1
|
Nadi Moghadam N, Torkaman-Boutorabi A, Farhoudian A, Razaghi EM. Effects of acamprosate on alprazolam-induced conditioned place preference in male rats: The role of GABA and NMDA receptor subunits. Eur J Pharmacol 2025; 999:177643. [PMID: 40306538 DOI: 10.1016/j.ejphar.2025.177643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Alprazolam, a commonly prescribed benzodiazepine (BZD), poses a risk for abuse and has been linked to conditioned place preference (CPP). Research indicates that effective long-term treatments for alprazolam misuse are lacking. The mechanisms of tolerance and dependence for BZDs are similar to those seen with alcohol, involving gamma-aminobutyric acid (GABA) and glutamate neurotransmitter systems. Additionally, managing withdrawal symptoms and reducing relapse rates may be identical for both substances. Acamprosate's ability to reduce alcohol cravings and relapse has led this study to explore its potential as a treatment for the extinction and reinstatement of alprazolam-induced CPP. Accordingly, we evaluated the effects of different doses of acamprosate on the extinction period and reinstatement of alprazolam-induced CPP in male rats. We also assessed hippocampal gene expression of GABAA receptor (α1, α5, γ2) subunits and N-methyl-D-aspartate (NMDA) receptor (NR1, NR2A, NR2B) subunits after reinstatement, given alprazolam's action on these receptors. Alprazolam (1.5 mg/kg) could induce CPP in a 14-day paradigm. Acamprosate (20, 50, and 100 mg/kg) attenuated alprazolam-induced extinction period and reinstatement (P < 0.01). At the molecular level, acamprosate reduced the gene expression of α1 (P < 0.05) while increased α5 and γ2 subunits of GABAA receptors (p < 0.01). Besides, the gene expression of NR1, NR2A, and NR2B subunits of NMDA receptors were significantly enhanced by acamprosate (P < 0.001). These findings suggest that acamprosate is able to reduce the duration of extinction and reinstatement of alprazolam-induced CPP in male rats.
Collapse
Affiliation(s)
- Nasim Nadi Moghadam
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Farhoudian
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Manssen L, Krey I, Gburek-Augustat J, von Hagen C, Lemke JR, Merkenschlager A, Weigand H, Makowski C. Precision Medicine in Angelman Syndrome. Neuropediatrics 2025; 56:69-82. [PMID: 39168152 DOI: 10.1055/a-2399-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by a loss of function of UBE3A on the maternal allele. Clinical features include severe neurodevelopmental delay, epilepsy, sleep disturbances, and behavioral disorders. Therapy currently evolves from conventional symptomatic, supportive, and antiseizure treatments toward alteration of mRNA expression, which is subject of several ongoing clinical trials.This article will provide an overview of clinical research and therapeutic approaches on AS.
Collapse
Affiliation(s)
- Lena Manssen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropediatrics, Hospital for Children and Adolescents, Department of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Cornelia von Hagen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Kinderzentrum Munchen gemeinnutzige GmbH, kbo, Munich, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Merkenschlager
- Division of Neuropediatrics, Hospital for Children and Adolescents, Department of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Heike Weigand
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christine Makowski
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
3
|
Alabdali AN, Ben Bacha A, Alonazi M, Abuaish S, Almotairi A, Al-Ayadhi L, El-Ansary AK. Impact of GABA and nutritional supplements on neurochemical biomarkers in autism: a PPA rodent model study. Front Mol Neurosci 2025; 18:1553438. [PMID: 40171233 PMCID: PMC11959029 DOI: 10.3389/fnmol.2025.1553438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background/objectives Autism spectrum disorder (ASD) is associated with excitatory-inhibitory imbalance and oxidative stress. GABA, an inhibitory neurotransmitter, and related nutritional therapies are promising in restoring these imbalances. GABAergic deficits and glutamate excitotoxicity are two essential signaling pathways that could be addressed to treat autism, thus medications targeting these pathways are critical for treating behavioral symptoms. In a rat model of autism produced by propionic acid (PPA), this study assessed the effects of GABA supplementation and combined nutritional therapy (probiotics, vitamin D3) and β-lactam as an activator of glutamate transporter. Methods Sixty rats were randomly assigned into six groups: Group I (Control), Group II (PPA-treated), Group III (Control-GABA), Group IV (Control-Combination), Group V (PPA-GABA), and Group VI (PPA-Combination). Social behavior was evaluated using the three-chamber test. Selected biochemical variables related to oxidative stress (GST, Catalase, Lipid peroxides, GSH and Vitamin C), GABA and glutamate signaling (EAAT2, KCC2, NKCC1, GABA, VD3, Glutamate and GABRA5) were measured in the brain homogenates of the six groups. The hippocampus was examined histopathologically to assess cellular integrity. Results The obtained data revealed that PPA treatment caused significant oxidative stress and neurotransmitter imbalances, characterized by reduced GABA and elevated glutamate levels. GABA supplementation alone produced moderate benefits in biochemical and behavioral markers, but combined therapy considerably restored GABA levels, reduced oxidative stress, and enhanced social interaction behaviors. Histopathology revealed that combination therapy mitigated neurodegenerative changes induced by PPA, preserving hippocampal cellular structure. Conclusion This study demonstrated that combined therapy (GABA, probiotics, vitamin D3, and β-lactam) were more effective than GABA alone in enhancing neurochemical balance and lowering oxidative stress in a PPA-induced mouse model of autism, indicating promise for treating symptoms.
Collapse
Affiliation(s)
- Altaf N. Alabdali
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmad Almotairi
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf K. El-Ansary
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Mazza F, Guet-McCreight A, Prevot TD, Valiante T, Sibille E, Hay E. Electroencephalography Biomarkers of α5-GABA Positive Allosteric Modulators in Rodents. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100435. [PMID: 39990628 PMCID: PMC11846935 DOI: 10.1016/j.bpsgos.2024.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025] Open
Abstract
Background Reduced cortical inhibition mediated by GABA (gamma-aminobutyric acid) is reported in depression, anxiety disorders, and aging. A novel positive allosteric modulator that specifically targets the α5-GABAA receptor subunit (α5-PAM), ligand GL-II-73 shows anxiolytic, antidepressant, and procognitive effects without the common side effects associated with nonspecific modulation by benzodiazepines such as diazepam, thus suggesting novel therapeutic potential. However, it is unknown whether α5-PAM has detectable signatures in clinically relevant brain electroencephalography (EEG). Methods We analyzed EEG in 10 freely moving rats at baseline and following injections of α5-PAM (GL-II-73) and diazepam. Results We showed that α5-PAM specifically decreased theta peak power, whereas diazepam shifted peak power from high to low theta while increasing beta and gamma power. EEG decomposition showed that these effects were periodic and corresponded to changes in theta oscillation event duration. Conclusions Thus, our study shows that α5-PAM has robust and distinct EEG biomarkers in rodents, indicating that EEG could enable noninvasive monitoring of α5-PAM treatment efficacy.
