1
|
Ngew E, Kollipara R, Bessissow T, Karboune S, George S. Nanoencapsulation enhanced the performance of β-carotene for ameliorating inflammation in patient-derived organoids. Nanomedicine (Lond) 2025; 20:663-675. [PMID: 39943855 PMCID: PMC11970773 DOI: 10.1080/17435889.2025.2465247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
AIM This study aims to develop a nanocarrier system for the oral delivery of β-Carotene (BC) (as a model therapeutic agent) and to test its efficacy in ameliorating inflammation in an ulcerative colitis (UC) patient-derived organoid. MATERIALS & METHODS BC was encapsulated in a zein protein nano-cage surface-functionalized with pectin and polyethyleneglycol (PEG). The nanoencapsulated BC (nBC) was characterized for physicochemical properties (size, charge, surface chemistry) and functional properties (radical scavenging, mucoadhesion and penetration, release in simulated digestive fluids). Further, we evaluated the performance of nBC in ameliorating inflammation in Caco-2 and UC patient-derived organoid models. RESULTS nBC achieved 75% encapsulation efficiency with improved stability and functional properties when compared to free BC. The nanocarrier was non-cytotoxic and improved mucoadhesion, mucopenetration, and the anti-inflammatory potential of BC. In UC organoids, nBC suppressed dextran sulfate sodium (DSS)-induced TNF-α and IL-8 production by approximately 70% and 31%, respectively, which was significantly higher than free BC at comparable concentrations. CONCLUSIONS The protein-polymer nanoencapsulation strategy showed promise in protecting BC and overcoming intestinal mucus barriers for an improved anti-inflammatory effect in the organoid model. Further studies using animal models are warranted for establishing pharmacokinetics, tissue distribution, and therapeutic index of orally delivered nBC.
Collapse
Affiliation(s)
- Estee Ngew
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| | - Revathi Kollipara
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| | - Talat Bessissow
- Division of Gastroenterology, McGill University Health Centre, Quebec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Canada
| |
Collapse
|
2
|
Csernus B, Pesti‐Asbóth G, Remenyik J, Biró S, Babinszky L, Stündl L, Oláh J, Vass N, Czeglédi L. Impact of Selected Natural Bioactive Substances on Immune Response and Tight Junction Proteins in Broiler Chickens. Vet Med Sci 2025; 11:e70175. [PMID: 40019349 PMCID: PMC11869566 DOI: 10.1002/vms3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 03/01/2025] Open
Abstract
This study was conducted to examine the effect of dietary natural compounds, such as β-glucan, carotenoids, oligosaccharides and anthocyanins, on immune response and tight junction proteins in broiler chickens. A total of 900 one-day-old chickens were allocated to five treatments in three floor pens (replicates) of 60 broilers per pen. Chickens were fed five diets: a control (basal) diet, a diet supplemented with β-glucan at 0.05%, or diets supplemented with carotenoids, oligosaccharides or anthocyanins at 0.5% of each compound. Male broilers were randomly selected for sample collections. On Day 25, plasma samples were collected from the brachial vein. On Day 26, six broilers were intraperitoneally injected with 2 mg of lipopolysaccharide per kg of body weight. Twelve hours later (Day 27), blood and ileum samples were collected to determine immune parameters and tight junction proteins using ELISA assays. The results showed that anthocyanin supplementation reduced the level of interleukin-1β compared to the lipopolysaccharide-injected control group (p = 0.047), which suggests that anthocyanin could partly alleviate the inflammation. Carotenoids reached a lower level of interleukin-6 compared to the β-glucan treatment (p = 0.0466). β-Glucan (p = 0.0382) and oligosaccharides (p = 0.0449) increased the level of plasma immunoglobulin G compared to the challenged control group, which may indicate an enhanced humoral immunity. Furthermore, β-glucan (except for occludin 2), carotenoids, oligosaccharides and anthocyanins increased (p < 0.05) the levels of ileal zonula occludens-1, occludin 1 and occludin 2 compared to the lipopolysaccharide-challenged control chickens. This may suggest that all the bioactive substances improved the gut barrier function. The plasma levels of tight junction proteins show higher concentrations in lipopolysaccharide-challenged groups compared to the non-challenged groups (p < 0.05). This may refer to the tight junction disruption and appearance in circulation as a reflection of lipopolysaccharide exposure.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Georgina Pesti‐Asbóth
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - László Babinszky
- Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - János Oláh
- Farm and Regional Research Institute of DebrecenUniversity of DebrecenDebrecenHungary
| | - Nóra Vass
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| |
Collapse
|
3
|
