Hu R, Zhan W, Luo Y, He G, Liu Z, Xiong W, Wang Q, Xu Z, Bai F, Lu Q. Mechano-electrical transduction components TMC1-CIB2 undergo a Ca 2+-induced conformational change linked to hearing loss. Dev Cell 2025:S1534-5807(25)00004-8. [PMID: 39889697 DOI: 10.1016/j.devcel.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
TMC1, a unique causative gene associated with deafness, exhibits variants with autosomal dominant and recessive inheritance patterns. TMC1 codes for the transmembrane channel-like protein 1 (TMC1), a key component of the mechano-electrical transduction (MET) machinery for hearing. However, the molecular mechanism of Ca2+ regulation in MET remains unclear. Calcium and integrin-binding protein 2 (CIB2), another MET component associated with deafness, can bind with Ca2+. Our study shows that TMC1-CIB2 complex undergoes a Ca2+-induced conformational change. We identified a vertebrate-specific binding site on TMC1 that interacts with apo CIB2, linked with hearing loss. Using an ex vivo mouse organotypic cochlea model, we demonstrated that disruption of the calcium-binding site of CIB2 perturbs the MET channel conductivity. After systematically analyzing the hearing loss variants, we observed dominant mutations of TMC1 cluster around the putative ion pore or at the binding interfaces with CIB2. These findings elucidate the molecular mechanisms underlying TMC1-linked hearing loss.
Collapse
Affiliation(s)
- Shaoxuan Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiaoyu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
| | - Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Hongyang Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yuzhe Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jianqiao Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Zhan
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Lab, Shanghai 201210, China
| | - Yi Luo
- Senior Department of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Lab, Shanghai 201210, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Qiuju Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
4
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Aponte Rivera R, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. eLife 2025; 12:RP89719. [PMID: 39773557 PMCID: PMC11709434 DOI: 10.7554/elife.89719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud PJ Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Ophthalmology and Visual Sciences, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
5
|
Olivieri G, Dal Cortivo G, Del Conte R, Zanzoni S, Marino V, Dell'Orco D, Cantini F. Structural dynamics of calcium and integrin-binding protein 2 (CIB2) reveal uncommon flexibility and heterogeneous calcium and magnesium loading. Int J Biol Macromol 2025; 286:138003. [PMID: 39586446 DOI: 10.1016/j.ijbiomac.2024.138003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Calcium- and Integrin-Binding protein 2 (CIB2) is a widely expressed protein with an uncertain biological role. Two of its four EF-hand motifs bind Mg(II) and/or Ca(II), thus triggering conformational changes. Although previous studies suggested that CIB2 preferentially binds Mg(II) over Ca(II) under physiological conditions, an atomic level characterization of CIB2 in the presence of both cations was lacking. Based on a combination of solution NMR, exhaustive molecular dynamics simulations and isothermal titration and differential scanning calorimetry, we characterized the interaction of CIB2 with both Ca(II) and Mg(II) ions and elucidated the protein regions involved in the interaction with the α7B integrin target. Analysis of experimental amide nitrogen relaxation rates shows that the EF4 motif exhibits high mobility regardless of the specific bound metal ion and demonstrates that the Mg(II)- and Ca(II)-bound state of CIB2 is relatively floppy, with pico-nanosecond motions induced in a region involved in target recognition. Overall, our data indicate a preferential, thermodynamically stable but structurally flexible state for CIB2, in which a Mg(II) ion is bound to EF3 and a Ca(II) ion to EF4. These results unveil the role of metal binding events in CIB2 and offer new insights into the dynamic regulation of target recognition.
