1
|
Dong X, Wu J. How do foreign language learning experiences influence the self-reference effect? Acta Psychol (Amst) 2025; 256:105017. [PMID: 40252283 DOI: 10.1016/j.actpsy.2025.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/17/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
People tend to display a processing bias towards information that is personally relevant, as opposed to information that is irrelevant to themselves. Such a bias can be influenced by long-term cultural experiences and temporary cultural priming tasks. However, the impact of the latter is transient, and it is unclear if an intermediate influence, more lasting than temporary priming tasks but less enduring than a cultural background, such as language learning, could induce a similar and stable processing bias. Given that language can shape people's mindset, this study aimed to investigate whether language learning experiences could affect participants' self-processing bias during a decision-making task. The findings showed that while behavioral results were not significant, ERP data indicated that advanced learners had more negative late N400 and P600 components for moderately self-relevant stimuli compared to highly self-relevant ones, mainly in the left or medial hemispheres. Beginners exhibited similar trends with marginal effects from fronto-central to parietal regions. Additionally, beginners displayed more negative N100 and early N400 responses and lacked a left-lateralized low-beta burst compared to advanced learners. These results suggest that the self-reference effect is present in both L2 beginners and advanced learners but is more pronounced in advanced learners. Notably, advanced learners with extensive English experience are more influenced by Western independent self-construal than beginners, leading them to focus more on highly self-related information and exhibit a stronger self-reference effect.
Collapse
Affiliation(s)
- Xiaonan Dong
- School of English, Beijing International Studies University, 100024, China
| | - Jianshe Wu
- School of English, Beijing International Studies University, 100024, China.
| |
Collapse
|
2
|
Matta PM, Baurès R, Duclay J, Alamia A. Modulation of beta oscillatory dynamics in motor and frontal areas during physical fatigue. Commun Biol 2025; 8:687. [PMID: 40307437 PMCID: PMC12044028 DOI: 10.1038/s42003-025-08122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Beta-band oscillations have been suggested to promote the maintenance of the current motor (or cognitive) set, thus signaling the 'status quo' of the system. While this hypothesis has been reliably demonstrated in many studies, it fails to explain changes in beta-band activity due to the accumulation of physical fatigue. In the current study, we aimed to reconcile the functional role of beta oscillations during physical fatigue within the status quo theory. Using an innovative electroencephalography design, we identified two distinct beta-band power dynamics in the motor areas as fatigue rises: (i) an enhancement at rest, supposedly promoting the resting state, and (ii) a decrease during contraction, thought to reflect the increase in motor cortex activation necessary to cope with muscular fatigue. We then conducted effective connectivity analyses, which revealed that the modulations during contractions were driven by frontal areas. Finally, we implemented a biologically plausible model to replicate and characterize our results mechanistically. Together, our findings anchor the physical fatigue paradigm within the status quo theory, thus shedding light on the functional role of beta oscillations in physical fatigue. We further discuss a unified interpretation that might explain the conflicting evidence previously encountered in the physical fatigue literature.
Collapse
Affiliation(s)
- Pierre-Marie Matta
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France.
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France.
| | - Robin Baurès
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Duclay
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Andrea Alamia
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
3
|
Quivira-Lopesino A, Sevilla-García M, Cuesta P, Pusil S, Bruña R, Fiedler P, Cebolla AM, Cheron G, Funke M, Maestu F. Changes of EEG beta band power and functional connectivity during spaceflight: a retrospective study. Sci Rep 2025; 15:13399. [PMID: 40251277 PMCID: PMC12008298 DOI: 10.1038/s41598-025-96897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
Spaceflight exposes astronauts to unique conditions like microgravity, which may affect brain function, though it remains underexplored compared to other physiological systems. Astronauts often report temporary neurological symptoms, such as disorientation, visual disturbances, and motor issues, potentially linked to structural and electrophysiological brain changes. To investigate this, electroencephalography (EEG) is a reliable tool to study brain activity in space, measuring oscillatory activity and functional connectivity (FC). This study analyzed EEG data from five male astronauts during three stages: pre-flight, during low Earth orbit (LEO), and post-flight in a 2-min task-free eyes-closed (EC) condition followed by another 2-min of eyes-open (EO) condition. The focus was on beta band (12-30 Hz) activity, which is associated with motor control and proprioception. Results showed increased beta power during spaceflight when compared to pre-flight (EC: p < 0.01) and post-flight (EC: p < 0.01; EO: p < 0.05) conditions. FC strength also increased during spaceflight when compared to pre-flight (EO: p < 0.05) and post-flight (EC: p < 0.01; EO: p < 0.01) conditions. These differences were found primarily in the sensorimotor cortex (SMC) and frontotemporal regions, suggesting the brain's adaptation to altered vestibular and proprioceptive inputs during microgravity. As these results reflect astronaut's movement adaptation to microgravity, this study highlights the importance of understanding central nervous system (CNS) changes during spaceflights to ensure optimal performance and protect astronaut's health during long-duration missions.
Collapse
Affiliation(s)
- Adrián Quivira-Lopesino
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Radiology, Rehabilitation, and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes, and Speech Therapy, School of Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - María Sevilla-García
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Electric Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Sandra Pusil
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Funke
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fernando Maestu
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes, and Speech Therapy, School of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
4
|
Shin H, Kim K, Lee J, Nam J, Baeg E, You C, Choi H, Kim M, Chung CK, Kim JG, Ahn JH, Han M, Kim J, Yang S, Lee SQ, Yang S. A Wireless Cortical Surface Implant for Diagnosing and Alleviating Parkinson's Disease Symptoms in Freely Moving Animals. Adv Healthc Mater 2025:e2405179. [PMID: 40195900 DOI: 10.1002/adhm.202405179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Parkinson's disease (PD), one of the most common neurodegenerative diseases, is involved in motor abnormality, primarily arising from the degeneration of dopaminergic neurons. Previous studies have examined the electrotherapeutic effects of PD using various methodological contexts, including live conditions, wireless control, diagnostic/therapeutic aspects, removable interfaces, or biocompatible materials, each of which is separately utilized for testing the diagnosis or alleviation of various brain diseases. Here, a cortical surface implant designed to improve motor function in freely moving PD animals is presented. This implant, a minimally invasive system equipped with a graphene electrode array, is the first integrated system to exhibit biocompatibility, wearability, removability, target specificity, and wireless control. The implant positioned at the motor cortical surface activates the motor cortex to maximize therapeutic effects and minimize off-target effects while monitoring motor activities. In PD animals, cortical motor surface stimulation restores motor function and brain waves, which corresponds to potentiated synaptic responses. Furthermore, these changes are associated with the upregulation of metabotropic glutamate receptor 5 (mGluR5, Grm5) and D5 dopamine receptor (D5R, Drd5) genes in the glutamatergic synapse. The newly designed wireless neural implant demonstrates capabilities in both real-time diagnostics and targeted therapeutics, suggesting its potential as a wireless system for biomedical devices for patients with PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongseong Shin
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
| | | | - Jaeseung Lee
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Johyeon Nam
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eunha Baeg
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chaeyeon You
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hanseul Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Minji Kim
- gBrain Inc., Incheon, 21984, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Kowloon, Hong Kong
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jong Hyun Ahn
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Miryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jibum Kim
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 00000, Hong Kong
| | - Sung Q Lee
- Brainlinks Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129, South Korea
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Sunggu Yang
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- gBrain Inc., Incheon, 21984, Republic of Korea
| |
Collapse
|
5
|
Diedrich A, Arif Y, Taylor BK, Shen Z, Astorino PM, Lee WH, McCreery RW, Heinrichs-Graham E. Distinct age-related alterations in alpha-beta neural oscillatory activity during verbal working memory encoding in children and adolescents. J Physiol 2025; 603:2387-2408. [PMID: 40051330 DOI: 10.1113/jp287372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/18/2025] [Indexed: 04/23/2025] Open
Abstract
Emerging imaging studies of working memory (WM) have identified significant WM-related oscillatory events that are unique to each phase of working memory (e.g. encoding, maintenance). Although many previous imaging studies have shown age-related changes within the frontoparietal network when performing a WM task, understanding of the age-related changes in the oscillatory dynamics underlying each phase of WM during development and their relationships to other cognitive function is still in its infancy. To this end, we enrolled a group of 74 typically-developing youths aged 7-15 years to perform a letter-based Sternberg WM task during magnetoencephalography. Trial-wise data were transformed into the time-frequency domain, and significant oscillatory responses during the encoding and maintenance phases of the task were independently imaged using beamforming. Our results revealed widespread age-related power differences in alpha-beta oscillatory activity during encoding throughout left frontal, parietal, temporal, occipital and cerebellar regions. By contrast, age-related differences in maintenance-related activity were limited to a small area in the superior temporal gyrus and parieto-occipital regions. Follow-up exploratory factor analysis of age-related encoding alpha-beta activity revealed two distinct factors, and these factors were each found to significantly mediate age-related improvements in both verbal and non-verbal cognitive ability. Additionally, late maintenance alpha activity was related to reaction time on the task. Taken together, our results indicate that the neural dynamics in the alpha and beta bands are uniquely sensitive to age-related changes throughout this developmental period and are related to both task performance and other aspects of cognitive development. KEY POINTS: Understanding of the age-related changes in neural oscillatory dynamics serving verbal working memory function is in its infancy. This study identified the age-related neural alterations during each phase of working memory processing in youths. Developmental differences during working memory processing were primarily isolated to alpha-beta activity during the encoding phase. Alpha-beta activity during encoding significantly mediated age-related improvements in both verbal and non-verbal ability. This study establishes new brain-behaviour relationships linking working memory function to other aspects of cognitive development.
Collapse
Affiliation(s)
- Augusto Diedrich
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Yasra Arif
- Magnetoencephalography (MEG) Core, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Brittany K Taylor
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
- Neurodiversity Laboratory, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Zhiying Shen
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
| | - Phillip M Astorino
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
| | - Wai Hon Lee
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Ryan W McCreery
- Audibility, Perception, and Cognition Laboratory, BTNRH, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
- Magnetoencephalography (MEG) Core, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| |
Collapse
|
6
|
Ellmers TJ, Ibitoye R, Castro P, Kal EC, Kaski D, Bronstein AM. Chronic dizziness in older adults: Disrupted sensorimotor EEG beta oscillations during postural instability. Clin Neurophysiol 2025; 174:31-36. [PMID: 40198974 DOI: 10.1016/j.clinph.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVE Chronic dizziness is common in older adults, yet frequently occurs without a clear cause ('idiopathic dizziness'). Patients experience subjective unsteadiness with minimal objective imbalance, potentially related to small vessel disease. Here we examine the hypothesis that this syndrome is associated with disrupted cortical processing of postural instability. METHODS EEG and postural sway were recorded in 33 older adults with chronic, idiopathic dizziness (Age, Mean = 77.3 years, SD = 6.4, 61 % female) and 25 matched controls (Age, Mean = 76.9 years, SD = 6.0, 56 % female). EEG was time-locked to spontaneous instances of postural instability and analysed via time-frequency decomposition. RESULTS Significant between-group differences in EEG were observed during the early phase of postural instability (p < 0.05, cluster-corrected). Whilst controls exhibited broadband increase in EEG power across sensorimotor areas, dizzy patients displayed suppressed beta activity (19-24 Hz). Contrary to predictions, these differences did not relate to small vessel disease markers (rs < 0.05, ps > 0.720) but to fear of falling (r = -0.44, p = 0.001). CONCLUSIONS Previous work implies that suppressing cortical beta enhances the relay of sensory information. We therefore propose that the modulation in beta EEG observed in patients reflects an anxious, top-down strategy to increase sensitivity to instability, which paradoxically causes persistent feelings of subjective imbalance. SIGNIFICANCE These results identify associations between idiopathic dizziness and disrupted sensorimotor beta activation during postural instability. Cortical beta during imbalance may be a possible biomarker of chronic, idiopathic dizziness in older adults and/or fear of falling.
