1
|
Ho AY, Shiao S, Kobald SA, Chen J, Duda DG, Ly A, Bossuyt V, Cho HL, Arnold B, Knott S, Gupta GP, McAndrew P, Karlan S, Tighiouart M, Muzikansky A, Basho R, McArthur H. PEARL: A Phase Ib/II Biomarker Study of Adding Radiation Therapy to Pembrolizumab Before Neoadjuvant Chemotherapy in Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer. J Clin Oncol 2024; 42:4282-4293. [PMID: 39298718 DOI: 10.1200/jco.24.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To assess safety and immune biomarkers after preoperative radiation therapy (RT) and anti-PD1 therapy in breast cancer. MATERIALS AND METHODS A phase I/IIb trial of pembrolizumab with RT was conducted in patients with triple-negative breast cancer (TNBC) and hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer. All received pembrolizumab followed by a second cycle + RT (anti-PD1/RT) of 24 Gy/three daily fractions delivered to the breast tumor and then neoadjuvant chemotherapy (NAC). Blood and tumor biopsies were obtained at baseline, after anti-PD1, and after anti-PD-RT. Coprimary end points were safety and change in tumor-infiltrating lymphocytes (TILs). Secondary end points were pathologic complete response (pCR), residual cancer burden (RCB) rates, and event-free survival (EFS). RESULTS Sixty-six patients with stage I-III breast cancer (54 TNBC, 12 HR+/HER2-) were enrolled. The median follow-up was 32 months. Safety end point was met. Incidence of grade ≥3 toxicities was 41%. The pCR rate was 59.2%, 33.3%, and 54.5% for the TNBC, HR+/HER2-, and entire cohort, respectively. A total of 77.8% of TNBC and 41.6% of HR+/HER2- had a near pCR (RCB 0-1). The 3-year EFS was 80%. In the entire cohort, PD-L1 expression increased after anti-PD1 (median Combined Positive Score [CPS], 7.49-23.20; 95% CI, -41.88 to -6.30; P = .044) and anti-PD1/RT (median CPS, 7.49-23.41; 95% CI, -41.88 to -6.30; P = .009), compared with baseline. In TNBC, adding RT to anti-PD1 significantly decreased TILs (28.9%-17.1%; 95% CI, 2.46 to 21.09; P = .014). Baseline TILs correlated with PD-L1 expression and TNF-a. CONCLUSION Preoperative RT with pembrolizumab is safe and results in high pCR rates and 3-year EFS, despite the lack of pembrolizumab during NAC. PD-L1 and TILs may be predictive biomarkers for preoperative anti-PD1/RT response. Reduction in TILs after adding RT to anti-PD1 highlights the importance of treatment sequencing.
Collapse
Affiliation(s)
- Alice Y Ho
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | | | | | - Dan G Duda
- Massachusetts General Hospital, Boston, MA
| | - Amy Ly
- Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | - Philomena McAndrew
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Scott Karlan
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Mourad Tighiouart
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | | | - Reva Basho
- Ellison Institute of Technology, Los Angeles, CA
| | | |
Collapse
|
2
|
Wang T, Li R, Liu S, Wu Q, Ouyang W, Xie C. The effects of immune checkpoint inhibitors vs. chemotherapy combined with brain radiotherapy in non-small cell lung cancer patients with brain metastases. BMC Cancer 2024; 24:1343. [PMID: 39482635 PMCID: PMC11529596 DOI: 10.1186/s12885-024-13110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent form of cancer, often leading to brain metastases (BM) and a significant decline in patient prognosis. Whether immune checkpoint inhibitors (ICIs) combined with brain radiotherapy is superior to conventional chemotherapy combined with brain radiotherapy in those patients remains to be explored. MATERIALS AND METHODS Our study enrolled 161 NSCLC patients with BM who underwent either ICIs combined with brain radiotherapy or chemotherapy combined with brain radiotherapy. End points included overall survival (OS), progression-free survival (PFS), intracranial PFS (IPFS), and extracranial PFS (EPFS). Univariate and multivariate Cox regressions were employed to