Zawawi NA, Ahmad H, Madatheri R, Fadilah NIM, Maarof M, Fauzi MB. Flavonoids as Natural Anti-Inflammatory Agents in the Atopic Dermatitis Treatment. Pharmaceutics 2025; 17:261. [PMID: 40006628 PMCID: PMC11859288 DOI: 10.3390/pharmaceutics17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Eczema is a complex autoimmune condition characterised mainly by inflammation and skin lesions along with physical and psychological comorbidities. Although there have been significant advances in understanding the mechanisms behind atopic dermatitis, conventionally available treatments yield inconsistent results and have some unintended consequences. In today's digital age, where knowledge is just a click away, natural-based supplements have been on the rise for a more "natural" treatment towards any type of disease. Natural compounds, particularly derived from medicinal plants, have piqued significant interest in the development of herbal remedies for chronic inflammatory skin conditions. Among many compounds, flavonoids have shown promise in treating eczema due to their strong anti-inflammatory, antioxidant, and anti-allergic properties, making them helpful in preventing allergic reactions, inflammation, and skin irritation. This review highlights the therapeutic potential of flavonoid-based bioactive compounds to manage eczema, emphasising the mechanisms of action. Additionally, providing a comprehensive analysis of the potential of emerging and established compounds, while bridging a gap between traditional and modern medicine. Flavonoids offer a variety of opportunities for further research and innovative formulations that can maximise its full benefits. Further combination of flavonoids with various approaches such as nanoencapsulation for enhanced bioavailability, hydrogel-based delivery systems for a controlled release, and additive manufacturing for personalised topical formulations, could align with future precision medicine needs.
Collapse
Affiliation(s)
- Nurul Ain Zawawi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rajesh Madatheri
- Zitai Regeneration Cell Sdn Bhd, George Town 10200, Pulau Pinang, Malaysia;
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Pharmaceuticals and Pharmacy Practice UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
4
|
Sereti F, Alexandri M, Papapostolou H, Papadaki A, Kopsahelis N. Recent progress in carotenoid encapsulation: Effects on storage stability, bioaccessibility and bioavailability for advanced innovative food applications. Food Res Int 2025; 203:115861. [PMID: 40022383 DOI: 10.1016/j.foodres.2025.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
The incorporation of bioactive ingredients in food products has attracted considerable interest in recent years because of the numerous health benefits these compounds can offer to the human body. Carotenoids are a group of functional components with notable antioxidant and anti-inflammatory properties. Their addition to food products not only provides coloration but can also deliver certain bioactive effects, leading to both increased shelf life and beneficial health benefits. However, carotenoids are prone to oxidation, as they can be easily degraded from light or heat treatments. To address this, encapsulation has emerged as an effective method to protect carotenoids during their incorporation into foods as well as during storage. This review provides a comprehensive overview of the current state of the art regarding encapsulation methods utilized for carotenoids entrapment. The effect of various techniques- such as microemulsification, freeze- drying, spray- drying, and novel nanoencapsulation methods like electrospinning and formation of solid-liquid nanoparticles- are discussed with respect to their positive and negative impacts on carotenoid antioxidant activity, bioaccessibility, bioavailability and the shelf life of the final product. Depending on the type of carotenoid or its intended application, different methods could be employed, which could significantly enhance the overall biological activities of the final food product. This review critically presents the advantages and limitations of each method and highlights the potential health implications that nanoencapsulation techniques might pose before introducing new encapsulated products to the food market.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece.
| |
Collapse
|
5
|
Gezer A, Üstündağ H, Özkaraca M, Sari EK, Gür C. Therapeutic effects of resveratrol and β-carotene on L-arginine-induced acute pancreatitis through oxidative stress and inflammatory pathways in rats. Sci Rep 2024; 14:32068. [PMID: 39738464 PMCID: PMC11686160 DOI: 10.1038/s41598-024-83764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition affecting the pancreas, often leading to systemic inflammation and organ dysfunction. This study evaluated the effects of resveratrol (RES) and β-carotene (βC) on L-arginine-induced AP in rats. Forty-eight male Sprague Dawley rats were divided into six groups: Control (C), RES (20 mg/kg), βC (50 mg/kg), AP, AP + RES, and AP + βC. The AP model was induced with 250 mg/100 g L-arginine intraperitoneally twice daily with a 1-h interval. The AP group showed significantly elevated oxidative stress (MDA) and reduced GSH levels (p < 0.001). Immunohistochemical (IHC) staining with anti-insulin antibody revealed