Collapse
Affiliation(s)
- Toby J Ellmers
- Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK.
| | - Richard Ibitoye
- Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK; Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Patricia Castro
- Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK; Universidad del Desarrollo, Escuela de Fonoaudiología, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Elmar C Kal
- Centre for Cognitive and Clinical Neuroscience, Department of Health Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, UK
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Adolfo M Bronstein
- Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| |
Collapse
|
7
|
Boere K, Copithorne F, Krigolson OE. The impact of a two-hour endurance run on brain activity monitored over 24 h. Exp Brain Res 2025; 243:101. [PMID: 40126627 DOI: 10.1007/s00221-025-07056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Acute exercise has been shown to enhance cognitive abilities, particularly those governed by the prefrontal cortex, such as executive function. However, the effects of prolonged exercise on cognition and brain activity, especially over extended recovery periods, remain underexplored. This pilot study investigated the effects of two hours of moderate-intensity running on oscillatory brain activity and working memory performance, monitored across a 24-hour recovery period-an interval not previously studied. Using electroencephalography (EEG) and a 2-back task, resting-state brain activity and task-specific frontal theta power were assessed. While task accuracy and reaction times showed no significant changes, frontal theta power increased one hour post-exercise, reflecting heightened cognitive effort. Resting-state EEG demonstrated a sustained increase in high-alpha power, which persisted until the 24-hour mark and indicated cortical recovery processes. While limited by the lack of a control group, these findings suggest that prolonged moderate-intensity exercise may elicit complex and delayed neurophysiological responses, supporting recovery and neural resilience in trained individuals. Therefore, our research offers new insights into the interplay between exercise, cognition, and recovery, with implications for optimizing performance in physically demanding contexts.
Collapse
Affiliation(s)
- Katherine Boere
- The University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.
| | - Frances Copithorne
- The University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Olave E Krigolson
- The University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
8
|
Ouchi T, Scholl LR, Rajeswaran P, Canfield RA, Smith LI, Orsborn AL. Mapping Eye, Arm, and Reward Information in Frontal Motor Cortices Using Electrocorticography in Nonhuman Primates. J Neurosci 2025; 45:e1536242025. [PMID: 39890467 PMCID: PMC11924994 DOI: 10.1523/jneurosci.1536-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/03/2025] Open
Abstract
Goal-directed reaches give rise to dynamic neural activity across the brain as we move our eyes and arms and process outcomes. High spatiotemporal resolution mapping of multiple cortical areas will improve our understanding of how these neural computations are spatially and temporally distributed across the brain. In this study, we used micro-electrocorticography (µECoG) recordings in two male monkeys performing visually guided reaches to map information related to eye movements, arm movements, and receiving rewards over primary motor cortex, premotor cortex, frontal eye field, and dorsolateral prefrontal cortex. Time-frequency and decoding analyses revealed that eye and arm movement information shifts across brain regions during a reach, likely reflecting shifts from planning to execution. Although eye and arm movement temporally overlapped, phase clustering analyses enabled us to resolve differences in eye and arm information across brain regions. This analysis revealed that eye and arm information spatially overlapped in motor cortex, which we further confirmed by demonstrating that arm movement decoding performance from motor cortex activity was impacted by task-irrelevant eye movements. Phase clustering analyses also identified reward-related activity in the prefrontal and premotor cortex. Our results demonstrate µECoG's strengths for functional mapping and provide further detail on the spatial distribution of eye, arm, and reward information processing distributed across frontal cortices during reaching. These insights advance our understanding of the overlapping neural computations underlying coordinated movements and reveal opportunities to leverage these signals to enhance future brain-computer interfaces.
Collapse
Affiliation(s)
- Tomohiro Ouchi
- Electrical and Computer Engineering, University of Washington, Seattle, Washington 98115
| | - Leo R Scholl
- Electrical and Computer Engineering, University of Washington, Seattle, Washington 98115
| | - Pavithra Rajeswaran
- Department of Bioengineering, University of Washington, Seattle, Washington 98115
| | - Ryan A Canfield
- Department of Bioengineering, University of Washington, Seattle, Washington 98115
| | - Lydia I Smith
- Electrical and Computer Engineering, University of Washington, Seattle, Washington 98115
| | - Amy L Orsborn
- Electrical and Computer Engineering, University of Washington, Seattle, Washington 98115
- Department of Bioengineering, University of Washington, Seattle, Washington 98115
- Washington National Primate Research Center, Seattle, Washington 98115
| |
Collapse
|
9
|
Vázquez Y, Ianni GR, Rassi E, Rouse AG, Schieber MH, Yazdani F, Prut Y, Freiwald WA. Neural Synchrony Links Sensorimotor Cortices in a Network for Facial Motor Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641458. [PMID: 40166314 PMCID: PMC11956989 DOI: 10.1101/2025.03.04.641458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Primate societies rely on the production and interpretation of social signals, in particular those displayed by the face. Facial movements are controlled, according to the dominant neuropsychological schema, by two separate circuits, one originating in medial frontal cortex controlling emotional expressions, and a second one originating in lateral motor and premotor areas controlling voluntary facial movements. Despite this functional dichotomy, cortical anatomy suggests that medial and lateral areas are directly connected and may thus operate as a single network. Here we test these contrasting hypotheses through structural and functional magnetic resonance imaging (fMRI) guided electrical stimulation and simultaneous multi-channel recordings from key face motor areas in the macaque monkey brain. These areas include medial face motor area M3 (located in the anterior cingulate cortex); two lateral face-related motor areas: M1 (primary motor) and PMv (ventrolateral premotor); and S1 (primary somatosensory cortex). Cortical responses evoked by intracortical stimulation revealed that medial and lateral areas can exert significant functional impact on each other. Simultaneous recordings of local field potentials in all face motor areas further confirm that during facial expressions, medial and lateral face motor areas significantly interact, primarily in the alpha and beta frequency ranges. These functional interactions varied across different types of facial movements. Thus, contrary to the dominant neuropsychological dogma, control of facial movements is not mediated through independent (medial/lateral) functional streams, but results from an extensive interacting sensorimotor network.
Collapse
Affiliation(s)
- Yuriria Vázquez
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Geena R. Ianni
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Hospital of the University of Pennsylvania, Department of Medicine, Philadelphia, PA, USA
| | - Elie Rassi
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Adam G. Rouse
- Department of Neurosurgery, Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marc H. Schieber
- University of Rochester Medical Center, Rochester, New York, USA
| | - Faraz Yazdani
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Yifat Prut
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
10
|
Marzulli M, Bleuzé A, Saad J, Martel F, Ciuciu P, Aksenova T, Struber L. Classifying mental motor tasks from chronic ECoG-BCI recordings using phase-amplitude coupling features. Front Hum Neurosci 2025; 19:1521491. [PMID: 40144587 PMCID: PMC11936922 DOI: 10.3389/fnhum.2025.1521491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Phase-amplitude coupling (PAC), the modulation of high-frequency neural oscillations by the phase of slower oscillations, is increasingly recognized as a marker of goal-directed motor behavior. Despite this interest, its specific role and potential value in decoding attempted motor movements remain unclear. Methods This study investigates whether PAC-derived features can be leveraged to classify different motor behaviors from ECoG signals within Brain-Computer Interface (BCI) systems. ECoG data were collected using the WIMAGINE implant during BCI experiments with a tetraplegic patient performing mental motor tasks. The data underwent preprocessing to extract complex neural oscillation features (amplitude, phase) through spectral decomposition techniques. These features were then used to quantify PAC by calculating different coupling indices. PAC metrics served as input features in a machine learning pipeline to evaluate their effectiveness in predicting mental tasks (idle state, right-hand movement, left-hand movement) in both offline and pseudo-online modes. Results The PAC features demonstrated high accuracy in distinguishing among motor tasks, with key classification features highlighting the coupling of theta/low-gamma and beta/high-gamma frequency bands. Discussion These preliminary findings hold significant potential for advancing our understanding of motor behavior and for developing optimized BCI systems.
Collapse
Affiliation(s)
- Morgane Marzulli
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Alexandre Bleuzé
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Joe Saad
- CEA, LIST, University Grenoble Alpes, Grenoble, France
| | - Felix Martel
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Philippe Ciuciu
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- MIND Team, Inria, Université Paris-Saclay, Palaiseau, France
| | - Tetiana Aksenova
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Lucas Struber
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
Zhang X, Zhang S, Zhang H, Wang H, Long J. Post-Movement Beta Synchronization Induced by Speed Effects IHI from Ipsilateral to Contralateral Motor Cortex. eNeuro 2025; 12:ENEURO.0370-24.2025. [PMID: 40068876 PMCID: PMC11927053 DOI: 10.1523/eneuro.0370-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Beta event-related spectral perturbation (ERSP), including bilateral movement-related beta desynchronization (MRBD) and post-movement beta synchronization (PMBS), can be evoked by unilateral speed movement. A potential correlation might exist between power (de)synchronization and interhemispheric coherence during movement execution. However, during the PMBS phase, the existence of interhemispheric coupling and the effect of speed on it are largely undiscovered. This study aimed to answer this question. In the present study, we investigated eight healthy, right-handed volunteers using a combination of electroencephalography (EEG), transcranial magnetic stimulation (TMS), and electromyography (EMG). We explored interhemispheric (directed) coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered that: (i) Compared to the MRBD period, interhemispheric coherence was greater during the PMBS period. Furthermore, ballistic movement induced a larger coherence during the PMBS period, but not during the MRBD period. (ii) In the MRBD phase, directed coherence from the contralateral motor cortex (CM1) to the ipsilateral motor cortex (IM1) was larger, with a reverse tendency observed during the PMBS period. Additionally, in ballistic movement, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence, with no effect of speed on directed coherence detected in the MRBD phase. To advance the understanding of neural mechanisms and the causality of interhemispheric coherence during the PMBS period, we investigated the interhemispheric inhibition (IHI) from IM1 to CM1 at different speeds. A stronger IHI from IM1 to CM1 at PMBS peak time was demonstrated, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI from IM1 to CM1.Significance Statement The present study explored interhemispheric (directed)coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered a dominance of interhemispheric coherence during the PMBS period of ballistic movement. Furthermore, directed coherence from the CM1 to the IM1 was more predominant in the MRBD phase, with a reverse tendency observed during the PMBS period. Additionally, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence in ballistic movement. Advanced exploration revealed a stronger IHI from IM1 to CM1 at PMBS peak time, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI.
