1
|
Berg MVD, Heymans L, Toen D, Adhikari MA, Audekerke JV, Verschuuren M, Pintelon I, Vos WHD, Linden AVD, Verhoye M, Keliris GA. Partial normalization of hippocampal oscillatory activity during sleep in TgF344-AD rats coincides with increased cholinergic synapses at early-plaque stage of Alzheimer's disease. Acta Neuropathol Commun 2025; 13:96. [PMID: 40349073 PMCID: PMC12065161 DOI: 10.1186/s40478-025-02016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Sleep alterations are known to occur in Alzheimer's disease (AD), before cognitive symptoms become apparent, and are thought to play an important role in the pathophysiology of AD. However, knowledge on the extent of macro- and microstructural changes of sleep during early, presymptomatic stages of AD is limited. We hypothesize that Aβ-induced perturbations of neuronal activity disrupt this oscillatory activity during sleep at pre-plaque stages of AD. In this study, we aimed to assess hippocampal oscillatory activity during sleep at pre- and early-plaque stages of AD, by performing 24-hour hippocampal electrophysiological measurements in TgF344-AD rats and wildtype littermates at pre- and early-plaque stages of AD. To provide a mechanistic understanding, histological analysis was performed to quantify GABA-ergic, glutamatergic and cholinergic synapses. We observed a differential impact of AD on hippocampal activity during rapid eye movement (REM) and non-REM (NREM) sleep, in the absence of robust changes in circadian rhythm. TgF344-AD rats demonstrated increased duration of sharp wave-ripples during NREM sleep, irrespective of age. Interestingly, a significantly decreased theta-gamma coupling was observed in TgF344-AD rats, prior to amyloid plaque deposition, which was partially restored at the early-plaque stage. The partial recovery of hippocampal activity during REM sleep coincided with an increased number of cholinergic synapses in the hippocampus during the early-plaque stage in TgF344-AD rats, suggestive of basal forebrain cholinergic compensation mechanisms. The results from this study reveal early changes in hippocampal activity prior to Aβ plaque deposition in AD. In addition, the current findings imply an important role of the cholinergic system to compensate for AD-related network alterations, thereby partially restoring sleep architecture and hippocampal activity.
Collapse
Affiliation(s)
- Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Loran Heymans
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Daniëlle Toen
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit A Adhikari
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, Antwerp, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, Antwerp, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, Antwerp, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium.
- Department of Neurology - Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Reyes-Chapero RM, Tapia D, Ortega A, Laville A, Padilla-Orozco M, Fuentes-Serrano A, Serrano-Reyes M, Bargas J, Galarraga E. Cortical parvalbumin-expressing interneurons sample network oscillations in their synaptic activity. Neuroscience 2025; 573:25-41. [PMID: 40088965 DOI: 10.1016/j.neuroscience.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Synaptic activity is thought to be the primary input of the frequency bands conveyed in the electroencephalogram (EEG) and local field potentials (LFPs) recorded on the cortex. Here we ask whether synaptic activity observed in parvalbumin expressing (PV + ) neurons recorded in isolated cortical tissue bear these frequency bands. The muscarinic agonist carbachol (CCh) was used to increase cortical excitability. PV + neurons play a significant role in perisomatic inhibition and the synchronization of cortical ensembles to generate gamma (γ) oscillations during cholinergic modulation. γ-oscillations associate with cognitive activities co-existing with slower rhythms. While CCh induces depolarization and firing in pyramidal neurons, it only causes barrages of synaptic potentials without firing in most PV + neurons. We show that the frequency spectra of CCh-induced synaptic events recorded onto layer 5 PV + neurons display the various frequency bands generated by cortical networks: from δ to γ. Isolation of inhibitory events shows potency increases in the δ band and decreases in other bands. Isolated excitatory events exhibit a decrease in the β-band. Excitatory potentials appear to drive the circuitry while inhibitory ones appear to regulate events frequency. Muscarinic M1-class receptors are mainly responsible for the synaptic activity from which oscillatory bands emerge. These results demonstrate that PV + interneurons "sample" network activity through the ligand-gated synaptic events that receive from it. We conclude that random synaptic events recorded in single neurons contain the wide range of brain oscillations as revealed by frequency spectra and power density analyses.
Collapse
Affiliation(s)
- Rosa M Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Alejandra Fuentes-Serrano
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México; Departamento de Ingeniería en Sistemas Biomédicos, Centro de Ingeniería Avanzada, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México.
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México.
| |
Collapse
|
3
|
Tsotsokou G, Fassea M, Papatheodoropoulos C. Muscarinic Modulation of Network Excitability and Short-Term Dynamics in the Dorsal and Ventral Hippocampus. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001367. [PMID: 39758582 PMCID: PMC11696349 DOI: 10.17912/micropub.biology.001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Cholinergic transmission fundamentally modulates information processing in the brain via muscarinic receptors. Using in vitro electrophysiological recordings of population spikes from the CA1 region, we found that the muscarinic receptor agonist carbachol (CCh, 1 μM) enhances the basal excitation level in the dorsal but not ventral hippocampus. Using a frequency stimulation protocol, we found that CCh transforms depression of neuronal output into facilitation (at 3-30 Hz) in the ventral hippocampus while only lessening depression in the dorsal hippocampus, suggesting that muscarinic transmission boosts basal neuronal activation in the dorsal hippocampus and strongly facilitates the output of the ventral hippocampus in a frequency-dependent manner.
