1
|
Xie X, Xu H, Shu R, Du S, Fan H, Zhang M, Sun L, Zhou J, Wang L, Li Z, Anthony DC. Period3 modulates the NAD +-SIRT3 axis to alleviate depression-like behaviour by enhancing NAMPT activity in mice. J Adv Res 2025:S2090-1232(25)00062-1. [PMID: 39894345 DOI: 10.1016/j.jare.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION PERIOD (PER)3 deficiency is associated with depression-like behaviors, but the underlying mechanisms remain unclear. OBJECTIVES This study aims to elucidate the role and mechanism of PER3 in regulating depression-like behaviors in mice. METHODS Depression-like behaviors were assessed using the sucrose preference test, tail suspension test, and forced swimming test. Metabolomic analysis was conducted on hippocampal tissues from Per3 knockout mice using chromatography-mass spectrometry. The regulatory role of PER3 on the expression of nicotinamide phosphoribosyltransferase (Nampt) was investigated through co-immunoprecipitation and chromatin immunoprecipitation assays. RESULTS Metabolomic analysis revealed that Per3 deficiency disrupts mitochondrial function, as evidenced by reduced activities of key tricarboxylic acidcycle enzymes (succinate dehydrogenase, citrate synthase, and α-ketoglutarate dehydrogenase), diminished expression of mitochondrial respiratory chain complexes I-V, and decreased nicotinamide adenine dinucleotide (NAD)+ levels in Per3 knockout mice. Supplementation with the NAD+ precursor nicotinamide rescued mitochondrial function and alleviated depression-like behaviors in Per3 knockout mice. Similar effects were observed with intraperitoneal administration of the NAMPT activator P7C3-A20, while these effects were abolished by the NAMPT inhibitor FK866. Mechanistically, PER3 was found to regulate Nampt expression by binding to E-box elements within its intronic regions in conjunction with BMAL1. This interaction enhanced NAD+ production, activating SIRT3 to mitigate mitochondrial dysfunction in Per3 knockout mice. CONCLUSIONS These findings uncover a novel mechanism by which PER3 ameliorates depressive behaviors through the regulation of NAMPT-controlled NAD+ levels and mitochondrial function, underscoring the critical role of PER3 in depression-related pathophysiology.
Collapse
Affiliation(s)
- Xiaoxian Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 201108, China; Department of Pharmacology, University of Oxford, Mansfield Road OX1 3QT, Oxford, UK; Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China.
| | - Haoshen Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shulin Du
- Department of Nutritional and Metabolic Psychiatry, Affliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Haidan Fan
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, Affliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road OX1 3QT, Oxford, UK
| |
Collapse
|
2
|
Campbell I, Beckers E, Sharifpour R, Berger A, Paparella I, Aizpurua JFB, Koshmanova E, Mortazavi N, Sherif S, Vandewalle G. Impact of light on task-evoked pupil responses during cognitive tasks. J Sleep Res 2024; 33:e14101. [PMID: 37974557 DOI: 10.1111/jsr.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Light has many non-image-forming functions including modulation of pupil size and stimulation of alertness and cognition. Part of these non-image-forming effects may be mediated by the brainstem locus coeruleus. The processing of sensory inputs can be associated with a transient pupil dilation that is likely driven in part by the phasic activity of the locus coeruleus. In the present study, we aimed to characterise the task-evoked pupil response associated with auditory inputs under different light levels and across two cognitive tasks. We continuously monitored the pupil of 20 young healthy participants (mean [SD] 24.05 [4.0] years; 14 women) whilst they completed an attentional and an emotional auditory task whilst exposed to repeated 30-40-s blocks of light interleaved with darkness periods. Blocks could either consist of monochromatic orange light (0.16 melanopic equivalent daylight illuminance (EDI) lux) or blue-enriched white light of three different levels [37, 92, 190 melanopic EDI lux; 6500 K]. For the analysis, 15 and then 14 participants were included in the attentional and emotional tasks, respectively. Generalised linear mixed models showed a significant main effect of light level on the task-evoked pupil responses triggered by the attentional and emotional tasks (p ≤ 0.0001). The impact of light was different for the target versus non-target stimulus of the attentional task but was not different for the emotional and neutral stimulus of the emotional task. There is a smaller sustained pupil size during brighter light blocks but, a higher light level triggers a stronger task-evoked pupil response to auditory stimulation, presumably through the recruitment of the locus coeruleus.
Collapse
Affiliation(s)
- Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Beckers E, Campbell I, Sharifpour R, Paparella I, Berger A, Aizpurua JFB, Koshmanova E, Mortazavi N, Talwar P, Sherif S, Jacobs HIL, Vandewalle G. Impact of repeated short light exposures on sustained pupil responses in an fMRI environment. J Sleep Res 2024; 33:e14085. [PMID: 37904313 DOI: 10.1111/jsr.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
Light triggers numerous non-image-forming, or non-visual, biological effects. The brain correlates of these non-image-forming effects have been investigated, notably using magnetic resonance imaging and short light exposures varying in irradiance and spectral quality. However, it is not clear whether non-image-forming responses estimation may be biased by having light in sequential blocks, for example, through a potential carryover effect of one light onto the next. We reasoned that pupil light reflex was an easy readout of one of the non-image-forming effects of light that could be used to address this issue. We characterised the sustained pupil light reflex in 13-16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light (0.16 melanopic equivalent daylight illuminance lux) and polychromatic blue-enriched white light of three different levels (37, 92, 190 melanopic equivalent daylight illuminance lux). As expected, higher melanopic irradiance was associated with larger sustained pupil light reflex in each cognitive domain. This result was stable over the light sequence under higher melanopic irradiance levels compared with lower ones. Exploratory frequency-domain analyses further revealed that sustained pupil light reflex was more variable under lower melanopic irradiance levels. Importantly, sustained pupil light reflex varied across tasks independently of the light condition, pointing to a potential impact of light history and/or cognitive context on sustained pupil light reflex. Together, our results emphasise that the distinct contribution and adaptation of the different retinal photoreceptors influence the non-image-forming effects of light and therefore potentially their brain correlates.
Collapse
Affiliation(s)
- Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Puneet Talwar
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Schöllhorn I, Stefani O, Lucas RJ, Spitschan M, Epple C, Cajochen C. The Impact of Pupil Constriction on the Relationship Between Melanopic EDI and Melatonin Suppression in Young Adult Males. J Biol Rhythms 2024; 39:282-294. [PMID: 38348477 PMCID: PMC11141089 DOI: 10.1177/07487304241226466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The pupil modulates the amount of light that reaches the retina. Not only luminance but also the spectral distribution defines the pupil size. Previous research has identified steady-state pupil size and melatonin attenuation to be predominantly driven by melanopsin, which is expressed by a unique subgroup of intrinsically photosensitive retinal ganglion cells (ipRGCs) that are sensitive to short-wavelength light (~480 nm). Here, we aimed to selectively target the melanopsin system during the evening, while measuring steady-state pupil size and melatonin concentrations under commonly experienced evening light levels (<90 lx). Therefore, we used a five-primary display prototype to generate light conditions that were matched in terms of L-, M-, and S-cone-opic irradiances, but with high and low melanopic irradiances (~3-fold difference). Seventy-two healthy, male participants completed a 2-week study protocol. The volunteers were assigned to one of the four groups that differed in luminance levels (27-285 cd/m2). Within the four groups, each volunteer was exposed to a low melanopic (LM) and a high melanopic (HM) condition. The two 17-h study protocols comprised 3.5 h of light exposure starting 4 h before habitual bedtime. Median pupil size was significantly smaller during HM than LM in all four light intensity groups. In addition, we observed a significant correlation between melanopic weighted corneal illuminance (melanopic equivalent daylight illuminance [mEDI]) and pupil size, such that higher mEDI values were associated with smaller pupil size. Using pupil size to estimate retinal irradiance showed a qualitatively similar goodness of fit as mEDI for predicting melatonin suppression. Based on our results here, it remains appropriate to use melanopic irradiance measured at eye level when comparing light-dependent effects on evening melatonin concentrations in healthy young people at rather low light levels.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Robert J Lucas
- Centre for Biological Timing, School of Biology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Munich, Germany
| | - Christian Epple
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata EM, Jacobs EG. Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male. J Neurosci 2024; 44:e1856232024. [PMID: 38627091 PMCID: PMC11140665 DOI: 10.1523/jneurosci.1856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/30/2024] Open
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17β-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Laura Pritschet
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Pavel Shapturenka
- Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Tyler Santander
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Elle M Murata
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Emily G Jacobs
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106
| |
Collapse
|
6
|
Vani V, Ojha P, Gadhvi MA, Dixit A. Attentional Correlates of Colored Lights: Considerations for Cognitive Testing. Neuroscience 2024; 543:83-89. [PMID: 38403240 DOI: 10.1016/j.neuroscience.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Attention, an important index of cognitive function, can be affected amidst colored lights. This work investigated the effects of colored lights on the performance in attention task. Participants (N = 42) performed in one, two, and three letter cancellation task (LCT) during four lighting conditions. The order of LCT and the colored light sessions were randomized. The performance in LCT was evaluated through % accuracy, % omission, and % error. A repeated measures ANOVA showed a statistically significant difference in % accuracy in one LCT (F(2.46, 100.8) = 24.45, p < 0.001), two LCT (F(2.57, 105.4) = 20.53, p < 0.001), and three LCT (F(2.66, 109.22) = 17.96, p < 0.001) among the four colored lights. In addition, % omission revealed a statistically significant difference in one LCT (F(2.46, 100.8) = 24.43, p < 0.001), two LCT (F(2.57, 105.4) = 20.57, p < 0.001), and three LCT (F(2.66, 109.16) = 18.21, p < 0.001) among the four lights. There was no statistically significant difference in % error in one LCT (F(2.05, 84.1) = 1.23, p = 0.3), two LCT (F(2.66, 109.06) = 0.62, p = 0.971), three LCT (F(2.62, 107.53) = 0.97, p = 0.4) among the four lighting conditions. Colored lights affect attention-related cognitive processing. The attentional correlates of white and red lights are more compared to green, and blue lights. Lighting condition should be an important consideration for cognitive testing, for designing workspaces, educational settings, and other environments where attention plays a crucial role.