reduced β + langerhans islet size in the AP group. qPCR analysis indicated significant upregulation of inflammatory genes NF-κB, TNF-α, and IL-1β (p < 0.001), and apoptotic genes Bax and Caspase-3, with downregulation of Bcl-2 (p < 0.001). RES and βC treatments significantly reduced MDA levels and increased GSH levels (p < 0.01 for both) compared to the AP group. The AP + RES and AP + βC groups exhibited preserved β + Langerhans islet size (p < 0.01), suppressed NF-κB, TNF-α, and IL-1β expression, reduced Bax and Caspase-3 levels, and increased Bcl-2 levels (p < 0.01). Histopathological findings supported these results. RES and βC confer significant effects against L-arginine-induced acute pancreatitis by reducing oxidative stress, preserving pancreatic islet integrity, suppressing inflammatory responses, and modulating apoptotic pathways. RES demonstrated a slightly superior efficacy in reducing inflammation and oxidative stress markers, suggesting it may be more effective in treating acute pancreatitis.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Turkey
- Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Hilal Üstündağ
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| | - Mustafa Özkaraca
- Faculty of Veterinary, Department of Pathology, Cumhuriyet University, Sivas, Turkey
| | - Ebru Karadağ Sari
- Faculty of Veterinary, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Cihan Gür
- Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Balbuena E, Milhem F, Kiremitci BZ, Williams TI, Collins L, Shu Q, Eroglu A. The biochemical effects of carotenoids in orange carrots on the colonic proteome in a mouse model of diet-induced obesity. Front Nutr 2024; 11:1492380. [PMID: 39588046 PMCID: PMC11587903 DOI: 10.3389/fnut.2024.1492380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Carotenoids are naturally occurring pigments in plants and are responsible for the orange, yellow, and red color of fruits and vegetables. Carrots are one of the primary dietary sources of carotenoids. The biological activities of carotenoids in higher organisms, including their immunomodulatory activities, are well documented in most tissues but not the large intestine. The gastrointestinal barrier acts as a line of defense against the systemic invasion of pathogenic bacteria, especially at the colonic level. Methods To test whether carotenoids in orange carrots can alleviate obesity-associated gut inflammation and strengthen the intestinal barrier function, male C57BL/6J mice were randomized to one of four experimental diets for 20 weeks (n = 20 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 45% calories from fat), HFD with white carrot powder (HFD+WC), or HFD with orange carrot powder (HFD + OC). Colon tissues were harvested to analyze the biochemical effects of carotenoids in carrots. The distal sections were subjected to isobaric labeling-based quantitative proteomics in which tryptic peptides were labeled with tandem mass tags, followed by fractionation and LC-MS/MS analysis in an Orbitrap Eclipse Tribrid instrument. Results High-performance liquid chromatography results revealed that the HFD+WC pellets were carotenoid-deficient, and the HFD+OC pellets contained high concentrations of provitamin A carotenoids, specifically α-carotene and β-carotene. As a result of the quantitative proteomics, a total of 4410 differentially expressed proteins were identified. Intestinal barrier-associated proteins were highly upregulated in the HFD+OC group, particularly mucin-2 (MUC-2). Upon closer investigation into mucosal activity, other proteins related to MUC-2 functionality and tight junction management were upregulated by the HFD+OC dietary intervention. Discussion Collectively, our findings suggest that carotenoid-rich foods can prevent high-fat diet-induced intestinal barrier disruption by promoting colonic mucus synthesis and secretion in mammalian organisms. Data are available via ProteomeXchange with identifier PXD054150.
Collapse
Affiliation(s)
- Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Fadia Milhem
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Buse Zeren Kiremitci
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Leonard Collins
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Qingbo Shu
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
7
|
Xu R, Bi Y, He X, Zhang Y, Zhao X. Kidney-tonifying blood-activating decoction delays ventricular remodeling in rats with chronic heart failure by regulating gut microbiota and metabolites and p38 mitogen-activated protein kinase/p65 nuclear factor kappa-B/aquaporin-4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118110. [PMID: 38580189 DOI: 10.1016/j.jep.2024.