Collapse
Affiliation(s)
- Xiangzi Zhang
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China,730070
| | - Shengyao Zhang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China, 121001
| | - Haoyuan Zhang
- School of Psychology, Northwest Normal University, Lanzhou, Gansu, China,730070
| | - Houmin Wang
- School of Computer Science and Engineering, Guangdong Ocean University, Yangjiang, Guangdong, China, 529500
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China, 510632.
| |
Collapse
|
12
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies. Neuroscience 2025; 568:12-26. [PMID: 39798837 DOI: 10.1016/j.neuroscience.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; Department of Human Physiology School of Medicine University of Gondar Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Alan J Pearce
- School of Health Science Swinburne University of Technology Melbourne Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; School of Sport Rehabilitation and Exercise Sciences University of Essex Colchester UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia.
| |
Collapse
|
13
|
Bottoms M, Miles JT, Mizumori SJY. Rhythmic modulation of dorsal hippocampus across distinct behavioral timescales during spatial set-shifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639177. [PMID: 40027783 PMCID: PMC11870531 DOI: 10.1101/2025.02.19.639177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Previous work has shown frequency-specific modulation of dorsal hippocampus (dHPC) neural activity during simple behavioral tasks, suggesting shifts in neural population activity throughout different task phases and animal behaviors. Relatively little is known about task-relevant orchestrated shifts in theta, beta, and gamma rhythms across multiple behavioral timescales during a complex task that requires repeated adaptation of behavioral strategies based on changing reward contingencies. To address this gap in knowledge, we used a spatial set-shifting task to determine whether dHPC plays a specific role in strategy switching. The task requires rats to use two spatial strategies on an elevated plus maze: 1) alternating between East and West reward locations or 2) always going to the same reward location (e.g., only East or only West). Across specific timescales (session-based alignments, comparisons of trial types, within trial epochs), dHPC associated differentially with all three temporal categories. Across a session, we observed a decrease in theta and beta power before, and an increase in theta power after, the target strategy changed. Beta power was increased around the point at which rats learn the current rule. Comparing trial types, on trials before a rat learned the correct strategy, beta power increased. Within a single trial, after an incorrect (but not correct) choice, beta and gamma power increased while the rat returned to start a new trial. If gamma (but not beta) power was high during this return, the rat was more likely to make a correct choice on the next trial. On the other hand, low gamma power during the return was associated with incorrect trials. Rhythmic activity in dHPC, therefore, appears to track task demands, with the strength of each rhythmic frequency differentially associating with specific behaviors across three distinct timescales.
Collapse
Affiliation(s)
| | - Jesse T Miles
- Graduate Program in Neuroscience, University of Washington
| | - Sheri J Y Mizumori
- Department of Psychology, University of Washington
- Graduate Program in Neuroscience, University of Washington
| |
Collapse
|
14
|
Park J, Ho RLM, Wang WE, Chiu SY, Shin YS, Coombes SA. Age-related changes in neural oscillations vary as a function of brain region and frequency band. Front Aging Neurosci 2025; 17:1488811. [PMID: 40040743 PMCID: PMC11876397 DOI: 10.3389/fnagi.2025.1488811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Advanced aging is associated with robust changes in neural activity. In addition to the well-established age-related slowing of the peak alpha frequency, there is a growing body of evidence showing that older age is also associated with changes in alpha power and beta power. Despite the important progress that has been made, the interacting effects of age and frequency band have not been directly tested in sensor and source space while controlling for aperiodic components. In the current study we address these limitations. We recruited 54 healthy younger and older adults and measured neural oscillations using a high-density electroencephalogram (EEG) system during resting-state with eyes closed. After preprocessing the EEG data and controlling for aperiodic components, we computed alpha and beta power in both sensor and source space. Permutation two-way ANOVAs between frequency band and age group were performed across all electrodes and across all dipoles. Our findings revealed significant interactions in sensorimotor, parietal, and occipital regions. The pattern driving the interaction varied across regions, with older age associated with a progressive decrease in alpha power and a progressive increase in beta power from parietal to sensorimotor regions. Our findings demonstrate that age-related changes in neural oscillations vary as a function of brain region and frequency band. We interpret our findings in the context of clinical and preclinical evidence of age effects on the cholinergic circuit and the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.
Collapse
Affiliation(s)
- Jinhan Park
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachel L. M. Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Y. Chiu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Young Seon Shin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephen A. Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Florio TM. Emergent Aspects of the Integration of Sensory and Motor Functions. Brain Sci 2025; 15:162. [PMID: 40002495 PMCID: PMC11853489 DOI: 10.3390/brainsci15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This article delves into the intricate mechanisms underlying sensory integration in the executive control of movement, encompassing ideomotor activity, predictive capabilities, and motor control systems. It examines the interplay between motor and sensory functions, highlighting the role of the cortical and subcortical regions of the central nervous system in enhancing environmental interaction. The acquisition of motor skills, procedural memory, and the representation of actions in the brain are discussed emphasizing the significance of mental imagery and training in motor function. The development of this aspect of sensorimotor integration control can help to advance our understanding of the interactions between executive motor control, cortical mechanisms, and consciousness. Bridging theoretical insights with practical applications, it sets the stage for future innovations in clinical rehabilitation, assistive technology, and education. The ongoing exploration of these domains promises to uncover new pathways for enhancing human capability and well-being.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
16
|
Dohata M, Kaneko N, Takahashi R, Suzuki Y, Nakazawa K. Posture-Dependent Modulation of Interoceptive Processing in Young Male Participants: A Heartbeat-Evoked Potential Study. Eur J Neurosci 2025; 61:e70021. [PMID: 39957442 PMCID: PMC11831245 DOI: 10.1111/ejn.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Interoception, the internal perception of bodily states such as heartbeat and hunger, plays a crucial role in shaping cognitive and emotional states. Since postural control affects cognitive and emotional processing, exploring postural effects on interoception could help uncover the neural mechanisms underlying its effects on cognition and emotion. In this study, we aimed to investigate how different postures affect interoception by using heartbeat-evoked potentials (HEPs), which reflect the cortical processing of cardiac signals. Two experiments were conducted; Experiment 1 involved 47 healthy male participants comparing sitting and standing postures, and Experiment 2 involved 24 healthy male participants comparing stable and unstable standing conditions. HEPs were analyzed using cluster-based permutation analysis to identify statistically significant spatiotemporal clusters. In Experiment 1, significant clusters were identified over central electrodes (Cz, C1, C2, FCz, and FC1) within the post-R-wave interval of 304-572 ms, revealing significantly lower HEP amplitudes during standing compared to sitting [W = 80, p < 0.001, r = 0.62]. In Experiment 2, HEP amplitudes were significantly lower during unstable standing compared to stable standing [t(20) = 2.9, p = 0.0099, d = 0.62]. Furthermore, we found no significant correlations between HEP changes and physiological changes such as cardiac activity and periodic and aperiodic brain activity. These findings suggest postural differences modulate interoceptive processing, with standing postures attenuating HEP amplitudes, probably because of a redistribution of attentional resources from interoceptive to somatosensory (proprioceptive) and vestibular processing, necessary for maintaining standing posture. This study provides insights into the neural mechanisms underlying posture-interoception interaction.
Collapse
Affiliation(s)
- Mayu Dohata
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Ryogo Takahashi
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Japan Society for the Promotion of Science (JSPS)TokyoJapan
| | - Yuya Suzuki
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Wei K, Ping H, Tang X, Li D, Zhan S, Sun B, Kong X, Cao C. The effect of L-dopa and DBS on cortical oscillations in Parkinson's disease analyzed by hidden Markov model algorithm. Neuroimage 2025; 305:120992. [PMID: 39742983 DOI: 10.1016/j.neuroimage.2024.120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a movement disorder caused by dopaminergic neurodegeneration. Both Levodopa (L-dopa) and Subthalamic Deep Brain Stimulation (STN-DBS) effectively alleviate symptoms, yet their cerebral effects remain under-explored. Understanding these effects is essential for optimizing treatment strategies and assessing disease severity. Magnetoencephalogram (MEG) data provide a continuous time series signal that reflects the dynamic changes in brain activity. The hidden Markov model (HMM) can capture and model the temporal features and underlying states of the MEG signal to extract potential brain states and monitor dynamic changes. In this study, we employed HMM to investigate the cortical mechanism underlying the treatment of PD patients using MEG recordings. METHODS 21 PD patients treated with medication underwent MEG recording in both L-dopa medoff and medon conditions. Additionally, 11 PD patients receiving STN-DBS treatment underwent MEG recording in both dbsoff and dbson conditions. The MEG data were segmented into four states by Time-delay embedded Hidden Markov Model (TDE-HMM) algorithm. The state parameters including Fractional Occupancy (FO), Interval Times (IT), and Life Time (LT) for each state and power spectrum of β band were analyzed to study the effects of L-dopa and STN-DBS treatment respectively. RESULTS L-dopa significantly increased the motor state of HMM and power in the motor area of both high β (21-35 Hz) and low β (13-20 Hz); the motor state of high β in medoff were correlated with the Unified Parkinson's Disease Rating Scale III (UPDRS III). Conversely, DBS significantly diminishes the motor state of HMM and power in motor area of high β oscillations. The score changes of tremor and limb rigidity after DBS treatment were significantly correlated with the changes of motor state of high β. CONCLUSIONS This study demonstrates that L-dopa and STN-DBS exert differing effects on β oscillations in the motor cortex of PD patients, primarily in high β band. Understanding these distinct neurophysiological impacts can provide valuable insights for refining therapeutic approaches in motor control for PD patients.