Collapse
Affiliation(s)
- Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Thomas D. Prevot
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Taufik Valiante
- Krembil Brain Institute, University Healthy Network, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Bernardo AM, Marcotte M, Wong K, Sharmin D, Pandey KP, Cook JM, Sibille EL, Prevot TD. Procognitive and neurotrophic benefits of α5-GABA-A receptor positive allosteric modulation in a β-amyloid deposition mouse model of Alzheimer's disease pathology. Neurobiol Aging 2025; 147:49-59. [PMID: 39689527 DOI: 10.1016/j.neurobiolaging.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Reduced somatostatin (SST) and SST-expressing GABAergic neurons are well-replicated findings in Alzheimer's disease (AD) and are associated with cognitive deficits. SST cells inhibit pyramidal cell dendrites through α5-GABA-A receptors (α5-GABAA-R). α5-GABAAR positive allosteric modulation (α5-PAM) has procognitive and neurotrophic effects in stress and aging models. We tested whether α5-PAM (GL-II-73) could prevent cognitive deficits and neuronal spine loss in early stages, and reverse them in late stages of β-amyloid deposition in the 5xFAD model (N = 48/study; 50 % female). Acute administration of GL-II-73 prevented spatial working memory deficits in 5xFAD mice at 2 months of age, while chronic administration reversed the deficits at 5 months of age. Chronic GL-II-73 treatment prevented 5xFAD-induced loss of spine density, spine count and dendritic length at both time points, despite β-amyloid accumulation. These results demonstrate procognitive and neurotrophic effects of GL-II-73 in early and late stages of Alzheimer-related β-amyloid deposition. This suggests α5-PAM as a novel β-amyloid-independent symptomatic therapeutic approach.
Collapse
Affiliation(s)
- Ashley M Bernardo
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Michael Marcotte
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Kayla Wong
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - Kamal P Pandey
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada.
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Mordyl B, Fajkis-Zajączkowska N, Szafrańska K, Siwek A, Głuch-Lutwin M, Żmudzki P, Jończyk J, Karcz T, Słoczyńska K, Pękala E, Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Sałach A, Jastrzębska-Więsek M, Walczak M, Gawlik MT, Smolik M, Kolaczkowski M, Marcinkowska M. Preferential Synaptic Type of GABA-A Receptor Ligands Enhancing Neuronal Survival and Facilitating Functional Recovery After Ischemic Stroke. J Med Chem 2024; 67:21859-21889. [PMID: 39668673 DOI: 10.1021/acs.jmedchem.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Selective enhancement of synaptic GABA signaling mediated by GABA-A receptors has been previously reported to promote functional recovery after ischemic stroke, while tonic GABA signaling has been detrimental. To identify agents that enhance synaptic signaling, we synthesized GABA-A ligands based on three chemotypes with affinity values pKi= 6.44-8.32. Representative compounds showed a preference in functional responses toward synaptic type of GABA-A receptors, compared to the extrasynaptic ones. In a cellular ischemia model (OGD), selected compounds showed the potential to improve neuronal recovery. The selected lead, compound 4, demonstrated the ability to reduce mitochondrial dysfunction, regulate intracellular calcium levels, decrease caspase 3 levels, and promote neurite outgrowth in in vitro assays. In an animal model, compound 4 enhanced motor recovery and showed neuroprotective activity by reducing infarct volume and decreasing poststroke acidosis. These findings underscore the value of selective ligands modulating synaptic GABA-A receptors in promoting recovery from ischemic stroke.
Collapse
Affiliation(s)
- Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Nikola Fajkis-Zajączkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szafrańska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bartosz Pomierny
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Jakub Jurczyk
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Alicja Skórkowska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Sałach
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maciej Tadeusz Gawlik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Smolik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| |
Collapse
|
7
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
8
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
9
|
Wang Z, Dong J, Zhang M, Wang S, Wu J, Wang S, Luo Y, Wang Y, Yin Y. Sevoflurane-induced overexpression of extrasynaptic α5-GABA AR via the RhoA/ROCK2 pathway impairs cognitive function in aged mice. Aging Cell 2024; 23:e14209. [PMID: 38825816 PMCID: PMC11488297 DOI: 10.1111/acel.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Perioperative neurocognitive disorder (PND) is a serious neurologic complication in aged patients and might be associated with sevoflurane exposure. However, the specific pathogenesis is still unclear. The distribution of α5-GABAAR, a γ-aminobutyric acid type A receptor (GABAAR) subtype, at extrasynaptic sites is influenced by the anchor protein radixin, whose phosphorylation is regulated via the RhoA/ROCK2 signaling pathway and plays a crucial role in cognition. However, whether sevoflurane affects the ability of radixin phosphorylation to alter extrasynaptic receptor expression is unknown. Aged mice were exposed to sevoflurane to induce cognitive impairment. Both total proteins and membrane proteins were extracted for analysis. Cognitive function was evaluated using the Morris water maze and fear conditioning test. Western blotting was used to determine the expression of ROCK2 and the phosphorylation of radixin. Furthermore, the colocalization of p-radixin and α5-GABAAR was observed. To inhibit ROCK2 activity, either an adeno-associated virus (AAV) or fasudil hydrochloride was administered. Aged mice treated with sevoflurane exhibited significant cognitive impairment accompanied by increased membrane expression of α5-GABAAR. Moreover, the colocalization of α5-GABAAR and p-radixin increased after treatment with sevoflurane, and this change was accompanied by an increase in ROCK2 expression and radixin phosphorylation. Notably, inhibiting the RhoA/ROCK2 pathway significantly decreased the distribution of extrasynaptic α5-GABAAR and improved cognitive function. Sevoflurane activates the RhoA/ROCK2 pathway and increases the phosphorylation of radixin. Excess α5-GABAAR is anchored to extrasynaptic sites and impairs cognitive ability in aged mice. Fasudil hydrochloride administration improves cognitive function.
Collapse
Affiliation(s)
- Zhun Wang
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jinpeng Dong
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Mengxue Zhang
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixuan Wang
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jiangnan Wu
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shengran Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresAcademy of Military Medical SciencesBeijingChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresAcademy of Military Medical SciencesBeijingChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresAcademy of Military Medical SciencesBeijingChina
| | - Yiqing Yin
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
10
|
Balleste AF, Sangadi A, Titus DJ, Johnstone T, Hogenkamp D, Gee KW, Atkins CM. Enhancing cognitive recovery in chronic traumatic brain injury through simultaneous allosteric modulation of α7 nicotinic acetylcholine and α5 GABA A receptors. Exp Neurol 2024; 379:114879. [PMID: 38942266 PMCID: PMC11283977 DOI: 10.1016/j.expneurol.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.
Collapse
Affiliation(s)
- Alyssa F Balleste
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Akhila Sangadi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J Titus
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Derk Hogenkamp
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Kelvin W Gee
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
Souza AJ, Freitas ÍS, Sharmin D, Cook JM, Guimarães FS, Gomes FV. An alpha 5-GABA A receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in rats exposed to valproic acid in utero. Autism Res 2024; 17:1534-1544. [PMID: 39169698 PMCID: PMC11343091 DOI: 10.1002/aur.3178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in rats exposed to valproic acid (VPA) in utero, an established risk factor for autism. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. SH-053-2'F-R-CH3 was administered intraperitoneally 30 min before each behavioral test and electrophysiology. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Adult male and female VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate that α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Collapse
Affiliation(s)
- Adriana Jesus Souza
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ícaro Silva Freitas
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M. Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Livingston NR, Kiemes A, Devenyi GA, Knight S, Lukow PB, Jelen LA, Reilly T, Dima A, Nettis MA, Casetta C, Agyekum T, Zelaya F, Spencer T, De Micheli A, Fusar-Poli P, Grace AA, Williams SCR, McGuire P, Egerton A, Chakravarty MM, Modinos G. Effects of diazepam on hippocampal blood flow in people at clinical high risk for psychosis. Neuropsychopharmacology 2024; 49:1448-1458. [PMID: 38658738 PMCID: PMC11250854 DOI: 10.1038/s41386-024-01864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.