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction has likely contributed to the increased prevalence of heart failure(HF).As a result of ventricular remodeling and reduced cardiac function, colonic blood flow decreases, causing mucosal ischemia and hypoxia of the villous structure of the intestinal wall.This damage in gut barrier function increases bowel wall permeability, leading to fluid metabolism disorder,gut microbial dysbiosis, increased gut bacteria translocation into the circulatory system and increased circulating endotoxins, thus promoting a typical inflammatory state.Traditional Chinese Medicine plays a key role in the prevention and treatment of HF.Kidney-tonifying Blood-activating(KTBA) decoction has been proved for clinical treatment of chronic HF.However,the mechanism of KTBA decoction on chronic HF is still unclear. AIMS OF THE STUDY The effect of KTBA decoction on gut microbiota and metabolites and p38MAPK/p65NF-κB/AQP4 signaling in rat colon was studied to investigate the mechanism that KTBA decoction delays ventricular remodeling and regulates water metabolism disorder in rats with HF after myocardial infarction based on the theory of "Kidney Storing Essence and Conducting Water". MATERIAL AND METHODS In vivo,a rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery combined with exhaustive swimming and starvation.The successful modeling rats were randomly divided into five groups:model group, tolvaptan group(gavaged 1.35mg/(kg•D) tolvaptan),KTBA decoction group(gavaged 15.75g/(kg•D) of KTBA decoction),KTBA decoction combined with SB203580(p38MAPK inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 1.5mg/(kg•D) of SB203580),and KTBA decoction combined with PDTC(p65NF-kB inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 120mg/(kg•D) of PDTC).The sham-operation group and model group were gavaged equal volume of normal saline.After 4 weeks of intervention with KTBA decoction,the effect of KTBA decoction on the cardiac structure and function of chronic HF model rats was observed by ultrasonic cardiogram.General state and cardiac index in rats were evaluated.Enzyme linked immunosorbent assay(ELISA) was used to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration in rat serum.Hematoxylin and eosin(H&E) staining,and transmission electron microscope(TEM) were used to observe the morphology and ultrastructure of myocardial and colonic tissue,and myocardial fibrosis was measured by Masson's staining.Cardiac E-cadherin level was detected by Western blot.The mRNA expression and protein expression levels of p38MAPK,I-κBα, p65NF-κB,AQP4,Occludin and ZO-1 in colonic tissue were detected by reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR) and immunohistochemistry. Protein expression of p38MAPK, p-p38MAPK,I-κBα,p-I-κBα,p65NF-κB, p-p65NF-κB,AQP4,Occludin and ZO-1 in rat colon was detected using Western blot.Colonic microbiota and serum metabolites were respectively analyzed by amplicon sequencing and liquid chromatography-mass spectrometry.In vitro, CCD-841CoN cell was placed in the ischemic solution under hypoxic conditions (94%N2,5%CO2,and 1%O2) in a 37 °C incubator to establish an ischemia and hypoxia model.The CCD-841CoN cells were divided into 7 groups, namely blank group and model group with normal rat serum plus control siRNA, tolvaptan group with rat serum containing tolvaptan plus control siRNA, KTBA group with rat serum containing KTBA plus control siRNA, KTBA plus p38MAPK siRNA group, KTBA plus p65NF-κB siRNA group,and KTBA plus AQP4siRNA group.After 24h and 48h of intervention with KTBA decoction,RT-qPCR,immunofluorescence and Western blot was used to detect the mRNA expression and protein expression levels of p38MAPK,I-κBα,p65NF-κB,AQP4, Occludin and ZO-1 in CCD-841CoN cells. RESULTS Compared with the model, KTBA decoction improved the general state, decraesed the serum NT-proBNP level,HW/BW ratio, LVIDd and LVIDs, increased E-cadherin level,EF and FS,reduced number of collagen fibers deposited in the myocardial interstitium,and recovered irregular arrangement of myofibril and swollen or vacuolated mitochondria with broken crista in myocardium.Moreover, KTBA decoction inhibited the expression of p38MAPK,I-κBα,and p65NF-κB and upregulated AQP4, Occludin and ZO-1 in colon tissues and CCD-841CoN cells.Additionally,p38siRNA or SB203580, p65siRNA or PDTC, and AQP4siRNA partially weakened the protective effects of KTBA in vitro and vivo.Notably,The LEfSe analysis results showed that there were six gut biomaker bacteria in model group, including Allobaculum, Bacillales,Turicibacter, Turicibacterales,Turicibacteraceae,and Bacilli. Besides, three gut biomaker bacteria containing Deltaproteobacteria, Desulfovibrionaceae,and Desulfovibrionales were enriched by KTBA treatment in chronic HF model.There were five differential metabolites, including L-Leucine,Pelargonic acid, Capsidiol,beta-Carotene,and L- Erythrulose, which can be regulated back in the same changed metabolic routes by the intervention of KTBA.L-Leucine had the positive correlation with Bacillales, Turicibacterales,Turicibacteraceae,and Turicibacter.L-Leucine significantly impacts Protein digestion and absorption, Mineral absorption,and Central carbon metabolism in cancer regulated by KTBA, which is involved in the expression of MAPK and tight junction in intestinal epithelial cells. CONCLUSIONS KTBA decoction manipulates the expression of several key proteins in the p38MAPK/p65NF-κB/AQP4 signaling pathway, modulates gut microbiota and metabolites toward a more favorable profile, improves gut barrier function, delays cardiomyocyte hypertrophy and fibrosis,and improves cardiac function.