identify prognostic risk variables. RESULTS Patients receiving ICIs combined with brain radiotherapy exhibited significantly longer OS compared to those receiving chemotherapy combined with brain radiotherapy (34.80 months vs. 17.17 months, P = 0.005). In the Cox regression analysis, chemotherapy combined with brain radiotherapy (HR, 1.82; 95% CI, 1.09-3.05; P = 0.023), smoking (HR, 1.75; 95% CI, 1.02-2.99; P = 0.043) and squamous cell carcinoma (HR, 2.59; 95% CI, 1.31-5.13; P = 0.006) were associated with a worse prognosis. After propensity score matching (PSM), this finding remained consistent with before PSM (43.73 months vs. 17.17 months, P = 0.018). Squamous cell carcinoma (HR, 2.46; 95% CI, 1.15-5.26; P = 0.021) and CT + RT (HR, 2.11; 95% CI, 1.15-3.88; P = 0.016) were associated with a less favorable prognosis. CONCLUSION The study suggests that the combination of ICIs and brain radiotherapy provides superior OS for NSCLC patients with BM, compared to the chemotherapy combined with brain radiotherapy.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Oncology II, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Rumeng Li
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shuyan Liu
- The Second Clinical College, Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China.
| | - Wen Ouyang
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China.
| | - Conghua Xie
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China.
| |
Collapse
|
3
|
Corpetti M, Müller C, Beltran H, de Bono J, Theurillat JP. Prostate-Specific Membrane Antigen-Targeted Therapies for Prostate Cancer: Towards Improving Therapeutic Outcomes. Eur Urol 2024; 85:193-204. [PMID: 38104015 DOI: 10.1016/j.eururo.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein overexpressed in most prostate cancers and exploited as a target for PSMA-targeted therapies. Different approaches to target PSMA-expressing cancer cells have been developed, showing promising results in clinical trials. OBJECTIVE To discuss the regulation of PSMA expression and the main PSMA-targeted therapeutic concepts illustrating their clinical development and rationalizing combination approaches with examples. EVIDENCE ACQUISITION We performed a detailed literature search using PubMed and reviewed the American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to September 2023. EVIDENCE SYNTHESIS We present an overarching description of the different strategies to target PSMA. The outcomes of PSMA-targeted therapies strongly rely on surface-bound PSMA expression. However, PSMA heterogeneity at different levels (interpatient and inter/intratumoral) limits the efficacy of PSMA-targeted therapies. We highlight the molecular mechanisms governing PSMA regulation, the understanding of which is crucial to designing therapeutic strategies aimed at upregulating PSMA expression. Thus far, homeobox B13 (HOXB13) and androgen receptor (AR) have emerged as critical transcription factors positively and negatively regulating PSMA expression, respectively. Furthermore, epigenetic regulation of PSMA has been also reported recently. In addition, many established therapeutic approaches harbor the potential to upregulate PSMA levels as well as potentiate DNA damage mediated by current radioligands. CONCLUSIONS PSMA-targeted therapies are rapidly advancing, but their efficacy is strongly limited by the heterogeneous expression of the target. A thorough comprehension of how PSMA is regulated will help improve the outcomes through increasing PSMA expression and will provide the basis for synergistic combination therapies. PATIENT SUMMARY Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancers. PSMA-targeted therapies have shown promising results, but the heterogeneous expression of PSMA limits their efficacy. We propose to better elucidate the regulation of PSMA expression to increase the levels of the target and improve the therapeutic outcomes.