Collapse
Affiliation(s)
- Vakode Vani
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Pooja Ojha
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Mahesh Arjundan Gadhvi
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Abhinav Dixit
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Zareba MR, Fafrowicz M, Marek T, Oginska H, Beldzik E, Domagalik A. Tracing diurnal differences in brain anatomy with voxel-based morphometry - associations with sleep characteristics. Chronobiol Int 2024; 41:201-212. [PMID: 38192011 DOI: 10.1080/07420528.2024.2301944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Multiple aspects of brain functioning, including arousal, motivation, and cognitive performance, are governed by circadian rhythmicity. Although the recent rise in the use of magnetic resonance imaging (MRI) has enabled investigations into the macroscopic correlates of the diurnal brain processes, neuroanatomical studies are scarce. The current work investigated how time-of-day (TOD) impacts white (WM) and grey matter (GM) volumes using voxel-based morphometry (VBM) in a large dataset (N = 72) divided into two equal, comparable subsamples to assess the replicability of effects. Furthermore, we aimed to assess how the magnitude of these diurnal differences was related to actigraphy-derived indices of sleep health. The results extend the current knowledge by reporting that TOD is predominantly associated with regional WM volume decreases. Additionally, alongside corroborating previously observed volumetric GM decreases, we provide the first evidence for positive TOD effects. Higher replicability was observed for WM, with the only two replicated GM clusters being volumetric increases in the amygdala and hippocampus, and decreases in the retrosplenial cortex, with the latter more pronounced in individuals with shorter sleep times. These findings implicate the existence of region-specific mechanisms behind GM effects, which might be related to cognitive processes taking place during wakefulness and homeostatic sleep pressure.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana, Spain
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| | - Halszka Oginska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Ewa Beldzik
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
9
|
Hu L, Katz ES, Stamoulis C. Modulatory effects of fMRI acquisition time of day, week and year on adolescent functional connectomes across spatial scales: Implications for inference. Neuroimage 2023; 284:120459. [PMID: 37977408 DOI: 10.1016/j.neuroimage.2023.120459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Metabolic, hormonal, autonomic and physiological rhythms may have a significant impact on cerebral hemodynamics and intrinsic brain synchronization measured with fMRI (the resting-state connectome). The impact of their characteristic time scales (hourly, circadian, seasonal), and consequently scan timing effects, on brain topology in inherently heterogeneous developing connectomes remains elusive. In a cohort of 4102 early adolescents with resting-state fMRI (median age = 120.0 months; 53.1 % females) from the Adolescent Brain Cognitive Development Study, this study investigated associations between scan time-of-day, time-of-week (school day vs weekend) and time-of-year (school year vs summer vacation) and topological properties of resting-state connectomes at multiple spatial scales. On average, participants were scanned around 2 pm, primarily during school days (60.9 %), and during the school year (74.6 %). Scan time-of-day was negatively correlated with multiple whole-brain, network-specific and regional topological properties (with the exception of a positive correlation with modularity), primarily of visual, dorsal attention, salience, frontoparietal control networks, and the basal ganglia. Being scanned during the weekend (vs a school day) was correlated with topological differences in the hippocampus and temporoparietal networks. Being scanned during the summer vacation (vs the school year) was consistently positively associated with multiple topological properties of bilateral visual, and to a lesser extent somatomotor, dorsal attention and temporoparietal networks. Time parameter interactions suggested that being scanned during the weekend and summer vacation enhanced the positive effects of being scanned in the morning. Time-of-day effects were overall small but spatially extensive, and time-of-week and time-of-year effects varied from small to large (Cohen's f ≤ 0.1, Cohen's d<0.82, p < 0.05). Together, these parameters were also positively correlated with temporal fMRI signal variability but only in the left hemisphere. Finally, confounding effects of scan time parameters on relationships between connectome properties and cognitive task performance were assessed using the ABCD neurocognitive battery. Although most relationships were unaffected by scan time parameters, their combined inclusion eliminated associations between properties of visual and somatomotor networks and performance in the Matrix Reasoning and Pattern Comparison Processing Speed tasks. Thus, scan time of day, week and year may impact measurements of adolescent brain's functional circuits, and should be accounted for in studies on their associations with cognitive performance, in order to reduce the probability of incorrect inference.
Collapse
Affiliation(s)
- Linfeng Hu
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Eliot S Katz
- Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Catherine Stamoulis
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Ou S, Cao Y, Xie T, Jiang T, Li J, Luo W, Ma N. Effect of homeostatic pressure and circadian arousal on the storage and executive components of working memory: Evidence from EEG power spectrum. Biol Psychol 2023; 184:108721. [PMID: 37952693 DOI: 10.1016/j.biopsycho.2023.108721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Diurnal fluctuations in working memory (WM) performance, characterized by task-specific peaks and troughs, are likely attributed to the differential regulation of WM subcomponents by interactions between circadian and homeostatic processes. The current study aimed to investigate the independent effects of circadian and homeostatic processes on the storage and executive subcomponents of WM. We assessed the change in frontal-midline theta (FMT) power supporting WM executive component and posterior alpha/beta power supporting WM storage during N-back tasks in the morning, midafternoon with and without a nap from 31 healthy adults. The results suggested that when the accumulated sleep homeostasis was alleviated in the midafternoon by a daytime nap, higher ACC, less number of omissions, and a stronger increase in FMT power from the no nap to nap conditions. Compared to the morning, a stronger decrease in posterior alpha power, and posterior beta power (only in the 3-back task), was observed in the no-nap condition because of circadian arousal regulation. These findings suggest that the circadian process primarily influences the storage aspect of WM supported by posterior alpha and beta activity, while sleep homeostasis has a greater impact on the execution aspect supported by FMT activity.
Collapse
Affiliation(s)
- Simei Ou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yixuan Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tianxiang Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jiahui Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Wei Luo
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
11
|
Paparella I, Campbell I, Sharifpour R, Beckers E, Berger A, Aizpurua JFB, Koshmanova E, Mortazavi N, Talwar P, Degueldre C, Lamalle L, Sherif S, Phillips C, Maquet P, Vandewalle G. Light modulates task-dependent thalamo-cortical connectivity during an auditory attentional task. Commun Biol 2023; 6:945. [PMID: 37714936 PMCID: PMC10504287 DOI: 10.1038/s42003-023-05337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Exposure to blue wavelength light stimulates alertness and performance by modulating a widespread set of task-dependent cortical and subcortical areas. How light affects the crosstalk between brain areas to trigger this stimulating effect is not established. Here we record the brain activity of 19 healthy young participants (24.05±2.63; 12 women) while they complete an auditory attentional task in darkness or under an active (blue-enriched) or a control (orange) light, in an ultra-high-field 7 Tesla MRI scanner. We test if light modulates the effective connectivity between an area of the posterior associative thalamus, encompassing the pulvinar, and the intraparietal sulcus (IPS), key areas in the regulation of attention. We find that only the blue-enriched light strengthens the connection from the posterior thalamus to the IPS. To the best of our knowledge, our results provide the first empirical data supporting that blue wavelength light affects ongoing non-visual cognitive activity by modulating task-dependent information flow from subcortical to cortical areas.
Collapse
Affiliation(s)
- Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ET, Maastricht, The Netherlands
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
- Synergia Medical SA, 1435, Mont-Saint-Guibert, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Puneet Talwar
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Christian Degueldre
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Laurent Lamalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Neurology Department, CHU de Liège, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
12
|
Wiłkość-Dębczyńska M, Liberacka-Dwojak M. Time of day and chronotype in the assessment of cognitive functions. POSTEPY PSYCHIATRII NEUROLOGII 2023; 32:162-166. [PMID: 38034504 PMCID: PMC10683050 DOI: 10.5114/ppn.2023.132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/02/2023] [Indexed: 12/02/2023]
Abstract
Purpose Circadian rhythms are synchronized, through the endogenous biological clock, with the 24-hour cycle, and associated with numerous changes in human functioning, both in physical and mental aspects. It is assumed that daily fluctuations in cognitive performance are a consequence of interacting homeostatic and circadian processes regulating an individual's sleep-wake rhythms. A chronotype may be understood as a phenotype of circadian cycles determined by an endogenous biological clock. Despite research findings showing a significant relationship between those factors and cognition, they remain insufficiently considered in the domain of cognitive psychology and neuropsychology. Views This narrative review aims to describe and highlight the interactions between the time of day, chronotype, and cognitive performance in domains of mental activity variables, receptive functions, memory and learning, expressive functions, and thinking. Conclusions The results of the research show that time-of-day effects on basic and more complex cognitive functions depend on an individual's chronotype with a dominant effect of synchrony between chronotype and time of cognitive testing, with large differences in circadian cycles between younger and older age groups. It is suggested that chronotype assessment and time of day control should be included as important variables in the diagnosis of cognitive function in both healthy and clinical populations. There is also an emerging need for further investigations to better understand how chronotype and circadian rhythms modulate human brain physiology and cognition.