Collapse
Affiliation(s)
- Giota Tsotsokou
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | - Milena Fassea
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | | |
Collapse
|
4
|
Fu X, Tasker JG. Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front Cell Neurosci 2024; 18:1421617. [PMID: 38994327 PMCID: PMC11236696 DOI: 10.3389/fncel.2024.1421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
Collapse
Affiliation(s)
- Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
McDonald AJ. Functional neuroanatomy of basal forebrain projections to the basolateral amygdala: Transmitters, receptors, and neuronal subpopulations. J Neurosci Res 2024; 102:e25318. [PMID: 38491847 PMCID: PMC10948038 DOI: 10.1002/jnr.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
6
|
Gedankien T, Tan RJ, Qasim SE, Moore H, McDonagh D, Jacobs J, Lega B. Acetylcholine modulates the temporal dynamics of human theta oscillations during memory. Nat Commun 2023; 14:5283. [PMID: 37648692 PMCID: PMC10469188 DOI: 10.1038/s41467-023-41025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The cholinergic system is essential for memory. While degradation of cholinergic pathways characterizes memory-related disorders such as Alzheimer's disease, the neurophysiological mechanisms linking the cholinergic system to human memory remain unknown. Here, combining intracranial brain recordings with pharmacological manipulation, we describe the neurophysiological effects of a cholinergic blocker, scopolamine, on the human hippocampal formation during episodic memory. We found that the memory impairment caused by scopolamine was coupled to disruptions of both the amplitude and phase alignment of theta oscillations (2-10 Hz) during encoding. Across individuals, the severity of theta phase disruption correlated with the magnitude of memory impairment. Further, cholinergic blockade disrupted connectivity within the hippocampal formation. Our results indicate that cholinergic circuits support memory by coordinating the temporal dynamics of theta oscillations across the hippocampal formation. These findings expand our mechanistic understanding of the neurophysiology of human memory and offer insights into potential treatments for memory-related disorders.
Collapse
Affiliation(s)
- Tamara Gedankien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ryan Joseph Tan
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Salman Ehtesham Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haley Moore
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - David McDonagh
- Department of Anesthesiology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA.
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
8
|
Sugisaki E, Fukushima Y, Nakajima N, Aihara T. The dependence of acetylcholine on dynamic changes in the membrane potential and an action potential during spike timing-dependent plasticity induction in the hippocampus. Eur J Neurosci 2022; 56:5972-5986. [PMID: 36164804 DOI: 10.1111/ejn.15832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022]
Abstract
The hippocampus is an important area for memory encoding and retrieval and is the location of spike timing-dependent plasticity (STDP), a basic phenomenon of learning and memory. STDP is facilitated if acetylcholine (ACh) is released from cholinergic neurons during attentional processes. However, it is unclear how ACh influences postsynaptic changes during STDP induction and determines the STDP magnitude. To address these issues, we obtained patch clamp recordings from CA1 pyramidal neurons to evaluate the postsynaptic changes during stimuli injection in Schaffer collaterals by quantifying baseline amplitudes (i.e., the lowest values elicited by paired pulses comprising STDP stimuli) and action potentials. The results showed that baseline amplitudes were elevated if eserine was applied in the presence of picrotoxin. In addition, muscarinic ACh receptors (mAChRs) contributed more to the baseline amplitude elevation than nicotinic AChRs (nAChRs). Moreover, the magnitude of the STDP depended on the magnitude of the baseline amplitude. However, in the absence of picrotoxin, baseline amplitudes were balanced, regardless of the ACh concentration, resulting in a similar magnitude of the STDP, except under the nAChR alone-activated condition, which showed a larger STDP and lower baseline amplitude induction. This was due to broadened widths of action potentials. These results suggest that activation of mAChRs and nAChRs, which are effective for baseline amplitudes and action potentials, respectively, plays an important role in postsynaptic changes during memory consolidation.
Collapse
Affiliation(s)
- Eriko Sugisaki
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | - Yasuhiro Fukushima
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Kawasaki University of Medical Welfare, Okayama, Japan
| | - Naoki Nakajima
- Graduated School of Engineering, Tamagawa University, Tokyo, Japan
| | - Takeshi Aihara
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
9
|
Fuchsberger T, Paulsen O. Modulation of hippocampal plasticity in learning and memory. Curr Opin Neurobiol 2022; 75:102558. [PMID: 35660989 DOI: 10.1016/j.conb.2022.102558] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Synaptic plasticity plays a central role in the study of neural mechanisms of learning and memory. Plasticity rules are not invariant over time but are under neuromodulatory control, enabling behavioral states to influence memory formation. Neuromodulation controls synaptic plasticity at network level by directing information flow, at circuit level through changes in excitation/inhibition balance, and at synaptic level through modulation of intracellular signaling cascades. Although most research has focused on modulation of principal neurons, recent progress has uncovered important roles for interneurons in not only routing information, but also setting conditions for synaptic plasticity. Moreover, astrocytes have been shown to both gate and mediate plasticity. These additional mechanisms must be considered for a comprehensive mechanistic understanding of learning and memory.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Karvat G, Alyahyay M, Diester I. Spontaneous activity competes with externally evoked responses in sensory cortex. Proc Natl Acad Sci U S A 2021; 118:e2023286118. [PMID: 34155142 PMCID: PMC8237647 DOI: 10.1073/pnas.2023286118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interaction between spontaneous and externally evoked neuronal activity is fundamental for a functional brain. Increasing evidence suggests that bursts of high-power oscillations in the 15- to 30-Hz beta-band represent activation of internally generated events and mask perception of external cues. Yet demonstration of the effect of beta-power modulation on perception in real time is missing, and little is known about the underlying mechanism. Here, we used a closed-loop stimulus-intensity adjustment system based on online burst-occupancy analyses in rats involved in a forepaw vibrotactile detection task. We found that the masking influence of burst occupancy on perception can be counterbalanced in real time by adjusting the vibration amplitude. Offline analysis of firing rates (FRs) and local field potentials across cortical layers and frequency bands confirmed that beta-power in the somatosensory cortex anticorrelated with sensory evoked responses. Mechanistically, bursts in all bands were accompanied by transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction of FR. Our closed loop approach reveals that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.
