1
|
Jung H, Kim YE, Kim EM, Kim KK. Alternative splicing of CHI3L1 regulates protein secretion through conformational changes. Genes Genomics 2025:10.1007/s13258-025-01635-w. [PMID: 40126865 DOI: 10.1007/s13258-025-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Alternative splicing (AS) plays a crucial role in regulating protein function through the generation of structurally distinct isoforms. OBJECTIVE We identify a novel splicing event in Chitinase 3-like 1 (CHI3L1) that modulates its secretion through conformational changes. METHODS CHI3L1 alternative splicing was analyzed using the GTEx dataset. The regulation of CHI3L1 splicing was examined in response to THP-1 and BEAS-2B cells using RT-PCR. Structural modeling of CHI3L1 isoforms was conducted with AlphaFold to predict conformational changes caused by exon 8 exclusion. Protein expression and secretion levels of CHI3L1 isoforms were analyzed by Western blotting. RESULTS Analysis of the GTEx dataset revealed tissue-specific regulation of CHI3L1 exon 8, with pronounced exclusion in lung tissue. The splicing pattern of CHI3L1 was dynamically regulated during THP-1 macrophage differentiation and by cell density in lung-derived epithelial BEAS-2B cells, suggesting its responsiveness to cellular context. While both full-length and exon 8-excluded CHI3L1 proteins showed cytoplasmic localization, structural analysis using AlphaFold revealed that exon 8 exclusion significantly altered the orientation of the signal peptide. Consequently, exon 8-excluded CHI3L1 exhibited minimal secretion into the culture medium compared to the full-length protein. CONCLUSION These findings demonstrate that alternative splicing-mediated exclusion of exon 8 serves as a novel regulatory mechanism controlling CHI3L1 secretion through conformational changes, providing new insights into the post-transcriptional regulation of secreted proteins.
Collapse
Affiliation(s)
- Haesoo Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yong-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Horie T, Hirata H, Sakamoto T, Kitajima H, Fuku A, Nakamura Y, Sunatani Y, Tanida I, Sunami H, Tachi Y, Ishigaki Y, Yamamoto N, Shimizu Y, Ichiseki T, Kaneuji A, Iwabuchi K, Osawa S, Kawahara N. Multiomics analyses reveal adipose-derived stem cells inhibit the inflammatory response of M1-like macrophages through secreting lactate. Stem Cell Res Ther 2024; 15:485. [PMID: 39696485 DOI: 10.1186/s13287-024-04072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are widely used in the field of regenerative medicine because of their various functions, including anti-inflammatory effects. ADSCs are considered to exert their anti-inflammatory effects by secreting anti-inflammatory cytokines and extracellular vesicles. Although recent studies have reported that metabolites have a variety of physiological activities, whether those secreted by ADSCs have anti-inflammatory properties remains unclear. Here, we performed multiomics analyses to examine the effect of ADSC-derived metabolites on M1-like macrophages, which play an important role in inflammatory responses. METHODS The concentration of metabolites in the culture supernatant of ADSCs was quantified using capillary electrophoresis time-of-flight mass spectrometry. To evaluate their effects on inflammatory responses, M1-like macrophages were exposed to the conditioned ADSC medium or their metabolites, and RNA sequencing was used to detect gene expression changes. Immunoblotting was performed to examine how the metabolite suppresses inflammatory processes. To clarify the contribution of the metabolite in the conditioned medium to its anti-inflammatory effects, metabolite uptake was pharmacologically inhibited, and gene expression and the tumor necrosis factor-α concentration were measured by quantitative PCR and enzyme-linked immunosorbent assay, respectively. RESULTS Metabolomic analysis showed large amounts of lactate in the culture supernatant. The conditioned medium and lactate significantly suppressed or increased the pro-inflammatory and anti-inflammatory gene expressions. However, sequencing and immunoblotting analysis revealed that lactate did not induce polarization from M1- to M2-like macrophages. Based on a recent report that the immunosuppressive effect of lactate depends on epigenetic reprogramming, histone acetylation was investigated, and H3K27ac expression was upregulated. In addition, 7ACC2, which specifically inhibits the monocarboxylate transporter 1, significantly inhibited the anti-inflammatory effect of the conditioned ADSC medium on M1-like macrophages. CONCLUSIONS Our results showed that ADSCs suppress pro-inflammatory effects of M1-like macrophages by secreting lactate. This study adds to our understanding of the importance of metabolites and is also expected to elucidate new mechanisms of ADSC treatments.