Collapse
Affiliation(s)
- Nicholas R Livingston
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Amanda Kiemes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Samuel Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Luke A Jelen
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Reilly
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Aikaterini Dima
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Maria Antonietta Nettis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cecilia Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Tyler Agyekum
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Andrea De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
13
|
Li D, Li X, Li J, Liu J, Luo R, Li Y, Wang D, Zhou D, Zhang XY. Neurophysiological markers of disease severity and cognitive dysfunction in major depressive disorder: A TMS-EEG study. Int J Clin Health Psychol 2024; 24:100495. [PMID: 39282218 PMCID: PMC11402404 DOI: 10.1016/j.ijchp.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Transcranial magnetic stimulation-electroencephalography (TMS-EEG) is a powerful technique to study the neuropathology and biomarkers of major depressive disorder (MDD). This study investigated cortical activity and its relationship with clinical symptoms and cognitive dysfunction in MDD patients by indexing TMS-EEG biomarkers in the dorsolateral prefrontal cortex (DLPFC). Methods 133 patients with MDD and 76 healthy individuals participated in this study. Single-pulse TMS was performed on the left DLPFC to obtain TMS-evoked potential (TEP) indices. TMS-EEG waveforms and components were determined by global mean field amplitude. We used the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to measure participants' cognitive function. Results Patients with MDD had a lower excitatory P180 index compared to healthy controls, and P180 amplitude was negatively correlated with the severity of depressive and anxiety symptoms in patients with MDD. In the MDD group, P30 amplitude was negatively associated with RBANS Visuospatial/ Constructional index and total score. Conclusions TMS-EEG findings suggest that abnormal cortical excitation and inhibition induced by TMS on the DLPFC are associated with the severity of clinical symptoms and cognitive dysfunction in patients with MDD. P180 and P30 have the potential to serve as neurophysiological biomarkers of clinical symptoms and cognitive dysfunction in MDD patients, respectively.
Collapse
Affiliation(s)
- Deyang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingxing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiaxin Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruichenxi Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Zhou
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Daher F, Villalobos NA, Hanley M, Atack JR, Popa MO, Fogaça MV. Basmisanil, an α5-GABA AR negative allosteric modulator, produces rapid and sustained antidepressant-like responses in male mice. Neurosci Lett 2024; 833:137828. [PMID: 38772437 PMCID: PMC11146097 DOI: 10.1016/j.neulet.2024.137828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
There is a critical need for safer and better-tolerated alternatives to address the current limitations of antidepressant treatments for major depressive disorder. Recently, drugs targeting the GABA system via α5-containing GABAA receptors (α5-GABAAR) as negative allosteric modulators (α5-NAMs) have shown promise in alleviating stress-related behaviors in preclinical studies, suggesting that α5-NAMs may have translational relevance as novel antidepressant medications. Here, we evaluated the efficacy of Basmisanil, an α5-NAM that has been evaluated in Phase 2 clinical studies as a cognitive enhancer, in a battery of behavioral tests relevant to coping strategies, motivation, and aversion in male mice, along with plasma and brain pharmacokinetic measurements. Our findings reveal that Basmisanil induces dose-dependent rapid antidepressant-like responses in the forced swim test and sucrose splash test without promoting locomotor stimulating effects. Furthermore, Basmisanil elicits sustained behavioral responses in the female urine sniffing test and sucrose splash test, observed 24 h and 48 h post-treatment, respectively. Bioanalysis of plasma and brain samples confirms effective blood-brain barrier penetration by Basmisanil and extrapolation to previously published data suggest that effects were observed at doses (10 and 30 mg/kg i.p.) corresponding to relatively modest levels of α5-GABAAR occupancy (40-65 %). These results suggest that Basmisanil exhibits a combination of rapid and sustained antidepressant-like effects highlighting the potential of α5-NAMs as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Narcy A Villalobos
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Marcus Hanley
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Mariana O Popa
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
15
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Wang DS, Ju L, Pinguelo AG, Kaneshwaran K, Haffey SC, Lecker I, Gohil H, Wheeler MB, Kaustov L, Ariza A, Yu M, Volchuk A, Steinberg BE, Goldenberg NM, Orser BA. Crosstalk between GABA A receptors in astrocytes and neurons triggered by general anesthetic drugs. Transl Res 2024; 267:39-53. [PMID: 38042478 DOI: 10.1016/j.trsl.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1β and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1β and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Ju
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arsène G Pinguelo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirusanthy Kaneshwaran
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean C Haffey
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irene Lecker
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Ariza
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - MeiFeng Yu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada
| | - Neil M Goldenberg
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada.
| |
Collapse
|
17
|
Wang S, Wang S, Wang Z, Dong J, Zhang M, Wang Y, Wang J, Jia B, Luo Y, Yin Y. The changing of α5-GABAA receptors expression and distribution participate in sevoflurane-induced learning and memory impairment in young mice. CNS Neurosci Ther 2024; 30:e14716. [PMID: 38698533 PMCID: PMC11066188 DOI: 10.1111/cns.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Shengran Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Sixuan Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jinpeng Dong
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Mengxue Zhang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jianyu Wang
- Department of Pharmaceutics, School of PharmacyShenyang Pharmaceutical UniversityBenxiChina
| | - Beichen Jia
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yiqing Yin
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
18
|
Shen W, Nwosu G, Honer M, Clasadonte J, Schmalzbauer S, Biven M, Langer K, Flamm C, Poliquin S, Mermer F, Dedeurwaerdere S, Hernandez MC, Kang JQ. γ-Aminobutyric acid transporter and GABA A receptor mechanisms in Slc6a1+/A288V and Slc6a1+/S295L mice associated with developmental and epileptic encephalopathies. Brain Commun 2024; 6:fcae110. [PMID: 38650830 PMCID: PMC11032196 DOI: 10.1093/braincomms/fcae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
We have previously characterized the molecular mechanisms for variants in γ-aminobutyric acid transporter 1-encoding solute carrier family 6-member 1 (SLC6A1) in vitro and concluded that a partial or complete loss of γ-aminobutyric acid uptake due to impaired protein trafficking is the primary aetiology. Impairment of γ-aminobutyric acid transporter 1 function could cause compensatory changes in the expression of γ-aminobutyric acid receptors, which, in turn, modify disease pathophysiology and phenotype. Here we used different approaches including radioactive 3H γ-aminobutyric acid uptake in cells and synaptosomes, immunohistochemistry and confocal microscopy as well as brain slice surface protein biotinylation to characterize Slc6a1+/A288V and Slc6a1+/S295L mice, representative of a partial or a complete loss of function of SLC6A1 mutations, respectively. We employed the γ-aminobutyric acid transporter 1-specific inhibitor [3H]tiagabine binding and GABAA receptor subunit-specific radioligand binding to profile the γ-aminobutyric acid transporter 1 and GABAA receptor expression in major brain regions such as cortex, cerebellum, hippocampus and thalamus. We also determined the total and surface expression of γ-aminobutyric acid transporter 1, γ-aminobutyric acid transporter 3 and expression of GABAA receptor in the major brain regions in the knockin mice. We found that γ-aminobutyric acid transporter 1 protein was markedly reduced in cortex, hippocampus, thalamus and cerebellum in both mutant mouse lines. Consistent with the findings of reduced γ-aminobutyric acid uptake for both γ-aminobutyric acid transporter 1(A288V) and γ-aminobutyric acid transporter 1(S295L), both the total and the γ-aminobutyric acid transporter 1-mediated 3H γ-aminobutyric acid reuptake was reduced. We found that γ-aminobutyric acid transporter 3 is only abundantly expressed in the thalamus and there was no compensatory increase of γ-aminobutyric acid transporter 