Collapse
Affiliation(s)
- Golan Karvat
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Mansour Alyahyay
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Ilka Diester
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany;
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine Brain Interfacing Technology (IMBIT), 79110 Freiburg, Germany
| |
Collapse
|
11
|
Kang YJ, Clement EM, Park IH, Greenfield LJ, Smith BN, Lee SH. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2021; 342:113724. [PMID: 33915166 DOI: 10.1016/j.expneurol.2021.113724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE) is characterized by recurrent spontaneous seizures and behavioral comorbidities. Reduced hippocampal theta oscillations and hyperexcitability that contribute to cognitive deficits and spontaneous seizures are present beyond the sclerotic hippocampus in TLE. However, the mechanisms underlying compromised network oscillations and hyperexcitability observed in circuits remote from the sclerotic hippocampus are largely unknown. Cholecystokinin (CCK)-expressing basket cells (CCKBCs) critically participate in hippocampal theta rhythmogenesis, and regulate neuronal excitability. Thus, we examined whether CCKBCs were vulnerable in nonsclerotic regions of the ventral hippocampus remote from dorsal sclerotic hippocampus using the intrahippocampal kainate (IHK) mouse model of TLE, targeting unilateral dorsal hippocampus. We found a decrease in the number of CCK+ interneurons in ipsilateral ventral CA1 regions from epileptic mice compared to those from sham controls. We also found that the number of boutons from CCK+ interneurons was reduced in the stratum pyramidale, but not in other CA1 layers, of ipsilateral hippocampus in epileptic mice, suggesting that CCKBCs are vulnerable. Electrical recordings showed that synaptic connectivity and strength from surviving CCKBCs to CA1 pyramidal cells (PCs) were similar between epileptic mice and sham controls. In agreement with reduced CCKBC number in TLE, electrical recordings revealed a significant reduction in amplitude and frequency of IPSCs in CA1 PCs evoked by carbachol (commonly used to excite CCK+ interneurons) in ventral CA1 regions from epileptic mice versus sham controls. These findings suggest that loss of CCKBCs beyond the hippocampal lesion may contribute to hyperexcitability and compromised network oscillations in TLE.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Sang-Hun Lee
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
12
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
13
|
Xu Y, Zhang S, Sun Q, Wang XQ, Chai YN, Mishra C, Chandra SR, Ai J. Cholinergic Dysfunction Involvement in Chronic Cerebral Hypoperfusion-Induced Impairment of Medial Septum-dCA1 Neurocircuit in Rats. Front Cell Neurosci 2020; 14:586591. [PMID: 33132852 PMCID: PMC7550820 DOI: 10.3389/fncel.2020.586591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is considered a preclinical condition of mild cognitive impairment and thought to precede dementia. However, as the principal cholinergic source of hippocampus, whether the septo-hippocampal neurocircuit was impaired after CCH is still unknown. In this study, we established the CCH rat model by bilateral common carotid artery occlusion (2VO). Under anesthesia, the medial septum (MS) of rats was stimulated to evoke the field excitatory post-synaptic potential (fEPSP) in the pyramidal cell layer of dCA1. Consequently, we observed decreased amplitude of fEPSP and increased paired-pulse ratio (PPR) after 8-week CCH. After tail pinch, we also found decreased peak frequency and shortened duration of hippocampal theta rhythm in 2VO rats, indicating the dysfunction of septo-hippocampal neurocircuit. Besides, by intracerebroventricularly injecting GABAergic inhibitor (bicuculline) and cholinergic inhibitors (scopolamine and mecamylamine), we found that CCH impaired both the pre-synaptic cholinergic release and the post-synaptic nAChR function in MS-dCA1 circuits. These results gave an insight into the role of CCH in the impairment of cholinergic MS-dCA1 neurocircuits. These findings may provide a new idea about the CCH-induced neurodegenerative changes.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shuai Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Qiang Sun
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xu-Qiao Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Ya-Ni Chai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Chandan Mishra
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shah Ram Chandra
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Wang Y, Wang Y, Xu C, Wang S, Tan N, Chen C, Chen L, Wu X, Fei F, Cheng H, Lin W, Qi Y, Chen B, Liang J, Zhao J, Xu Z, Guo Y, Zhang S, Li X, Zhou Y, Duan S, Chen Z. Direct Septum-Hippocampus Cholinergic Circuit Attenuates Seizure Through Driving Somatostatin Inhibition. Biol Psychiatry 2020; 87:843-856. [PMID: 31987494 DOI: 10.1016/j.biopsych.2019.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies indicated the involvement of cholinergic neurons in seizure; however, the specific role of the medial septum (MS)-hippocampus cholinergic circuit in temporal lobe epilepsy (TLE) has not yet been completely elucidated. METHODS In the current study, we used magnetic resonance imaging and diffusion tensor imaging to characterize the pathological change of the MS-hippocampus circuit in 42 patients with TLE compared with 22 healthy volunteers. Using optogenetics and chemogenetics, combined with in vivo or in vitro electrophysiology and retrograde rabies virus tracing, we revealed a direct MS-hippocampus cholinergic circuit that potently attenuates seizure through driving somatostatin inhibition in animal TLE models. RESULTS We found that patients with TLE with hippocampal sclerosis showed a decrease of neuronal fiber connectivity of the MS-hippocampus compared with healthy people. In the mouse TLE model, MS cholinergic neurons ceased firing during hippocampal seizures. Optogenetic and chemogenetic activation of MS cholinergic neurons (but not glutamatergic or GABAergic [gamma-aminobutyric acidergic] neurons) significantly attenuated hippocampal seizures, while specific inhibition promoted hippocampal seizures. Electrophysiology combined with modified rabies virus tracing studies showed that direct (but not indirect) MS-hippocampal cholinergic projections mediated the antiseizure effect by preferentially targeting hippocampal GABAergic neurons. Furthermore, chemogenetic inhibition of hippocampal somatostatin-positive (rather than parvalbumin-positive) subtype of GABAergic neurons reversed the antiseizure effect of the MS-hippocampus cholinergic circuit, which was mimicked by activating somatostatin-positive neurons. CONCLUSIONS These findings underscore the notable antiseizure role of the direct cholinergic MS-hippocampus circuit in TLE through driving the downstream somatostatin effector. This may provide a better understanding of the changes of the seizure circuit and the precise spatiotemporal control of epilepsy.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Cenglin Xu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Tan