Collapse
Affiliation(s)
- Kunzhou Wei
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China
| | - Hang Ping
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China
| | | | - Dianyou Li
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyan Kong
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China.
| | - Chunyan Cao
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Brown EC, Bowers A, Rafferty MB, Casenhiser DM, Reilly K, Harkrider A, Saltuklaroglu T. Influences of speaking task demands on sensorimotor oscillations in adults who stutter: Implications for speech motor control. Clin Neurophysiol 2025; 169:76-88. [PMID: 39580313 DOI: 10.1016/j.clinph.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVE Motivated by previous inconsistent findings, this study aims to improve understanding of sensorimotor beta (β; 15-30 Hz) and alpha (α; 8-14 Hz) speech-related power differences between stuttering and non-stuttering adults. METHODS Electroencephalography was recorded as adults who stutter (AWS) and matched fluent controls answered questions in Quiet and Informational Masked backgrounds. Bilateral sensorimotor β and α power during speech planning and execution were measured from mu (μ) rhythm components. RESULTS Compared to controls, AWS exhibited reduced left hemisphere β and α power in both speaking conditions during speech planning and execution. AWS displayed reduced left α power in the Informational Masking compared to Quiet. Within AWS β and α power, which were tightly coupled, oppositely predicted stuttering severity and β-α dissociation (β minus α) was the strongest predictor. CONCLUSION Neither β nor α power are reliable markers of speech motor stability due to their sensitivity to speech task automaticity. However, relationships between these two sensorimotor rhythms warrant further investigation for understanding motor control. SIGNIFICANCE Data help explain previous mixed findings in reference to extant models of speech motor control in stuttering and may have clinical implications for developing neurostimulation protocols targeting improved speech fluency.
Collapse
Affiliation(s)
- Edward C Brown
- University of Tennessee Health Science Center, The Department of Audiology and Speech Pathology, Knoxville, TN, USA
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, Fayetteville, AR, USA
| | - M Blake Rafferty
- New Mexico State University, Department of Communication Disorders, Las Cruces, NM, USA
| | - Devin M Casenhiser
- University of Tennessee Health Science Center, The Department of Audiology and Speech Pathology, Knoxville, TN, USA
| | - Kevin Reilly
- University of Tennessee Health Science Center, The Department of Audiology and Speech Pathology, Knoxville, TN, USA
| | - Ashley Harkrider
- University of Tennessee Health Science Center, The Department of Audiology and Speech Pathology, Knoxville, TN, USA
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, The Department of Audiology and Speech Pathology, Knoxville, TN, USA.
| |
Collapse
|
19
|
Rinaldi S, Modestto' V, Rinaldi A, Bittar R, Oiticica J, Fontani V. Neuromodulatory Treatment for Dizziness and Chronic Neurological Dysfunction in an Elderly Patient Using Radio Electric Asymmetric Conveyer (REAC) Neuro Psycho Physical Optimization (NPPO) Gamma Brain Wave Optimization (BWO-G): A Case Report. Cureus 2025; 17:e77518. [PMID: 39822249 PMCID: PMC11736058 DOI: 10.7759/cureus.77518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 01/19/2025] Open
Abstract
An 88-year-old woman presented with a longstanding history of dizziness, tremors, and progressive mental and physical decline, significantly impairing her mobility and autonomy. Recently discharged from an ICU, the patient required extensive support for daily activities. Diagnostic evaluations, including EEG and analysis, revealed irregular frequency peaks and altered cortical activity, particularly in the frontal and prefrontal regions. The patient underwent a cycle of 18 sessions of radio electric asymmetric conveyer (REAC) Neuro Psycho Physical Optimization (NPPO) gamma brain wave optimization (BWO-G), a neuromodulatory treatment aimed at restoring neurophysiological balance. Post-treatment, the patient demonstrated marked clinical improvements, including enhanced gait stability, reduced tremors, and improved cognitive function. Electroencephalography (EEG) and standardized low-resolution brain electromagnetic tomography (sLORETA) analysis confirmed these clinical improvements, showing normalized frequency peaks and improved cortical activity patterns in Brodmann areas 6, 24, 31, 4, and 32. This case highlights the potential of REAC NPPO BWO-G in addressing chronic neurological dysfunction and improving the quality of life in elderly patients. Furthermore, the broader applicability of this treatment suggests potential benefits for managing similar conditions in aging populations, such as Parkinson's disease, age-related cognitive decline, and post-stroke rehabilitation, where bioelectrical dysregulation plays a central role.
Collapse
Affiliation(s)
- Salvatore Rinaldi
- Department of Research, Department of Regenerative Medicine, Rinaldi Fontani Foundation, Florence, ITA
| | | | - Arianna Rinaldi
- Department of Research, Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, ITA
| | - Roseli Bittar
- Department of Otolaryngology, University of São Paulo School of Medicine, São Paulo, BRA
| | - Jeanne Oiticica
- Department of Otolaryngology, University of São Paulo School of Medicine, São Paulo, BRA
| | - Vania Fontani
- Department of Research, Department of Regenerative Medicine, Rinaldi Fontani Foundation, Florence, ITA
| |
Collapse
|
20
|
De Martino E, Casali AG, Nascimento Couto BA, Graven-Nielsen T, Ciampi de Andrade D. Increase in beta frequency phase synchronization and power after a session of high frequency repetitive transcranial magnetic stimulation to the primary motor cortex. Neurotherapeutics 2025; 22:e00497. [PMID: 39581793 PMCID: PMC11742839 DOI: 10.1016/j.neurot.2024.e00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/06/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) to the primary motor cortex (M1) is used to treat several neuropsychiatric disorders, but the detailed temporal dynamics of its effects on cortical connectivity remain unclear. Here, we stimulated four cortical targets used for rTMS (M1; dorsolateral-prefrontal cortex, DLPFC; anterior cingulate cortex, ACC; posterosuperior insula, PSI) with TMS coupled with high-density electroencephalography (TMS-EEG) to measure cortical excitability and oscillatory dynamics before and after active- and sham-M1-rTMS. Before and immediately after active or sham M1-rTMS (15 min, 3000 pulses at 10 Hz), single-pulse TMS-evoked EEG was recorded at the four targets in 20 healthy individuals. Cortical excitability and oscillatory measures were extracted at the main frequency bands (α [8-13 Hz], low-β [14-24 Hz], high-β [25-35 Hz]). Active-M1-rTMS increased high-β synchronization in electrodes near the stimulation area and remotely, in the contralateral hemisphere (p = 0.026). Increased high-β synchronization (48-83 ms after TMS-EEG stimulation) was succeeded by enhancement in low-β power (86-144 ms after TMS-EEG stimulation) both locally and in the contralateral hemisphere (p = 0.006). No significant differences were observed in stimulating the DLPFC, ACC, or PSI by TMS-EEG. M1-rTMS engaged a sequence of enhanced phase synchronization, followed by an increase in power occurring within M1, which spread to remote areas and persisted after the end of the stimulation session. These results are relevant to understanding the M1 neuroplastic effects of rTMS in health and may help in the development of informed rTMS therapies in disease.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | | | - Bruno Andry Nascimento Couto
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Habelt B, Afanasenkau D, Schwarz C, Domanegg K, Kuchar M, Werner C, Minev IR, Spanagel R, Meinhardt MW, Bernhardt N. Prefrontal electrophysiological biomarkers and mechanism-based drug effects in a rat model of alcohol addiction. Transl Psychiatry 2024; 14:486. [PMID: 39639028 PMCID: PMC11621398 DOI: 10.1038/s41398-024-03189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Patients with alcohol use disorder (AUD) who seek treatment show highly variable outcomes. A precision medicine approach with biomarkers responsive to new treatments is warranted to overcome this limitation. Promising biomarkers relate to prefrontal control mechanisms that are severely disturbed in AUD. This results in reduced inhibitory control of compulsive behavior and, eventually, relapse. We reasoned here that prefrontal dysfunction, which underlies vulnerability to relapse, is evidenced by altered neuroelectric signatures and should be restored by pharmacological interventions that specifically target prefrontal dysfunction. To test this, we applied our recently developed biocompatible neuroprosthesis to measure prefrontal neural function in a well-established rat model of alcohol addiction and relapse. We monitored neural oscillations and event-related potentials in awake alcohol-dependent rats during abstinence and following treatment with psilocybin or LY379268, agonists of the serotonin 2A receptor (5-HT2AR), and the metabotropic glutamate receptor 2 (mGluR2), that are known to reduce prefrontal dysfunction and relapse. Electrophysiological impairments in alcohol-dependent rats are reduced amplitudes of P1N1 and N1P2 components and attenuated event-related oscillatory activity. Psilocybin and LY379268 were able to restore these impairments. Furthermore, alcohol-dependent animals displayed a dominance in higher beta frequencies indicative of a state of hyperarousal that is prone to relapse, which particularly psilocybin was able to counteract. In summary, we provide prefrontal markers indicative of relapse and treatment response, especially for psychedelic drugs.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Dzmitry Afanasenkau
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Cindy Schwarz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kevin Domanegg
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
- Psychedelic Research Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Ivan R Minev
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
| | - Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
22
|
Lorenc F, Dupuis L, Cassel R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Dis 2024; 203:106748. [PMID: 39592063 DOI: 10.1016/j.nbd.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases. Impaired neuronal excitability, imbalanced excitatory and inhibitory influences, and altered functional connectivity have been reported. These phenomena are likely due to combined alterations in the various cellular components involved in the functioning of neuronal networks. This review focuses on one of these cellular components: inhibitory neurons. We assess the evidence for inhibitory neuron impairments in amyotrophic lateral sclerosis and frontotemporal dementia, as well as the mechanisms leading to the loss of inhibition. We also discuss the contributions of these alterations to symptoms, and the potential therapeutic strategies for targeting inhibitory neuron deficits.
Collapse
Affiliation(s)
- Félicie Lorenc
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Raphaelle Cassel
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| |
Collapse
|
23
|
Duda AT, Clarke AR, Barry RJ, De Blasio FM. Mindfulness meditation is associated with global EEG spectral changes in theta, alpha, and beta amplitudes. Int J Psychophysiol 2024; 206:112465. [PMID: 39557128 DOI: 10.1016/j.ijpsycho.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Mindfulness meditation is linked to a broad range of psychological and physical health benefits, potentially mediated by changes in neural oscillations. This study explored changes in neural oscillations associated with both immediate and regular mindfulness meditation practice. Electroencephalographic (EEG) data were collected from 40 healthy young adults (Mage = 20.8, 24 females) during eyes-closed resting and mindfulness meditation states in two separate recording sessions, six weeks apart. Participants were novice meditators, and following the first recording session, were randomly assigned to either a daily mindfulness meditation practice or classical music listening as an active control, which they completed until the second recording session. Traditional bands of delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha (8.0-13.0 Hz), beta (13.5-30.0 Hz), and gamma (30.5-45.0 Hz) were used to explore changes in global EEG spectral amplitude. A significant increase in theta between sessions was observed in both groups and states. Alpha decreased significantly during meditation compared with rest, and a three-way interaction indicated a smaller reduction during meditation between sessions in the mindfulness group. There was a similar interaction in beta, which remained stable between sessions during both rest and meditation in the mindfulness group while varying in the classical music listening group. No significant effects were observed in global delta or gamma amplitudes. These findings suggest that changes in neural oscillations associated with breath-focused mindfulness meditation may be related to processes underlying attention and awareness. Further research is necessary to consolidate these findings, particularly in relation to the associated health benefits.