3 in either of the mutant mouse lines. γ-Aminobutyric acid transporter 1 was reduced in both somatic regions and nonsomatic regions in both mouse models, in which a ring-like structure was identified only in the Slc6a1+/A288V mouse, suggesting more γ-aminobutyric acid transporter 1 retention inside endoplasmic reticulum in the Slc6a1+/A288V mouse. The [3H]tiagabine binding was similar in both mouse models despite the difference in γ-aminobutyric acid uptake function and γ-aminobutyric acid transporter 1 protein expression for both mutations. There were no differences in GABAA receptor subtype expression, except for a small increase in the expression of α5 subunits of GABAA receptor in the hippocampus of Slc6a1S295L homozygous mice, suggesting a potential interaction between the expression of this GABAA receptor subtype and the mutant γ-aminobutyric acid transporter 1. The study provides the first comprehensive characterization of the SLC6A1 mutations in vivo in two representative mouse models. Because both γ-aminobutyric acid transporter 1 and GABAA receptors are targets for anti-seizure medications, the findings from this study can help guide tailored treatment options based on the expression and function of γ-aminobutyric acid transporter 1 and GABAA receptor in SLC6A1 mutation-mediated neurodevelopmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gerald Nwosu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37240, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37232, USA
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Jerome Clasadonte
- Early Solutions, Neuroscience TA, UCB Biopharma SRL, Braine l’Alleud 1420, Belgium
| | - Svenja Schmalzbauer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Marshall Biven
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katherine Langer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carson Flamm
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah Poliquin
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37240, USA
| | - Felicia Mermer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Maria-Clemencia Hernandez
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37240, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center of Human Development, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
20
|
Guet-McCreight A, Chameh HM, Mazza F, Prevot TD, Valiante TA, Sibille E, Hay E. In-silico testing of new pharmacology for restoring inhibition and human cortical function in depression. Commun Biol 2024; 7:225. [PMID: 38396202 PMCID: PMC10891083 DOI: 10.1038/s42003-024-05907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | - Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
22
|
Xin Y, Chu T, Zhou S, Xu A. α5GABA A receptor: A potential therapeutic target for perioperative neurocognitive disorders, a review of preclinical studies. Brain Res Bull 2023; 205:110821. [PMID: 37984621 DOI: 10.1016/j.brainresbull.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Perioperative neurocognitive disorders (PND) are a common complication in elderly patients following surgery, which not only prolongs the recovery period but also affects their future quality of life and imposes a significant burden on their family and society. Multiple factors, including aging, vulnerability, anesthetic drugs, cerebral oxygen desaturation, and severe pain, have been associated with PND. Unfortunately, no effective drug is currently available to prevent PND. α5 γ-aminobutyric acid subtype A (α5GABAA) receptors have been implicated in cognitive function modulation. Positive or negative allosteric modulators of α5GABAA receptors have been found to improve cognitive impairment under different conditions. Therefore, targeting α5GABAA receptors may represent a promising treatment strategy for PND. This review focuses on preclinical studies of α5GABAA receptors and the risk factors associated with PND, primarily including aging, anesthetics, and neuroinflammation. Specifically, positive allosteric modulators of α5GABAA receptors have improved cognitive function in aged experimental animals. In contrast, negative allosteric modulators of α5GABAA receptors have been found to facilitate cognitive recovery in aged or adult experimental animals undergoing anesthesia and surgery but not in aged experimental animals under anesthesia alone. The reasons for the discordant findings have yet to be elucidated. In preclinical studies, different strategies of drug administration, as well as various behavioral tests, may influence the stability of the results. These issues need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
23
|
Wu K, Lu W. GABAergic synaptic transmission and plasticity oscillate across sleep and wake. Neural Regen Res 2023; 18:2647-2648. [PMID: 37449604 DOI: 10.4103/1673-5374.373665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Kunwei Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory, for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| |
Collapse
|
24
|
Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer's disease: Focus on microRNAs. Ageing Res Rev 2023; 92:102123. [PMID: 37967653 DOI: 10.1016/j.arr.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease characterized by the loss of cognitive function, confusion, and memory deficit. Accumulation of abnormal proteins, amyloid beta (Aß), and phosphorylated Tau (p-tau) forms plaques and tangles that deteriorate synapse function, resulting in neurodegeneration and cognitive decline in AD. The human brain is composed of different types of neurons and/or synapses that are functionally defective in AD. The GABAergic synapse, the most abundant inhibitory neuron in the human brain was found to be dysfunctional in AD and contributes to disrupting neurological function. This study explored the types of GABA receptors associated with neurological dysfunction and various biological and environmental factors that cause GABAergic neuron dysfunction in AD, such as Aβ, p-tau, aging, sex, astrocytes, microglia, APOE, mental disorder, diet, physical activity, and sleep. Furthermore, we explored the role of microRNAs (miRNAs) in the regulation of GABAergic synapse function in neurological disorders and AD states. We also discuss the molecular mechanisms underlying GABAergic synapse dysfunction with a focus on miR-27b, miR-30a, miR-190a/b, miR-33, miR-51, miR-129-5p, miR-376-3p, miR-376c, miR-30b and miR-502-3p. The purpose of our article is to highlight the recent research on miRNAs affecting the regulation of GABAergic synapse function and factors that contribute to the progression of AD.
Collapse
Affiliation(s)
- Jazmin Rivera
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
25
|
Torres-López C, Cuartero MI, García-Culebras A, de la Parra J, Fernández-Valle ME, Benito M, Vázquez-Reyes S, Jareño-Flores T, de Castro-Millán FJ, Hurtado O, Buckwalter MS, García-Segura JM, Lizasoain I, Moro MA. Ipsilesional Hippocampal GABA Is Elevated and Correlates With Cognitive Impairment and Maladaptive Neurogenesis After Cortical Stroke in Mice. Stroke 2023; 54:2652-2665. [PMID: 37694402 DOI: 10.1161/strokeaha.123.043516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Cognitive dysfunction is a frequent stroke sequela, but its pathogenesis and treatment remain unresolved. Involvement of aberrant hippocampal neurogenesis and maladaptive circuitry remodeling has been proposed, but their mechanisms are unknown. Our aim was to evaluate potential underlying molecular/cellular events implicated. METHODS Stroke was induced by permanent occlusion of the middle cerebral artery occlusion in 2-month-old C57BL/6 male mice. Hippocampal metabolites/neurotransmitters were analyzed longitudinally by in vivo magnetic resonance spectroscopy. Cognitive function was evaluated with the contextual fear conditioning test. Microglia, astrocytes, neuroblasts, interneurons, γ-aminobutyric acid (GABA), and c-fos were analyzed by immunofluorescence. RESULTS Approximately 50% of mice exhibited progressive post-middle cerebral artery occlusion cognitive impairment. Notably, immature hippocampal neurons in the impaired group displayed more severe aberrant phenotypes than those from the nonimpaired group. Using magnetic resonance spectroscopy, significant bilateral changes in hippocampal metabolites, such as myo-inositol or N-acetylaspartic acid, were found that correlated, respectively, with numbers of glia and immature neuroblasts in the ischemic group. Importantly, some metabolites were specifically altered in the ipsilateral hippocampus suggesting its involvement in aberrant hippocampal neurogenesis and remodeling processes. Specifically, middle cerebral artery occlusion animals with higher hippocampal GABA levels displayed worse cognitive outcome. Implication of GABA in this setting was supported by the amelioration of ischemia-induced memory deficits and aberrant hippocampal neurogenesis after blocking pharmacologically GABAergic neurotransmission, an intervention which was ineffective when neurogenesis was inhibited. These data suggest that GABA exerts its detrimental effect, at least partly, by affecting morphology and integration of newborn neurons into the hippocampal circuits. CONCLUSIONS Hippocampal GABAergic neurotransmission could be considered a novel diagnostic and therapeutic target for poststroke cognitive impairment.