Collapse
Affiliation(s)
- Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Hiroaki Hirata
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Hironori Kitajima
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Atsushi Fuku
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yumi Sunatani
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Ikuhiro Tanida
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Hiroshi Sunami
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshiyuki Tachi
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Naoki Yamamoto
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nakagami, Okinawa, 903-0215, Japan
| | - Toru Ichiseki
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Ayumi Kaneuji
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Satoshi Osawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Norio Kawahara
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
3
|
de Araújo AP, da Costa Rodrigues T, de Oliveira MLS, Miyaji EN. Cytokine secretion by in vitro cultures of lung epithelial cells, differentiated macrophages and differentiated dendritic cells incubated with pneumococci and pneumococcal extracellular vesicles. Braz J Microbiol 2024; 55:3797-3810. [PMID: 39254798 PMCID: PMC11711742 DOI: 10.1007/s42770-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that can colonize the respiratory tract of healthy individuals. The respiratory tract mucosa is thus the first barrier for this pathogen. In this study, we have tested three models of the respiratory epithelium with immune cells: (i) monolayer of A549 human lung epithelial cells, (ii) A549 + macrophages differentiated from the human monocytic THP-1 cell line (dMφ) and (iii) A549 + dMφ + dendritic cells differentiated from THP-1 (dDC) using a two-chamber system. Pneumococcal strains Rx1 (non-encapsulated) and BHN418 (serotype 6B) were incubated with the cells and secretion of IL-6, IL-8, IL-1β, TNF-α and IL-10 was evaluated. Overall, the models using co-cultures of A549 + dMφ and A549 + dMφ + dDC elicited higher levels of pro-inflammatory cytokines and the non-encapsulated strain elicited an earlier cytokine response. BHN418 pspA (pneumococcal surface protein A) and pspC (pneumococcal surface protein C) knockouts elicited similar cytokine secretion in the co-culture models, whereas BHN18 ply (pneumolysin) knockout induced much lower levels. The results are in accordance with the activation of the inflammasome by Ply. Finally, we evaluated pneumococcal extracellular vesicles (pEVs) in the co-culture models and observed secretion of pro-inflammatory cytokines in the absence of cytotoxicity. Since pEVs are being studied as vaccine candidate against pneumococcal infections, the co-cultures of A549 + dMφ and A549 + dMφ + dDC are simple models that could be used to evaluate pEV vaccine batches.
Collapse
Affiliation(s)
| | - Tasson da Costa Rodrigues
- Laboratório de Bacteriologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | | | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
4
|
Hehner J, Schneider L, Woitalla A, Ott B, Vu KCT, Schöbel A, Hain T, Schwudke D, Herker E. Glycerophospholipid remodeling is critical for orthoflavivirus infection. Nat Commun 2024; 15:8683. [PMID: 39375358 PMCID: PMC11458896 DOI: 10.1038/s41467-024-52979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Flavivirus infection is tightly connected to host lipid metabolism. Here, we performed shotgun lipidomics of cells infected with neurotropic Zika, West Nile, and tick-borne encephalitis virus, as well as dengue and yellow fever virus. Early in infection specific lipids accumulate, e.g., neutral lipids in Zika and some lysophospholipids in all infections. Ceramide levels increase following infection with viruses that cause a cytopathic effect. In addition, fatty acid desaturation as well as glycerophospholipid metabolism are significantly altered. Importantly, depletion of enzymes involved in phosphatidylserine metabolism as well as phosphatidylinositol biosynthesis reduce orthoflavivirus titers and cytopathic effects while inhibition of fatty acid monounsaturation only rescues from virus-induced cell death. Interestingly, interfering with ceramide synthesis has opposing effects on virus replication and cytotoxicity depending on the targeted enzyme. Thus, lipid remodeling by orthoflaviviruses includes distinct changes but also common patterns shared by several viruses that are needed for efficient infection and replication.