Collapse
Affiliation(s)
- Matteo Corpetti
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Cristina Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Johann de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.
| |
Collapse
|
4
|
Wang Y, Li Y, Yang Y, Swift M, Zhang Z, Wu S, Sun Y, Yang K. In situ vaccination caused by diverse irradiation-driven cell death programs. Theranostics 2024; 14:1147-1167. [PMID: 38323315 PMCID: PMC10845208 DOI: 10.7150/thno.86004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024] Open
Abstract
Interest surrounding the effect of irradiation on immune activation has exponentially grown within the last decade. This includes work regarding mechanisms of the abscopal effect and the success achieved by combination of radiotherapy and immunotherapy. It is hypothesized that irradiation triggers the immune system to eliminate tumors by inducing tumor cells immunogenic cell death (ICD) in tumor cells. Activation of the ICD pathways can be exploited as an in situ vaccine. In this review, we provide fundamental knowledge of various forms of ICD caused by irradiation, describe the relationship between various cell death pathways and the immune activation effect driven by irradiation, and focus on the therapeutic value of exploiting these cell death programs in the context of irradiation. Furthermore, we summarize the immunomodulatory effect of different cell death programs on combinative radiotherapy and immunotherapy. In brief, differences in cell death programs significantly impact the irradiation-induced immune activation effect. Evaluating the transition between them will provide clues to develop new strategies for radiotherapy and its combination with immunotherapy.
Collapse
Affiliation(s)
- Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| | - Yuxin Yang
- University of Southern California, Department of Biochemistry and Molecular Medicine
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| | - Shuhui Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| |
Collapse
|
5
|
Ferini G, Zagardo V, Critelli P, Santacaterina A, Sava S, Harikar MM, Venkataram T, Umana GE, Viola A, Valenti V, Forte S. Introducing Radiotherapy in Metastatic Merkel Cell Carcinoma Patients with Limited Progression on Avelumab: An Effective Step against Primary and Secondary Immune Resistance? J Pers Med 2023; 13:jpm13050841. [PMID: 37241012 DOI: 10.3390/jpm13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE To investigate the ability of radiotherapy (RT) to prolong progression-free survival (PFS) and to report treatment-related toxicities among oligoprogressive metastatic Merkel cell carcinoma (mMCC) patients on avelumab. METHODS We retrospectively collected clinical data on mMCC patients who underwent radiotherapy for limited progression on avelumab. Patients were categorized as primary or secondary immune refractory depending on the time of onset of resistance to immunotherapy (at the first or subsequent follow-up visits after avelumab initiation). Pre- and post-RT PFS were calculated. Overall survival (OS) from the first progression treated with RT was also reported. Radiological responses and toxicities were evaluated according to the irRECIST criteria and RTOG scoring system, respectively. RESULTS Eight patients, including five females, with a median age of 75 years, met our inclusion criteria. The median gross tumor and clinical target volumes at first progression on avelumab were 29.85 cc and 236.7 cc, respectively. The treatment sites included lymph node, skin, brain, and spine metastases. Four patients received more than one course of RT. Most patients were treated with palliative radiation doses (mainly 30 Gy in 3 Gy/day fractions). Two patients were treated with stereotactic RT. Five/eight patients were primary immune refractory. The objective response rate at the first post-RT assessment was 75%, whereas no local failure was reported. The median pre-RT PFS was 3 months. The pre-RT PFS was 37.5% at 6 months and 12.5% at 1 year. The median post-RT PFS was not reached. The post-RT PFS was 60% at 6 months and 1 year. The post-RT OS was 85.7% at 1 year and 64.3% at 2 years. No relevant treatment-related toxicity was observed. After a median follow-up of 18.5 months, 6/8 patients are still alive and continuing on avelumab therapy. CONCLUSIONS Adding radiotherapy to mMCC patients with limited progression on avelumab seems to be safe and effective in prolonging the successful use of immunotherapy, regardless of the type of immune refractoriness.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia srl, Via Penninazzo 11, 95029 Viagrande, Italy
| | | | - Paola Critelli
- Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98122 Messina, Italy
| | - Anna Santacaterina
- Radiation Oncology Unit, Papardo Teaching Hospital, 98158 Messina, Italy
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
| | - Mandara Muralidhar Harikar
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy
| | - Tejas Venkataram
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy
| | - Anna Viola
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
| | - Vito Valenti
- REM Radioterapia srl, Via Penninazzo 11, 95029 Viagrande, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
| |
Collapse
|
6
|
Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7530794. [PMID: 36778203 PMCID: PMC9911251 DOI: 10.1155/2023/7530794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has drawn much attention because it can restart the recognition and killing function of the immune system to normalize the antitumor immune response. However, the role of radiotherapy and chemotherapy in cancer treatment cannot be ignored. Due to cancer heterogeneity, combined therapy has become a new trend, and its efficacy has been confirmed in many studies. This review discussed the clinical implications and the underlying mechanisms of cancer immunotherapy in combination with radiotherapy or chemotherapy, offering an outline for clinicians as well as inspiration for future research.