Collapse
|
13
|
Canazei M, Dick M, Pohl W, Weninger J, Hubel N, Staggl S, Weiss EM. Impact of repeated morning bright white light exposures on attention in a simulated office environment. Sci Rep 2023; 13:8730. [PMID: 37253767 DOI: 10.1038/s41598-023-35689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Attention is essential to the work. This study investigated the effects of two different light pulses on a simple attention task. In addition, the effects of subsequent exposure to constant but different illuminance levels on the continuation of the simple attention task and a subsequent complex attention task were examined. A total of 56 subjects were assigned in random order to two white light interventions that were repeated five times during the morning. Each light intervention consisted of a brief light pulse followed by constant light exposure and differed in temporal dimming dynamics and corneal illuminance. Subjective and psychometric parameters were recorded several times during light exposure. Heart rate variability (HRV) was derived from continuous electrocardiograms. Subjects showed improved reaction speed in the simple attention task, accompanied by higher HRV under a brighter light pulse without habituation by repetition. This difference in simple attention performance disappeared when light exposure remained the same after the light pulse. In addition, higher reaction speed and HRV were observed in the complex attention task under constant bright light exposure. Intermittent bright light seems promising to acutely improve attentional performance in office workplaces. Future research is needed to investigate daytime light effects on other work-related cognitive functions.
Collapse
Affiliation(s)
- Markus Canazei
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria.
| | - Maximilian Dick
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
- Research and Development Department, Bartenbach GmbH, Rinnerstrasse 14, Aldrans, Austria
| | - Wilfried Pohl
- Research and Development Department, Bartenbach GmbH, Rinnerstrasse 14, Aldrans, Austria
| | - Johannes Weninger
- Research and Development Department, Bartenbach GmbH, Rinnerstrasse 14, Aldrans, Austria
| | - Niclas Hubel
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
| | - Siegmund Staggl
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
| | - Elisabeth M Weiss
- Department of Psychology, University of Innsbruck, Innrain 52 F, 6020, Innsbruck, Austria
| |
Collapse
|
14
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
15
|
Schöllhorn I, Stefani O, Lucas RJ, Spitschan M, Slawik HC, Cajochen C. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol 2023; 6:228. [PMID: 36854795 PMCID: PMC9974389 DOI: 10.1038/s42003-023-04598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Evening light-emitting visual displays may disrupt sleep, suppress melatonin and increase alertness. Here, we control melanopic irradiance independent of display luminance and colour, in 72 healthy males 4 h before habitual bedtime and expose each of them to one of four luminance levels (i.e., dim light, smartphone, tablet or computer screen illuminance) at a low and a high melanopic irradiance setting. Low melanopic light shortens the time to fall asleep, attenuates evening melatonin suppression, reduces morning melatonin, advances evening melatonin onset and decreases alertness compared to high melanopic light. In addition, we observe dose-dependent increases in sleep latency, reductions in melatonin concentration and delays in melatonin onset as a function of melanopic irradiance-not so for subjective alertness. We identify melanopic irradiance as an appropriate parameter to mitigate the unwanted effects of screen use at night. Our results may help the many people who sit in front of screens in the evening or at night to fall asleep faster, feel sleepier, and have a more stable melatonin phase by spectrally tuning the visual display light without compromising the visual appearance.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | - Helen C Slawik
- Clinical Sleep Laboratory, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
van Rheede JJ, Feldmann LK, Busch JL, Fleming JE, Mathiopoulou V, Denison T, Sharott A, Kühn AA. Diurnal modulation of subthalamic beta oscillatory power in Parkinson’s disease patients during deep brain stimulation. NPJ Parkinsons Dis 2022; 8:88. [PMID: 35804160 PMCID: PMC9270436 DOI: 10.1038/s41531-022-00350-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Beta-band activity in the subthalamic local field potential (LFP) is correlated with Parkinson’s disease (PD) symptom severity and is the therapeutic target of deep brain stimulation (DBS). While beta fluctuations in PD patients are well characterized on shorter timescales, it is not known how beta activity evolves around the diurnal cycle, outside a clinical setting. Here, we obtained chronic recordings (34 ± 13 days) of subthalamic beta power in PD patients implanted with the Percept DBS device during high-frequency DBS and analysed their diurnal properties as well as sensitivity to artifacts. Time of day explained 41 ± 9% of the variance in beta power (p < 0.001 in all patients), with increased beta during the day and reduced beta at night. Certain movements affected LFP quality, which may have contributed to diurnal patterns in some patients. Future DBS algorithms may benefit from taking such diurnal and artifactual fluctuations in beta power into account.
Collapse
|
17
|
Zerón-Rugerio MF, Alda JA, Carpio-Arias TV, Izquierdo-Pulido M, Cambras T. Seasonality and ADHD: Summer time is associated with less symptoms of inattention among children and adolescents with ADHD. J Affect Disord 2022; 314:259-262. [PMID: 35878839 DOI: 10.1016/j.jad.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Affiliation(s)
- María Fernanda Zerón-Rugerio
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Jose A Alda
- Children and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Deu Barcelona, Barcelona, Spain
| | | | - Maria Izquierdo-Pulido
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Trinitat Cambras
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022; 8:e10282. [PMID: 36042717 PMCID: PMC9420367 DOI: 10.1016/j.heliyon.2022.e10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Light is necessary for human health and well-being. As we spend more time indoors, we are being increasingly exposed to artificial light. The development of artificial lighting has allowed us to control the brightness, colour, and timing of our light exposure. Yet, the widespread use of artificial light has raised concerns about the impact of altering our light environment on our health. The widespread adoption of personal digital devices over the past decade has exposed us to yet another source of artificial light. We spend a significant amount of time using digital devices with light-emitting screens, including smartphones and tablets, at close range. The light emitted from these devices, while appearing white, has an emission spectrum with a peak in the blue range. Blue light is often characterised as hazardous as its photon energy is higher than that of other wavelengths of visible light. Under certain conditions, visible blue light can cause harm to the retina and other ocular structures. Blue light can also influence the circadian rhythm and processes mediated by melanopsin-expressing intrinsically photosensitive retinal ganglion cells. While the blue component of sunlight is necessary for various physiological processes, whether the low-illuminance artificial blue light emitted from digital devices presents a risk to our health remains an ongoing area of debate. As technological advancements continue, it is relevant to understand how new devices may influence our well-being. This review examines the existing research on artificial blue light safety and the eye, visual performance, and circadian functions.
Collapse
Affiliation(s)
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
19
|
Wang H, Tian Y, Wang Y, He Q, Qiu J, Feng T, Chen H, Lei X. Distinct neural responses of morningness and eveningness chronotype to homeostatic sleep pressure revealed by resting-state functional magnetic resonance imaging. CNS Neurosci Ther 2022; 28:1439-1446. [PMID: 35699408 PMCID: PMC9344083 DOI: 10.1111/cns.13887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background Chronotype is an appropriate variable to investigate sleep homeostatic and circadian rhythm. Based on functional MRI, the resting‐state functional connectivity (rsFC) of insula‐angular decrease with the increase in homeostatic sleep pressure (HSP). However, the distinct neural response of different chronotype remained to be clarified. Therefore, we investigated how HSP influenced insular‐angular neural interaction of different chronotype. Methods 64 morningness‐chronotype (MCPs) and 128 eveningness‐chronotype participants (ECPs) received resting‐state functional MRI (rsfMRI) scan. HSP was divided into three levels (Low, Medium, and High) based on the elapsed time awake. Insular‐angular rsFC was calculated for MCPs and ECPs on each HSP. Results As the levels of HSP increased, the negative rsFC between right insular and bilateral angular increased in MCPs while decreased in ECPs. Specifically, ECPs compared with MCPs showed lower rsFC at medium levels of HSP, but higher rsFC at high levels of HSP. In addition, ECPs compared with MCPs exhibited lower rsFC between right insular and right angular at low levels of HSP. Conclusion The distinct modes of rsFC was found in different chronotype in response to HSP. The results provided the foundation and evidence for investigating the processes of circadian rhythm and sleep homeostatic.
Collapse
Affiliation(s)
- Haien Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Yun Tian
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| |
Collapse
|
20
|
Didikoglu A, Walker B, Maharani A, Pendleton N, Canal MM, Payton A, Gibson J, Brown T. Associations between chronotype and employment status in a longitudinal study of an elderly population. Chronobiol Int 2022; 39:1118-1131. [PMID: 35535553 DOI: 10.1080/07420528.2022.2071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Individuals with an 'evening' chronotype tend to sleep and wake later than people described to be 'morning' type if given a free choice. Since early awakening times, due to school and occupation, may be more challenging for those with evening chronotype, they are expected to be at greater risk of adverse health, occupational and educational outcomes. Our objectives are to investigate associations between chronotype and occupational, educational and health outcomes in a longitudinal cohort. We use sleep, sociodemographic and health data from The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age, 1982 through 2010. The relationship between employment and longitudinal midsleep trajectories were estimated using linear mixed models. Associations between employment status and Cornell Medical Index, Beck Depression Inventory scores, cortisol concentrations at different times of the day stratified by chronotype were estimated using regression. The relationship between chronotype, occupational success, education, and cognition were also examined using regression methods. In older adults, compared to non-employed participants, employed participants get up 0.45 hours earlier. Evening-type employed individuals had earlier midsleep time compared to their non-employed counterparts and had abnormal longitudinal trajectories with an increasing trend as they aged. Employed individuals with evening chronotype had a higher risk of depression than employed morning-types. Moreover, employed individuals with evening chronotype had a higher cortisol concentration at 14:00 h than non-employed individuals. In addition, memory score was lower in individuals with morning chronotype, however processing speed was higher in individuals with morning chronotype compared to evening. Morning-types had a higher age when they finished full time education. Relative to evening-types, those with morning chronotype were 6.5% more likely to be in a job classed as professional or intermediate. Our findings suggest that evening-types are at a disadvantage with regards to occupational, educational and health outcomes in older adults due to their vulnerability to circadian and sleep disruption.