Collapse
Affiliation(s)
- Julia Hehner
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anna Woitalla
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Kim Chi Thi Vu
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anja Schöbel
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
- Thematic Translational Unit Tuberculosis, German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Site Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Eva Herker
- Institute of Virology, University of Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Avishek K, Beg MA, Vats K, Singh AK, Dey R, Singh KP, Singh RK, Gannavaram S, Ramesh V, Mulla MSA, Bhatnagar U, Singh S, Nakhasi HL, Salotra P, Selvapandiyan A. Manufacturing and preclinical toxicity of GLP grade gene deleted attenuated Leishmania donovani parasite vaccine. Sci Rep 2024; 14:14636. [PMID: 38918456 PMCID: PMC11199483 DOI: 10.1038/s41598-024-64592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.
Collapse
Affiliation(s)
- Kumar Avishek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Avinash Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kamaleshwar P Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Rajesh Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - V Ramesh
- Department of Dermatology and STD, ESIC Medical College, Faridabad, Haryana, 121001, India
| | | | - Upendra Bhatnagar
- Vimta Laboratories, Cherlapally, Hyderabad, Telangana, 500051, India
| | - Sanjay Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | |
Collapse
|
6
|
Nowak N, Czekanowska D, Gebarowski T, Wiglusz RJ. Highly cyto- and immune compatible new synthetic fluorapatite nanomaterials co-doped with rubidium(I) and europium(III) ions. BIOMATERIALS ADVANCES 2024; 156:213709. [PMID: 38039809 DOI: 10.1016/j.bioadv.2023.213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the present study, biocompatible luminescent of nanosized fluorapatite doped with rubidium(I) (Rb+ ion) and europium(III) (Eu3+ ion) ions were synthesized via hydrothermal method. It was investigated the influence of co-doped Rb+ and Eu3+ ions on the structural, and morphological characteristics of the obtained fluorapatite materials. The characterization techniques utilized included: X-ray powder diffraction (XRPD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Moreover, to establish the influence of the co-doped Rb+ and Eu3+ ions on the luminescence properties of the lanthanide ion, emission excitation, emission spectrum and luminescence decays were measured. This confirmed a distinct red emission originating from Eu3+ ions and an increased emission lifetime. To determine the biocompatibility of the obtained fluorapatite compounds, in vitro studies using normal dermal human fibroblasts were performed. The results of these studies clearly demonstrate the remarkable biocompatibility of our compounds. This discovery opens exciting prospects for the use of synthetic fluorapatites doped with Eu3+ and Rb+ ions in various biomedical contexts. In particular, these materials hold great promise for potential applications in regenerative engineering, but also serve as innovative and practical solutions as bone scaffolds and dental implants containing nano-fluorapatite. Further discussion of these properties can be found in this article, along with a discussion of their importance and potential in the field of biomedical applications. However, according to our pervious study and based on our current investigations but also based on available scientific records, it was proposed potential molecular mechanism of Rb+ ions in the process of osteoclastogenesis.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland.
| | - Dominika Czekanowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Tomasz Gebarowski
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
7
|
Sharma P, Venkatachalam K, Binesh A. Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2024; 23:85-104. [PMID: 38676532 DOI: 10.2174/0118715230294413240415054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.