Collapse
Affiliation(s)
- Gabriele Olivieri
- Magnetic Resonance Center, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Rebecca Del Conte
- Magnetic Resonance Center, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
6
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Rivera RA, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542533. [PMID: 37398045 PMCID: PMC10312449 DOI: 10.1101/2023.05.26.542533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Marino V, Cortivo GD, Dell'Orco D. Ionic displacement of Ca 2+ by Pb 2+ in calmodulin is affected by arrhythmia-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119490. [PMID: 37201768 DOI: 10.1016/j.bbamcr.2023.119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Lead is a highly toxic metal that severely perturbs physiological processes even at sub-micromolar levels, often by disrupting the Ca2+ signaling pathways. Recently, Pb2+-associated cardiac toxicity has emerged, with potential involvement of both the ubiquitous Ca2+ sensor protein calmodulin (CaM) and ryanodine receptors. In this work, we explored the hypothesis that Pb2+ contributes to the pathological phenotype of CaM variants associated with congenital arrhythmias. We performed a thorough spectroscopic and computational characterization of CaM conformational switches in the co-presence of Pb2+ and four missense mutations associated with congenital arrhythmias, namely N53I, N97S, E104A and F141L, and analyzed their effects on the recognition of a target peptide of RyR2. When bound to any of the CaM variants, Pb2+ is difficult to displace even under equimolar Ca2+ concentrations, thus locking all CaM variants in a specific conformation, which exhibits characteristics of coiled-coil assemblies. All arrhythmia-associated variants appear to be more susceptible to Pb2+ than WT CaM, as the conformational transition towards the coiled-coil conformation occurs at lower Pb2+, regardless of the presence of Ca2+, with altered cooperativity. The presence of arrhythmia-associated mutations specifically alters the cation coordination of CaM variants, in some cases involving allosteric communication between the EF-hands in the two domains. Finally, while wild type CaM increases the affinity for the RyR2 target in the presence of Pb2+, no specific pattern could be detected for all other variants, ruling out a synergistic effect of Pb2+ and mutations in the recognition process.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy.
| |
Collapse
|
8
|
Dal Cortivo G, Marino V, Bianconi S, Dell'Orco D. Calmodulin variants associated with congenital arrhythmia impair selectivity for ryanodine receptors. Front Mol Biosci 2023; 9:1100992. [PMID: 36685279 PMCID: PMC9849693 DOI: 10.3389/fmolb.2022.1100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Among its many molecular targets, the ubiquitous calcium sensor protein calmodulin (CaM) recognizes and regulates the activity of ryanodine receptors type 1 (RyR1) and 2 (RyR2), mainly expressed in skeletal and cardiac muscle, respectively. Such regulation is essential to achieve controlled contraction of muscle cells. To unravel the molecular mechanisms underlying the target recognition process, we conducted a comprehensive biophysical investigation of the interaction between two calmodulin variants associated with congenital arrhythmia, namely N97I and Q135P, and a highly conserved calmodulin-binding region in RyR1 and RyR2. The structural, thermodynamic, and kinetic properties of protein-peptide interactions were assessed together with an in-depth structural and topological investigation based on molecular dynamics simulations. This integrated approach allowed us to identify amino acids that are crucial in mediating allosteric processes, which enable high selectivity in molecular target recognition. Our results suggest that the ability of calmodulin to discriminate between RyR1 an RyR2 targets depends on kinetic discrimination and robust allosteric communication between Ca2+-binding sites (EF1-EF3 and EF3-EF4 pairs), which is perturbed in both N97I and Q135P arrhythmia-associated variants.
Collapse
|
9
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Dal Cortivo G, Dell’Orco D. Calcium- and Integrin-Binding Protein 2 (CIB2) in Physiology and Disease: Bright and Dark Sides. Int J Mol Sci 2022; 23:ijms23073552. [PMID: 35408910 PMCID: PMC8999013 DOI: 10.3390/ijms23073552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium- and integrin-binding protein 2 (CIB2) is a small EF-hand protein capable of binding Mg2+ and Ca2+ ions. While its biological function remains largely unclear, an increasing number of studies have shown that CIB2 is an essential component of the mechano-transduction machinery that operates in cochlear hair cells. Mutations in the gene encoding CIB2 have been associated with non-syndromic deafness. In addition to playing an important role in the physiology of hearing, CIB2 has been implicated in a multitude of very different processes, ranging from integrin signaling in platelets and skeletal muscle to autophagy, suggesting extensive functional plasticity. In this review, we summarize the current understanding of biochemical and biophysical properties of CIB2 and the biological roles that have been proposed for the protein in a variety of processes. We also highlight the many molecular aspects that remain unclarified and deserve further investigation.
Collapse
|
11
|
Avesani A, Bielefeld L, Weisschuh N, Marino V, Mazzola P, Stingl K, Haack TB, Koch KW, Dell’Orco D. Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa. Int J Mol Sci 2022; 23:ijms23063240. [PMID: 35328663 PMCID: PMC8948881 DOI: 10.3390/ijms23063240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.