Collapse
|
7
|
Tariq MR, Ali SW, Fatima N, Jabeen A, Qazi AS, Hameed A, Safdar W. Radiation Therapies in Cancer. Cancer Treat Res 2023; 185:59-77. [PMID: 37306904 DOI: 10.1007/978-3-031-27156-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A crucial element of cancer treatment is radiation therapy that is used to destroy tumors and cancer cells through radiation. Another essential component is immunotherapy that helps immune system to combat cancer. The combination of both radiation therapy and immunotherapy is being focused recently for the treatment of many tumors. Chemotherapy includes the use of some chemical agent to control the growth of cancer, whereas irradiation involves the use of radiations of high energy to kill cancer cells. The union of both became the strongest practice in cancer treatment techniques. Specific chemotherapies are combined with radiation in the treatment of cancer after proper preclinical assessment of their effectiveness. Some classes of compounds include platinum-based drugs, antimicrotubules, antimetabolites (5-Fluorouracil, Capecitabine, Gemcitabine, Pemetrexed), topoisomerase I inhibitors, alkylating agents (Temozolomide), and other agents (Mitomycin-C, Hypoxic Sensitizers, Nimorazole).
Collapse
Affiliation(s)
- Muhammad Rizwan Tariq
- Department of Food Sciences, University of the Punjab, Quid-I-Azam Campus, Lahore, Pakistan.
| | - Shinawar Waseem Ali
- Department of Food Sciences, University of the Punjab, Quid-I-Azam Campus, Lahore, Pakistan
| | - Noor Fatima
- Department of Food Sciences, University of the Punjab, Quid-I-Azam Campus, Lahore, Pakistan
| | - Aqsa Jabeen
- Department of Food Sciences, University of the Punjab, Quid-I-Azam Campus, Lahore, Pakistan
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Amna Hameed
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Oh BY, Park YA, Huh JW, Cho YB, Yun SH, Kim HC, Lee WY. Neoadjuvant chemoradiotherapy determines the prognostic impact of anastomotic leakage in advanced rectal cancer. Ann Surg Treat Res 2022; 103:235-243. [PMID: 36304190 PMCID: PMC9582617 DOI: 10.4174/astr.2022.103.4.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The prognostic impact of anastomotic leakage (AL) in rectal cancer remains uncertain. We investigated the prognostic significance of AL in rectal cancer patients who underwent curative surgery, especially in terms of chemoradiotherapy. Methods A total of 1,818 rectal cancer patients who underwent radical surgery from 2011 to 2015 were retrospectively evaluated. We categorized patients according to AL and compared survival outcomes between the groups before and after matching. In locally advanced rectal cancer patients, we classified patients according to neoadjuvant chemoradiotherapy (nCRT) or adjuvant chemotherapy (aCTx) and analyzed survival outcomes according to AL in each group. Results Before matching, overall survival (OS) was significantly worse in the AL (+) group compared to the AL (–) group (P = 0.004). In matched patients, there were no differences in disease-free survival (DFS) and OS between groups (P = 0.423 and P = 0.083, respectively). In subgroup analysis for locally advanced rectal cancer, patients were classified as follows: nCRT (+) and aCTx (+) group; nCRT (+) and aCTx (–) group; nCRT (–) and aCTx (+) group; and nCRT (–) and aCTx (–) group. In the nCRT (–) and aCTx (+) group, patients with AL exhibited significantly worse DFS than patients without AL (P = 0.040). In the other 3 groups, there were no differences in DFS according to AL. Conclusion In locally advanced rectal cancer, AL had an adverse effect on oncologic outcome in patients receiving aCTx without nCRT but not in patients receiving nCRT.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Yoon Ah Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Wook Huh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
10
|
Pompos A, Foote RL, Koong AC, Le QT, Mohan R, Paganetti H, Choy H. National Effort to Re-Establish Heavy Ion Cancer Therapy in the United States. Front Oncol 2022; 12:880712. [PMID: 35774126 PMCID: PMC9238353 DOI: 10.3389/fonc.2022.880712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.