Collapse
Affiliation(s)
- Prakhar Sharma
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Ambika Binesh
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| |
Collapse
|
8
|
Martínez-Blanco M, Menchén-Martínez D, Cámara C, López-Fandiño R, Berin MC, Lozano-Ojalvo D. Coculture of Human Dendritic and T Cells for the Study of Specific T Cell-Mediated Responses Against Food Allergens. Methods Mol Biol 2024; 2717:175-190. [PMID: 37737984 DOI: 10.1007/978-1-0716-3453-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Dendritic cells (DCs) connect innate and adaptive immunity by sampling, capturing, processing, and presenting the allergen to distinct subsets of CD4+ T cells. In food allergy, this process leads to the generation of allergen-specific Th2 responses and the production of type 2 cytokines that ultimately induce the synthesis of IgE by allergen-specific B cells. In this chapter, we have described different protocols for the isolation of circulating DCs as well as the generation of DC-like cells derived from autologous peripheral monocytes and the human monocytic THP-1 cell line. Coculture of isolated/generated DCs with CD4+ T cells obtained from PBMCs of allergic subjects allows the study of antigen-specific T cell immune responses against food allergens. Early responses upon allergen recognition can be determined by the upregulation of activation markers such as CD154 (CD40 ligand) and the detection of type 2 cytokines (IL-4, IL-5, IL-9, and IL-13). Delayed allergen-specific CD4+ T cell responses induce the proliferation of these cells and the accumulation of type 2 cytokines in coculture supernatants that can be quantified by different approaches (ELISA, EllaTM, and multiplex assays). Together, the protocols described in this chapter can be used to investigate the features of food proteins to induce food allergy, the influence of environmental factors to generate Th2-polarization, the function of DCs to generate differential immune responses in allergic versus tolerant individuals, and to assess the immunomodulating properties of potential therapeutic substances.
Collapse
Affiliation(s)
- Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David Menchén-Martínez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Carmen Cámara
- Department of Immunology, Hospital La Paz, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - M Cecilia Berin
- Department of Medicine, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Serratì S, Di Fonte R, Porcelli L, De Summa S, De Risi I, Fucci L, Ruggieri E, Marvulli TM, Strippoli S, Fasano R, Rafaschieri T, Guida G, Guida M, Azzariti A. Circulating extracellular vesicles are monitoring biomarkers of anti-PD1 response and enhancer of tumor progression and immunosuppression in metastatic melanoma. J Exp Clin Cancer Res 2023; 42:251. [PMID: 37759291 PMCID: PMC10538246 DOI: 10.1186/s13046-023-02808-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Clinical drawback in checkpoint inhibitors immunotherapy (ICI) of metastatic melanoma (MM) is monitoring clinical benefit. Soluble forms of PD1(sPD1) and PD-L1(sPD-L1) and extracellular vesicles (EVs) expressing PD1 and PD-L1 have recently emerged as predictive biomarkers of response. As factors released in the blood, EVs and soluble forms could be relevant in monitoring treatment efficacy and adaptive resistance to ICI. METHODS We used pre-therapy plasma samples of 110 MM patients and longitudinal samples of 46 patients. Elisa assay and flow cytometry (FCM) were used to measure sPD-L1 and sPD1 concentrations and the percentage of PD1+ EVs and PD-L1+ EVs, released from tumor and immune cells in patients subsets. Transwell assays were conducted to investigate the impact of EVs of each patient subset on MM cells invasion and interaction between tumor cells and macrophages or dendritic cells. Viability assays were performed to assess EVs effect on MM cells and organoids sensitivity to anti-PD1. FCM was used to investigate immunosuppressive markers in EVs and immune cells. RESULTS The concentrations of sPD1 and sPD-L1 in pre-treatment and longitudinal samples did not correlate with anti-PD1 response, instead only tumor-derived PD1+ EVs decreased in long responders while increased during disease progression in responders. Notably, we observed reduction of T cell derived EVs expressing LAG3+ and PD1+ in long responders and their increase in responders experiencing progression. By investigating the impact of EVs on disease progression, we found that those isolated from non-responders and from patients with progression disease accelerated tumor cells invasiveness and migration towards macrophages, while EVs of long responders reduced the metastatic potential of MM cells and neo-angiogenesis. Additionally, the EVs of non-responders and of progression disease patients subset reduced the sensitivity of MM cells and organoids of responder to anti-PD1 and the recruitment of dendritic cells, while the EVs of progression disease subset skewed macrophages to express higher level of PDL-1. CONCLUSION Collectively, we suggest that the detection of tumor-derived PD1 + EVs may represent a useful tool for monitoring the response to anti-PD1 and a role for EVs shed by tumor and immune cells in promoting tumor progression and immune dysfunction.