Collapse
Affiliation(s)
- Anna Avesani
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Laura Bielefeld
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
- Correspondence: ; Tel.: +39-045-802-7637
| |
Collapse
|
12
|
Biasi A, Marino V, Dal Cortivo G, Maltese PE, Modarelli AM, Bertelli M, Colombo L, Dell’Orco D. A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. Int J Mol Sci 2021; 22:ijms221910809. [PMID: 34639157 PMCID: PMC8509414 DOI: 10.3390/ijms221910809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 μs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.
Collapse
Affiliation(s)
- Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | | | - Antonio Mattia Modarelli
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
| | - Matteo Bertelli
- MAGI’S Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| |
Collapse
|
13
|
Liang X, Qiu X, Dionne G, Cunningham CL, Pucak ML, Peng G, Kim YH, Lauer A, Shapiro L, Müller U. CIB2 and CIB3 are auxiliary subunits of the mechanotransduction channel of hair cells. Neuron 2021; 109:2131-2149.e15. [PMID: 34089643 PMCID: PMC8374959 DOI: 10.1016/j.neuron.2021.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/17/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
CIB2 is a Ca2+- and Mg2+-binding protein essential for mechanoelectrical transduction (MET) by cochlear hair cells, but not by vestibular hair cells that co-express CIB2 and CIB3. Here, we show that in cochlear hair cells, CIB3 can functionally substitute for CIB2. Using X-ray crystallography, we demonstrate that CIB2 and CIB3 are structurally similar to KChIP proteins, auxiliary subunits of voltage-gated Kv4 channels. CIB2 and CIB3 bind to TMC1/2 through a domain in TMC1/2 flanked by transmembrane domains 2 and 3. The co-crystal structure of the CIB-binding domain in TMC1 with CIB3 reveals that interactions are mediated through a conserved CIB hydrophobic groove, similar to KChIP1 binding of Kv4. Functional studies in mice show that CIB2 regulates TMC1/2 localization and function in hair cells, processes that are affected by deafness-causing CIB2 mutations. We conclude that CIB2 and CIB3 are MET channel auxiliary subunits with striking similarity to Kv4 channel auxiliary subunits.
Collapse
Affiliation(s)
- Xiaoping Liang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gilman Dionne
- Department of Biochemistry and Molecular Biophysics, Zuckerman Mind Brain, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Christopher L Cunningham
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michele L Pucak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guihong Peng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye-Hyun Kim
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Zuckerman Mind Brain, Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Sethna S, Scott PA, Giese APJ, Duncan T, Jian X, Riazuddin S, Randazzo PA, Redmond TM, Bernstein SL, Riazuddin S, Ahmed ZM. CIB2 regulates mTORC1 signaling and is essential for autophagy and visual function. Nat Commun 2021; 12:3906. [PMID: 34162842 PMCID: PMC8222345 DOI: 10.1038/s41467-021-24056-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disorder. Although molecular mechanisms remain elusive, deficits in autophagy have been associated with AMD. Here we show that deficiency of calcium and integrin binding protein 2 (CIB2) in mice, leads to age-related pathologies, including sub-retinal pigment epithelium (RPE) deposits, marked accumulation of drusen markers APOE, C3, Aβ, and esterified cholesterol, and impaired visual function, which can be rescued using exogenous retinoids. Cib2 mutant mice exhibit reduced lysosomal capacity and autophagic clearance, and increased mTORC1 signaling-a negative regulator of autophagy. We observe concordant molecular deficits in dry-AMD RPE/choroid post-mortem human tissues. Mechanistically, CIB2 negatively regulates mTORC1 by preferentially binding to 'nucleotide empty' or inactive GDP-loaded Rheb. Upregulated mTORC1 signaling has been implicated in lymphangioleiomyomatosis (LAM) cancer. Over-expressing CIB2 in LAM patient-derived fibroblasts downregulates hyperactive mTORC1 signaling. Thus, our findings have significant implications for treatment of AMD and other mTORC1 hyperactivity-associated disorders.