Collapse
Affiliation(s)
- Altug Didikoglu
- Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Benjamin Walker
- Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, UK
| | - Asri Maharani
- Division of Nursing, Midwifery & Social Work, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Maria Mercè Canal
- Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - Jon Gibson
- Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, UK
| | - Timothy Brown
- Division of Diabetes, Endocrinology & Gastroenterology, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Korman M, Tkachev V, Reis C, Komada Y, Kitamura S, Gubin D, Kumar V, Roenneberg T. Outdoor daylight exposure and longer sleep promote wellbeing under COVID-19 mandated restrictions. J Sleep Res 2022; 31:e13471. [PMID: 34549481 PMCID: PMC8646753 DOI: 10.1111/jsr.13471] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Light is an important regulator of daily human physiology in providing time-of-day information for the circadian clock to stay synchronised with the 24-hr day. The coronavirus disease 2019 (COVID-19) pandemic led to social restrictions in many countries to prevent virus spreading, restrictions that dramatically altered daily routines and limited outdoor daylight exposure. We previously reported that sleep duration increased, social jetlag decreased, and mid-sleep times delayed during social restrictions (Global Chrono Corona Survey, N = 7,517). In the present study, we investigated in the same dataset changes in wellbeing and their link to outdoor daylight exposure, and sleep-wake behaviour. In social restrictions, median values of sleep quality, quality of life, physical activity and productivity deteriorated, while screen time increased, and outdoor daylight exposure was reduced by ~58%. Yet, many survey participants also reported no changes or even improvements. Larger reductions in outdoor daylight exposure were linked to deteriorations in wellbeing and delayed mid-sleep times. Notably, sleep duration was not associated with outdoor daylight exposure loss. Longer sleep and decreased alarm-clock use dose-dependently correlated with changes in sleep quality and quality of life. Regression analysis for each wellbeing aspect showed that a model with six predictors including both levels and their deltas of outdoor daylight exposure, sleep duration and mid-sleep timing explained 5%-10% of the variance in changes of wellbeing scores (except for productivity). As exposure to daylight may extenuate the negative effects of social restriction and prevent sleep disruption, public strategies during pandemics should actively foster spending more daytime outdoors.
Collapse
Affiliation(s)
- Maria Korman
- Department of Occupational TherapyFaculty of Health SciencesAriel UniversityArielIsrael
- Edmond J. Safra Brain Research Center for the Study of Learning DisabilitiesUniversity of HaifaHaifaIsrael
| | | | - Cátia Reis
- Católica Research Centre for Psychological ‐ Family and Social WellbeingUniversidade Católica PortuguesaLisbonPortugal
- ISAMBFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Faculdade de Medicina de LisboaInstituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisboaPortugal
- CENC ‐ Centro de Medicina de SonoLisboaPortugal
| | - Yoko Komada
- Liberal ArtsMeiji Pharmaceutical UniversityTokyoJapan
| | - Shingo Kitamura
- Department of Sleep‐Wake DisordersNational Center of Neurology and PsychiatryNational Institute of Mental HealthTokyoJapan
| | - Denis Gubin
- Department of BiologyMedical UniversityTyumenRussia
- Tyumen Cardiology Research CenterTomsk National Research Medical CenterRussian Academy of ScienceTomskRussia
| | - Vinod Kumar
- Department of ZoologyUniversity of DelhiDelhiIndia
| | - Till Roenneberg
- Institute and Polyclinic for Occupational‐, Social‐ and Environmental MedicineLMU MunichMunichGermany
- Chronsulting PrielMunichGermany
- Institute for Medical PsychologyLMU MunichMunichGermany
| |
Collapse
|
22
|
Chen Z, Zhao S, Tian S, Yan R, Wang H, Wang X, Zhu R, Xia Y, Yao Z, Lu Q. Diurnal mood variation symptoms in major depressive disorder associated with evening chronotype: Evidence from a neuroimaging study. J Affect Disord 2022; 298:151-159. [PMID: 34715183 DOI: 10.1016/j.jad.2021.10.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/16/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is often accompanied with classic diurnal mood variation (DMV) symptoms. Patients with DMV symptoms feel a mood improvement and prefer activities at dusk or in the evening, which is consistent with the evening chronotype. Their neural alterations are unclear. In this study, we aimed to explore the neuropathological mechanisms underlying the circadian rhythm of mood and the association with chronotype in MDD. METHODS A total of 126 depressed patients, including 48 with DMV, 78 without, and 67 age/gender-matched healthy controls (HC) were recruited and underwent a resting-state functional magnetic resonance imaging. Spontaneous neural activity was investigated using amplitude of low-frequency fluctuation (ALFF) and region of interest (ROI)-based functional connectivity (FC) analyses were conducted. The Morningness-Eveningness Questionnaire (MEQ) was utilized to evaluate participant chronotypes and Pearson correlations were calculated between altered ALFF/FC values and MEQ scores in patients with MDD. RESULTS Compared with NMV, DMV group exhibited lower MEQ scores, and increased ALFF values in the right orbital superior frontal gyrus (oSFG). We observed that increased FC between the left suprachiasmatic nucleus (SCN) and supramarginal gyrus (SMG). ALFF in the oSFG and FC of rSCN-SMG were negatively correlated with MEQ scores. LIMITATION Some people's chronotypes information is missing. CONCLUSION Patients with DMV tended to be evening type and exhibited abnormal brain functions in frontal lobes. The synergistic changes between frontotemporal lobe, SCN-SMG maybe the characteristic of patients with DMV symptoms.
Collapse
Affiliation(s)
- Zhilu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xumiao Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rongxin Zhu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China.
| |
Collapse
|
23
|
Ceglarek A, Ochab JK, Cifre I, Fafrowicz M, Sikora-Wachowicz B, Lewandowska K, Bohaterewicz B, Marek T, Chialvo DR. Non-linear Functional Brain Co-activations in Short-Term Memory Distortion Tasks. Front Neurosci 2021; 15:778242. [PMID: 34924944 PMCID: PMC8678091 DOI: 10.3389/fnins.2021.778242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Recent works shed light on the neural correlates of true and false recognition and the influence of time of day on cognitive performance. The current study aimed to investigate the modulation of the false memory formation by the time of day using a non-linear correlation analysis originally designed for fMRI resting-state data. Fifty-four young and healthy participants (32 females, mean age: 24.17 ± 3.56 y.o.) performed in MR scanner the modified Deese-Roediger-McDermott paradigm in short-term memory during one session in the morning and another in the evening. Subjects’ responses were modeled with a general linear model, which includes as a predictor the non-linear correlations of regional BOLD activity with the stimuli, separately for encoding and retrieval phases. The results show the dependence of the non-linear correlations measures with the time of day and the type of the probe. In addition, the results indicate differences in the correlations measures with hippocampal regions between positive and lure probes. Besides confirming previous results on the influence of time-of-day on cognitive performance, the study demonstrates the effectiveness of the non-linear correlation analysis method for the characterization of fMRI task paradigms.
Collapse
Affiliation(s)
- Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Jeremi K Ochab
- M. Kac Complex Systems Research Center and M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Ignacio Cifre
- Facultat de Psicologia, Ciències l'Educació i de l'Esport, Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Dante R Chialvo
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas (ICIFI), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
From circadian clock mechanism to sleep disorders and jet lag: Insights from a computational approach. Biochem Pharmacol 2021; 191:114482. [DOI: 10.1016/j.bcp.2021.114482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
|
25
|
Evangelisti S, La Morgia C, Testa C, Manners DN, Brizi L, Bianchini C, Carbonelli M, Barboni P, Sadun AA, Tonon C, Carelli V, Vandewalle G, Lodi R. Brain functional MRI responses to blue light stimulation in Leber’s hereditary optic neuropathy. Biochem Pharmacol 2021; 191:114488. [DOI: 10.1016/j.bcp.2021.114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
|
26
|
Soler R, Voss E. Biologically Relevant Lighting: An Industry Perspective. Front Neurosci 2021; 15:637221. [PMID: 34163318 PMCID: PMC8215265 DOI: 10.3389/fnins.2021.637221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Innovations in LED lighting technology have led to tremendous adoption rates and vastly improved the metrics by which they are traditionally evaluated-including color quality, longevity, and energy efficiency to name a few. Additionally, scientific insight has broadened with respect to the biological impact of light, specifically our circadian rhythm. Indoor electric lighting, despite its many attributes, fails to specifically address the biological responses to light. Traditional electric lighting environments are biologically too dim during the day, too bright at night, and with many people spending much of their lives in these environments, it can lead to circadian dysfunction. The lighting industry's biological solution has been to create bluer days and yellower nights, but the technology created to do so caters primarily to the cones. A better call to action is to provide biologically brighter days and biologically darker nights within the built environment. However, current lighting design practices have specified the comfort and utility of electric light. Brighter intensity during the day can often be uncomfortable or glary, and reduced light intensity at night may compromise visual comfort and safety, both of which will affect user compliance. No single lighting solution will effectively create biologically brighter days and biologically darker nights, but rather a variety of parameters need to be considered. This paper discusses the contributions of spectral power distribution, hue or color temperature, spatial distribution, as well as architectural geometry and surface reflectivity, to achieve biologically relevant lighting.