Collapse
Affiliation(s)
- Simona Serratì
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Roberta Di Fonte
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Letizia Porcelli
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy.
| | - Simona De Summa
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Ivana De Risi
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Livia Fucci
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Eustachio Ruggieri
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | | | - Sabino Strippoli
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Rossella Fasano
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Tania Rafaschieri
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Michele Guida
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124, Bari, Italy.
| |
Collapse
|
10
|
Roche V, Sandoval V, Wolford C, Senders Z, Kim JA, Ribeiro SP, Huang AY, Sekaly RP, Lyons J, Zhang M. Carbohydrate ligand engagement with CD11b enhances differentiation of tumor-associated myeloid cells for immunotherapy of solid cancers. J Immunother Cancer 2023; 11:e006205. [PMID: 37399354 DOI: 10.1136/jitc-2022-006205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation. This has created a major challenge in understanding how CD11b converts the differences in the receptor-ligand binding into subsequent signaling responses and using this information for therapeutic development. METHODS This study aimed to investigate the antitumor effect of a carbohydrate ligand, named BG34-200, which modulates the CD11b+ cells. We have applied peptide microarrays, multiparameter FACS (fluorescence-activated cell analysis) analysis, cellular/molecular immunological technology, advanced microscopic imaging, and transgenic mouse models of solid cancers, to study the interaction between BG34-200 carbohydrate ligand and CD11b protein and the resulting immunological changes in the context of solid cancers, including osteosarcoma, advanced melanoma, and pancreatic ductal adenocarcinoma (PDAC). RESULTS Our results show that BG34-200 can bind directly to the activated CD11b on its I (or A) domain, at previously unreported peptide residues, in a multisite and multivalent manner. This engagement significantly impacts the biological function of tumor-associated inflammatory monocytes (TAIMs) in osteosarcoma, advanced melanoma, and PDAC backgrounds. Importantly, we observed that the BG34-200-CD11b engagement triggered endocytosis of the binding complexes in TAIMs, which induced intracellular F-actin cytoskeletal rearrangement, effective phagocytosis, and intrinsic ICAM-1 (intercellular adhesion molecule I) clustering. These structural biological changes resulted in the differentiation in TAIMs into monocyte-derived dendritic cells, which play a crucial role in T-cell activation in the tumor microenvironment. CONCLUSIONS Our research has advanced the current understanding of the molecular basis of CD11b activation in solid cancers, revealing how it converts the differences in BG34 carbohydrate ligands into immune signaling responses. These findings could pave the way for the development of safe and novel BG34-200-based therapies that modulate myeloid-derived cell functions, thereby enhancing immunotherapy for solid cancers.
Collapse
Affiliation(s)
- Veronique Roche
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Victor Sandoval
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Claire Wolford
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zachary Senders
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Julian Anthony Kim
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alex Yicheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Joshua Lyons
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Lajiness JD, Amarsaikhan N, Tat K, Tsoggerel A, Cook-Mills JM. β-Glucosylceramides and Tocopherols Regulate Development and Function of Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1837-1850. [PMID: 36426950 PMCID: PMC9643659 DOI: 10.4049/jimmunol.2101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/07/2022] [Indexed: 12/30/2022]
Abstract