Collapse
Affiliation(s)
- Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick A Scott
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven L Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Marino V, Dal Cortivo G, Maltese PE, Placidi G, De Siena E, Falsini B, Bertelli M, Dell’Orco D. Impaired Ca 2+ Sensitivity of a Novel GCAP1 Variant Causes Cone Dystrophy and Leads to Abnormal Synaptic Transmission Between Photoreceptors and Bipolar Cells. Int J Mol Sci 2021; 22:ijms22084030. [PMID: 33919796 PMCID: PMC8070792 DOI: 10.3390/ijms22084030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/23/2023] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1) is involved in the shutdown of the phototransduction cascade by regulating the enzymatic activity of retinal guanylate cyclase via a Ca2+/cGMP negative feedback. While the phototransduction-associated role of GCAP1 in the photoreceptor outer segment is widely established, its implication in synaptic transmission to downstream neurons remains to be clarified. Here, we present clinical and biochemical data on a novel isolate GCAP1 variant leading to a double amino acid substitution (p.N104K and p.G105R) and associated with cone dystrophy (COD) with an unusual phenotype. Severe alterations of the electroretinogram were observed under both scotopic and photopic conditions, with a negative pattern and abnormally attenuated b-wave component. The biochemical and biophysical analysis of the heterologously expressed N104K-G105R variant corroborated by molecular dynamics simulations highlighted a severely compromised Ca2+-sensitivity, accompanied by minor structural and stability alterations. Such differences reflected on the dysregulation of both guanylate cyclase isoforms (RetGC1 and RetGC2), resulting in the constitutive activation of both enzymes at physiological levels of Ca2+. As observed with other GCAP1-associated COD, perturbation of the homeostasis of Ca2+ and cGMP may lead to the toxic accumulation of second messengers, ultimately triggering cell death. However, the abnormal electroretinogram recorded in this patient also suggested that the dysregulation of the GCAP1–cyclase complex further propagates to the synaptic terminal, thereby altering the ON-pathway related to the b-wave generation. In conclusion, the pathological phenotype may rise from a combination of second messengers’ accumulation and dysfunctional synaptic communication with bipolar cells, whose molecular mechanisms remain to be clarified.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
| | | | - Giorgio Placidi
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elisa De Siena
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benedetto Falsini
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (B.F.); (D.D.); Tel.: +39-06-3015-6344 (B.F.); +39-045-802-7637 (D.D.)
| | - Matteo Bertelli
- MAGI’S Lab S.R.L., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
- Correspondence: (B.F.); (D.D.); Tel.: +39-06-3015-6344 (B.F.); +39-045-802-7637 (D.D.)
| |
Collapse
|
16
|
Avesani A, Marino V, Zanzoni S, Koch KW, Dell'Orco D. Molecular properties of human guanylate cyclase-activating protein 2 (GCAP2) and its retinal dystrophy-associated variant G157R. J Biol Chem 2021; 296:100619. [PMID: 33812995 PMCID: PMC8113879 DOI: 10.1016/j.jbc.2021.100619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.
Collapse
Affiliation(s)
- Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
17
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
18
|
Dal Cortivo G, Marino V, Bonì F, Milani M, Dell'Orco D. Missense mutations affecting Ca 2+-coordination in GCAP1 lead to cone-rod dystrophies by altering protein structural and functional properties. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118794. [PMID: 32650103 DOI: 10.1016/j.bbamcr.2020.118794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Guanylate cyclase activating protein 1 (GCAP1) is a neuronal calcium sensor (NCS) involved in the early biochemical steps underlying the phototransduction cascade. By switching from a Ca2+-bound form in the dark to a Mg2+-bound state following light activation of the cascade, GCAP1 triggers the activation of the retinal guanylate cyclase (GC), thus replenishing the levels of 3',5'-cyclic monophosphate (cGMP) necessary to re-open CNG channels. Here, we investigated the structural and functional effects of three missense mutations in GCAP1 associated with cone-rod dystrophy, which severely perturb the homeostasis of cGMP and Ca2+. Substitutions affect residues directly involved in Ca2+ coordination in either EF3 (D100G) or EF4 (E155A and E155G) Ca2+ binding motifs. We found that all GCAP1 variants form relatively stable dimers showing decreased apparent affinity for Ca2+ and blocking the enzyme in a constitutively active state at physiological levels of Ca2+. Interestingly, by corroborating spectroscopic experiments with molecular dynamics simulations we show that beside local structural effects, mutation of the bidentate glutamate in an EF-hand calcium binding motif can profoundly perturb the flexibility of the adjacent EF-hand as well, ultimately destabilizing the whole domain. Therefore, while Ca2+-binding to GCAP1 per se occurs sequentially, allosteric effects may connect EF hand motifs, which appear to be essential for the integrity of the structural switch mechanism in GCAP1, and perhaps in other NCS proteins.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Francesco Bonì
- CNR-IBF, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Mario Milani
- CNR-IBF, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy.
| |
Collapse
|
19
|
Nolen RM, Hufnagel RB, Friedman TB, Turriff AE, Brewer CC, Zalewski CK, King KA, Wafa TT, Griffith AJ, Brooks BP, Zein WM. Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genet 2020; 41:401-412. [PMID: 32372680 DOI: 10.1080/13816810.2020.1747090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.