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liying Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohua Wu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Fei
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heming Cheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenkai Lin
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingbei Qi
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bin Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiao Liang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junli Zhao
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhenghao Xu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihong Zhang
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoming Li
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yudong Zhou
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Roach JP, Eniwaye B, Booth V, Sander LM, Zochowski MR. Acetylcholine Mediates Dynamic Switching Between Information Coding Schemes in Neuronal Networks. Front Syst Neurosci 2019; 13:64. [PMID: 31780905 PMCID: PMC6861375 DOI: 10.3389/fnsys.2019.00064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2019] [Indexed: 11/23/2022] Open
Abstract
Rate coding and phase coding are the two major coding modes seen in the brain. For these two modes, network dynamics must either have a wide distribution of frequencies for rate coding, or a narrow one to achieve stability in phase dynamics for phase coding. Acetylcholine (ACh) is a potent regulator of neural excitability. Acting through the muscarinic receptor, ACh reduces the magnitude of the potassium M-current, a hyperpolarizing current that builds up as neurons fire. The M-current contributes to several excitability features of neurons, becoming a major player in facilitating the transition between Type 1 (integrator) and Type 2 (resonator) excitability. In this paper we argue that this transition enables a dynamic switch between rate coding and phase coding as levels of ACh release change. When a network is in a high ACh state variations in synaptic inputs will lead to a wider distribution of firing rates across the network and this distribution will reflect the network structure or pattern of external input to the network. When ACh is low, network frequencies become narrowly distributed and the structure of a network or pattern of external inputs will be represented through phase relationships between firing neurons. This work provides insights into how modulation of neuronal features influences network dynamics and information processing across brain states.
Collapse
Affiliation(s)
- James P Roach
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Bolaji Eniwaye
- Department of Physics, University of Michigan, Ann Arbor, MI, United States
| | - Victoria Booth
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Department of Mathematics, University of Michigan, Ann Arbor, MI, United States.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Leonard M Sander
- Department of Physics, University of Michigan, Ann Arbor, MI, United States.,Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, United States
| | - Michal R Zochowski
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Department of Physics, University of Michigan, Ann Arbor, MI, United States.,Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, United States.,Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
17
|
Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future. Neuron 2019; 103:563-581. [DOI: 10.1016/j.neuron.2019.05.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
|
18
|
Goswamee P, McQuiston AR. Acetylcholine Release Inhibits Distinct Excitatory Inputs Onto Hippocampal CA1 Pyramidal Neurons via Different Cellular and Network Mechanisms. Front Cell Neurosci 2019; 13:267. [PMID: 31249513 PMCID: PMC6582433 DOI: 10.3389/fncel.2019.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
In hippocampal CA1, muscarinic acetylcholine (ACh) receptor (mAChR) activation via exogenous application of cholinergic agonists has been shown to presynaptically inhibit Schaffer collateral (SC) glutamatergic inputs in stratum radiatum (SR), and temporoammonic (TA) and thalamic nucleus reuniens (RE) glutamatergic inputs in stratum lacunosum-moleculare (SLM). However, steady-state uniform mAChR activation may not mimic the effect of ACh release in an intact hippocampal network. To more accurately examine the effect of ACh release on glutamatergic synaptic efficacy, we measured electrically evoked synaptic responses in CA1 pyramidal cells (PCs) following the optogenetic release of ACh in genetically modified mouse brain slices. The ratio of synaptic amplitudes in response to paired-pulse SR stimulation (stimulus 2/stimulus 1) was significantly reduced by the optogenetic release of ACh, consistent with a postsynaptic decrease in synaptic efficacy. The effect of ACh release was blocked by the M3 receptor antagonist 4-DAMP, the GABAB receptor antagonist CGP 52432, inclusion of GDP-β-S, cesium, QX314 in the intracellular patch clamp solution, or extracellular barium. These observations suggest that ACh release decreased SC synaptic transmission through an M3 muscarinic receptor-mediated increase in inhibitory interneuron excitability, which activate GABAB receptors and inwardly rectifying potassium channels on CA1 pyramidal cells. In contrast, the ratio of synaptic amplitudes in response to paired-pulse stimulation in the SLM was increased by ACh release, consistent with presynaptic inhibition. ACh-mediated effects in SLM were blocked by the M2 receptor antagonist AF-DX 116, presumably located on presynaptic terminals. Therefore, our data indicate that ACh release differentially modulates excitatory inputs in SR and SLM of CA1 through different cellular and network mechanisms.