Collapse
Affiliation(s)
- Rui Xu
- Liaoning University of Traditional Chinese Medicine,Shenyang,Liaoning 110847,China
| | - Yanping Bi
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine,Jilin,Jilin 132000,China
| | - Xiaoteng He
- Liaoning University of Traditional Chinese Medicine,Shenyang,Liaoning 110847,China
| | - Yan Zhang
- The Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China.
| | - Xin Zhao
- The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China.
| |
Collapse
|
8
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
9
|
Zhang J, Zhong Y, Wang D, Zhu J, Deng Y, Li Y, Liu C, Wang JLT, Zhang M. Wallace melon juice fermented with Lactobacillus alleviates dextran sulfate sodium-induced ulcerative colitis in mice through modulating gut microbiota and the metabolism. J Food Sci 2024; 89:2450-2464. [PMID: 38462851 DOI: 10.1111/1750-3841.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.
Collapse
Affiliation(s)
- Junwei Zhang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhong
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Wang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangxiong Zhu
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, Inner Mongolia, China
| | - Yuncheng Li
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, Inner Mongolia, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cong Liu
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Minyan Zhang
- Eryuan County Inspection and Testing Institute, Yunnan, China
| |
Collapse
|
10
|
Lai X, Wu A, Yu B, Yan H, Luo J, Zheng P, Yu J, Chen D. Retinoic acid alleviates rotavirus-induced intestinal damage by regulating redox homeostasis and autophagic flux in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:409-421. [PMID: 38371474 PMCID: PMC10874719 DOI: 10.1016/j.aninu.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Rotaviruses (RV) are a major cause of severe gastroenteritis, particularly in neonatal piglets. Despite the availability of effective vaccines, the development of antiviral therapies for RV remains an ongoing challenge. Retinoic acid (RA), a metabolite of vitamin A, has been shown to have anti-oxidative and antiviral properties. However, the mechanism by which RA exerts its intestinal-protective and antiviral effects on RV infection is not fully understood. The study investigates the effects of RA supplementation in Duroc × Landrace × Yorkshire (DLY) piglets challenged with RV. Thirty-six DLY piglets were assigned into six treatments, including a control group, RA treatment group with two concentration gradients (5 and 15 mg/d), RV treatment group, and RV treatment group with the addition of different concentration gradients of RA (5 and 15 mg/d). Our study revealed that RV infection led to extensive intestinal architecture damage, which was mitigated by RA treatment at lower concentrations by increasing the villus height and villus height/crypt depth ratio (P < 0.05), enhancing intestinal stem cell signaling and promoting intestinal barrier functions. In addition, 15 mg/d RA supplementation significantly increased NRF2 and HO-1 protein expression (P < 0.05) and GSH content (P < 0.05), indicating that RA supplementation can enhance anti-oxidative signaling and redox homeostasis after RV challenge. Additionally, the research demonstrated that RA exerts a dual impact on the regulation of autophagy, both stimulating the initiation of autophagy and hindering the flow of autophagic flux. Through the modulation of autophagic flux, RA influence the progression of RV infection. These findings provide new insights into the regulation of redox hemostasis and autophagy by RA and its potential therapeutic application in RV infection.
Collapse
Affiliation(s)
- Xin Lai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
12
|
Silva Meneguelli T, Duarte Villas Mishima M, Hermsdorff HHM, Martino HSD, Bressan J, Tako E. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Crit Rev Food Sci Nutr 2023; 64:11206-11221. [PMID: 37450500 DOI: 10.1080/10408398.2023.2234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Carotenoids have anti-inflammatory and antioxidant properties, being a potential bioactive compound for gut health. The objective of this systematic review was to investigate the effects of carotenoids on gut microbiota, gut barrier, and inflammation in healthy animals. The systematic search from PubMed, Scopus, and Lilacs databases were performed up to March 2023. The final screening included thirty studies, with different animal models (mice, rats, pigs, chicks, drosophila, fish, and shrimp), and different carotenoid sources (β-carotene, lycopene, astaxanthin, zeaxanthin, lutein, and fucoxanthin). The results suggested that carotenoids seem to act on gut microbiota by promoting beneficial effects on intestinal bacteria related to both inflammation and SCFA production; increase tight junction proteins expression, important for reducing intestinal permeability; increase the mucins expression, important in protecting against pathogens and toxins; improve morphological parameters important for digestion and absorption of nutrients; and reduce pro-inflammatory and increase anti-inflammatory cytokines. However, different carotenoids had distinct effects on gut health. In addition, there was heterogeneity between studies regarding animal model, duration of intervention, and doses used. This is the first systematic review to address the effects of carotenoids on gut health. Further studies are needed to better understand the effects of carotenoids on gut health.