Collapse
Affiliation(s)
| | - Erica Voss
- BIOS Lighting, Carlsbad, CA, United States
| |
Collapse
|
27
|
Zhou Y, Chen Q, Luo X, Li L, Ru T, Zhou G. Does Bright Light Counteract the Post-lunch Dip in Subjective States and Cognitive Performance Among Undergraduate Students? Front Public Health 2021; 9:652849. [PMID: 34164367 PMCID: PMC8215386 DOI: 10.3389/fpubh.2021.652849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
The post-lunch dip in alertness and performance was widely experienced during the early afternoon. Taking a short nap was documented as a practical strategy for habitual nappers to counteract the decline of alertness and performance. Yet, it remains unknown whether bright light exposure in the early afternoon working hours could alleviate the performance deficits caused by a post-lunch nap loss for habitual nappers. Seventeen undergraduate students who had a long-term habit of taking a post-lunch nap were assigned to three interventions: (1) a short nap + normal indoor light (100 lx, 4,000 K at eye level); (2) no nap + normal indoor light, and (3) no nap + blue-enriched bright light (1,000 lx, 6,500 K at eye level), in which subjective alertness (Karolinska Sleepiness Scale, KSS), mood (Positive and Negative Affect Schedule, PANAS), and task performance in sustained attention (psychomotor vigilance test, PVT), response inhibition (go/no-go task), and working memory (paced visual serial addition test, PVSAT) were measured. Results showed that a post-lunch nap deprivation significantly increased subjective sleepiness and negative mood and impaired performance in PVT and PVSAT, while exposure to bright blue-enriched white light vs. normal indoor light in the early afternoon significantly relieved such negative effects on mood, sleepiness, and performance in PVSAT; subjective positive mood and performance in PVT and go/no-go task remained unaffected with light intervention. These findings suggested that bright blue-enriched white light exposure could be a potential strategy for those who are suffering from drowsiness and low working memory following a habitual midday nap loss.
Collapse
Affiliation(s)
- Ying Zhou
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Qingwei Chen
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Xue Luo
- School of Psychology, South China Normal University, Guangzhou, China
| | - Le Li
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Taotao Ru
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Guofu Zhou
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Stefani O, Cajochen C. Should We Re-think Regulations and Standards for Lighting at Workplaces? A Practice Review on Existing Lighting Recommendations. Front Psychiatry 2021; 12:652161. [PMID: 34054611 PMCID: PMC8155670 DOI: 10.3389/fpsyt.2021.652161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Nowadays lighting projects often include temporal variations of the light, both spectrally and in terms of intensity to consider non-visual effects of light on people. However, as of today there are no specific regulations. Compliance with common lighting standards that address visual aspects of light, often means that only little non-visually effective light reaches the eye. In this practice review we confront existing regulations and standards on visual lighting aspects with new recommendations on non-visual aspects and highlight conflicts among them. We conclude with lighting recommendations that address both aspects.
Collapse
Affiliation(s)
- Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Hou F, Zhang L, Qin B, Gaggioni G, Liu X, Vandewalle G. Changes in EEG permutation entropy in the evening and in the transition from wake to sleep. Sleep 2021; 44:5959865. [PMID: 33159205 DOI: 10.1093/sleep/zsaa226] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Indexed: 02/02/2023] Open
Abstract
Quantifying the complexity of the EEG signal during prolonged wakefulness and during sleep is gaining interest as an additional mean to characterize the mechanisms associated with sleep and wakefulness regulation. Here, we characterized how EEG complexity, as indexed by Multiscale Permutation Entropy (MSPE), changed progressively in the evening prior to light off and during the transition from wakefulness to sleep. We further explored whether MSPE was able to discriminate between wakefulness and sleep around sleep onset and whether MSPE changes were correlated with spectral measures of the EEG related to sleep need during concomitant wakefulness (theta power-Ptheta: 4-8 Hz). To address these questions, we took advantage of large datasets of several hundred of ambulatory EEG recordings of individual of both sexes aged 25-101 years. Results show that MSPE significantly decreases before light off (i.e. before sleep time) and in the transition from wakefulness to sleep onset. Furthermore, MSPE allows for an excellent discrimination between pre-sleep wakefulness and early sleep. Finally, we show that MSPE is correlated with concomitant Ptheta. Yet, the direction of the latter correlation changed from before light-off to the transition to sleep. Given the association between EEG complexity and consciousness, MSPE may track efficiently putative changes in consciousness preceding sleep onset. An MSPE stands as a comprehensive measure that is not limited to a given frequency band and reflects a progressive change brain state associated with sleep and wakefulness regulation. It may be an effective mean to detect when the brain is in a state close to sleep onset.
Collapse
Affiliation(s)
- Fengzhen Hou
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Lulu Zhang
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Baokun Qin
- School of Computer, Chongqing University, Chongqing, China
| | - Giulia Gaggioni
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Xinyu Liu
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Pivovarnicek P, Kondratova D, Kentiba E, Jancokova L, Maly T. Does the chronotype distribution vary between different level football leagues? Insights gained from Czech elite football players. Chronobiol Int 2021; 38:1162-1169. [PMID: 33843384 DOI: 10.1080/07420528.2021.1912075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chronotype refer to individuals' time-of-day preferences for activities, which can be classified as "morning types = (M-types)", "evening types = (E-types)", and "neither types (N-types)". The primary aim of this study was to compare the chronotype distribution of Czech First League (1L) and Czech National Football League (2L) male elite football players, which was divided into two secondary aims: (i) statistically identify and compare the number (presence) of particular chronotypes in 1L, and (ii) statistically identify and compare the number (presence) of particular chronotypes in 2L. The present cross-sectional study employed a self-reported standardized questionnaire, the Composite Scale of Morningness, to study the chronotype distribution among the male elite football players. The chronotype distribution of 139 (85 from 1L with mean age ± S.D. = 25.5 ± 3.7 years and 54 from 2L age = 24.4 ± 4.5 years) players was assessed. Overall, 61 (71.8%) of the participants from 1L were mainly N-types, followed by M- and E-types. Similarly, 40 (74.1%) participants from 2L were mainly N-types, followed by M- and E-types. The statistical analysis of the 1L players showed a significantly higher presence of N-types compared to M- and E-types (χ2(2) = 57.62, p < .05, V = .58). The same results were detected in 2L, where the N-type was identified in the majority of football players (χ2(2) = 57.62, p < .05, V = .58). The statistical comparison of the number of presented chronotypes did not show a significant difference (F = 3.29, p > .05, V = .16) between players of the 1L and 2L. Thus, N-types are dominant among Czech elite football players, and the chronotype distribution of male elite football players from the Czech First League and the Czech National Football League does not vary.
Collapse
Affiliation(s)
- Pavol Pivovarnicek
- Department of Physical Education and Sports, Faculty of Arts, Matej Bel University, Banská Bystrica, Slovak Republic
| | - Dominika Kondratova
- Department of Physical Education and Sports, Faculty of Arts, Matej Bel University, Banská Bystrica, Slovak Republic.,Department of Physical Education, Grammar School of Andrej Kmeť, Banská Štiavnica, Slovak Republic
| | - Efrem Kentiba
- Department of Sports Science, Arba Minch College of Teachers' Education, Arba Minch, Ethiopia
| | - Ludmila Jancokova
- Department of Physical Education and Sports, Faculty of Arts, Matej Bel University, Banská Bystrica, Slovak Republic
| | - Tomas Maly
- Research Sport Center, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
31
|
Stefani O, Freyburger M, Veitz S, Basishvili T, Meyer M, Weibel J, Kobayashi K, Shirakawa Y, Cajochen C. Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men. J Pineal Res 2021; 70:e12714. [PMID: 33378563 DOI: 10.1111/jpi.12714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023]
Abstract
We examined whether dynamically changing light across a scheduled 16-h waking day influences sleepiness, cognitive performance, visual comfort, melatonin secretion, and sleep under controlled laboratory conditions in healthy men. Fourteen participants underwent a 49-h laboratory protocol in a repeated-measures study design. They spent the first 5 hours in the evening under standard lighting, followed by an 8-h nocturnal sleep episode at habitual bedtimes. Thereafter, volunteers either woke up to static light or to a dynamic light that changed spectrum and intensity across the scheduled 16-h waking day. Following an 8-h nocturnal sleep episode, the volunteers spent another 11 hours either under static or dynamic light. Static light attenuated the evening rise in melatonin levels more compared to dynamic light as indexed by a significant reduction in the melatonin AUC prior to bedtime during static light only. Participants felt less vigilant in the evening during dynamic light. After dynamic light, sleep latency was significantly shorter in both the baseline and treatment night while sleep structure, sleep quality, cognitive performance, and visual comfort did not significantly differ. The study shows that dynamic changes in spectrum and intensity of light promote melatonin secretion and sleep initiation in healthy men.