Collapse
Affiliation(s)
- Arnold Pompos
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | - Albert C. Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Hak Choy
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Fabian KP, Wolfson B, Hodge JW. From Immunogenic Cell Death to Immunogenic Modulation: Select Chemotherapy Regimens Induce a Spectrum of Immune-Enhancing Activities in the Tumor Microenvironment. Front Oncol 2021; 11:728018. [PMID: 34497771 PMCID: PMC8419351 DOI: 10.3389/fonc.2021.728018] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer treatment has rapidly entered the age of immunotherapy, and it is becoming clear that the effective therapy of established tumors necessitates rational multi-combination immunotherapy strategies. But even in the advent of immunotherapy, the clinical role of standard-of-care chemotherapy regimens still remains significant and may be complementary to emerging immunotherapeutic approaches. Depending on dose, schedule, and agent, chemotherapy can induce immunogenic cell death, resulting in the release of tumor antigens to stimulate an immune response, or immunogenic modulation, sensitizing surviving tumor cells to immune cell killing. While these have been previously defined as distinct processes, in this review we examine the published mechanisms supporting both immunogenic cell death and immunogenic modulation and propose they be reclassified as similar effects termed "immunogenic cell stress." Treatment-induced immunogenic cell stress is an important result of cytotoxic chemotherapy and future research should consider immunogenic cell stress as a whole rather than just immunogenic cell death or immunogenic modulation. Cancer treatment strategies should be designed specifically to take advantage of these effects in combination immunotherapy, and novel chemotherapy regimens should be designed and investigated to potentially induce all aspects of immunogenic cell stress.
Collapse
Affiliation(s)
| | | | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
12
|
Combination Treatment Options for Castration-Resistant Prostate Cancer. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.combinationtreatment.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
13
|
Combination of Immune Checkpoint Inhibitors and Radiotherapy for Advanced Non-Small-Cell Lung Cancer and Prostate Cancer: A Meta-Analysis. JOURNAL OF ONCOLOGY 2021; 2021:6631643. [PMID: 33488711 PMCID: PMC7803407 DOI: 10.1155/2021/6631643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
Objectives Immune checkpoint inhibitors (ICI) combined with radiotherapy (RT) have emerged as a breakthrough therapy in the treatment of various cancers. The combination has a strong rationale, but data on their efficacy and safety are still limited. Hence, we comprehensively searched the database and performed this study to elucidate the clinical manifestations of this combined strategy. Methods We performed a meta-analysis of randomized trials that compared ICI plus RT with placebo plus RT or ICI alone for the treatment of advanced nonsmall-cell lung cancer (NSCLC) and prostate cancer. The outcomes included overall survival (OS), progression-free survival (PFS), disease control rate (DCR), and treatment-related adverse events. A fixed-effects or random-effects model was adopted depending on between-study heterogeneity. Results Three trials involving 1584 patients were included. ICI plus RT was significantly associated with improvement of OS (hazard ratio [HR] = 0.81, 95% confidence interval [CI] = 0.70–0.94, P=0.004), PFS (HR = 0.64; 95% CI 0.56–0.72, P < 0.00001), and DCR (relative risk [RR] = 1.38; 95% CI 1.03–1.84, P=0.03). A significant predictor for PFS with the combination of ICI and RT was age, as a significant improvement in PFS (HR = 0.49; 95% CI 0.37–0.64, P < 0.00001) was observed in NSCLC patients aged under 65 years. In safety analyses, patients receiving ICI plus RT had a significantly higher incidence of dyspnea (RR = 2.43; 95% CI 1.16–5.08, P=0.02) and pneumonitis of grade 3 or higher (RR = 2.78; 95% CI 1.32–5.85, P=0.007). Conclusion The combination of ICI and RT was associated with improved OS, PFS, and DCR. Patients under 65 years will be the dominant beneficiaries. However, the incidence of dyspnea and pneumonia of grade 3 or higher also increased, which deserves our vigilance.