Collapse
Affiliation(s)
| | | | | | | | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Jarmakiewicz-Czaja S, Ferenc K, Filip R. Antioxidants as Protection against Reactive Oxidative Stress in Inflammatory Bowel Disease. Metabolites 2023; 13:metabo13040573. [PMID: 37110231 PMCID: PMC10146410 DOI: 10.3390/metabo13040573] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) belongs to a group of chronic diseases characterised by periods of exacerbation and remission. Despite many studies and observations, its aetiopathogenesis is still not fully understood. The interactions of genetic, immunological, microbiological, and environmental factors can induce disease development and progression, but there is still a lack of information on these mechanisms. One of the components that can increase the risk of occurrence of IBD, as well as disease progression, is oxidative stress. Oxidative stress occurs when there is an imbalance between reactive oxygen species (ROS) and antioxidants. The endogenous and exogenous components that make up the body's antioxidant defence can significantly affect IBD prophylaxis and reduce the risk of exacerbation by neutralising and removing ROS, as well as influencing the inflammatory state.
Collapse
Affiliation(s)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
14
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
15
|
Burzyński J, Fichna J, Tarasiuk A. Putative molecular targets for vitamin A in neutralizing oxidative stress in acute and chronic pancreatitis - a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02442-4. [PMID: 36843131 DOI: 10.1007/s00210-023-02442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are debilitating diseases of gastrointestinal tract and constitute great threat for human health in high-income countries. Recent studies emphasize the impact of oxidative stress on development of these pathologies, and numerous authors evaluate the effect of the antioxidant therapy on the course of AP and CP. Though several antioxidative agents were discovered in the past decades, vitamins remain canonical antioxidants. Despite the fact that vitamin A is known for its antioxidative effect, there is little data about the impact of vitamin A on oxidative stress in the pathogenesis of AP and CP. The scope of the review is to evaluate molecular targets for vitamin A, which may be involved in oxidative stress occurring in the course of AP and CP. Our research of available literature revealed that several mechanisms are responsible for attenuation of oxidative stress in AP and CP, including Nrf2, MAPK, AMPK, TLR3, and TLR4. Furthermore, these factors are at least partially expressed in vitamin A-dependent manner, though further investigations are required for elucidating in detail the role of vitamin A in defense against reactive oxygen species. Our review revealed that vitamin A might influence the expression of several molecular pathways involved in antioxidative defense and cytoprotection; thus, its administration during AP and CP may change the course of the disease.
Collapse
Affiliation(s)
- Jacek Burzyński
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
16
|
Zheng J, Wu F, Wang F, Cheng J, Zou H, Li Y, Du J, Kan J. Biomarkers of Micronutrients and Phytonutrients and Their Application in Epidemiological Studies. Nutrients 2023; 15:nu15040970. [PMID: 36839326 PMCID: PMC9959711 DOI: 10.3390/nu15040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Nutritional biomarkers can be used as important indicators of nutritional status and play crucial roles in the prevention as well as prognosis optimization of various metabolism-related diseases. Measuring dietary with the deployment of biomarker assessments provides quantitative nutritional information that can better predict the health outcomes. With the increased availability of nutritional biomarkers and the development of assessment tools, the specificity and sensitivity of nutritional biomarkers have been greatly improved. This enables efficient disease surveillance in nutrition research. A wide range of biomarkers have been used in different types of studies, including clinical trials, observational studies, and qualitative studies, to reflect the relationship between diet and health. Through a comprehensive literature search, we reviewed the well-established nutritional biomarkers of vitamins, minerals, and phytonutrients, and their association with epidemiological studies, to better understand the role of nutrition in health and disease.
Collapse
Affiliation(s)
- Jianheng Zheng
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Feijie Wang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hong Zou
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Yuan Li
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
- Correspondence: ; Tel.: +86-21-2305-6982
| |
Collapse
|
17
|
Optimization of the Cultivation Conditions of the Green Algae Dunaliella salina by Using Simplex Method. Processes (Basel) 2023. [DOI: 10.3390/pr11010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The green algae Dunaliella salina offers great potential for the food industry due to its high β-carotene content. To guarantee the economic profitability of cultivation, growth conditions must be improved. Therefore, the effects of pH and salinity on the cultivation of the green alga D. salina were investigated and optimized. The simplex method was applied to find the optimum of these two parameters to maximize the biomass and the cell number of D. salina. The optimum pH was found at 7 and 8 at a salt content of 50 g/L, with a biomass content of 1.09 and 1.11 g/L, respectively. The highest biomass was found at a salinity of 50 g/L, with a final biomass of 1.11 g/L. However, by using the simplex method, an optimum product yield was found at a salinity of 64 g/L and an initial pH value of 7.2. Thus, a biomass of 1.23 mg/mL was achieved. In the single observation of both parameters, 14 experiments were conducted to obtain a satisfactory result, whereas eight runs only were required with the simplex method. This leads to the conclusion that using the simplex method is a useful way to drastically reduce the number of required experiments.