Collapse
Affiliation(s)
- Rosalie M Nolen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Christopher K Zalewski
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Kelly A King
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Talah T Wafa
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
20
|
Constitutive Activation of Guanylate Cyclase by the G86R GCAP1 Variant Is Due to "Locking" Cation-π Interactions that Impair the Activator-to-Inhibitor Structural Transition. Int J Mol Sci 2020; 21:ijms21030752. [PMID: 31979372 PMCID: PMC7037459 DOI: 10.3390/ijms21030752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Guanylate Cyclase activating protein 1 (GCAP1) mediates the Ca2+-dependent regulation of the retinal Guanylate Cyclase (GC) in photoreceptors, acting as a target inhibitor at high [Ca2+] and as an activator at low [Ca2+]. Recently, a novel missense mutation (G86R) was found in GUCA1A, the gene encoding for GCAP1, in patients diagnosed with cone-rod dystrophy. The G86R substitution was found to affect the flexibility of the hinge region connecting the N- and C-domains of GCAP1, resulting in decreased Ca2+-sensitivity and abnormally enhanced affinity for GC. Based on a structural model of GCAP1, here, we tested the hypothesis of a cation-π interaction between the positively charged R86 and the aromatic W94 as the main mechanism underlying the impaired activator-to-inhibitor conformational change. W94 was mutated to F or L, thus, resulting in the double mutants G86R+W94L/F. The double mutants showed minor structural and stability changes with respect to the single G86R mutant, as well as lower affinity for both Mg2+ and Ca2+, moreover, substitutions of W94 abolished "phase II" in Ca2+-titrations followed by intrinsic fluorescence. Interestingly, the presence of an aromatic residue in position 94 significantly increased the aggregation propensity of Ca2+-loaded GCAP1 variants. Finally, atomistic simulations of all GCAP1 variants in the presence of Ca2+ supported the presence of two cation-π interactions involving R86, which was found to act as a bridge between W94 and W21, thus, locking the hinge region in an activator-like conformation and resulting in the constitutive activation of the target under physiological conditions.
Collapse
|
21
|
Dal Cortivo G, Marino V, Iacobucci C, Vallone R, Arlt C, Rehkamp A, Sinz A, Dell'Orco D. Oligomeric state, hydrodynamic properties and target recognition of human Calcium and Integrin Binding protein 2 (CIB2). Sci Rep 2019; 9:15058. [PMID: 31636333 PMCID: PMC6803640 DOI: 10.1038/s41598-019-51573-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022] Open
Abstract
Calcium- and Integrin-Binding protein 2 (CIB2) is a small and ubiquitously expressed protein with largely unknown biological function but ascertained role in hearing physiology and disease. Recent studies found that CIB2 binds Ca2+ with moderate affinity and dimerizes under conditions mimicking the physiological ones. Here we provided new lines of evidence on CIB2 oligomeric state and the mechanism of interaction with the α7B integrin target. Based on a combination of native mass spectrometry, chemical cross-linking/mass spectrometry, analytical gel filtration, dynamic light scattering and molecular dynamics simulations we conclude that CIB2 is monomeric under all tested conditions and presents uncommon hydrodynamic properties, most likely due to the high content of hydrophobic solvent accessible surface. Surface plasmon resonance shows that the interaction with α7B occurs with relatively low affinity and is limited to the cytosolic region proximal to the membrane, being kinetically favored in the presence of physiological Mg2+ and in the absence of Ca2+. Although CIB2 binds to an α7B peptide in a 1:1 stoichiometry, the formation of the complex might induce binding of another CIB2 molecule.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Rosario Vallone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anne Rehkamp
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| |
Collapse
|
22
|
Wei CC, Fabry E, Hay E, Lloyd L, Kaufman N, Yang YP, Stuehr DJ. Metal binding and conformational studies of the calcium binding domain of NADPH oxidase 5 reveal its similarity and difference to calmodulin. J Biomol Struct Dyn 2019; 38:2352-2368. [DOI: 10.1080/07391102.2019.1633409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chin-Chuan Wei
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Emily Fabry
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Evan Hay
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Laura Lloyd
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Nichole Kaufman
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Ya-Ping Yang