Collapse
Affiliation(s)
- Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Marlène Freyburger
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Simon Veitz
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Tamara Basishvili
- School of Natural Sciences and Medicine, Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University, Tbilisi, Georgia
| | - Martin Meyer
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Janine Weibel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Kumpei Kobayashi
- Development and Engineering Department, Toshiba Materials Co. Ltd, Yokohama-City, Japan
| | - Yasuhiro Shirakawa
- Development and Engineering Department, Toshiba Materials Co. Ltd, Yokohama-City, Japan
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Vandewalle G. Circadian, sleep-wake dependent or both? A preface to the special issue "Circadian rhythm and sleep-wake dependent regulation of behavior and brain function". Biochem Pharmacol 2021; 191:114535. [PMID: 33781739 DOI: 10.1016/j.bcp.2021.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Belgium.
| |
Collapse
|
33
|
Kompier ME, Smolders KCHJ, de Kort YAW. Abrupt light transitions in illuminance and correlated colour temperature result in different temporal dynamics and interindividual variability for sensation, comfort and alertness. PLoS One 2021; 16:e0243259. [PMID: 33750954 PMCID: PMC7984641 DOI: 10.1371/journal.pone.0243259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Detailed insights in both visual effects of light and effects beyond vision due to manipulations in illuminance and correlated color temperature (CCT) are needed to optimize study protocols as well as to design light scenarios for practical applications. This study investigated temporal dynamics and interindividual variability in subjective evaluations of sensation, comfort and mood as well as subjective and objective measures of alertness, arousal and thermoregulation following abrupt transitions in illuminance and CCT in a mild cold environment. The results revealed that effects could be uniquely attributed to changes in illuminance or CCT. No interaction effects of illuminance and CCT were found for any of these markers. Responses to the abrupt transitions in illuminance and CCT always occurred immediately and exclusively amongst the subjective measures. Most of these responses diminished over time within the 45-minute light manipulation. In this period, no responses were found for objective measures of vigilance, arousal or thermoregulation. Significant interindividual variability occurred only in the visual comfort evaluation in response to changes in the intensity of the light. The results indicate that the design of dynamic light scenarios aimed to enhance human alertness and vitality requires tailoring to the individual to create visually comfortable environments.
Collapse
Affiliation(s)
- Maaike E. Kompier
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Karin C. H. J. Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yvonne A. W. de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
34
|
Abstract
In this issue of Neuron, Huang et al. (2021) reveal a new influence of light on memory. They show that in mice, daily exposure to bright light over several weeks produces lasting increases in spatial memory and assign this effect to a circuit originating in the retina and encompassing the ventral lateral geniculate and reuniens nuclei.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing and Division of Diabetes Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
35
|
Modulation of recognition memory performance by light and its relationship with cortical EEG theta and gamma activities. Biochem Pharmacol 2021; 191:114404. [PMID: 33412102 PMCID: PMC8363935 DOI: 10.1016/j.bcp.2020.114404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Acute exposure to light exerts widespread effects on physiology, in addition to its key role in photoentrainment. Although the modulatory effect of light on physiological arousal is well demonstrated in mice, its effect on memory performance is inconclusive, as the direction of the effect depends on the nature of the behavioural task employed and/or the type of stimulus utilised. Moreover, in all rodent studies that reported significant effects of light on performance, brain activity was not assessed during the task and thus it is unclear how brain activity was modulated by light or the exact relationship between light-modulated brain activity and performance. Here we examine the modulatory effects of light of varying intensities on recognition memory performance and frontoparietal waking electroencephalography (EEG) in mice using the spontaneous recognition memory task. We report a light-intensity-dependent disruptive effect on recognition memory performance at the group level, but inspection of individual-level data indicates that light-intensity-dependent facilitation is observed in some cases. Using linear mixed-effects models, we then demonstrate that EEG fast theta (θ) activity at the time of encoding negatively predicts recognition memory performance, whereas slow gamma (γ) activity at the time of retrieval positively predicts performance. These relationships between θ/γ activity and performance are strengthened by increasing light intensity. Thus, light modulates θ and γ band activities involved in attentional and mnemonic processes, thereby affecting recognition memory performance. However, extraneous factors including the phase of the internal clock at which light is presented and homeostatic sleep pressure may determine how photic input is translated into behavioural performance.
Collapse
|
36
|
Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lighting projects that consider parameters related to circadian light remain rare. Using controlled lighting on both photopic and melanopic levels, this study aims to simplify the design of circadian lighting projects based on traditional photometric parameters and calculations. A real classroom is used to illustrate the behavior of horizontal (visual stimuli) and vertical (circadian contribution) illuminances under different design parameters, such as the varied reflectance of walls, ceiling, and floor; varied spatial distribution curves, including the number and position of luminaires; and across the spectral power distribution of a variety of LEDs. In this work, we seek to clarify and simplify to the greatest possible extent the meaning and scope of various lighting standards while establishing simple protocols. Our results will enable designers to carry out optimized lighting projects from both the photometric and circadian perspectives.
Collapse
|
37
|
Cibeira N, Maseda A, Lorenzo-López L, Rodríguez-Villamil JL, López-López R, Millán-Calenti JC. Application of light therapy in older adults with cognitive impairment: A systematic review. Geriatr Nurs 2020; 41:970-983. [PMID: 32758377 DOI: 10.1016/j.gerinurse.2020.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023]
Abstract
This systematic review aims to assess the efficacy of light therapy on behavioural and psychological symptoms of dementia (BPSD), cognition, functional status, and quality of life in older adults with cognitive impairment; and secondarily, to identify the optimal characteristics of light therapy to establish an adequate protocol for its clinical application. We searched Web of Science and Medline databases through December 2019, resulting in 36 included articles: 3 evaluated the effects on BPSD, 25 on sleep, 12 on agitation, 10 on mood, 4 on neuropsychiatric symptoms, 4 on cognition, 2 on quality of life and 2 on functional status. Literature has shown potential evidence for positive effects of light therapy on managing sleep, behavioural and mood disturbances in people with cognitive impairment, but a limited effect on cognition, quality of life and functional status. This review provides guidelines for intervention protocols with light therapy in older people with cognitive impairment.
Collapse
Affiliation(s)
- Nuria Cibeira
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15071 A Coruña, Spain.
| | - Ana Maseda
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15071 A Coruña, Spain.
| | - Laura Lorenzo-López
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15071 A Coruña, Spain.
| | - José L Rodríguez-Villamil
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15071 A Coruña, Spain.
| | - Rocío López-López
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15071 A Coruña, Spain.
| | - José C Millán-Calenti
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15071 A Coruña, Spain.
| |
Collapse
|
38
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
39
|
Šmotek M, Fárková E, Manková D, Kopřivová J. Evening and night exposure to screens of media devices and its association with subjectively perceived sleep: Should "light hygiene" be given more attention? Sleep Health 2020; 6:498-505. [PMID: 32197951 DOI: 10.1016/j.sleh.2019.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of the study was to examine subjective sleep quality in a population of healthy volunteers and its association with evening and night light exposure to screens of media devices. METHODS A total of 693 participants (mean age 31.2±11.4 years, 159 men, and 538 women) completed an online questionnaire battery consisting of several sleep-related questionnaires: PSQI, FSS, MCTQ, MEQ, and added questions assessing the timing and character the evening and night exposure to electronical devices (TV, PC, tablets, and phones), and the use of various filters blocking short-wavelength light. RESULTS Statistical analyses show that longer cumulative exposure to screen light in the evening was associated with greater sleep inertia in the morning (P = .019, η2=0.141) and longer sleep latency on workdays P = .038, η2=0.135). Furthermore, exposure to screen light 1.5 h before sleep or during night awakenings was also associated with a decreased chance to wake up before alarm clock (P = .003, d=0.30), larger social jet lag (P < .001, d=0.15), more daytime dysfunction (P < .001, d=0.40), decreased subjective sleep quality (P = .024, d=0.16), and more fatigue (P < .001, d=0.52). A statistical trend for an increase in duration of sleep on weekdays (P = .058, d=0.23) was also found in participants using blue-light filters in the evening hours. DISCUSSION Our results are in line with other studies that converge to show the negative association of evening and night exposure to short-wavelength light on subjective and objective sleep parameters. Results suggest that light hygiene in general population should be given more attention not only in the context of clinical sleep medicine but also in the realm of public health.