Collapse
Affiliation(s)
- Alexander T Duda
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Adam R Clarke
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Frances M De Blasio
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
24
|
Parr JVV, Mills R, Kal E, Bronstein AM, Ellmers TJ. A "Conscious" Loss of Balance: Directing Attention to Movement Can Impair the Cortical Response to Postural Perturbations. J Neurosci 2024; 44:e0810242024. [PMID: 39358045 PMCID: PMC11604137 DOI: 10.1523/jneurosci.0810-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
"Trying too hard" can interfere with skilled movement, such as sports and music playing. Postural control can similarly suffer when conscious attention is directed toward it ("conscious movement processing"; CMP). However, the neural mechanisms through which CMP influences balance remain poorly understood. We explored the effects of CMP on electroencephalographic (EEG) perturbation-evoked cortical responses and subsequent balance performance. Twenty healthy young adults (age = 25.1 ± 5 years; 10 males and 10 females) stood on a force plate-embedded moveable platform while mobile EEG was recorded. Participants completed two blocks of 50 discrete perturbations, containing an even mix of slower (186 mm/s peak velocity) and faster (225 mm/s peak velocity) perturbations. One block was performed under conditions of CMP (i.e., instructions to consciously control balance), while the other was performed under "Control" conditions with no additional instructions. For both slow and fast perturbations, CMP resulted in significantly smaller cortical N1 signals (a perturbation-evoked potential localized to the supplementary motor area) and lower sensorimotor beta EEG activity 200-400 ms postperturbation. Significantly greater peak velocities of the center of pressure (i.e., greater postural instability) were also observed during the CMP condition. Our findings provide the first evidence that disruptions to postural control during CMP may be a consequence of insufficient cortical activation relevant for balance (i.e., insufficient cortical N1 responses followed by enhanced beta suppression). We propose that conscious attempts to minimize postural instability through CMP acts as a cognitive dual-task that dampens the sensitivity of the sensorimotor system for future losses of balance.
Collapse
Affiliation(s)
- Johnny V V Parr
- Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, United Kingdom
| | - Richard Mills
- Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, United Kingdom
| | - Elmar Kal
- Department of Health Sciences, College of Health, Medicine, and Life Sciences, Centre for Cognitive and Clinical Neuroscience, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Adolfo M Bronstein
- Department of Brain Sciences, Centre for Vestibular Neurology, Imperial College, London W6 8RP, United Kingdom
| | - Toby J Ellmers
- Department of Brain Sciences, Centre for Vestibular Neurology, Imperial College, London W6 8RP, United Kingdom
| |
Collapse
|
25
|
Sugata H, Iwane F, Hayward W, Azzollini V, Dash D, Salamanca-Giron RF, Bönstrup M, Buch ER, Cohen LG. Cingulate and striatal hubs are linked to early skill learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624544. [PMID: 39803559 PMCID: PMC11722315 DOI: 10.1101/2024.11.20.624544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Early skill learning develops in the context of activity changes in distributed cortico-subcortical regions. Here, we investigated network hubs-centers of information integration and transmission-within the brain network supporting early skill learning. We recorded magnetoencephalographic (MEG) brain activity in healthy human subjects who learned a moderately difficult sequence skill with their non-dominant left hand. We then computed network hub strength by summing top 10% functional connectivity over 86 parcellated brain regions (AAL3 atlas) and five brain oscillatory frequency bands (alpha, low-, high-beta, low- and high-gamma). Virtually all skill gains developed during rest intervals of early learning (micro-offline gains). MEG hub strength in the alpha band (8-13Hz) in bilateral anterior cingulate (ACC) and caudate and in the low-beta band (13-16Hz) in bilateral caudate and right putamen correlated with micro-offline gains. These regions linked strongly with the hippocampus, parahippocampal cortex, and lingual and fusiform gyri. Thus, alpha and low-beta brain oscillatory activity in cingulate and striatal regions appear to contribute as hubs of information integration and transmission during early skill learning.
Collapse
Affiliation(s)
- Hisato Sugata
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- Equal Contribution
- Lead Contact
| | - Fumiaki Iwane
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Equal Contribution
| | - William Hayward
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Valentina Azzollini
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Debadatta Dash
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Marlene Bönstrup
- Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Lead Contact
| |
Collapse
|
26
|
Lin YH, Wu F, Li TY, Lin L, Gao F, Zhu LJ, Xu XM, Chen MY, Hou YL, Zhang CJ, Wu HY, Chang L, Luo CX, Qin YJ, Zhu DY. Disrupting stroke-induced GAT-1-syntaxin1A interaction promotes functional recovery after stroke. Cell Rep Med 2024; 5:101789. [PMID: 39423810 PMCID: PMC11604526 DOI: 10.1016/j.xcrm.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Although stroke is a frequent cause of permanent disability, our ability to promote stroke recovery is limited. Here, we design a small-molecule stroke recovery promoting agent that works by dissociating γ-aminobutyric acid (GABA) transporter 1 (GAT-1) from syntaxin1A (Synt1A), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein. Stroke induces an increase in GAT-1-Synt1A interaction in the subacute phase, a critical period for functional recovery. Uncoupling GAT-1-Synt1A reverses stroke-induced GAT-1 dysfunction and cortical excitability decline and enhances synaptic GABAergic inhibition and consequently cortical oscillations and network plasticity by facilitating the assembly of the SNARE complex at the synapse. Based on the molecular mechanism of GAT-1 binding to Synt1A, we design GAT-1-Synt1A blockers. Among them, ZLQ-3 exhibits the greatest potency. Intranasal use of ZLQ-3-1, a glycosylation product of ZLQ-3, substantially lessens impairments of sensorimotor and cognitive functions in rodent models. This compound, or its analogs, may serve as a promoting agent for stroke recovery.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Wu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ting-You Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Long Lin
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fan Gao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiu-Mei Xu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ming-Yu Chen
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Lan Hou
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chang-Jing Zhang
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Juan Qin
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dong-Ya Zhu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
27
|
Wang X, Talebi N, Zhou X, Hommel B, Beste C. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation. Neuroimage 2024; 302:120915. [PMID: 39489408 DOI: 10.1016/j.neuroimage.2024.120915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the neural mechanisms underlying metacontrol and conflict regulation is crucial for insights into cognitive flexibility and persistence. This study employed electroencephalography (EEG), EEG-beamforming and directed connectivity analyses to explore how varying metacontrol states influence conflict regulation at a neurophysiological level. Metacontrol states were manipulated by altering the frequency of congruent and incongruent trials across experimental blocks in a modified flanker task, and both behavioral and electrophysiological measures were analyzed. Behavioral data confirmed the experimental manipulation's efficacy, showing an increase in persistence bias and a reduction in flexibility bias during increased conflict regulation. Electrophysiologically, theta band activity paralleled the behavioral data, suggesting that theta oscillations reflect the mismatch between expected metacontrol bias and actual task demands. Alpha and beta band dynamics differed across experimental blocks, though these changes did not directly mirror behavioral effects. Post-response alpha and beta activity were more pronounced in persistence-biased states, indicating a neural reset mechanism preparing for future cognitive demands. By using a novel artificial neural networks method, directed connectivity analyses revealed enhanced inter-regional communication during persistence states, suggesting stronger top-down control and sensorimotor integration. Overall, theta band activity was closely tied to metacontrol processes, while alpha and beta bands played a role in resetting the neural system for upcoming tasks. These findings provide a deeper understanding of the neural substrates involved in metacontrol and conflict monitoring, emphasizing the distinct roles of different frequency bands in these cognitive processes.
Collapse
Affiliation(s)
- Xi Wang
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
28
|
Busch A, Gianotti LRR, Mayer F, Baur H. Monitoring Cortical and Neuromuscular Activity: Six-month Insights into Knee Joint Position Sense Following ACL Reconstruction. Int J Sports Phys Ther 2024; 19:1290-1303. [PMID: 39502546 PMCID: PMC11534174 DOI: 10.26603/001c.124840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Background Changes in cortical activation patterns after rupture of the anterior cruciate ligament (ACL) have been described. However, evidence of these consequences in the early stages following the incident and through longitudinal monitoring is scarce. Further insights could prove valuable in informing evidence-based rehabilitation practices. Purpose To analyze the angular accuracy, neuromuscular, and cortical activity during a knee joint position sense (JPS) test over the initial six months following ACL reconstruction. Study design: Cohort Study. Methods Twenty participants with ACL reconstruction performed a JPS test with both limbs. The measurement time points were approximately 1.5, 3-4 and 6 months after surgery, while 20 healthy controls were examined on a single occasion. The active JPS test was performed seated with a target angle of 50° for two blocks of continuous angular reproduction (three minutes per block). The reproduced angles were recorded simultaneously by an electrogoniometer. Neuromuscular activity of the quadriceps muscles during extension to the target angle was measured with surface electromyography. Spectral power for theta, alpha-2, beta-1 and beta-2 frequency bands were determined from electroencephalographic recordings. Linear mixed models were performed with group (ACL or controls), the measurement time point, and respective limb as fixed effect and each grouping per subject combination as random effect with random intercept. Results Significantly higher beta-2 power over the frontal region of interest was observed at the first measurement time point in the non-involved limb of the ACL group in comparison to the control group (p = 0.03). Despite individual variation, no other statistically significant differences were identified for JPS error, neuromuscular, or other cortical activity. Conclusion Variation in cortical activity between the ACL and control group were present, which is consistent with published results in later stages of rehabilitation. Both indicate the importance of a neuromuscular and neurocognitive focus in the rehabilitation. Level of Evidence 3.
Collapse
Affiliation(s)
- Aglaja Busch
- School of Health Professions Bern University of Applied Sciences
- Sports Medicine & Sports Orthopeadics University of Potsdam
| | | | - Frank Mayer
- Sports Medicine & Sports Orthopeadics University of Potsdam
| | - Heiner Baur
- School of Health Professions Bern University of Applied Sciences
| |
Collapse
|
29
|
Giraud M, Javadi AH, Lenatti C, Allen J, Tamè L, Nava E. The role of the somatosensory system in the feeling of emotions: a neurostimulation study. Soc Cogn Affect Neurosci 2024; 19:nsae062. [PMID: 39275796 PMCID: PMC11488518 DOI: 10.1093/scan/nsae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta, and sham) while participants saw emotional stimuli with different degrees of pleasantness and levels of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant versus unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions-arousal and valence-corroborating the view of a dissociation between these two dimensions of emotions.