Collapse
Affiliation(s)
- Cristina Torres-López
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Maria I Cuartero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Alicia García-Culebras
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Departamento de Biología Celular, Facultad de Medicina (A.G.-C.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Juan de la Parra
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - María E Fernández-Valle
- Infraestructura Científica y Técnica Singular (ICTS) Centro de Bioimagen Complutense (M.E.F.-V., J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
| | - Marina Benito
- Hospital Nacional de Parapléjicos de Toledo, Spain (M.B.)
| | - Sandra Vázquez-Reyes
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Tania Jareño-Flores
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Francisco J de Castro-Millán
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Olivia Hurtado
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA (M.S.B.)
| | - Juan M García-Segura
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Infraestructura Científica y Técnica Singular (ICTS) Centro de Bioimagen Complutense (M.E.F.-V., J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
- Departamento de Bioquímica y Biología Molecular (J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - María A Moro
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| |
Collapse
|
26
|
Luscher B, Maguire JL, Rudolph U, Sibille E. GABA A receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol Sci 2023; 44:586-600. [PMID: 37543478 PMCID: PMC10511219 DOI: 10.1016/j.tips.2023.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/07/2023]
Abstract
In the past 20 years, our understanding of the pathophysiology of depression has evolved from a focus on an imbalance of monoaminergic neurotransmitters to a multifactorial picture including an improved understanding of the role of glutamatergic excitatory and GABAergic inhibitory neurotransmission. FDA-approved treatments targeting the glutamatergic [esketamine for major depressive disorder (MDD)] and GABAergic (brexanolone for peripartum depression) systems have become available. This review focuses on the GABAA receptor (GABAAR) system as a target for novel antidepressants and discusses the mechanisms by which modulation of δ-containing GABAARs with neuroactive steroids (NASs) or of α5-containing GABAARs results in antidepressant or antidepressant-like actions and discusses clinical data on NASs. Moreover, a potential mechanism by which α5-GABAAR-positive allosteric modulators (PAMs) may improve cognitive deficits in depression is presented.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Psychiatry, Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of the Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Souza AJ, Sharmin D, Cook JM, Guimarães FS, Gomes FV. An alpha 5-GABAa receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in an animal model for autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554679. [PMID: 37662217 PMCID: PMC10473734 DOI: 10.1101/2023.08.24.554679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABA A receptors (α5-GABA A Rs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate α5-GABA A Rs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Collapse
|
28
|
Abdulzahir A, Klein S, Lor C, Perkins MG, Frelka A, Pearce RA. Changes in Memory, Sedation, and Receptor Kinetics Imparted by the β2-N265M and β3-N265M GABA A Receptor Point Mutations. Int J Mol Sci 2023; 24:5637. [PMID: 36982709 PMCID: PMC10053577 DOI: 10.3390/ijms24065637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation and β3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the β3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the β2-N265M and β3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both β2-N265M and β3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in β2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. β2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert A. Pearce
- Department of Anesthesiology, University Wisconsin, Madison, WI 53705, USA; (A.A.)
| |
Collapse
|
29
|
Anderson AG, Rogers BB, Loupe JM, Rodriguez-Nunez I, Roberts SC, White LM, Brazell JN, Bunney WE, Bunney BG, Watson SJ, Cochran JN, Myers RM, Rizzardi LF. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer's disease-specific cis-regulatory elements. CELL GENOMICS 2023; 3:100263. [PMID: 36950385 PMCID: PMC10025452 DOI: 10.1016/j.xgen.2023.100263] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer's disease (AD) and unaffected controls have been well documented, but few studies have rigorously interrogated the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics (snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcriptional changes. We detected 319,861 significant correlations, or links, between gene expression and cell type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the activity of many regions, including several candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Microglia links were globally enriched for heritability of AD risk and previously identified active regulatory regions.
Collapse
Affiliation(s)
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Lauren M. White
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stanley J. Watson
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
30
|
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, Keene CD, Crane PK, Mukherjee S, Russell WK, Taglialatela G, Limon A. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 145:303-324. [PMID: 36538112 PMCID: PMC9925531 DOI: 10.1007/s00401-022-02526-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Berenice A Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
31
|
Pareek T, Overton JS, Nguyen LT, Rahman MT, Sharmin D, Cook JM, Platt DM. Modeling cue-exposure therapy for alcohol use disorder in rhesus monkeys: Effects of putative cognitive enhancers. Drug Alcohol Depend 2023; 243:109735. [PMID: 36549228 PMCID: PMC9852009 DOI: 10.1016/j.drugalcdep.2022.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cue-exposure therapy (CET) is an effective approach for anxiety-related disorders, but its effectiveness for substance use disorders is less clear. One potential means of improving CET outcomes is to include a cognitive-enhancing pharmacotherapy. This study evaluated d-cycloserine (DCS) and RY-023, putative cognitive enhancers targeting glutamate and GABA systems, respectively, in a monkey model of CET for alcohol use disorder. METHODS Male rhesus monkeys (n = 4) underwent multiple cycles of the CET procedure. During baseline (Phase 1), monkeys self-administered an ethanol solution under a fixed-ratio schedule and limited access conditions such that every 5th response in a 3-h session resulted in 30-s access to a drinking spout and a change in ethanol-paired cue lights from white to red. Behavior then was extinguished (Phase 2) by omitting the ethanol solution yet retaining the ethanol-paired stimulus lights. Monkeys also received injections of vehicle, DCS (3 mg/kg), a partial agonist at the glycine modulatory site on glutamatergic NMDA receptors, or the α5GABAA receptor-selective inverse agonist RY-023 (0.03 or 0.3 mg/kg). Once responding declined, monkeys underwent a cue reactivity test (Phase 3), and then returned to self-administration the following day to assess reacquisition (Phase 4). RESULTS Through multiple cycles, self-administration remained stable. Compared to vehicle, DCS facilitated extinction of ethanol seeking (Phase 2) and delayed reacquisition of ethanol self-administration (Phase 4). In contrast, RY-023 facilitated extinction (Phase 2) and reduced cue reactivity (Phase 3). CONCLUSIONS Adjunctive pharmacotherapy can improve CET outcomes, but the choice of pharmacotherapy should be dependent on the outcome of interest.
Collapse
Affiliation(s)
- Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John S Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Luat T Nguyen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Md Toufiqur Rahman
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
32
|
Syding LA, Kubik-Zahorodna A, Reguera DP, Nickl P, Hruskova B, Kralikova M, Kopkanova J, Novosadova V, Kasparek P, Prochazka J, Rozman J, Turecek R, Sedlacek R. Ablation of Gabra5 Influences Corticosterone Levels and Anxiety-like Behavior in Mice. Genes (Basel) 2023; 14:genes14020285. [PMID: 36833213 PMCID: PMC9956889 DOI: 10.3390/genes14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Stress responses are activated by the hypothalamic-pituitary-adrenal axis (HPA axis), culminating in the release of glucocorticoids. During prolonged periods of secretion of glucocorticoids or inappropriate behavioral responses to a stressor, pathologic conditions may occur. Increased glucocorticoid concentration is linked to generalized anxiety, and there are knowledge gaps regarding its regulation. It is known that the HPA axis is under GABAergic control, but the contribution of the individual subunits of the GABA receptor is largely unknown. In this study, we investigated the relationship between the α5 subunit and corticosterone levels in a new mouse model deficient for Gabra5, which is known to be linked to anxiety disorders in humans and phenologs observed in mice. We observed decreased rearing behavior, suggesting lower anxiety in the Gabra5-/- animals; however, such a phenotype was absent in the open field and elevated plus maze tests. In addition to decreased rearing behavior, we also found decreased levels of fecal corticosterone metabolites in Gabra5-/- mice indicating a lowered stress response. Moreover, based on the electrophysiological recordings where we observed a hyperpolarized state of hippocampal neurons, we hypothesize that the constitutive ablation of the Gabra5 gene leads to functional compensation with other channels or GABA receptor subunits in this model.