Collapse
Affiliation(s)
- Priyodarshan Goswamee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
19
|
Hoffman KM, Eisen MR, Chandler JK, Nelson MR, Johnson EA, McNutt PM. Retrograde activation of CB1R by muscarinic receptors protects against central organophosphorus toxicity. Neuropharmacology 2019; 155:113-120. [PMID: 31132436 DOI: 10.1016/j.neuropharm.2019.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022]
Abstract
The acute toxicity of organophosphorus-based compounds is primarily a result of acetylcholinesterase inhibition in the central and peripheral nervous systems. The resulting cholinergic crisis manifests as seizure, paralysis, respiratory failure and neurotoxicity. Though overstimulation of muscarinic receptors is the mechanistic basis of central organophosphorus (OP) toxicities, short-term changes in synapse physiology that precede OP-induced seizures have not been investigated in detail. To study acute effects of OP exposure on synaptic function, field excitatory postsynaptic potentials (fEPSPs) were recorded from Schaffer collateral synapses in the mouse hippocampus CA1 stratum radiatum during perfusion with various OP compounds. Administration of the OPs paraoxon, soman or VX rapidly and stably depressed fEPSPs via a presynaptic mechanism, while the non-OP proconvulsant tetramethylenedisulfotetramine had no effect on fEPSP amplitudes. OP-induced presynaptic long-term depression manifested prior to interictal spiking, occurred independent of recurrent firing, and did not require NMDA receptor currents, suggesting that it was not mediated by activity-dependent calcium uptake. Pharmacological dissection revealed that the presynaptic endocannabinoid type 1 receptor (CB1R) as well as postsynaptic M1 and M3 muscarinic acetylcholine receptors were necessary for OP-LTD. Administration of CB1R antagonists significantly reduced survival in mice after a soman challenge, revealing an acute protective role for endogenous CB1R signaling during OP exposure. Collectively these data demonstrate that the endocannabinoid system alters glutamatergic synaptic function during the acute response to OP acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Katie M Hoffman
- Biological Sciences, Lehigh University, 27 Memorial Drive West, Bethlehem, PA, 18015, USA
| | - Margaret R Eisen
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD, 21010, USA
| | - Jessica K Chandler
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD, 21010, USA
| | - Marian R Nelson
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD, 21010, USA
| | - Erik A Johnson
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD, 21010, USA
| | - Patrick M McNutt
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD, 21010, USA.
| |
Collapse
|
20
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
21
|
Neuhofer D, Lassalle O, Manzoni OJ. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice. ACS Chem Neurosci 2018; 9:2233-2240. [PMID: 29486555 DOI: 10.1021/acschemneuro.7b00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated how metabotropic acetylcholine receptors control excitatory synaptic plasticity in the mouse nucleus accumbens core. Pharmacological and genetic approaches revealed that M1 mAChRs (muscarinic acetylcholine receptors) trigger multiple and interacting forms of synaptic plasticity. As previously described in the dorsal striatum, moderate pharmacological activation of M1 mAChR potentiated postsynaptic NMDARs. The M1-potentiation of NMDAR masked a previously unknown coincident TRPV1-mediated long-term depression (LTD). In addition, strong pharmacological activation of M1 mAChR induced canonical retrograde LTD, mediated by presynaptic CB1R. In the fmr1-/y mouse model of Fragile X, we found that CB1R but not TRPV1 M1-LTD was impaired. Finally, pharmacological blockade of the degradation of anandamide and 2-arachidonylglycerol, the two principal endocannabinoids restored fmr1-/y LTD to wild-type levels. These findings shed new light on the complex influence of acetylcholine on excitatory synapses in the nucleus accumbens core and identify new substrates of the synaptic deficits of Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Olivier Lassalle
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| | - Olivier J. Manzoni
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| |
Collapse
|
22
|
Gu Z, Alexander GM, Dudek SM, Yakel JL. Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations. Cell Rep 2018; 21:3585-3595. [PMID: 29262336 DOI: 10.1016/j.celrep.2017.11.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Although much progress has been made in understanding type II theta rhythm generation under urethane anesthesia, less is known about the mechanisms underlying type I theta generation during active exploration. To better understand the contributions of cholinergic and NMDA receptor activation to type I theta generation, we recorded hippocampal theta oscillations from freely moving mice with local infusion of cholinergic or NMDA receptor antagonists to either the hippocampus or the entorhinal cortex (EC). We found that cholinergic receptors in the hippocampus, but not the EC, and NMDA receptors in the EC, but not the hippocampus, are critical for open-field theta generation and Y-maze performance. We further found that muscarinic M1 receptors located on pyramidal neurons, but not interneurons, are critical for cholinergic modulation of hippocampal synapses, theta generation, and Y-maze performance. These results suggest that hippocampus and EC neurons recruit cholinergic-dependent and NMDA-receptor-dependent mechanisms, respectively, to generate theta oscillations to support behavioral performance.