Collapse
|
14
|
Miyahira AK, Pienta KJ, Babich JW, Bander NH, Calais J, Choyke P, Hofman MS, Larson SM, Lin FI, Morris MJ, Pomper MG, Sandhu S, Scher HI, Tagawa ST, Williams S, Soule HR. Meeting report from the Prostate Cancer Foundation PSMA theranostics state of the science meeting. Prostate 2020; 80:1273-1296. [PMID: 32865839 PMCID: PMC8442561 DOI: 10.1002/pros.24056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Babich
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Neil H. Bander
- Laboratory of Urologic Oncology, Department of Urology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank I. Lin
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin G. Pomper
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Scott T. Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott Williams
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|
15
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
16
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Horsman MR, Sørensen BS. Proton scanning and X-ray beam irradiation induce distinct regulation of inflammatory cytokines in a preclinical mouse model. Int J Radiat Biol 2020; 96:1238-1244. [PMID: 32780616 DOI: 10.1080/09553002.2020.1807644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Conventional X-ray radiotherapy induces a pro-inflammatory response mediated by altered expression of inflammation-regulating cytokines. Proton scanning and X-ray irradiation produce distinct changes to cytokine gene expression in vitro suggesting that proton beam therapy may induce an inflammatory response dissimilar to that of X-ray radiation. The purpose of the present study was to determine whether proton scanning beam radiation and conventional X-ray photon radiation would induce differential regulation of circulating cytokines in vivo. MATERIALS AND METHODS Female CDF1 mice were irradiated locally at the right hind leg using proton pencil beam scanning or X-ray photons. Blood samples were obtained from two separate mice groups. Samples from one group were drawn by retro-orbital puncture 16 months post irradiation, while samples from the other group were drawn 5 and 30 days post irradiation. Concentration of the cytokines IL-6, IL-1β, IL-10, IL-17A, IFN-γ, and TNFα was measured in plasma using bead-based immunoassays. RESULTS The cytokines IL-6, IL-1β, IL-10, IFN-γ, and TNFα were expressed at lower levels in plasma samples from proton-irradiated mice compared with X-ray-irradiated mice 16 months post irradiation. The same cytokines were downregulated in proton-irradiated mice 5 days post irradiation when compared to controls, while at day 30 expression had increased to the same level or higher. X-ray radiation did not markedly change expression levels at days 5 and 30. CONCLUSIONS The inflammatory response to proton and X-ray irradiation seem to be distinct as the principal pro-inflammatory cytokines are differentially regulated short- and long-term following irradiation. Both the development of normal tissue damage and efficacy of immunotherapy could be influenced by an altered inflammatory response to irradiation.