Collapse
Affiliation(s)
- Michal Šmotek
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Eva Fárková
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Manková
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Kopřivová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
40
|
Ritter P, Wieland F, Skene DJ, Pfennig A, Weiss M, Bauer M, Severus E, Güldner H, Sauer C, Soltmann B, Neumann S. Melatonin suppression by melanopsin-weighted light in patients with bipolar I disorder compared to healthy controls. J Psychiatry Neurosci 2020; 45:79-87. [PMID: 32096617 PMCID: PMC7828907 DOI: 10.1503/jpn.190005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/01/2022] Open
Abstract
Background Multiple lines of evidence suggest that the onset and course of bipolar disorder is influenced by environmental light conditions. Increased suppression of melatonin by light (supersensitivity) in patients with bipolar disorder has been postulated as an endophenotype by several studies. However, due to methodological shortcomings, the results of these studies remain inconclusive. This study investigated melatonin suppression in euthymic patients with bipolar I disorder using evening blue light specifically targeting the melanopsin system. Methods Melatonin suppression was assessed in euthymic patients with bipolar I disorder and healthy controls by exposure to monochromatic blue light (λmax = 475 nm; photon density = 1.6 × 1013 photons/cm2/s) for 30 minutes at 2300 h, administered via a ganzfeld dome for highly uniform light exposure. Serum melatonin concentrations were determined from serial blood sampling via radioimmunoassay. All participants received mydriatic eye drops and were genotyped for the PER3 VNTR polymorphism to avoid or adjust for potential confounding. As secondary outcomes, serum melatonin concentrations during dark conditions and after monochromatic red light exposure (λmax = 624 nm; photon density = 1.6 × 1013 photons/cm2/s) were also investigated. Changes in subjective alertness were investigated for all 3 lighting conditions. Results A total of 90 participants (57 controls, 33 bipolar I disorder) completed the study. Melatonin suppression by monochromatic blue light did not differ between groups (F1,80 = 0.56; p = 0.46). Moreover, there were no differences in melatonin suppression by monochromatic red light (F1,82 = 1.80; p = 0.18) or differences in melatonin concentrations during dark conditions (F1,74 = 1.16; p = 0.29). Healthy controls displayed a stronger increase in subjective alertness during exposure to blue light than patients with bipolar I disorder (t85 = 2.28; p = 0.027). Limitations Large interindividual differences in melatonin kinetics may have masked a true difference. Conclusion Despite using a large cohort and highly controlled laboratory conditions, we found no differences in melatonin suppression between euthymic patients with bipolar I disorder and healthy controls. These findings do not support the notion that supersensitivity is a valid endophenotype in bipolar I disorder.
Collapse
Affiliation(s)
- Philipp Ritter
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Falk Wieland
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Debra J. Skene
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Andrea Pfennig
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Maria Weiss
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Michael Bauer
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Emanuel Severus
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Henry Güldner
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Cathrin Sauer
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Bettina Soltmann
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| | - Stefanie Neumann
- From the Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (Ritter, Wieland, Pfennig, Weiss, Bauer, Severus, Sauer, Soltmann, Neumann); the Chair of Power Electronics, Institute of Electrical Power Engineering, TU Dresden (Wieland and Güldner); and the Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK (Skene)
| |
Collapse
|
41
|
Faraut B, Andrillon T, Drogou C, Gauriau C, Dubois A, Servonnet A, Van Beers P, Guillard M, Gomez-Merino D, Sauvet F, Chennaoui M, Léger D. Daytime Exposure to Blue-Enriched Light Counters the Effects of Sleep Restriction on Cortisol, Testosterone, Alpha-Amylase and Executive Processes. Front Neurosci 2020; 13:1366. [PMID: 31998056 PMCID: PMC6961531 DOI: 10.3389/fnins.2019.01366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Sleep debt is becoming a better acknowledged cause of physiological stress and neurobehavioral deficits with major public-health concerns. We investigated whether exposure to blue light during daytime could be an efficient countermeasure to limit sleep restriction’s impact on relevant behavioral (stress, sleepiness, sustained attention, and memory performance) and physiological (saliva cortisol, testosterone, and alpha-amylase) markers. Our semi-ecological, crossover, randomized design included 17 young men that underwent two sleep-restricted nights (3 h each) followed or not by blue light exposure (30-min-long sessions at 100 lux repeated four times throughout the day). Behavioral and physiological measurements were performed in the lab but outside these periods the participants kept following their usual routine. After sleep restriction, morning cortisol and testosterone, and afternoon alpha-amylase levels decreased. In parallel, subjective ratings of stress and sleepiness increased while performance on the sustained attention and memory tasks deteriorated. In contrast, after periods of blue light exposure, all these parameters were largely restored to baseline levels, despite an identical sleep restriction procedure, although this restorative effect was reduced for the memory task. Our findings suggest that even short exposure to blue light could trigger persistent beneficial effects throughout the day and could be potentially efficient in real-life settings.
Collapse
Affiliation(s)
- Brice Faraut
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Consultation de Pathologie Professionnelle Sommeil Vigilance et Travail, Centre du Sommeil et de la Vigilance, Hôtel-Dieu, APHP-5, Paris, France
| | - Thomas Andrillon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Catherine Drogou
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Caroline Gauriau
- Consultation de Pathologie Professionnelle Sommeil Vigilance et Travail, Centre du Sommeil et de la Vigilance, Hôtel-Dieu, APHP-5, Paris, France
| | - Alexandre Dubois
- Consultation de Pathologie Professionnelle Sommeil Vigilance et Travail, Centre du Sommeil et de la Vigilance, Hôtel-Dieu, APHP-5, Paris, France
| | - Aurélie Servonnet
- Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Pascal Van Beers
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Mathias Guillard
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Danielle Gomez-Merino
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Fabien Sauvet
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Mounir Chennaoui
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Unité Fatigue et Vigilance, IRBA - Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Damien Léger
- EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Université de Paris, Paris, France.,Consultation de Pathologie Professionnelle Sommeil Vigilance et Travail, Centre du Sommeil et de la Vigilance, Hôtel-Dieu, APHP-5, Paris, France
| |
Collapse
|
42
|
Janků K, Šmotek M, Fárková E, Kopřivová J. Block the light and sleep well: Evening blue light filtration as a part of cognitive behavioral therapy for insomnia. Chronobiol Int 2019; 37:248-259. [DOI: 10.1080/07420528.2019.1692859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Karolina Janků
- Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Michal Šmotek
- Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Eva Fárková
- Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Kopřivová
- Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
43
|
ASKARIPOOR T, MOTAMEDZADE M, GOLMOHAMMADI R, FARHADIAN M, BABAMIRI M, SAMAVATI M. Effects of light intervention on alertness and mental performance during the post-lunch dip: a multi-measure study. INDUSTRIAL HEALTH 2019; 57:511-524. [PMID: 30369519 PMCID: PMC6685797 DOI: 10.2486/indhealth.2018-0030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Disrupting sleepiness and fatigue during the post-lunch dip by environmental factors may result in a decrease in human errors and accidents, and enhance job performance. Recent studies have shown that both red white light as well as blue white light can have a positive effect on human alertness and mental functioning. In the present study, the light intervention was evaluated for its effectiveness on alleviating the post-lunch dip. Twenty healthy volunteers experienced 117 min of four light conditions preceded by a 13-min initial dim light while performing a continuous performance test (CPT) and undergoing recording of the electroencephalogram (EEG): blue-enriched white light (12,000 K, 500 lx, BWL), red saturated white light (2,700 K, 500 lx, RWL), normal white light (4,000 K, 500 lx, NWL), and dim light (<5 lx, DL) conditions. Other outcome measures were subjective sleepiness, mood, and performance tests (working memory, divided attention, and inhibitory capacity). We found that exposure to both BWL and RWL conditions decreased the lower alpha-band power compared to the NWL and DL conditions. No significant differences were observed in subjective sleepiness and mental performance during sustained attention, working memory, and inhibitory capacity tasks between NWL, RWL, and BWL conditions. The present findings suggest that both RWL and BWL, compared to NWL condition, can improve the physiological correlates of alertness in EEG measurements. However, these changes did not translate to improvements in task performance and subjective alertness.
Collapse
Affiliation(s)
- Taleb ASKARIPOOR
- Department of Occupational Health, School of Public Health,
Hamadan University of Medical Sciences, Iran
| | - Majid MOTAMEDZADE
- Department of Ergonomics, School of Public Health, Hamadan
University of Medical Sciences, Iran
- *To whom correspondence should be addressed. E-mail:
| | - Rostam GOLMOHAMMADI
- Center of Excellence for Occupational Health, School of
Public Health and Research Center for Health Sciences, Hamadan University of Medical
Science, Iran
| | - Maryam FARHADIAN
- Department of Biostatistics, School of Public Health and
Research Center for Health Sciences, Hamadan University of Medical Sciences, Iran
| | - Mohammad BABAMIRI
- Department of Ergonomics, School of Public Health, Hamadan
University of Medical Sciences, Iran
| | - Mehdi SAMAVATI
- Department of Medical Physics & Biomedical Engineering
& Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University
of Medical Sciences, Iran
| |
Collapse
|
44
|
Riganello F, Prada V, Soddu A, di Perri C, Sannita WG. Circadian Rhythms and Measures of CNS/Autonomic Interaction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2336. [PMID: 31269700 PMCID: PMC6651187 DOI: 10.3390/ijerph16132336] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
The physiological role and relevance of the mechanisms sustaining circadian rhythms have been acknowledged. Abnormalities of the circadian and/or sleep-wakefulness cycles can result in major metabolic disorders or behavioral/professional inadequacies and stand as independent risk factors for metabolic, psychiatric, and cerebrovascular disorders and early markers of disease. Neuroimaging and clinical evidence have documented functional interactions between autonomic (ANS) and CNS structures that are described by a concept model (Central Autonomic Network) based on the brain-heart two-way interplay. The circadian rhythms of autonomic function, ANS-mediated processes, and ANS/CNS interaction appear to be sources of variability adding to a variety of environmental factors, and may become crucial when considering the ANS major role in internal environment constancy and adaptation that are fundamental to homeostasis. The CNS/ANS interaction has not yet obtained full attention and systematic investigation remains overdue.