Collapse
Affiliation(s)
- Michelle Giraud
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Carmen Lenatti
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - John Allen
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Elena Nava
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
30
|
Bae JH, Choi M, Lee JJ, Lee KH, Kim JU. Connectivity changes in two-channel prefrontal ERP associated with early cognitive decline in the elderly population: beta band responses to the auditory oddball stimuli. Front Aging Neurosci 2024; 16:1456169. [PMID: 39484363 PMCID: PMC11524914 DOI: 10.3389/fnagi.2024.1456169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Background This study utilized recent advancements in electroencephalography (EEG) technology that enable the measurement of prefrontal event-related potentials (ERPs) to facilitate the early detection of mild cognitive impairment (MCI). We investigated two-channel prefrontal ERP signals obtained from a large cohort of elderly participants and compare among cognitively normal (CN), subjective cognitive decline (SCD), amnestic MCI (aMCI), and nonamnestic MCI (naMCI) groups. Methods Signal processing and ERP component analyses, specifically adapted for two-channel prefrontal ERP signals evoked by the auditory oddball task, were performed on a total of 1,754 elderly participants. Connectivity analyses were conducted to assess brain synchronization, especially in the beta band involving the phase locking value (PLV) and coherence (COH). Time-frequency, time-trial, grand average, and further statistical analyses of the standard and target epochs were also conducted to explore differences among the cognition groups. Results The MCI group's response to target stimuli was characterized by greater response time variability (p < 0.001) and greater variability in the P300 latency (p < 0.05), leading to less consistent responses than those of the healthy control (HC) group (CN+SCD subgroups). In the connectivity analyses of PLV and COH waveforms, significant differences were observed, indicating a loss of synchronization in the beta band in response to standard stimuli in the MCI group. In addition, the absence of event-related desynchronization (ERD) indicated that information processing related to readiness and task performance in the beta band was not efficient in the MCI group. Furthermore, the observed decline in the P200 amplitude as the standard trials progressed suggests the impaired attention and inhibitory processes in the MCI group compared to the HC group. The aMCI subgroup showed high variability in COH values, while the naMCI subgroup showed impairments in their overall behavioral performance. Conclusion These findings highlight the variability and connectivity measures can be used as markers of early cognitive decline; such measures can be assessed with simple and fast two-channel prefrontal ERP signals evoked by both standard and target stimuli. Our study provides deeper insight of cognitive impairment and the potential use of the prefrontal ERP connectivity measures to assess early cognitive decline.
Collapse
Affiliation(s)
- Jang-Han Bae
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Minho Choi
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jang Jae Lee
- Asian Dementia Research Initiative, Chosun University, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Asian Dementia Research Initiative, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaeuk U. Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- KM Convergence Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
31
|
Marshall S, Jeyarajan G, Hayhow N, Gabiazon R, Seleem T, Hammerstrom MR, Krigolson O, Nagamatsu LS. Cortical activation among young adults during mobility in an indoor real-world environment: A mobile EEG approach. Neuropsychologia 2024; 203:108971. [PMID: 39128610 DOI: 10.1016/j.neuropsychologia.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Human mobility requires neurocognitive inputs to safely navigate the environment. Previous research has examined neural processes that underly walking using mobile neuroimaging technologies, yet few studies have incorporated true real-world methods without a specific task imposed on participants (e.g., dual-task, motor demands). The present study included 40 young adults (M = 22.60, SD = 2.63, 24 female) and utilized mobile electroencephalography (EEG) to examine and compare theta, alpha, and beta frequency band power (μV2) during sitting and walking in laboratory and real-world environments. EEG data was recorded using the Muse S brain sensing headband, a portable system equipped with four electrodes (two frontal, two temporal) and one reference sensor. Qualitative data detailing the thoughts of each participant were collected after each condition. For the quantitative data, a 2 × 2 repeated measures ANOVA with within subject factors of environment and mobility was conducted with full participant datasets (n = 17, M = 22.59, SD = 2.97, 10 female). Thematic analysis was performed on the qualitative data (n = 40). Our findings support that mobility and environment may modulate neural activity, as we observed increased brain activation for walking compared to sitting, and for real-world walking compared to laboratory walking. We identified five qualitative themes across the four conditions 1) physical sensations and bodily awareness, 2) responsibilities and planning, 3) environmental awareness, 4) mobility, and 5) spotlight effect. Our study highlights the importance and potential for real-world methods to supplement standard research practices to increase the ecological validity of studies conducted in the fields of neuroscience and kinesiology.
Collapse
Affiliation(s)
- Samantha Marshall
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada.
| | - Gianna Jeyarajan
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Nicholas Hayhow
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Raphael Gabiazon
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - Tia Seleem
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Mathew R Hammerstrom
- Department of Exercise Science, Physical and Health Education, University of Victoria, British Columbia, Canada
| | - Olav Krigolson
- Department of Exercise Science, Physical and Health Education, University of Victoria, British Columbia, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| |
Collapse
|
32
|
Koloski MF, Hulyalkar S, Barnes SA, Mishra J, Ramanathan DS. Cortico-striatal beta oscillations as a reward-related signal. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:839-859. [PMID: 39147929 PMCID: PMC11390840 DOI: 10.3758/s13415-024-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/17/2024]
Abstract
The value associated with reward is sensitive to external factors, such as the time between the choice and reward delivery as classically manipulated in temporal discounting tasks. Subjective preference for two reward options is dependent on objective variables of reward magnitude and reward delay. Single neuron correlates of reward value have been observed in regions, including ventral striatum, orbital, and medial prefrontal cortex. Brain imaging studies show cortico-striatal-limbic network activity related to subjective preferences. To explore how oscillatory dynamics represent reward processing across brain regions, we measured local field potentials of rats performing a temporal discounting task. Our goal was to use a data-driven approach to identify an electrophysiological marker that correlates with reward preference. We found that reward-locked oscillations at beta frequencies signaled the magnitude of reward and decayed with longer temporal delays. Electrodes in orbitofrontal/medial prefrontal cortex, anterior insula, ventral striatum, and amygdala individually increased power and were functionally connected at beta frequencies during reward outcome. Beta power during reward outcome correlated with subjective value as defined by a computational model fit to the discounting behavior. These data suggest that cortico-striatal beta oscillations are a reward signal correlated, which may represent subjective value and hold potential to serve as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- M F Koloski
- Mental Health Service, VA San Diego Healthcare Syst, La Jolla, CA, USA.
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA.
| | - S Hulyalkar
- Mental Health Service, VA San Diego Healthcare Syst, La Jolla, CA, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - S A Barnes
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - J Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - D S Ramanathan
- Mental Health Service, VA San Diego Healthcare Syst, La Jolla, CA, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
34
|
Astashev ME, Serov DA, Tankanag AV, Knyazeva IV, Dorokhov AA, Simakin AV, Gudkov SV. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. BIOLOGY 2024; 13:685. [PMID: 39336112 PMCID: PMC11428995 DOI: 10.3390/biology13090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The oscillation synchronization analysis in biological systems will expand our knowledge about the response of living systems to changes in environmental conditions. This knowledge can be used in medicine (diagnosis, therapy, monitoring) and agriculture (increasing productivity, resistance to adverse effects). Currently, the search is underway for an informative, accurate and sensitive method for analyzing the synchronization of oscillatory processes in cell biology. It is especially pronounced in analyzing the concentration oscillations of intracellular signaling molecules in electrically nonexcitable cells. The bispectral analysis method could be applied to assess the characteristics of synchronized oscillations of intracellular mediators. We chose endothelial cells from mouse microvessels as model cells. Concentrations of well-studied calcium and nitric oxide (NO) were selected for study in control conditions and well-described stress: heating to 40 °C and hyperglycemia. The bispectral analysis allows us to accurately evaluate the proportion of synchronized cells, their synchronization degree, and the amplitude and frequency of synchronized calcium and NO oscillations. Heating to 40 °C increased cell synchronization for calcium but decreased for NO oscillations. Hyperglycemia abolished this effect. Heating to 40 °C changed the frequencies and increased the amplitudes of synchronized oscillations of calcium concentration and the NO synthesis rate. The first part of this paper describes the principles of the bispectral analysis method and equations and modifications of the method we propose. In the second part of this paper, specific examples of the application of bispectral analysis to assess the synchronization of living cells in vitro are presented. The discussion compares the capabilities of bispectral analysis with other analytical methods in this field.
Collapse
Affiliation(s)
- Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Arina V Tankanag
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Inna V Knyazeva
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Artem A Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
35
|
Marques LM, Castellani A, Barbosa SP, Imamura M, Battistella LR, Simis M, Fregni F. Neuroplasticity changes in knee osteoarthritis (KOA) indexed by event-related desynchronization/synchronization during a motor inhibition task. Somatosens Mot Res 2024; 41:149-158. [PMID: 36921090 DOI: 10.1080/08990220.2023.2188926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
PURPOSE Event-related desynchronisation (ERD) and event-related synchronisation (ERS) reflect pain perception and integration of the nociceptive sensory inputs. This may contribute to the understanding of how neurophysiological markers of Knee Osteoarthritis (KOA) patients can differ from control individuals, which would improve aspects such as prediction and prognosis. We performed a cross-sectional analysis of our cohort study (DEFINE cohort), KOA arm, with 71 patients, compared with 65 control participants. The study aimed to examine possible differences between ERD and ERS in control participants compared to Knee Osteoarthritis (KOA) patients when adjusting for important covariates. MATERIALS AND METHODS We performed independent multivariate regression models considering as dependent variables the power value related to ERD and ERS for four different sensorimotor tasks (Motor Execution, Motor Imagery, Active Observation and Passive Observation) and four sensorimotor oscillations (Alpha, Beta, Low Beta, and High Beta), each model, controlled by age and sex. RESULTS We demonstrate that the differences between KOA and healthy subjects are frequency specific, as most differences are in the beta bandwidth range. Also, we observed that subjects in the KOA group had significantly higher ERD and ERS. This may be correlated to the amount of lack of brain organisation and a subsequent attempt at compensation induced by KOA. CONCLUSIONS Our findings strengthen the notion that subjects with KOA have a higher degree of brain plasticity changes that are also likely correlated to the degree of compensation and behavioural dysfunction.
Collapse
Affiliation(s)
- Lucas M Marques
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Ana Castellani
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Sara P Barbosa
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Marta Imamura
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Linamara R Battistella
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Ouchi T, Scholl LR, Rajeswaran P, Canfield RA, Smith LI, Orsborn AL. Mapping eye, arm, and reward information in frontal motor cortices using electrocorticography in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607846. [PMID: 39185198 PMCID: PMC11343120 DOI: 10.1101/2024.08.13.607846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Goal-directed reaches give rise to dynamic neural activity across the brain as we move our eyes and arms, and process outcomes. High spatiotemporal resolution mapping of multiple cortical areas will improve our understanding of how these neural computations are spatially and temporally distributed across the brain. In this study, we used micro-electrocorticography (μECoG) recordings in two male monkeys performing visually guided reaches to map information related to eye movements, arm movements, and receiving rewards over a 1.37 cm2 area of frontal motor cortices (primary motor cortex, premotor cortex, frontal eye field, and dorsolateral pre-frontal cortex). Time-frequency and decoding analyses revealed that eye and arm movement information shifts across brain regions during a reach, likely reflecting shifts from planning to execution. We then used phase-based analyses to reveal potential overlaps of eye and arm information. We found that arm movement decoding performance was impacted by task-irrelevant eye movements, consistent with the presence of intermixed eye and arm information across much of motor cortices. Phase-based analyses also identified reward-related activity primarily around the principal sulcus in the pre-frontal cortex as well as near the arcuate sulcus in the premotor cortex. Our results demonstrate μECoG's strengths for functional mapping and provide further detail on the spatial distribution of eye, arm, and reward information processing distributed across frontal cortices during reaching. These insights advance our understanding of the overlapping neural computations underlying coordinated movements and reveal opportunities to leverage these signals to enhance future brain-computer interfaces.