Collapse
Affiliation(s)
- Steffen Nielsen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Philippou Y, Sjoberg H, Lamb AD, Camilleri P, Bryant RJ. Harnessing the potential of multimodal radiotherapy in prostate cancer. Nat Rev Urol 2020; 17:321-338. [PMID: 32358562 DOI: 10.1038/s41585-020-0310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapy in combination with androgen deprivation therapy (ADT) is a standard treatment option for men with localized and locally advanced prostate cancer. However, emerging clinical evidence suggests that radiotherapy can be incorporated into multimodality therapy regimens beyond ADT, in combinations that include chemotherapy, radiosensitizing agents, immunotherapy and surgery for the treatment of men with localized and locally advanced prostate cancer, and those with oligometastatic disease, in whom the low metastatic burden in particular might be treatable with these combinations. This multimodal approach is increasingly recognized as offering considerable clinical benefit, such as increased antitumour effects and improved survival. Thus, radiotherapy is becoming a key component of multimodal therapy for many stages of prostate cancer, particularly oligometastatic disease.
Collapse
Affiliation(s)
- Yiannis Philippou
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Hanna Sjoberg
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Philip Camilleri
- Oxford Department of Clinical Oncology, Churchill Hospital Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, UK
| | - Richard J Bryant
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
18
|
Demaria S, Formenti SC. The abscopal effect 67 years later: from a side story to center stage. Br J Radiol 2020; 93:20200042. [PMID: 32101479 DOI: 10.1259/bjr.20200042] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For over a century, ionising radiation has been used to treat cancer based on its cytotoxic effects on tumour cells. Technical progress has enabled more precise targeting of the tumour to reduce normal tissue toxicity while delivering higher radiation doses per fraction of treatment.In 1953, unexpected regression in lesions outside of the irradiated field were noted by an observant physician, RH Mole, who named such phenomenon "abscopal effect" from the Latin ab (position away from) and scopus (mark or target), in an article published in this journal. Clinical abscopal responses have been reported over the years but because of their very rare occurrence they could not be methodically studied, remaining akin to a curiosity. Nevertheless, their occurrence has ignited interest in studying the systemic effects of radiotherapy. Progress in dissecting the mechanisms that govern the function of the immune system in cancer has enabled to study the implication of immunity in the abscopal effect of radiation. It has become clear that ionising radiation activates canonical pathways of response to viral infections, and can stimulate antitumour immunity. These immune stimulatory effects of radiation have become clinically relevant in the current era of cancer immunotherapy, rendering abscopal responses in patients an attainable aim. Here, we will briefly review the parallel evolutions of two separate fields of medicine, radiation therapy and cancer immunology, and discuss their therapeutic partnership.
Collapse
Affiliation(s)
- Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
Tsang JY, Ho CS, Ni YB, Shao Y, Poon IK, Chan SK, Cheung SY, Shea KH, Marabi M, Tse GM. Co-expression of HLA-I loci improved prognostication in HER2+ breast cancers. Cancer Immunol Immunother 2020; 69:799-811. [PMID: 32055918 DOI: 10.1007/s00262-020-02512-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
The underlying basis for cancer immune evasion is important for effective immunotherapy and prognosis in breast cancers. Human leucocyte antigens (HLA)-I comprising three classical antigens (HLA-A, -B and -C) is mandatory for anti-tumor immunity. Its loss occurred frequently in many cancers resulting in effective immune evasion. Most studies examined HLA-I as a whole. Alterations in specific locus could have different clinical ramifications. Hence, we evaluated the expression of the three HLA-I loci in a large cohort of breast cancers. Low expression of HLA-A, -B and -C were found in 71.1%, 66.3%, and 60.2% of the cases. Low and high expression in all loci was found in 48.3% and 17.9% of the cases respectively. The remaining showed high expression in one or two loci. Cases with all HLA high expression (all HLA high) was frequent in the ER-HER2- (27.4%) and ER-HER2+ (23.1%) cases and was associated with characteristic pathologic features related to these tumor (higher grade, necrosis, high tumor infiltrating lymphocyte (TIL), pT stage, low hormonal receptor, high basal marker expression) (p ≤ 0.019). Interestingly, in HER2+ cancers, only cases with all HLA high and high TIL showed significantly better survival. In node positive cancers, concordant high HLA expression in primary tumors and nodal metastases was favorable prognostically (DFS: HR = 0.741, p < 0.001; BCSS: HR = 0.699, p = 0.003). The data suggested an important clinical value of a combined analysis on the co-expression HLA-I status in both primary and metastatic tumors. This could be a potential additional key component to be incorporated into TIL evaluation for improved prognostication.