- Department of Pathobiology, the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Marino V, Dal Cortivo G, Oppici E, Maltese PE, D'Esposito F, Manara E, Ziccardi L, Falsini B, Magli A, Bertelli M, Dell'Orco D. A novel p.(Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors. Hum Mol Genet 2019; 27:4204-4217. [PMID: 30184081 DOI: 10.1093/hmg/ddy311] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Guanylate Cyclase-Activating Protein 1 (GCAP1) regulates the enzymatic activity of the photoreceptor guanylate cyclases (GC), leading to inhibition or activation of the cyclic guanosine monophosphate (cGMP) synthesis depending on its Ca2+- or Mg2+-loaded state. By genetically screening a family of patients diagnosed with cone-rod dystrophy, we identified a novel missense mutation with autosomal dominant inheritance pattern (c.332A>T; p.(Glu111Val); E111V from now on) in the GUCA1A gene coding for GCAP1. We performed a thorough biochemical and biophysical investigation of wild type (WT) and E111V human GCAP1 by heterologous expression and purification of the recombinant proteins. The E111V substitution disrupts the coordination of the Ca2+ ion in the high-affinity site (EF-hand 3, EF3), thus significantly decreasing the ability of GCAP1 to sense Ca2+ (∼80-fold higher Kdapp compared to WT). Both WT and E111V GCAP1 form dimers independently on the presence of cations, but the E111V Mg2+-bound form is prone to severe aggregation over time. Molecular dynamics simulations suggest a significantly increased flexibility of both the EF3 and EF4 cation binding loops for the Ca2+-bound form of E111V GCAP1, in line with the decreased affinity for Ca2+. In contrast, a more rigid backbone conformation is observed in the Mg2+-bound state compared to the WT, which results in higher thermal stability. Functional assays confirm that E111V GCAP1 interacts with the target GC with a similar apparent affinity (EC50); however, the mutant shifts the GC inhibition out of the physiological [Ca2+] (IC50E111V ∼10 μM), thereby leading to the aberrant constitutive synthesis of cGMP under conditions of dark-adapted photoreceptors.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.,MAGI Euregio, Bolzano, Italy.,Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | | | | | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Adriano Magli
- Department of Pediatric Ophthalmology, University of Salerno, Fisciano (SA), Italy
| | - Matteo Bertelli
- MAGI'S Lab s.r.l., Rovereto, Italy.,MAGI Euregio, Bolzano, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Marino V, Dell'Orco D. Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins. Front Mol Neurosci 2019; 12:50. [PMID: 30899213 PMCID: PMC6417375 DOI: 10.3389/fnmol.2019.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Neuronal Calcium Sensors (NCS) are highly conserved proteins specifically expressed in neurons. Calcium (Ca2+)-binding to their EF-hand motifs results in a conformational change, which is crucial for the recognition of a specific target and the downstream biological process. Here we present a comprehensive analysis of the allosteric communication between Ca2+-binding sites and the target interfaces of three NCS, namely NCS1, recoverin (Rec), and GCAP1. In particular, Rec was investigated in different Ca2+-loading states and in complex with a peptide from the Rhodopsin Kinase (GRK1) while NCS1 was studied in a Ca2+-loaded state in complex with either the same GRK1 target or a peptide from the D2 Dopamine receptor. A Protein Structure Network (PSN) accounting for persistent non-covalent interactions between amino acids was built for each protein state based on exhaustive Molecular Dynamics simulations. Structural network analysis helped unveiling the role of key amino acids in allosteric mechanisms and their evolutionary conservation among homologous proteins. Results for NCS1 highlighted allosteric inter-domain interactions between Ca2+-binding motifs and residues involved in target recognition. Robust long range, allosteric protein-target interactions were found also in Rec, in particular originating from the EF3 motif. Interestingly, Tyr 86, involved the hydrophobic packing of the N-terminal domain, was found to be a key residue for both intra- and inter-molecular communication with EF3, regardless of the presence of target or Ca2+ ions. Finally, based on a comprehensive topological PSN analysis for Rec, NCS1, and GCAP1 and multiple sequence alignments with homolog proteins, we propose that an evolution-driven correlation may exist between the amino acids mediating the highest number of persistent interactions (high-degree hubs) and their conservation. Such conservation is apparently fundamental for the specific structural dynamics required in signaling events.
Collapse
Affiliation(s)
- Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Dell'Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|