Collapse
Affiliation(s)
- Tomohiro Ouchi
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
| | - Leo R Scholl
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
| | | | - Ryan A Canfield
- University of Washington, Bioengineering, Seattle, 98115, USA
| | - Lydia I Smith
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
- University of Washington, Bioengineering, Seattle, 98115, USA
- Washington National Primate Research Center, Seattle, Washington, 98115, USA
| |
Collapse
|
37
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
38
|
Ter Horst J, Boillot M, Cohen MX, Englitz B. Decreased Beta Power and OFC-STN Phase Synchronization during Reactive Stopping in Freely Behaving Rats. J Neurosci 2024; 44:e0463242024. [PMID: 38866485 PMCID: PMC11308328 DOI: 10.1523/jneurosci.0463-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
During natural behavior, an action often needs to be suddenly stopped in response to an unexpected sensory input-referred to as reactive stopping. Reactive stopping has been mostly investigated in humans, which led to hypotheses about the involvement of different brain structures, in particular the hyperdirect pathway. Here, we directly investigate the contribution and interaction of two key regions of the hyperdirect pathway, the orbitofrontal cortex (OFC) and subthalamic nucleus (STN), using dual-area, multielectrode recordings in male rats performing a stop-signal task. In this task, rats have to initiate movement to a go-signal, and occasionally stop their movement to the go-signal side after a stop-signal, presented at various stop-signal delays. Both the OFC and STN show near-simultaneous field potential reductions in the beta frequency range (12-30 Hz) compared with the period preceding the go-signal and the movement period. These transient reductions (∼200 ms) only happen during reactive stopping, which is when the stop-signal was received after action initiation, and are well timed after stop-signal onset and before the estimated time of stopping. Phase synchronization analysis also showed a transient attenuation of synchronization between the OFC and STN in the beta range during reactive stopping. The present results provide the first direct quantification of local neural oscillatory activity in the OFC and STN and interareal synchronization specifically timed during reactive stopping.
Collapse
Affiliation(s)
- Jordi Ter Horst
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Morgane Boillot
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Michael X Cohen
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Bernhard Englitz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
39
|
Romero JP, Moreno-Verdú M, Arroyo-Ferrer A, Serrano JI, Herreros-Rodríguez J, García-Caldentey J, Rocon de Lima E, Del Castillo MD. Clinical and neurophysiological effects of bilateral repetitive transcranial magnetic stimulation and EEG-guided neurofeedback in Parkinson's disease: a randomized, four-arm controlled trial. J Neuroeng Rehabil 2024; 21:135. [PMID: 39103947 PMCID: PMC11299373 DOI: 10.1186/s12984-024-01427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) and EEG-guided neurofeedback techniques can reduce motor symptoms in Parkinson's disease (PD). However, the effects of their combination are unknown. Our objective was to determine the immediate and short-term effects on motor and non-motor symptoms, and neurophysiological measures, of rTMS and EEG-guided neurofeedback, alone or combined, compared to no intervention, in people with PD. METHODS A randomized, single-blinded controlled trial with 4 arms was conducted. Group A received eight bilateral, high-frequency (10 Hz) rTMS sessions over the Primary Motor Cortices; Group B received eight 30-minute EEG-guided neurofeedback sessions focused on reducing average bilateral alpha and beta bands; Group C received a combination of A and B; Group D did not receive any therapy. The primary outcome measure was the UPDRS-III at post-intervention and two weeks later. Secondary outcomes were functional mobility, limits of stability, depression, health-related quality-of-life and cortical silent periods. Treatment effects were obtained by longitudinal analysis of covariance mixed-effects models. RESULTS Forty people with PD participated (27 males, age = 63 ± 8.26 years, baseline UPDRS-III = 15.63 ± 6.99 points, H&Y = 1-3). Group C showed the largest effect on motor symptoms, health-related quality-of-life and cortical silent periods, followed by Group A and Group B. Negligible differences between Groups A-C and Group D for functional mobility or limits of stability were found. CONCLUSIONS The combination of rTMS and EEG-guided neurofeedback diminished overall motor symptoms and increased quality-of-life, but this was not reflected by changes in functional mobility, postural stability or depression levels. TRIAL REGISTRATION NCT04017481.
Collapse
Affiliation(s)
- Juan Pablo Romero
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Brain Damage Unit, Hospital Beata María Ana, Madrid, Spain
| | - Marcos Moreno-Verdú
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain.
- Brain, Action, and Skill Laboratory (BAS-Lab), Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Av. Mounier 54 (Claude Bernard), Floor +2, Office 0430, Woluwe-Saint-Lambert, 1200, Belgium.
| | - Aida Arroyo-Ferrer
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - J Ignacio Serrano
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
| | | | | | - Eduardo Rocon de Lima
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
| | - María Dolores Del Castillo
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
40
|
Orui J, Shiraiwa K, Tazaki F, Inoue T, Ueda M, Ueno K, Naito Y, Ishii R. Psychophysiological and interpersonal effects of parallel group crafting: a multimodal study using EEG and ECG. Sci Rep 2024; 14:17883. [PMID: 39095523 PMCID: PMC11297208 DOI: 10.1038/s41598-024-68980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
In occupational therapy, crafts and groups are used as therapeutic tools, but their electrophysiological effects have not been well described. This study aimed to investigate the effects of group crafting on the physiological synchrony (PS) of dyadic heartbeats and on the autonomic activity and electroencephalogram (EEG) of individuals. In this cross-sectional study, individuals' EEG and dyadic electrocardiogram (ECG) were measured during the task in a variety of conditions. The three conditions were alone, parallel, nonparallel. Autonomic activity from the subjects' ECG, PS from the dyadic ECG, and current source density from exact Low Resolution Brain Electromagnetic Tomography (eLORETA) from subjects' EEG were analyzed. Measurements from 30 healthy young adults showed that the parallel condition significantly increased subjects' parasympathetic activity and dyadic PS. Parallel condition and frontal midline theta influenced parasympathetic activity, whereas parasympathetic activity was not associated with PS. Dyadic lag value were correlated with frontal delta, beta, and gamma activity. The results suggest that crafting in parallel groups increases parasympathetic activity and PS through different mechanisms, despite the absence of direct interaction. They also explain the electrophysiological evidence for the use of crafts and groups in psychiatric occupational therapy, such as increased relaxation and PS.
Collapse
Affiliation(s)
- Junya Orui
- Department of Health Science, Osaka Health Science University, 1-9-27 Tenma, Kita-Ku, Osaka, Osaka, 530-0043, Japan
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Keigo Shiraiwa
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan
| | - Fumie Tazaki
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Masaya Ueda
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan.
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan.
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
41
|
Martin del Campo Vera R, Sundaram S, Lee R, Lee Y, Leonor A, Chung RS, Shao A, Cavaleri J, Gilbert ZD, Zhang S, Kammen A, Mason X, Heck C, Liu CY, Kellis S, Lee B. Beta-band power classification of go/no-go arm-reaching responses in the human hippocampus. J Neural Eng 2024; 21:046017. [PMID: 38914073 PMCID: PMC11247508 DOI: 10.1088/1741-2552/ad5b19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/25/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Objective.Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between 'Go' and 'No-go' trials in a Go/No-go arm-reaching task.Approach.Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a 'center-out' Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between 'Go' and 'No-go' trials. The accuracy of five different discriminant functions was evaluated using cross-validation.Main results.The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants.Significance.This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface applications.
Collapse
Affiliation(s)
- Roberto Martin del Campo Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Richard Lee
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Yelim Lee
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Selena Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Christi Heck
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
42
|
Lum JAG, Barham MP, Hyde C, Hill AT, White DJ, Hughes ME, Clark GM. Top-down and bottom-up oscillatory dynamics regulate implicit visuomotor sequence learning. Cereb Cortex 2024; 34:bhae266. [PMID: 39046456 PMCID: PMC11267723 DOI: 10.1093/cercor/bhae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Implicit visuomotor sequence learning is crucial for acquiring skills that result in automated behaviors. The oscillatory dynamics underpinning this learning process are not well understood. To address this gap, the current study employed electroencephalography with a medium-density array (64 electrodes) to investigate oscillatory activity associated with implicit visuomotor sequence learning in the Serial Reaction Time task. In the task, participants unknowingly learn a series of finger movements. Eighty-five healthy adults participated in the study. Analyses revealed that theta activity at the vertex and alpha/beta activity over the motor areas decreased over the course of learning. No associations between alpha/beta and theta power were observed. These findings are interpreted within a dual-process framework: midline theta activity is posited to regulate top-down attentional processes, whereas beta activity from motor areas underlies the bottom-up encoding of sensory information from movement. From this model, we suggest that during implicit visuomotor sequence learning, top-down processes become disengaged (indicated by a reduction in theta activity), and modality specific bottom-up processes encode the motor sequence (indicated by a reduction in alpha/beta activity).
Collapse
Affiliation(s)
- Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - Michael P Barham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - David J White
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Matthew E Hughes
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
43
|
Vissani M, Bush A, Lipski WJ, Bullock L, Fischer P, Neudorfer C, Holt LL, Fiez JA, Turner RS, Richardson RM. Spike-phase coupling of subthalamic neurons to posterior opercular cortex predicts speech sound accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562969. [PMID: 37905141 PMCID: PMC10614892 DOI: 10.1101/2023.10.18.562969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Speech provides a rich context for understanding how cortical interactions with the basal ganglia contribute to unique human behaviors, but opportunities for direct intracranial recordings across cortical-basal ganglia networks are rare. We recorded electrocorticographic signals in the cortex synchronously with single units in the basal ganglia during awake neurosurgeries where subjects spoke syllable repetitions. We discovered that individual STN neurons have transient (200ms) spike-phase coupling (SPC) events with multiple cortical regions. The spike timing of STN neurons was coordinated with the phase of theta-alpha oscillations in the posterior supramarginal and superior temporal gyrus during speech planning and production. Speech sound errors occurred when this STN-cortical interaction was delayed. Our results suggest that the STN supports mechanisms of speech planning and auditory-sensorimotor integration during speech production that are required to achieve high fidelity of the phonological and articulatory representation of the target phoneme. These findings establish a framework for understanding cortical-basal ganglia interaction in other human behaviors, and additionally indicate that firing-rate based models are insufficient for explaining basal ganglia circuit behavior.