Collapse
Affiliation(s)
- Linn Amanda Syding
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
- Correspondence: (A.K.-Z.); (R.S.)
| | - David Pajuelo Reguera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Petr Nickl
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Bohdana Hruskova
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Michaela Kralikova
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jana Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
| | - Rostislav Turecek
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic
- Correspondence: (A.K.-Z.); (R.S.)
| |
Collapse
|
33
|
Kovaříková V, Špirková A, Šefčíková Z, Pisko J, Kalatová L, Koppel J, Fabian D, Čikoš Š. Gamma-aminobutyric acid (GABA) can affect physiological processes in preimplantation embryos via GABA A and GABA B receptors. Reprod Med Biol 2023; 22:e12528. [PMID: 37476368 PMCID: PMC10354355 DOI: 10.1002/rmb2.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose Several widely used substances (e.g., some therapeutics or food supplements) can act on gamma-aminobutyric acid (GABA) receptors, and we investigated whether the activation of these receptors could affect the preimplantation embryo. Methods Transcripts of all GABA receptor subunits and selected proteins were examined using quantitative RT-PCR and immunohistochemistry. To analyze the effects of receptor activation, in vitro culture of mouse preimplantation embryos with natural and synthetic GABA receptor ligands was used. Results We detected nine GABA receptor transcripts in mouse blastocysts and 14 GABA receptor transcripts in ovulated oocytes. The results of this study indicate that ionotropic GABAA receptors can be formed from α5, β3, and γ3 (or δ, π) subunits, GABAA-ρ receptors can be formed from ρ2 subunits and metabotropic GABA receptors can be formed from GABAB1b and GABAB2 subunits in mouse blastocysts. Supplementing the culture medium with GABA at concentrations of 2-10 mM or with specific GABAA and GABAB receptor agonists (at concentrations of 10-100 μM) significantly increased the proportion of dead cells in blastocysts. The GABA-induced effects were prevented by pretreatment of embryos with GABAA and GABAB receptor antagonists. Conclusion The results of this study indicate that GABA and synthetic GABA receptor ligands can negatively affect preimplantation embryos via GABAA and GABAB receptors.
Collapse
Affiliation(s)
- Veronika Kovaříková
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Alexandra Špirková
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Zuzana Šefčíková
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Jozef Pisko
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Laura Kalatová
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Juraj Koppel
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Dušan Fabian
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| | - Štefan Čikoš
- Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
| |
Collapse
|
34
|
Prevot TD, Sibille E. Neurotrophic effects of potentiating gaba-mediated dendritic inhibition. Neuropsychopharmacology 2023; 48:213-214. [PMID: 35995974 PMCID: PMC9700866 DOI: 10.1038/s41386-022-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
35
|
Mabrouk DM, El Makawy AI, Ahmed KA, Ramadan MF, Ibrahim FM. Topiramate potential neurotoxicity and mitigating role of ginger oil in mice brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87184-87199. [PMID: 35802336 DOI: 10.1007/s11356-022-21878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Topiramate has multiple pharmacological mechanisms that are efficient in treating epilepsy and migraine. Ginger has been established to have gingerols and shogaols that cause migraine relief. Moreover, Topiramate has many off-label uses. Thus, it was necessary to explore the possible neurotoxicity of Topiramate and the role of ginger oil in attenuating the Topiramate neurotoxicity. Male albino mice were orally gavaged with Topiramate, ginger oil (400 mg/kg), and Topiramate plus ginger oil with the same pattern for 28 days. Oxidative stress markers, acetylcholinesterase (AchE), gamma-aminobutyric acid (GABA), and tumor necrosis factor-alpha (TNF-α) were examined. Histopathological examination, immunohistochemical glial fibrillary acidic protein (GFAP), and Bax expression analysis were detected. The GABAAR subunits, Gabra1, Gabra3, and Gabra5 expression, were assessed by RT-qPCR. The investigation showed that Topiramate raised oxidative stress markers levels, neurotransmitters, TNF-α, and diminished glutathione (GSH). In addition, Topiramate exhibited various neuropathological alterations, strong Bax, and GFAP immune-reactivity in the cerebral cortex. At the same time, the results indicated that ginger oil had no neurotoxicity. The effect of Topiramate plus ginger oil alleviated the changes induced by Topiramate in the tested parameters. Both Topiramate and ginger oil upregulated the mRNA expression of gabra1 and gabra3, while their interaction markedly downregulated them. Therefore, it could be concluded that the Topiramate overdose could cause neurotoxicity, but the interaction with ginger oil may reduce Topiramate-induced neurotoxicity and should be taken in parallel.
Collapse
Affiliation(s)
- Dalia M Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Aida I El Makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Mohamed Fawzy Ramadan
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| | - Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
36
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
37
|
Sleep and wake cycles dynamically modulate hippocampal inhibitory synaptic plasticity. PLoS Biol 2022; 20:e3001812. [PMID: 36318572 PMCID: PMC9624398 DOI: 10.1371/journal.pbio.3001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 01/01/2023] Open
Abstract
Sleep is an essential process that consolidates memories by modulating synapses through poorly understood mechanisms. Here, we report that GABAergic synapses in hippocampal CA1 pyramidal neurons undergo daily rhythmic alterations. Specifically, wake inhibits phasic inhibition, whereas it promotes tonic inhibition compared to sleep. We further utilize a model of chemically induced inhibitory long-term potentiation (iLTP) to examine inhibitory plasticity. Intriguingly, while CA1 pyramidal neurons in both wake and sleep mice undergo iLTP, wake mice have a much higher magnitude. We also employ optogenetics and observe that inhibitory inputs from parvalbumin-, but not somatostatin-, expressing interneurons contribute to dynamic iLTP during sleep and wake. Finally, we demonstrate that synaptic insertion of α5-GABAA receptors underlies the wake-specific enhancement of iLTP at parvalbumin-synapses, which is independent of time of the day. These data reveal a previously unappreciated daily oscillation of inhibitory LTP in hippocampal neurons and uncover a dynamic contribution of inhibitory synapses in memory mechanisms across sleep and wake.
Collapse
|
38
|
Guo Y, Luo N, Kang X. Potential mechanism of the Shunaoxin pill for preventing cognitive impairment in type 2 diabetes mellitus. Front Neurol 2022; 13:977953. [PMID: 36341127 PMCID: PMC9633951 DOI: 10.3389/fneur.2022.977953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aims to analyze the efficacy and mechanism of action of the Shunaoxin pill in preventing cognitive impairment in diabetic patients using network pharmacology. Methods The main active compounds of the Shunaoxin pills and their action targets were identified via the TCMSP and Batman-TCM databases. The GEO database was used to identify the genes in type 2 diabetic individuals associated with cognitive impairment. Subsequently, a common target protein-protein interaction (PPI) network was constructed using the STRING database, and targets associated with diabetes and cognitive impairment were screened by performing a topological analysis of the PPI network. The AutoDock Vina software was used for molecular docking to evaluate the reliability of the bioinformatic analysis predictions and validate the interactions between the active ingredients of the Shunaoxin pill and proteins associated with diabetes and cognitive impairment. Results Based on the TCMSP and Batman-Tcm platform, 48 active ingredients of the Shunaoxin pill were identified, corresponding to 222 potential action targets. Further analysis revealed that 18 active components of the Shunaoxin pill might contribute to cognitive impairment in type 2 diabetic patients. Molecular docking simulations demonstrated that the active ingredients of the Shunaoxin pill (hexadecanoic acid, stigmasterol, beta-sitosterol, and angelicin) targeted four core proteins: OPRK1, GABRA5, GABRP, and SCN3B. Conclusion Active ingredients of the Shunaoxin pill may alleviate cognitive impairment in diabetic patients by targeting the proteins OPRK1, GABRA5, GABRP, and SCN3B.