Collapse
|
18
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
19
|
Balbuena E, Cheng J, Eroglu A. Carotenoids in orange carrots mitigate non-alcoholic fatty liver disease progression. Front Nutr 2022; 9:987103. [PMID: 36225879 PMCID: PMC9549209 DOI: 10.3389/fnut.2022.987103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Carotenoids are abundant in colored fruits and vegetables. Non-alcoholic fatty liver disease (NAFLD) is a global burden and risk factor for end-stage hepatic diseases. This study aims to compare the anti-NAFLD efficacy between carotenoid-rich and carotenoid-deficient vegetables. Materials and methods Male C57BL/6J mice were randomized to one of four experimental diets for 15 weeks (n = 12 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 60% calories from fat), HFD with 20% white carrot powders (HFD + WC), or with 20% orange carrot powders (HFD + OC). Results We observed that carotenoids in the orange carrots reduced HFD-induced weight gain, better than white carrots. Histological and triglyceride (TG) analyses revealed significantly decreased HFD-induced hepatic lipid deposition and TG content in the HFD + WC group, which was further reduced in the HFD + OC group. Western blot analysis demonstrated inconsistent changes of fatty acid synthesis-related proteins but significantly improved ACOX-1 and CPT-II, indicating that orange carrot carotenoids had the potential to inhibit NAFLD by improving β-oxidation. Further investigation showed significantly higher mRNA and protein levels of PPARα and its transcription factor activity. Conclusion Carotenoid-rich foods may display more potent efficacy in mitigating NAFLD than those with low carotenoid levels.
Collapse
Affiliation(s)
- Emilio Balbuena
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Abdulkerim Eroglu
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Abdulkerim Eroglu,
| |
Collapse
|
20
|
Potential role of inflammation in relation to dietary sodium and β-carotene with non-alcoholic fatty liver disease: a mediation analysis. Nutr Diabetes 2022; 12:40. [PMID: 36109506 PMCID: PMC9477804 DOI: 10.1038/s41387-022-00218-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background High sodium intake has been linked to the prevalence of non-alcoholic fatty liver disease (NAFLD), but underlying mechanism remains unclear. This study aims to explore the role of chronic inflammation in the association between sodium and NAFLD. We also observed whether β-carotene, which had a strong anti-inflammatory effect, lowers the odds of NAFLD. Methods We performed mediation analyses to assess the mediating effects of C-reactive protein (CRP) and red cell distribution width (RDW) on the relationship between dietary sodium and NAFLD defined by the hepatic steatosis index (HSI) and the fatty liver index (FLI), respectively. Results A total of 6725 participants were included in this study. Compared with the high sodium-low carotene group, participants in the high sodium-high carotene group had 16% and 26% lower odds for HSI and FLI-defined NAFLD, respectively. There were positive indirect effects of dietary sodium intake on the HSI-defined NAFLD (indirect effect: 0.0057, 95% CI: 0.0021–0.0091, P < 0.0001), as well as the FLI defined NAFLD (indirect effect: 0.0081, 95% CI: 0.0024–0.0162, P < 0.0001) when C-reactive protein (CRP) was considered as a mediator. The mediating effects were somewhat attenuated after further adjusting for dietary β-carotene intake. Similar results were found when RDW was considered as a mediator in the HSI-defined NAFLD analysis. Conclusions Higher sodium intake increases the odds of NAFLD by upregulating inflammation. Dietary β-carotene may attenuate this association by down regulating inflammation.
Collapse
|
21
|
Wang F, Zheng J, Cheng J, Zou H, Li M, Deng B, Luo R, Wang F, Huang D, Li G, Zhang R, Ding X, Li Y, Du J, Yang Y, Kan J. Personalized nutrition: A review of genotype-based nutritional supplementation. Front Nutr 2022; 9:992986. [PMID: 36159456 PMCID: PMC9500586 DOI: 10.3389/fnut.2022.992986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nutritional disorders have become a major public health issue, requiring increased targeted approaches. Personalized nutrition adapted to individual needs has garnered dramatic attention as an effective way to improve nutritional balance and maintain health. With the rapidly evolving fields of genomics and nutrigenetics, accumulation of genetic variants has been indicated to alter the effects of nutritional supplementation, suggesting its indispensable role in the genotype-based personalized nutrition. Additionally, the metabolism of nutrients, such as lipids, especially omega-3 polyunsaturated fatty acids, glucose, vitamin A, folic acid, vitamin D, iron, and calcium could be effectively improved with related genetic variants. This review focuses on existing literatures linking critical genetic variants to the nutrient and the ways in which these variants influence the outcomes of certain nutritional supplementations. Although further studies are required in this direction, such evidence provides valuable insights for the guidance of appropriate interventions using genetic information, thus paving the way for the smooth transition of conventional generic approach to genotype-based personalized nutrition.