Collapse
|
44
|
Marques LM, Barbosa SP, Gianlorenço AC, Pacheco-Barrios K, Souza DR, Matheus D, Battistella L, Simis M, Fregni F. Resting-state EEG as Biomarker of Maladaptive Motor Function and Depressive Profile in Stroke Patients. Clin EEG Neurosci 2024; 55:496-507. [PMID: 38460956 DOI: 10.1177/15500594241234394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Objective: Investigate the relationship between resting-state EEG-measured brain oscillations and clinical and demographic measures in Stroke patients. Methods: We performed a cross-sectional analysis of a cohort study (DEFINE cohort), Stroke arm, with 85 patients, considering demographic, clinical, and stroke characteristics. Resting-state EEG relative power from delta, theta, alpha, and beta oscillations were measured from the central region. Multivariate regression models were used for both affected and non-affected hemispheres. Results: Motor function was negatively associated with Delta and Theta oscillations, while positively associated with Alpha oscillations (both hemispheres). Similarly, cognition levels measured were negatively associated with Delta activity. Depression levels were negatively associated with Alpha activity specifically in the affected hemisphere, while positively associated with Beta activity in both hemispheres. Regarding pain measures, no significant association was observed, while CPM measure showed a positive association with Alpha activity in the non-affected hemisphere. Finally, we found that theta/alpha ratio was negatively associated with motor function and CPM scores. Conclusion: The results lead us to propose a framework for brain oscillations in stroke, whereas Delta and Beta would represent disrupted mal-adaptive brain plasticity and Theta and Alpha would represent compensatory and functional brain oscillations for motor and sensory deficits in stroke, respectively.
Collapse
Affiliation(s)
- Lucas M Marques
- Mental Health Department, Santa Casa of Sao Paulo Medical Science School, São Paulo, SP, Brazil
| | - Sara Pinto Barbosa
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Anna Carolyna Gianlorenço
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation, Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - K Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation, Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Daniel R Souza
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Denise Matheus
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Linamara Battistella
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
| | - Marcel Simis
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation, Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
45
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
46
|
Nougaret S, López-Galdo L, Caytan E, Poitreau J, Barthélemy FV, Kilavik BE. Low and high beta rhythms have different motor cortical sources and distinct roles in movement control and spatiotemporal attention. PLoS Biol 2024; 22:e3002670. [PMID: 38917200 PMCID: PMC11198906 DOI: 10.1371/journal.pbio.3002670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
Low and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd). Low beta correlated positively with reaction time (RT) from visual cue onset and negatively with uninstructed hand postural micro-movements throughout the trial. High beta reflected temporal task prediction, with selective modulations before and during cues, which were enhanced in moments of increased focal attention when the gaze was on the work area. This double-dissociation in sources and behavioral correlates of motor cortical low and high beta, with respect to both task-instructed and spontaneous behavior, reconciles the largely disparate roles proposed for the beta rhythm, by suggesting band-specific roles in both movement control and spatiotemporal attention.
Collapse
Affiliation(s)
- Simon Nougaret
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Laura López-Galdo
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Emile Caytan
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Julien Poitreau
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Frédéric V. Barthélemy
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
- Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany
| | - Bjørg Elisabeth Kilavik
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
47
|
Trubshaw M, Gohil C, Yoganathan K, Kohl O, Edmond E, Proudfoot M, Thompson AG, Talbot K, Stagg CJ, Nobre AC, Woolrich M, Turner MR. The cortical neurophysiological signature of amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae164. [PMID: 38779353 PMCID: PMC11109820 DOI: 10.1093/braincomms/fcae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/09/2024] [Indexed: 05/25/2024] Open
Abstract
The progressive loss of motor function characteristic of amyotrophic lateral sclerosis is associated with widespread cortical pathology extending beyond primary motor regions. Increasing muscle weakness reflects a dynamic, variably compensated brain network disorder. In the quest for biomarkers to accelerate therapeutic assessment, the high temporal resolution of magnetoencephalography is uniquely able to non-invasively capture micro-magnetic fields generated by neuronal activity across the entire cortex simultaneously. This study examined task-free magnetoencephalography to characterize the cortical oscillatory signature of amyotrophic lateral sclerosis for having potential as a pharmacodynamic biomarker. Eight to ten minutes of magnetoencephalography in the task-free, eyes-open state was recorded in amyotrophic lateral sclerosis (n = 36) and healthy age-matched controls (n = 51), followed by a structural MRI scan for co-registration. Extracted magnetoencephalography metrics from the delta, theta, alpha, beta, low-gamma, high-gamma frequency bands included oscillatory power (regional activity), 1/f exponent (complexity) and amplitude envelope correlation (connectivity). Groups were compared using a permutation-based general linear model with correction for multiple comparisons and confounders. To test whether the extracted metrics could predict disease severity, a random forest regression model was trained and evaluated using nested leave-one-out cross-validation. Amyotrophic lateral sclerosis was characterized by reduced sensorimotor beta band and increased high-gamma band power. Within the premotor cortex, increased disability was associated with a reduced 1/f exponent. Increased disability was more widely associated with increased global connectivity in the delta, theta and high-gamma bands. Intra-hemispherically, increased disability scores were particularly associated with increases in temporal connectivity and inter-hemispherically with increases in frontal and occipital connectivity. The random forest model achieved a coefficient of determination (R2) of 0.24. The combined reduction in cortical sensorimotor beta and rise in gamma power is compatible with the established hypothesis of loss of inhibitory, GABAergic interneuronal circuits in pathogenesis. A lower 1/f exponent potentially reflects a more excitable cortex and a pathology unique to amyotrophic lateral sclerosis when considered with the findings published in other neurodegenerative disorders. Power and complexity changes corroborate with the results from paired-pulse transcranial magnetic stimulation. Increased magnetoencephalography connectivity in worsening disability is thought to represent compensatory responses to a failing motor system. Restoration of cortical beta and gamma band power has significant potential to be tested in an experimental medicine setting. Magnetoencephalography-based measures have potential as sensitive outcome measures of therapeutic benefit in drug trials and may have a wider diagnostic value with further study, including as predictive markers in asymptomatic carriers of disease-causing genetic variants.
Collapse
Affiliation(s)
- Michael Trubshaw
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Katie Yoganathan
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Oliver Kohl
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Evan Edmond
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Martin R Turner
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
48
|
Meachon EJ, Kundlacz M, Wilmut K, Alpers GW. EEG spectral power in developmental coordination disorder and attention-deficit/hyperactivity disorder: a pilot study. Front Psychol 2024; 15:1330385. [PMID: 38765829 PMCID: PMC11099285 DOI: 10.3389/fpsyg.2024.1330385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 05/22/2024] Open
Abstract
Developmental coordination disorder (DCD) and attention-deficit/hyperactivity disorder (ADHD) overlap in symptoms and often co-occur. Differentiation of DCD and ADHD is crucial for a better understanding of the conditions and targeted support. Measuring electrical brain activity with EEG may help to discern and better understand the conditions given that it can objectively capture changes and potential differences in brain activity related to externally measurable symptoms beneficial for targeted interventions. Therefore, a pilot study was conducted to exploratorily examine neurophysiological differences between adults with DCD and/or ADHD at rest. A total of N = 46 adults with DCD (n = 12), ADHD (n = 9), both DCD + ADHD (n = 8), or typical development (n = 17) completed 2 min of rest with eyes-closed and eyes-open while their EEG was recorded. Spectral power was calculated for frequency bands: delta (0.5-3 Hz), theta (3.5-7 Hz), alpha (7.5-12.5 Hz), beta (13-25 Hz), mu (8-13 Hz), gamma (low: 30-40 Hz; high: 40-50 Hz). Within-participants, spectral power in a majority of waveforms significantly increased from eyes-open to eyes-closed conditions. Groups differed significantly in occipital beta power during the eyes-open condition, driven by the DCD versus typically developing group comparison. However, other group comparisons reached only marginal significance, including whole brain alpha and mu power with eyes-open, and frontal beta and occipital high gamma power during eyes-closed. While no strong markers could be determined to differentiate DCD versus ADHD, we theorize that several patterns in beta activity were indicative of potential motor maintenance differences in DCD at rest. Therefore, larger studies comparing EEG spectral power may be useful to identify neurological mechanisms of DCD and continued differentiation of DCD and ADHD.
Collapse
Affiliation(s)
- Emily J. Meachon
- School of Social Sciences, University of Mannheim, Mannheim, Germany
- Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Marlene Kundlacz
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Kate Wilmut
- Centre for Psychological Research, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Georg W. Alpers
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
49
|
Coleman SC, Seedat ZA, Pakenham DO, Quinn AJ, Brookes MJ, Woolrich MW, Mullinger KJ. Post-task responses following working memory and movement are driven by transient spectral bursts with similar characteristics. Hum Brain Mapp 2024; 45:e26700. [PMID: 38726799 PMCID: PMC11082833 DOI: 10.1002/hbm.26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.
Collapse
Affiliation(s)
- Sebastian C. Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Zelekha A. Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Young EpilepsyLingfieldUK
| | - Daisie O. Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Clinical NeurophysiologyQueen's Medical Centre, Nottingham University Hospitals NHS TrustNottinghamUK
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
50
|
Inguscio BMS, Cartocci G, Sciaraffa N, Nicastri M, Giallini I, Aricò P, Greco A, Babiloni F, Mancini P. Two are better than one: Differences in cortical EEG patterns during auditory and visual verbal working memory processing between Unilateral and Bilateral Cochlear Implanted children. Hear Res 2024; 446:109007. [PMID: 38608331 DOI: 10.1016/j.heares.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing (DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities (auditory and visual). The objective of this pioneering study was to identify electroencephalographic (EEG) marker pattern differences in visual and auditory VWM performances in CIs compared to NH peers and possible differences between unilateral cochlear implant (UCI) and bilateral cochlear implant (BCI) users. The main results revealed differences in theta and gamma EEG bands. Compared with hearing controls and BCIs, UCIs showed hypoactivation of theta in the frontal area during the most complex condition of the auditory task and a correlation of the same activation with VWM performance. Hypoactivation in theta was also observed, again for UCIs, in the left hemisphere when compared to BCIs and in the gamma band in UCIs compared to both BCIs and NHs. For the latter two, a correlation was found between left hemispheric gamma oscillation and performance in the audio task. These findings, discussed in the light of recent research, suggest that unilateral CI is deficient in supporting auditory VWM in DHH. At the same time, bilateral CI would allow the DHH child to approach the VWM benchmark for NH children. The present study suggests the possible effectiveness of EEG in supporting, through a targeted approach, the diagnosis and rehabilitation of VWM in DHH children.
Collapse
Affiliation(s)
- Bianca Maria Serena Inguscio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy.
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy
| | | | - Maria Nicastri
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Ilaria Giallini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 125, Rome 00185, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer Science, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Patrizia Mancini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| |
Collapse
|