Collapse
Affiliation(s)
- Yuejie Guo
- Department of Geriatrics, The First People's Hospital of Chenzhou, Chenzhou, China
- *Correspondence: Yuejie Guo
| | - Ning Luo
- Department of Endocrinology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Xueran Kang
- Shanghai Jiao Tong University College of Basic Sciences, Shanghai, China
| |
Collapse
|
39
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
40
|
McCoy AM, Prevot TD, Mian MY, Cook JM, Frazer A, Sibille EL, Carreno FR, Lodge DJ. Positive Allosteric Modulation of α5-GABAA Receptors Reverses Stress-Induced Alterations in Dopamine System Function and Prepulse Inhibition of Startle. Int J Neuropsychopharmacol 2022; 25:688-698. [PMID: 35732272 PMCID: PMC9380714 DOI: 10.1093/ijnp/pyac035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Up to 64% of patients diagnosed with posttraumatic stress disorder (PTSD) experience psychosis, likely attributable to aberrant dopamine neuron activity. We have previously demonstrated that positive allosteric modulators of α5-GABAARs can selectively decrease hippocampal activity and reverse psychosis-like physiological and behavioral alterations in a rodent model used to study schizophrenia; however, whether this approach translates to a PTSD model remains to be elucidated. METHODS We utilized a 2-day inescapable foot shock (IS) procedure to induce stress-related pathophysiology in male Sprague-Dawley rats. We evaluated the effects of intra-ventral hippocampus (vHipp) administration GL-II-73, an α5-GABAAR, or viral overexpression of the α5 subunit, using in vivo electrophysiology and behavioral measures in control and IS-treated rats. RESULTS IS significantly increased ventral tegmental area dopamine neuron population activity, or the number of dopamine neurons firing spontaneously (n = 6; P = .016), consistent with observation in multiple rodent models used to study psychosis. IS also induced deficits in sensorimotor gating, as measured by reduced prepulse inhibition of startle (n = 12; P = .039). Interestingly, intra-vHipp administration of GL-II-73 completely reversed IS-induced increases in dopamine neuron population activity (n = 6; P = .024) and deficits in prepulse inhibition (n = 8; P = .025), whereas viral overexpression of the α5 subunit in the vHipp was not effective. CONCLUSIONS Our results demonstrate that pharmacological intervention augmenting α5-GABAAR function, but not α5 overexpression in itself, can reverse stress-induced deficits related to PTSD in a rodent model, providing a potential site of therapeutic intervention to treat comorbid psychosis in PTSD.
Collapse
Affiliation(s)
- Alexandra M McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Md Yenus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| |
Collapse
|
41
|
George S, Chiou TT, Kanamalla K, De Blas AL. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol Neurobiol 2022; 42:1585-1604. [PMID: 33547626 PMCID: PMC11421751 DOI: 10.1007/s10571-021-01050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
It has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABAA receptors (GABAARs). Synaptic and extrasynaptic GABAARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABAARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABAARs. Nevertheless, there are no studies of the direct binding of various types of GABAARs with the submembranous Geph/CB lattice in the absence of other synaptic proteins, some of which are known to interact with GABAARs. We have reconstituted GABAARs of various subunit compositions, together with the Geph/CB scaffold, in HEK293 cells, and have investigated the recruitment of surface GABAARs by submembranous Geph/CB clusters. Results show that the typically synaptic α1β3γ2 GABAARs were trapped by submembranous Geph/CB clusters. The α5β3γ2 GABAARs, which are both synaptic and extrasynaptic, were also trapped by Geph/CB clusters. Extrasynaptic α4β3δ GABAARs consistently showed little or no trapping by the Geph/CB clusters. However, the extrasynaptic α6β3δ, α1β3, α6β3 (and less α4β3) GABAARs were highly trapped by the Geph/CB clusters. AMPA and NMDA glutamate receptors were not trapped. The results suggest: (I) in the absence of other synaptic molecules, the Geph/CB lattice has the capacity to trap not only synaptic but also several typically extrasynaptic GABAARs; (II) the Geph/CB lattice is important but does not play a decisive role in the synaptic localization of GABAARs; and (III) in neurons there must be mechanisms preventing the trapping of several typically extrasynaptic GABAARs by the postsynaptic Geph/CB lattice.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA.
| |
Collapse
|
42
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
43
|
Szabó G, Éliás O, Erdélyi P, Potor A, Túrós GI, Károlyi BI, Varró G, Vaskó ÁG, Bata I, Kapus GL, Dohányos Z, Bobok AÁ, Fodor L, Thán M, Vastag M, Komlódi Z, Soukupné Kedves RÉ, Makó É, Süveges B, Greiner I. Multiparameter Optimization of Naphthyridine Derivatives as Selective α5-GABA A Receptor Negative Allosteric Modulators. J Med Chem 2022; 65:7876-7895. [PMID: 35584373 DOI: 10.1021/acs.jmedchem.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery and characterization of novel naphthyridine derivatives with selective α5-GABAAR negative allosteric modulator (NAM) activity are disclosed. Utilizing a scaffold-hopping strategy, fused [6 + 6] bicyclic scaffolds were designed and synthesized. Among these, 1,6-naphthyridinones were identified as potent and selective α5-GABAAR NAMs with metabolic stability, cardiac safety, and beneficial intellectual property (IP) issues. Relocation of the oxo acceptor function and subsequent modulation of the physicochemical properties resulted in novel 1,6-naphthyridines with improved profile, combining good potency, selectivity, ADME, and safety properties. Besides this, compound 20, having the most balanced profile, provided in vivo proof of concept (POC) for the new scaffold in two animal models of cognitive impairment associated with schizophrenia (CIAS).
Collapse
Affiliation(s)
- György Szabó
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Olivér Éliás
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Péter Erdélyi
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Attila Potor
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - György I Túrós
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | | | - Gábor Varró
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Ágnes Gy Vaskó
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Imre Bata
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Gábor L Kapus
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Zoltán Dohányos
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Amrita Á Bobok
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - László Fodor
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Márta Thán
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Mónika Vastag
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | - Zsolt Komlódi
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | | | - Éva Makó
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| | | | - István Greiner
- Gedeon Richter Plc., 19-21. Gyömrői út, Budapest, 1103 Hungary
| |
Collapse
|
44
|
Huang HW, Zhang XK, Li HY, Wang YG, Jing B, Chen Y, Patel MB, Ely EW, Liu YO, Zhou JX, Lin S, Zhang GB. Higher Grade Glioma Increases the Risk of Postoperative Delirium: Deficient Brain Compensation Might Be a Potential Mechanism of Postoperative Delirium. Front Aging Neurosci 2022; 14:822984. [PMID: 35493935 PMCID: PMC9045131 DOI: 10.3389/fnagi.2022.822984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The brain compensation mechanism in postoperative delirium (POD) has not been reported. We uncovered the mechanism by exploring the association between POD and glioma grades, and the relationship between preoperative brain structural and functional compensation with POD in patients with frontal glioma. Methods A total of 335 adult patients with glioma were included. The multivariable analysis examined the association between tumor grade and POD. Then, 20 patients with left frontal lobe glioma who had presurgical structural and functional MRI data and Montreal Cognitive Assessment (MoCA) in this cohort were analyzed. We measured the gray matter volume (GMV) and functional connectivity (FC) in patients with (n = 8) and without (n = 12) POD and healthy controls (HCs, n = 29) to detect the correlation between the structural and functional alteration and POD. Results The incidence of POD was 37.3%. Multivariable regression revealed that high-grade glioma had approximately six times the odds of POD. Neuroimaging data showed that compared with HC, the patients with left frontal lobe glioma showed significantly increased GMV of the right dorsal lateral prefrontal cortex (DLPFC) in the non-POD group and decreased GMV of right DLPFC in the POD group, and the POD group exhibited significantly decreased FC of right DLPFC, and the non-POD group showed the increasing tendency. Partial correlation analysis showed that GMV in contralesional DLPFC were positively correlated with preoperative neurocognition, and the GMV and FC in contralesional DLPFC were negatively correlated with POD. Conclusions Our findings suggested that insufficient compensation for injured brain regions involving cognition might be more vulnerable to suffering from POD.