Collapse
Affiliation(s)
- Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
23
|
Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017; 11:102. [PMID: 29321728 PMCID: PMC5733553 DOI: 10.3389/fncir.2017.00102] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
This article provides a review of the effects of activation of muscarinic and nicotinic receptors on the physiological properties of circuits in the hippocampal formation. Previous articles have described detailed computational hypotheses about the role of cholinergic neuromodulation in enhancing the dynamics for encoding in cortical structures and the role of reduced cholinergic modulation in allowing consolidation of previously encoded information. This article will focus on addressing the broad scope of different modulatory effects observed within hippocampal circuits, highlighting the heterogeneity of cholinergic modulation in terms of the physiological effects of activation of muscarinic and nicotinic receptors and the heterogeneity of effects on different subclasses of neurons.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Kimberly Young
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
24
|
Miyauchi M, Neugebauer NM, Sato T, Ardehali H, Meltzer HY. Muscarinic receptor signaling contributes to atypical antipsychotic drug reversal of the phencyclidine-induced deficit in novel object recognition in rats. J Psychopharmacol 2017; 31:1588-1604. [PMID: 28946779 DOI: 10.1177/0269881117731278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhancement of cholinergic function via muscarinic acetylcholine receptor M1 agonism improves cognition in some schizophrenia patients. Most atypical antipsychotic drugs, including clozapine and its active metabolite, N-desmethylclozapine, and lurasidone, enhance the release of acetylcholine in key brain regions involved in cognition (e.g. hippocampus). We determined the effect of muscarinic acetylcholine receptor M1 stimulation on novel object recognition and its contribution to the ability of atypical antipsychotic drugs to reverse the novel object recognition deficit in rats withdrawn from subchronic phencyclidine, a rodent model of cognitive impairment in schizophrenia. In control rats, the non-specific muscarinic acetylcholine receptor antagonist, scopolamine, and the M1 selective antagonist, VU0255035, induced a novel object recognition deficit, which was reversed by the M1 agonist, AC260584. Scopolamine fully blocked the effect of clozapine and N-desmethylclozapine, but not lurasidone, to restore novel object recognition in subchronic phencyclidine-treated rats. VU0255035 also blocked these effects of clozapine and N-desmethylclozapine, but not lurasidone; however, the blockade was not as complete as that achieved with scopolamine. Furthermore, subchronic phencyclidine increased hippocampal M1 mRNA expression. These data suggest that M1 agonism is required for clozapine and N-desmethylclozapine to ameliorate the phencyclidine-induced deficit in novel object recognition, additional evidence that M1 agonism is a potential target for treating cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Masanori Miyauchi
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA.,2 Sumitomo Dainippon Pharma Co., Ltd, Suita, Japan
| | - Nichole M Neugebauer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Tatsuya Sato
- 3 Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Hossein Ardehali
- 3 Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Herbert Y Meltzer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
25
|
Carpenter-Hyland EP, Griffeth J, Bunting K, Terry A, Vazdarjanova A, Blake DT. Tone identification behavior in Rattus norvegicus: muscarinic receptor blockage lowers responsiveness in nontarget selective neurons, while nicotinic receptor blockage selectively lowers target responses. Eur J Neurosci 2017; 46:1779-1789. [PMID: 28544049 DOI: 10.1111/ejn.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/24/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022]
Abstract
Learning to associate a stimulus with reinforcement causes plasticity in primary sensory cortex. Neural activity caused by the associated stimulus is paired with reinforcement, but population analyses have not found a selective increase in response to that stimulus. Responses to other stimuli increase as much as, or more than, responses to the associated stimulus. Here, we applied population analysis at a new time point and additionally evaluated whether cholinergic receptor blockers interacted with the plastic changes in cortex. Three days of tone identification behavior caused responsiveness to increase broadly across primary auditory cortex, and target responses strengthened less than overall responsiveness. In pharmacology studies, behaviorally impairing doses of selective acetylcholine receptor blockers were administered during behavior. Neural responses were evaluated on the following day, while the blockers were absent. The muscarinic group, blocked by scopolamine, showed lower responsiveness and an increased response to the tone identification target that exceeded both the 3-day control group and task-naïve controls. Also, a selective increase in the late phase of the response to the tone identification stimulus emerged. Nicotinic receptor antagonism, with mecamylamine, more modestly lowered responses the following day and lowered target responses more than overall responses. Control acute studies demonstrated the muscarinic block did not acutely alter response rates, but the nicotinic block did. These results lead to the hypothesis that the decrease in the proportion of the population spiking response that is selective for the target may be explained by the balance between effects modulated by muscarinic and nicotinic receptors.
Collapse
Affiliation(s)
| | - Jackson Griffeth
- Department of Neurology, Brain and Behavior Discovery Institute, Augusta University, 1120 15th St CL-3031, Augusta, GA, 30912, USA
| | - Kristopher Bunting
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Alvin Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - David T Blake
- Department of Neurology, Brain and Behavior Discovery Institute, Augusta University, 1120 15th St CL-3031, Augusta, GA, 30912, USA
| |
Collapse
|
26
|
Maleki M, Hassanpour-Ezatti M, Navaeian M. Cross State-dependent Learning Interaction Between Scopolamine and Morphine in Mice: The Role of Dorsal Hippocampus. Basic Clin Neurosci 2017; 8:193-202. [PMID: 28781727 PMCID: PMC5535325 DOI: 10.18869/nirp.bcn.8.3.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The current study aimed at investigating the existence of the cross state-dependent learning between morphine and scopolamine (SCO) in mice by passive avoidance method, pointing to the role of CA1 area. METHODS The effects of pre-training SCO (0.75, 1.5, and 3 μg, Intra-CA1), or morphine (1, 3, and 6 mg/kg, intraperitoneal (i.p.) was evaluated on the retrieval of passive avoidance learning using step-down task in mice (n=10). Then, the effect of pretest administration of morphine (1.5, 3, and 6 mg/kg, i.p.) was examined on passive avoidance retrieval impairment induced by pre-training SCO (3 μg/mice, Intra-CA1). Next, the effect of pretest Intra-CA1 injection of scopolamine (0.75, 1.5, and 3 μg/mice) was evaluated on morphine (6 mg/kg, i.p.) pre-training deficits in this task in mice. RESULTS The pre-training Intra-CA1 injection of scopolamine (1.5 and 3 μg/mouse), or morphine (3 and 6 mg/kg, i.p.) impaired the avoidance memory retrieval when it was tested 24 hours later. Pretest injection of both drugs improved its pre-training impairing effects on mice memory. Moreover, the amnesia induced by the pre-training injections of scopolamine (3 μg/mice) was restored significantly (P<0.01) by pretest injections of morphine (3 and 6 mg/kg, i.p.). Similarly, pretest injection of scopolamine (3 μg/mice) restored amnesia induced by the pre-training injections of morphine (6 mg/kg, i.p.), significantly (P<0.01). CONCLUSION The current study findings indicated a cross state-dependent learning between SCO and morphine at CA1 level. Therefore, it seems that muscarinic and opioid receptors may act reciprocally on modulation of passive avoidance memory retrieval, at the level of dorsal hippocampus, in mice.