Collapse
Affiliation(s)
- Francesco Riganello
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, 4000 Liège, Belgium
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, 16132 Genova, Italy
| | - Andres Soddu
- Department of Physics and Astronomy, Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Carol di Perri
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, 4000 Liège, Belgium
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Walter G Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, 16132 Genova, Italy.
| |
Collapse
|
45
|
Korman M, Levy I, Maaravi-Hesseg R, Eshed-Mantel A, Karni A. Subclinical Scores in Self-Report Based Screening Tools for Attention Deficits Correlate With Cognitive Traits in Typical Evening-Type Adults Tested in the Morning. Front Psychol 2019; 10:1397. [PMID: 31275209 PMCID: PMC6591277 DOI: 10.3389/fpsyg.2019.01397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Previous studies suggest that in adolescents and young adults, evening chronotype is a subclinical factor in physical, cognitive, and psychiatric fitness; poor sleep habits and larger misalignment with the social schedule constraints may exacerbate symptoms of inattention, impulsivity and the risks for detrimental behaviors. The influence of chronotype on neurocognitive performance during morning hours and scores in self-reports about attention deficit symptoms (ADS) and executive functioning, was explored in 42 healthy young university students (29 women), divided to evening type (ET) and combined morning/intermediate type (MT/IT) groups. Evening chronotypes scored significantly higher in the questionnaires of inattention Adult ADHD Self-Report Scale (ASRS-6) (MT/IT: 1.62 ± 1.59; ET: 2.71 ± 1.62, p < 0.05) and day-time sleepiness Epworth scale (MT/IT: 7.19 ± 5.17; ET: 11.48 ± 5.26, p < 0.01), reported lower subjective alertness (MT/IT: 63.02 ± 21.40; ET: 40.76 ± 17.43, p < 0.001), and had slower reaction times (MT/IT: 321.47 ± 76.81; ET: 358.94 ± 75.16, p < 0.05) during tests, compared to non-evening chronotypes. Nevertheless, ETs did not significantly differ in self-reports of executive functioning in the Behavioral Rating Inventory of Executive Functions-A (BRIEF-A) from non-ETs. The scores on standard self-report screening tools for ADS and executive functioning (ASRS-6, BRIEF-A-Metacognition) correlated with eveningness. We conclude that eveningness, subjective sleepiness and low arousal levels during morning can present as subclinical Attention Deficit and Hyperactivity Disorder (ADHD) symptoms in typical young adults with no evident sleep problems. Self-report based screening tools for ADS and executive functioning reflect chronotype-related traits in healthy young adults. Strong eveningness may bias the results of neurocognitive performance screening for ADHD when administered at morning hours.
Collapse
Affiliation(s)
- Maria Korman
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Ishay Levy
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel.,Laboratory for Human Brain and Learning, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Rinatia Maaravi-Hesseg
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel.,Laboratory for Human Brain and Learning, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Adi Eshed-Mantel
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Avi Karni
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel.,Laboratory for Human Brain and Learning, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,FMRI Unit, Diagnostic Radiology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
46
|
Hsu WC, Guo SE, Chang CH. Back massage intervention for improving health and sleep quality among intensive care unit patients. Nurs Crit Care 2019; 24:313-319. [PMID: 30942526 DOI: 10.1111/nicc.12428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND A massage may relax muscles, improve blood circulation and reduce pain and anxiety while also improving sleep quality by increasing comfort. However, there is little research on whether a back massage improves sleep quality in intensive care unit (ICU) patients. AIMS AND OBJECTIVES This study examined the effects of a back massage on improving vital signs, sleep quality, anxiety and depression among ICU patients. DESIGN Adopting a quasi-experimental design, convenience sampling was used to recruit ICU patients from a medical centre in Southern Taiwan. The experimental group received back massages for three consecutive days (n = 30), while controls received usual care (n = 30). METHODS The Verran and Snyder-Halpern Scale and the Hospital Anxiety and Depression Scale were used, and subjective and objective sleep time (wrist actigraphy and sleep duration from nurse observations) was recorded. The effect of the intervention was examined using a generalized estimating equation model with a robust standard error and an exchangeable working correlation matrix adjusting for time. RESULTS The results show that subjective sleep quality scores in ICU patients were low. Mean observed sleep time (measured by nurses) was 3·9 h, but mean sleep time measured using wrist actigraphy was 5·9 h. Back massages improved breathing in patients, increased sleep quality reflected by both subjective and objective data and were associated with a significant change in anxiety. CONCLUSIONS These findings suggest that a 10-min back massage can improve sleep quality, sleep duration, breathing and anxiety in ICU patients. RELEVANCE TO CLINICAL PRACTICE The implementation of a back massage shows positive improvements in the sleep quality of ICU patients. The training and theory of massage interventions should be further applied when developing courses in critical care nursing.
Collapse
Affiliation(s)
| | - Su-Er Guo
- Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology (CGUST), Puzi, Taiwan.,Chronic Diseases and Health Promotion Research Centre, CGUST, Puzi, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi, Taiwan.,Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chia-Hao Chang
- Graduate Institute of Nursing, College of Nursing, CGUST, Puzi, Taiwan
| |
Collapse
|
47
|
Dijk DJ, Landolt HP. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics. Handb Exp Pharmacol 2019; 253:441-481. [PMID: 31254050 DOI: 10.1007/164_2019_243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception. Sci Rep 2018; 8:16968. [PMID: 30446699 PMCID: PMC6240048 DOI: 10.1038/s41598-018-35400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
The discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) marked a major shift in our understanding of how light information is processed by the mammalian brain. These ipRGCs influence multiple functions not directly related to image formation such as circadian resetting and entrainment, pupil constriction, enhancement of alertness, as well as the modulation of cognition. More recently, it was demonstrated that ipRGCs may also contribute to basic visual functions. The impact of ipRGCs on visual function, independently of image forming photoreceptors, remains difficult to isolate, however, particularly in humans. We previously showed that exposure to intense monochromatic blue light (465 nm) induced non-conscious light perception in a forced choice task in three rare totally visually blind individuals without detectable rod and cone function, but who retained non-image-forming responses to light, very likely via ipRGCs. The neural foundation of such light perception in the absence of conscious vision is unknown, however. In this study, we characterized the brain activity of these three participants using electroencephalography (EEG), and demonstrate that unconsciously perceived light triggers an early and reliable transient desynchronization (i.e. decreased power) of the alpha EEG rhythm (8–14 Hz) over the occipital cortex. These results provide compelling insight into how ipRGC may contribute to transient changes in ongoing brain activity. They suggest that occipital alpha rhythm synchrony, which is typically linked to the visual system, is modulated by ipRGCs photoreception; a process that may contribute to the non-conscious light perception in those blind individuals.
Collapse
|
49
|
Daneault V, Dumont M, Massé É, Forcier P, Boré A, Lina JM, Doyon J, Vandewalle G, Carrier J. Plasticity in the Sensitivity to Light in Aging: Decreased Non-visual Impact of Light on Cognitive Brain Activity in Older Individuals but No Impact of Lens Replacement. Front Physiol 2018; 9:1557. [PMID: 30459639 PMCID: PMC6232421 DOI: 10.3389/fphys.2018.01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022] Open
Abstract
Beyond its essential visual role, light, and particularly blue light, has numerous non-visual effects, including stimulating cognitive functions and alertness. Non-visual effects of light may decrease with aging and contribute to cognitive and sleepiness complaints in aging. However, both the brain and the eye profoundly change in aging. Whether the stimulating effects light on cognitive brain functions varies in aging and how ocular changes may be involved is not established. We compared the impact of blue and orange lights on non-visual cognitive brain activity in younger (23.6 ± 2.5 years), and older individuals with their natural lenses (NL; 66.7 ± 5.1 years) or with intraocular lens (IOL) replacement following cataract surgery (69.6 ± 4.9 years). Analyses reveal that blue light modulates executive brain responses in both young and older individuals. Light effects were, however, stronger in young individuals including in the hippocampus and frontal and cingular cortices. Light effects did not significantly differ between older-IOL and older-NL while regression analyses indicated that differential brain engagement was not underlying age-related differences in light effects. These findings show that, although its impact decreases, light can stimulate cognitive brain activity in aging. Since lens replacement did not affect light impact, the brain seems to adapt to the progressive decrease in retinal light exposure in aging.
Collapse
Affiliation(s)
- Véronique Daneault
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Marie Dumont
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Éric Massé
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Pierre Forcier
- École d'Optométrie, University of Montreal, Montreal, QC, Canada
| | - Arnaud Boré
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Génie Électrique, École de technologie supérieure, Montreal, QC, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montreal, QC, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Gilles Vandewalle
- GIGA-Institute, Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Julie Carrier
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
50
|
Effects of blue- and red-enriched light on attention and sleep in typically developing adolescents. Physiol Behav 2018; 199:11-19. [PMID: 30381244 DOI: 10.1016/j.physbeh.2018.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 11/22/2022]
Abstract
Differential effects of blue- and red-enriched light on attention and sleep have been primarily described in adults. In our cross-over study in typically developing adolescents (11-17 years old), we found attention enhancing effects of blue- compared to red-enriched light in the morning (high intensity of ca. 1000 lx, short duration: <1 h) in two of three attention tasks: e.g. better performance in math tests and reduced reaction time variability in a computerized attention test. In our pilot study, actigraphy measures of sleep indicated slight benefits for red- compared to blue-enriched light in the evening: tendencies toward a lower number of phases with movement activity after sleep onset in the complete sample and shorter sleep onset latency in a subgroup with later evening exposure times. These findings point to the relevance of light concepts regarding attention and sleep in typically developing adolescents. Such concepts should be developed and tested further in attention demanding contexts (at school) and for therapeutic purposes in adolescents with impaired attention or impaired circadian rhythms.
Collapse
|