Collapse
Affiliation(s)
| | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Hong Zou
- Sequanta Technologies Co., Ltd, Shanghai, China
| | | | - Bin Deng
- Nutrilite Health Institute, Guangzhou, China
| | - Rong Luo
- Nutrilite Health Institute, Guangzhou, China
| | - Feng Wang
- Nutrilite Health Institute, Guangzhou, China
| | | | - Gang Li
- Nutrilite Health Institute, Shanghai, China
| | - Rao Zhang
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xin Ding
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Yuan Li
- Sequanta Technologies Co., Ltd, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- Jun Du
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Juntao Kan
| |
Collapse
|
22
|
Song J, Zhou B, Kan J, Liu G, Zhang S, Si L, Zhang X, Yang X, Ma J, Cheng J, Liu X, Yang Y. Gut microbiota: Linking nutrition and perinatal depression. Front Cell Infect Microbiol 2022; 12:932309. [PMID: 36093196 PMCID: PMC9459161 DOI: 10.3389/fcimb.2022.932309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal depression is a mood disorder that is reported in women during pregnancy (prenatal) and after childbirth (postnatal). The onset of perinatal depression is associated with changes in reproductive hormones, stress hormones and neurosteroids. These chemical compounds can be modulated by the gut microbiota, which may affect maternal mental health during the perinatal period via the gut-brain-axis. Recent studies suggest that nutritional and dietary interventions (vitamin D, ω-3 fatty acids, iron, and fiber) effectively prevent or mitigate maternal depression and anxiety, but their efficacy is confounded by various factors, including the gut microbiota. Probiotics are efficacious in maintaining microbiota homeostasis, and thus, have the potential to modulate the development of perinatal mood disorders, despite no evidence in human. Therefore, clinical trials are warranted to investigate the role of probiotic supplementation in perinatal depression and behavioral changes. This article reviews the interplay between nutrition, gut microbiota and mood and cognition, and the evidence suggesting that probiotics affect the onset and development of perinatal depression.
Collapse
Affiliation(s)
- Jia Song
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi Zhou
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | | | - Sheng Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Si
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianping Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junrui Cheng
- Ingredion Incorporated, Bridgewater, NJ, United States
| | - Xiaobo Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongde Yang, ; Xiaobo Liu,
| | - Yongde Yang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongde Yang, ; Xiaobo Liu,
| |
Collapse
|
23
|
Hasianna S, Gunadi J, Rohmawaty E, Lesmana R. Potential role of β‑carotene‑modulated autophagy in puerperal breast inflammation (Review). Biomed Rep 2022; 17:75. [DOI: 10.3892/br.2022.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Stella Hasianna
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| | - Julia Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Enny Rohmawaty
- Pharmacology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
24
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
25
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Kumar V, Mishra A, Singh A. Identification of promising nutraceuticals against filarial immune-modulatory proteins: insights from in silico and ex vivo studies. RSC Adv 2022; 12:22542-22554. [PMID: 36105981 PMCID: PMC9366595 DOI: 10.1039/d2ra03287b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Lymphatic filariasis is a neglected tropical disease affecting over 863 million people in 47 countries of the world. The anti-filarial drugs, diethylcarbamazine, albendazole, and ivermectin, are effective only at the larval stages and have proven completely ineffective as adulticides. Besides this, a long-term use of these drugs is associated with several side effects including drug toxicity. Nutraceuticals have emerged as better alternatives for long term treatments due to their safety and lesser side effects. In the present work, we have used drug docking analysis and molecular dynamics simulation approaches to explore the effect of anti-inflammatory nutraceuticals against the immune-modulatory proteins of filarial worms. The filarial proteins enolase, ES-62 precursor, serpin, and cystatin, which are highly efficient in host immune modulation were targeted with more than 50 nutraceuticals. In the in silico study nutraceuticals such as naringin, β-carotene, and emodin showed higher binding efficacy and lower dissociation constant as compared to anti-filarial drugs. Molecular dynamics simulation results showed that immune-modulatory proteins formed highly stable complexes with naringin, β-carotene, and emodin over the entire MD simulation run. The nutraceutical emodin formed the most stable system in silico and hence its effect was investigated on adult filarial parasites under ex vivo conditions too. Emodin significantly affected the motility, viability, ROS production, and genomic DNA fragmentation of filarial parasites. Further in vivo and in vitro studies will help in understanding the mechanism of action of emodin at the molecular level and would help in the development of more effective anti-filarial drugs. Here in drug docking analysis, molecular dynamics simulations and ex vivo approaches were used to demonstrate the anti-filarial effects of nutraceuticals against immune modulatory proteins of lymphatic filarial parasites.![]()
Collapse
Affiliation(s)
- Vipin Kumar
- Dept. of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Ayushi Mishra
- Dept. of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Anchal Singh
- Dept. of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| |
Collapse
|