Collapse
Affiliation(s)
- Hua-Wei Huang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Kang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yong-Gang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - You Chen
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Mayur B. Patel
- Section of Surgical Sciences, Department of Surgery and Neurosurgery, Division of Trauma, Surgical Critical Care, and Emergency General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Geriatric Research, Education, and Clinical Center Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - E. Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| |
Collapse
|
45
|
Santrač A, Bijelić D, Stevanović V, Banićević M, Aranđelović J, Batinić B, Sharmin D, Cook JM, Savić MM. Postweaning positive modulation of α5GABAA receptors improves autism-like features in prenatal valproate rat model in a sex-specific manner. Autism Res 2022; 15:806-820. [PMID: 35266641 DOI: 10.1002/aur.2699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD), as a common neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still awaits an effective treatment strategy. The involvement of GABAergic neurotransmission, and especially a deficit of GABAA receptors that contain the α5 subunits, were implicated in pathogenesis of ASD. Therefore, we tested MP-III-022, a positive allosteric modulator (PAM) selective for α5GABAA receptors, in Wistar rats prenatally exposed to valproic acid, as an animal model useful for studying ASD. Postweaning rats of both sexes were treated for 7 days with vehicle or MP-III-022 at two doses pharmacokinetically determined as selective, and thereafter tested in a behavioral battery (social interaction test, elevated plus maze, spontaneous locomotor activity, and standard and reverse Morris water maze). Additional rats were used for establishing a primary neuronal culture and performing calcium imaging, and determination of hippocampal mRNA levels of GABRA5, NKCC1, and KCC2. MP-III-022 prevented impairments in many parameters connected with social, repetitive and restrictive behavioral domains. The lower and higher dose was more effective in males and females, respectively. Intriguingly, MP-III-022 elicited certain changes in control animals similar to those manifested in valproate animals themselves. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, assessed with calcium imaging, and also in expression changes of three genes analyzed. Our data support a role of α5GABAA receptors in pathophysiology of ASD, and suggest a potential application of selective PAMs in its treatment, that needs to be researched in a sex-specific manner. LAY SUMMARY: In rats prenatally exposed to valproate as a model of autism, a modulator of α5GABAA receptors ameliorated social, repetitive and restrictive impairments, and, intriguingly, elicited certain autism-like changes in control rats. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, and partly in gene expression changes. This shows a role of α5GABAA receptors in pathophysiology of ASD, and a potential application of their selective modulators in its treatment.
Collapse
Affiliation(s)
- Anja Santrač
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dunja Bijelić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - Vladimir Stevanović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marija Banićević
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.,Institute of Pharmacy and Molecular Biotechnology, Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Jovana Aranđelović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Bojan Batinić
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee and the Milwaukee Institute of Drug Discovery, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee and the Milwaukee Institute of Drug Discovery, Milwaukee, Wisconsin, USA
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
46
|
Distinct sex-dependent behavioral responses induced by two positive allosteric modulators of alpha 5 subunit-containing GABAA receptors. Behav Brain Res 2022; 428:113832. [DOI: 10.1016/j.bbr.2022.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
|
47
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
48
|
van der Lei MB, Kooy RF. Therapeutic potential of GABAA receptor subunit expression abnormalities in fragile X syndrome. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2021.2008168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Systemic LPS-induced microglial activation results in increased GABAergic tone: A mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav Immun 2022; 99:53-69. [PMID: 34582995 DOI: 10.1016/j.bbi.2021.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation with excess microglial activation and synaptic dysfunction are early symptoms of most neurological diseases. However, how microglia-associated neuroinflammation regulates synaptic activity remains obscure. We report here that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation. LPS causes upregulation in levels of GABAAR subunits, glutamine synthetase and vesicular GABA transporter, and downregulation in brain-derived neurotrophic factor (BDNF) and its receptor, pTrkB. Blockage of microglial activation by minocycline ameliorates LPS-induced abnormal expression of GABA signaling-related proteins and activity of synaptic and network. Moreover, minocycline prevents the mice from LPS-induced aberrant behavior, such as a reduction in total distance and time spent in the centre in the open field test; decreases in entries into the open arm of elevated-plus maze and in consumption of sucrose; increased immobility in the tail suspension test. Furthermore, upregulation of GABA signaling by tiagabine also prevents LPS-induced microglial activation and aberrant behavior. This study illustrates a mode of bidirectional constitutive signaling between the neural and immune compartments of the brain, and suggests that the mPFC is an important area for brain-immune system communication. Moreover, the present study highlights GABAergic signaling as a key therapeutic target for mitigating neuroinflammation-induced abnormal synaptic activity in the mPFC, together with the associated behavioral abnormalities.
Collapse
|
50
|
Yuan C, Gao A, Xu Q, Zhang B, Xue R, Dou Y, Yu C. A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABA A receptor negative allosteric modulator L-655,708. Psychopharmacology (Berl) 2021; 238:3375-3389. [PMID: 34389882 DOI: 10.1007/s00213-021-05951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
RATIONALE AND OBJECTIVES The reported inconsistent effects of negative allosteric modulators of α5-containing GABAA receptors on learning and memory may be attributed to receptor selectivity, effective plasma concentration maintenance, and administration time. This study aimed to compare the effects of L-655,708 administered by single-dosing regimen versus multi-dosing regimen on spatial memory, signaling molecules, and brain functional connectivity. METHODS After comparing the maintenance time of the effective plasma concentration of L-655,708 between multi-dosing and single-dosing regimens, we further compared the effects of the administration of the two regimens at different phases (before-learning, during-learning, and before-probe) of the Morris water maze (MWM) test on the performance of learning and memory and the levels of signaling molecules related to learning and memory in hippocampal tissues. Functional connectivity analyses between hippocampal and cortical regions were performed to further clarify the effects of the multi-dosing regimen. RESULTS The multi-dosing regimen could maintain the effective plasma concentration of L-655,708 much longer than the single-dosing regimen. Only the multi-dosing regimen for L-655,708 administration during the learning period led to significant improvement in spatial memory in the MWM test and increases in levels of glutamate receptors and phosphorylated signaling molecules (p-PKAα, p-CaMKII, and p-CREB-1). Compared with the vehicle control, the multi-dosing regimen increased the functional connectivity of the left hippocampal CA1 with cingulate and motor cortices. CONCLUSIONS A multi-dosing regimen for L-655,708 administered during the learning period is an effective strategy to improve spatial memory, increase signaling molecule levels, and enhance the functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - An Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300052, People's Republic of China.
| |
Collapse
|