Collapse
Affiliation(s)
- Morteza Maleki
- Department of Biology, School of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Majid Navaeian
- Department of Biology, Shahr Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Lebois EP, Trimper JB, Hu C, Levey AI, Manns JR. Effects of Selective M 1 Muscarinic Receptor Activation on Hippocampal Spatial Representations and Neuronal Oscillations. ACS Chem Neurosci 2016; 7:1393-1405. [PMID: 27479319 DOI: 10.1021/acschemneuro.6b00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The muscarinic M1 acetylcholine receptor is a key target for drugs aimed at treating cognitive dysfunction, including the memory impairment in Alzheimer's disease. The overall question of the current study was to ask how systemic administration of the bitopic M1 agonist VU0364572, the M1 positive allosteric modulator BQCA, and the acetylcholinesterase inhibitor donepezil (current standard of care for Alzheimer's disease), would impact spatial memory-related hippocampal function in rats. Hippocampal pyramidal neuron spiking and local field potentials were recorded from regions CA1 and CA3 as rats freely foraged in a recording enclosure. To assess the relative stability versus flexibility of the rats' spatial representations, the walls of the recording enclosure were reshaped in 15-m intervals. As compared to the control condition, systemic administration of VU0364572 increased spatial correlations of CA1 and CA3 pyramidal neuron spiking across all enclosure shape comparisons, whereas BQCA and donepezil appeared to decrease these spatial correlations. Further, both VU0364572 and BQCA increased intrahippocampal synchrony as measured by CA3-CA1 field-field coherence in frequency ranges that tended to align with the prominence of those oscillations for the behavioral state (i.e., theta during locomotion and slow gamma during stationary moments). The results indicated that VU0364572 and BQCA influenced hippocampal function differently but in ways that might both be beneficial for treating memory dysfunction.
Collapse
Affiliation(s)
- Evan P. Lebois
- Neuroscience Graduate Program, ‡Department of Psychology, §Neuroscience and Behavioral Biology
Program, and ∥Department of Neurology, Emory University, Atlanta, Georgia, 30322, United States
| | - John B. Trimper
- Neuroscience Graduate Program, ‡Department of Psychology, §Neuroscience and Behavioral Biology
Program, and ∥Department of Neurology, Emory University, Atlanta, Georgia, 30322, United States
| | - Chun Hu
- Neuroscience Graduate Program, ‡Department of Psychology, §Neuroscience and Behavioral Biology
Program, and ∥Department of Neurology, Emory University, Atlanta, Georgia, 30322, United States
| | - Allan I. Levey
- Neuroscience Graduate Program, ‡Department of Psychology, §Neuroscience and Behavioral Biology
Program, and ∥Department of Neurology, Emory University, Atlanta, Georgia, 30322, United States
| | - Joseph R. Manns
- Neuroscience Graduate Program, ‡Department of Psychology, §Neuroscience and Behavioral Biology
Program, and ∥Department of Neurology, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
28
|
Fukushima K, Yamazaki K, Miyamoto N, Sawada K. Functional Characterization of Acetylcholine Receptors Expressed in Human Neurons Differentiated from Hippocampal Neural Stem/Progenitor Cells. ACTA ACUST UNITED AC 2016; 21:1065-1074. [PMID: 27572608 DOI: 10.1177/1087057116665567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotransmission mediated by acetylcholine receptors (AChRs) plays an important role in learning and memory functions in the hippocampus. Impairment of the cholinergic system contributes to Alzheimer's disease (AD), indicating the importance of AChRs as drug targets for AD. To improve the success rates for AD drug development, human cell models that mimic the target brain region are important. Therefore, we characterized the functional expression of nicotinic and muscarinic AChRs (nAChRs and mAChRs, respectively) in human hippocampal neurons differentiated from hippocampal neural stem/progenitor cells (HIP-009 cells). Intracellular calcium flux in 4-week differentiated HIP-009 cells demonstrated that the cells responded to acetylcholine, nicotine, and muscarine in a concentration-dependent manner (EC50 = 13.4 ± 0.5, 6.0 ± 0.4, and 35.0 ± 2.5 µM, respectively). In addition, assays using subtype-selective compounds revealed that major AD therapeutic target AChR subtypes-α7 and α4β2 nAChRs, as well as M1 and M3 mAChRs-were expressed in the cells. Furthermore, neuronal network analysis demonstrated that potentiation of M3 mAChRs inhibits the spontaneous firing of HIP-009 neurons. These results indicate that HIP-009 cells are physiologically relevant for AD drug screening and hence are loadstars for the establishment of in vitro AD models.