In humans and mice, offspring of allergic mothers are predisposed to development of allergy. In mice, allergic mothers have elevated β-glucosylceramides (βGlcCers) that are transported to the fetus via the placenta and to offspring via milk. The elevated βGlcCers increase the number of fetal liver CD11c+CD11b+ dendritic cells (DCs) and offspring allergen-induced lung eosinophilia. These effects are modifiable by maternal dietary supplementation with the plant-derived lipids α-tocopherol and γ-tocopherol. It is not known whether βGlcCers and tocopherols directly regulate development of DCs. In this study, we demonstrated that βGlcCers increased development of GM-CSF-stimulated mouse bone marrow-derived DCs (BMDCs) in vitro without altering expression of costimulatory molecules. This increase in BMDC numbers was blocked by α-tocopherol and potentiated by γ-tocopherol. Furthermore, βGlcCers increased protein kinase Cα (PKCα) and PKCδ activation in BMDCs that was blocked by α-tocopherol. In contrast, γ-tocopherol increased BMDC PKCα and PKCδ activation and enhanced the βGlcCer-induced increase in PKCδ activation in a DC subset. Ag processing per DC was minimally enhanced in βGlcCer-treated BMDCs and not altered ex vivo in lung DCs from pups of allergic mothers. Pups of allergic mothers had an increased proportion of CD11b+CD11c+ subsets of DCs, contributing to enhanced stimulation of T cell proliferation ex vivo. Thus, βGlcCer, which is both necessary and sufficient for development of allergic predisposition in offspring of allergic mothers, directly increased development and PKC activation in BMDCs. Furthermore, this was modifiable by dietary tocopherols. This may inform design of future studies for the prevention or intervention in asthma and allergic disease.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Nansalmaa Amarsaikhan
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Kiet Tat
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Angar Tsoggerel
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
12
|
Biocompatibility-on-a-chip: Characterization and evaluation of decellularized tendon extracellular matrix (tdECM) hydrogel for 3D stem cell culture in a microfluidic device. Int J Biol Macromol 2022; 213:768-779. [PMID: 35688274 DOI: 10.1016/j.ijbiomac.2022.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023]
Abstract
Researchers have always tried expensive in vitro tests to show the 3D usability of dECM. The use of tissue-specific hydrogels in a microfluidic device is rarely studied. In this study, we have used ECM obtained from goat digital flexor tendons by decellularization technique. The tdECM was characterized for its structural properties using Scanning Electron Microscopy (SEM). Collagen, dsDNA, GAGs, and protein contents were quantified using spectrophotometric assays. The cell viability and proliferation of human umbilical cord-derived mesenchymal stem cells (hUMSCs) encapsulated in the tdECM hydrogel inside the microfluidic device were checked using Calcein-AM/PI. The FTIR data showed prominent peaks of the amide group, indicating the presence of collagen. The SEM data showed intact fiber morphology after the decellularization process. There was a 95 % reduction in double-stranded DNA (dsDNA) content, proving the effectiveness of the decellularization technique. There was no significant difference in the collagen content of tdECM and the GAGs were also in the acceptable range compared to the native tissue. Over 90 % cell viability in hUMSCs was observed qualitatively and quantitatively in vitro and inside a microfluidic device. In conclusion, we characterized the tdECM hydrogel and demonstrated its compatibility with the microfluidic device.
Collapse
|
13
|
Callejas JA, Gil J, Brizuela A, Pérez RA, Bosch BM. Effect of the Size of Titanium Particles Released from Dental Implants on Immunological Response. Int J Mol Sci 2022; 23:ijms23137333. [PMID: 35806339 PMCID: PMC9266706 DOI: 10.3390/ijms23137333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 μm. The aim was to determine the effect of particle size and chemical composition of the implant on the immune response. For this purpose, their morphology and possible contamination were characterized by scanning electron microscopy and X-ray microanalysis. In addition, the granulometry, specific surface area, release of metal ions into the medium, and studies of cytocompatibility, gene expression, and cytokine release linked to the inflammatory process were studied. The release of ions for titanium particles showed levels below 800 ppb for all sizes. Smaller particle sizes showed less cytotoxicity, although particles of 15 μm presented higher levels of cytocompatibility. In addition, inflammatory markers (TNFα and Il-1β) were higher compared to larger titanium. Specifically, particles of 15 μm presented a lower proinflammatory and higher anti-inflammatory response as characterized by gene expression and cytokine release, compared to control or smaller particles. Therefore, in general, there is a greater tendency for smaller particles to produce greater toxicity and a greater proinflammatory response.
Collapse
Affiliation(s)
- Juan Antonio Callejas
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
- Correspondence: (J.G.); (B.M.B.)
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C. del Padre Julio Chevalier 2, 47012 Valladolid, Spain;
| | - Román A. Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
- Correspondence: (J.G.); (B.M.B.)
| |
Collapse
|