Collapse
Affiliation(s)
- Kazuyuki Fukushima
- 1 Next Generation Systems Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan.,2 Department of Genomics-Based Drug Discovery, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuto Yamazaki
- 1 Next Generation Systems Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Norimasa Miyamoto
- 2 Department of Genomics-Based Drug Discovery, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.,3 Global Cardiovascular Assessment, Biopharmaceutical Assessment Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kohei Sawada
- 2 Department of Genomics-Based Drug Discovery, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.,3 Global Cardiovascular Assessment, Biopharmaceutical Assessment Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Scheyltjens I, Arckens L. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plast 2016; 2016:8723623. [PMID: 27403348 PMCID: PMC4923604 DOI: 10.1155/2016/8723623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/05/2022] Open
Abstract
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning.
Collapse
Affiliation(s)
- Isabelle Scheyltjens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Knudstrup S, Zochowski M, Booth V. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity. Eur J Neurosci 2016; 43:1321-39. [PMID: 26869313 DOI: 10.1111/ejn.13210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 01/16/2023]
Abstract
The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states.
Collapse
Affiliation(s)
- Scott Knudstrup
- Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, 450 Church St, Ann Arbor, MI, 48109, USA
| | - Victoria Booth
- Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Villette V, Guigue P, Picardo MA, Sousa VH, Leprince E, Lachamp P, Malvache A, Tressard T, Cossart R, Baude A. Development of early-born γ-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol 2016; 524:2440-61. [PMID: 26779909 PMCID: PMC4949683 DOI: 10.1002/cne.23961] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/04/2015] [Accepted: 01/03/2016] [Indexed: 02/02/2023]
Abstract
Early‐born γ‐aminobutyric acid (GABA) neurons (EBGNs) are major components of the hippocampal circuit because at early postnatal stages they form a subpopulation of “hub cells” transiently supporting CA3 network synchronization (Picardo et al. [2011] Neuron 71:695–709). It is therefore essential to determine when these cells acquire the remarkable morphofunctional attributes supporting their network function and whether they develop into a specific subtype of interneuron into adulthood. Inducible genetic fate mapping conveniently allows for the labeling of EBGNs throughout their life. EBGNs were first analyzed during the perinatal week. We observed that EBGNs acquired mature characteristics at the time when the first synapse‐driven synchronous activities appeared in the form of giant depolarizing potentials. The fate of EBGNs was next analyzed in the adult hippocampus by using anatomical characterization. Adult EBGNs included a significant proportion of cells projecting selectively to the septum; in turn, EBGNs were targeted by septal and entorhinal inputs. In addition, most EBGNs were strongly targeted by cholinergic and monoaminergic terminals, suggesting significant subcortical innervation. Finally, we found that some EBGNs located in the septum or the entorhinal cortex also displayed a long‐range projection that we traced to the hippocampus. Therefore, this study shows that the maturation of the morphophysiological properties of EBGNs mirrors the evolution of early network dynamics, suggesting that both phenomena may be causally linked. We propose that a subpopulation of EBGNs forms into adulthood a scaffold of GABAergic projection neurons linking the hippocampus to distant structures. J. Comp. Neurol. 524:2440–2461, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincent Villette
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Philippe Guigue
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Michel Aimé Picardo
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Vitor Hugo Sousa
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Erwan Leprince
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Philippe Lachamp
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Arnaud Malvache
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Thomas Tressard
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Rosa Cossart
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Agnès Baude
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| |
Collapse
|
33
|
Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proc Natl Acad Sci U S A 2016; 113:734-9. [PMID: 26733685 DOI: 10.1073/pnas.1524183113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the molecular similarities and differences between neurons in the ventral (vSt) and dorsal striatum (dSt) and their physiological implications. In the vSt, serotonin [5-Hydroxytryptamine (5-HT)] modulates mood control and pleasure response, whereas in the dSt, 5-HT regulates motor behavior. Here we show that, in mice, 5-HT depolarizes cholinergic interneurons (ChIs) of the dSt whereas hyperpolarizing ChIs from the vSt by acting on different 5-HT receptor isoforms. In the vSt, 5-HT1A (a postsynaptic receptor) and 5-HT1B (a presynaptic receptor) are highly expressed, and synergistically inhibit the excitability of ChIs. The inhibitory modulation by 5-HT1B, but not that by 5-HT1A, is mediated by p11, a protein associated with major depressive disorder. Specific deletion of 5-HT1B from cholinergic neurons results in impaired inhibition of ACh release in the vSt and in anhedonic-like behavior.
Collapse
|
34
|
Martin HGS, Bernabeu A, Lassalle O, Bouille C, Beurrier C, Pelissier-Alicot AL, Manzoni OJ. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex. Front Cell Neurosci 2015; 9:457. [PMID: 26648844 PMCID: PMC4664641 DOI: 10.3389/fncel.2015.00457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light—electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.
Collapse
Affiliation(s)
- Henry G S Martin
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Axel Bernabeu
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Conception, Service de Psychiatrie Marseille, France
| | - Olivier Lassalle
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Clément Bouille
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Corinne Beurrier
- Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288 Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Timone Adultes, Service de Médecine Légale Marseille, France
| | - Olivier J Manzoni
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| |
Collapse
|
35
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
36
|
Vijayaraghavan S, Sharma G. Editorial: Brain cholinergic mechanisms. Front Synaptic Neurosci 2015; 7:14. [PMID: 26441630 PMCID: PMC4569963 DOI: 10.3389/fnsyn.2015.00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| | - Geeta Sharma
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| |
Collapse
|