Collapse
Affiliation(s)
- Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Chun-Sing Ho
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Yan Shao
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Ivan K Poon
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Yau Ma Tei, Hong Kong
| | - Sai-Yin Cheung
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Ka-Ho Shea
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Monalyn Marabi
- Department of Pathology, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong.
| |
Collapse
|
20
|
Anastomotic Leak Does Not Impact Oncologic Outcomes After Preoperative Chemoradiotherapy and Resection for Rectal Cancer. Ann Surg 2020; 269:678-685. [PMID: 29112004 DOI: 10.1097/sla.0000000000002582] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the relationship of anastomotic leakage, local recurrence, and overall survival in rectal cancer patients treated with preoperative chemoradiotherapy (CRT) and curative resection. BACKGROUND Little is known about the association between anastomotic leakage and oncologic outcomes after preoperative CRT. METHODS A total of 698 consecutive primary rectal cancer patients after preoperative CRT between April 19, 2000, and December 27, 2013, were retrospectively reviewed. Forty-seven patients who had anastomotic leakage were compared with 651 patients who had no anastomotic leakage. RESULTS Of 698 patients, 47 (6.7%) patients had anastomotic leakage. Among these 47 patients, 39 (83.0%) had grade C leak that required urgent operation, while 8 (17.0%) had grade B leak that was managed expectantly or by percutaneous drainage. The median follow-up period was 47.6 months (range, 27.1 to 68.9 months). One hundred twenty (17.2%) recurrences were identified among all patients. The median overall disease-free survival was 43 months (range, 22.4 to 66.7 months). Five-year disease-free survival did not differ significantly between the 2 groups (80.5% vs 80.4%, P = 0.839). Five-year local recurrence-free survival did not differ significantly either between the 2 groups (93.7% vs 94.9%, P = 0.653). Five-year overall survival rates of patients with or without leakage were 90.9% and 86.3%, respectively (P = 0.242). Five-year cancer-specific survival rates of patients with or without leakage were 92.2% and 86.3%, respectively (P = 0.248). CONCLUSION After preoperative CRT, an anastomotic leak is not associated with a significant increase in local recurrence or long-term survival in rectal cancer.
Collapse
|
21
|
Kamran SC, Lennerz JK, Margolis CA, Liu D, Reardon B, Wankowicz SA, Van Seventer EE, Tracy A, Wo JY, Carter SL, Willers H, Corcoran RB, Hong TS, Van Allen EM. Integrative Molecular Characterization of Resistance to Neoadjuvant Chemoradiation in Rectal Cancer. Clin Cancer Res 2019; 25:5561-5571. [PMID: 31253631 PMCID: PMC6744983 DOI: 10.1158/1078-0432.ccr-19-0908] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Molecular properties associated with complete response or acquired resistance to concurrent chemotherapy and radiotherapy (CRT) are incompletely characterized.Experimental Design: We performed integrated whole-exome/transcriptome sequencing and immune infiltrate analysis on rectal adenocarcinoma tumors prior to neoadjuvant CRT (pre-CRT) and at time of resection (post-CRT) in 17 patients [8 complete/partial responders, 9 nonresponders (NR)]. RESULTS CRT was not associated with increased tumor mutational burden or neoantigen load and did not alter the distribution of established somatic tumor mutations in rectal cancer. Concurrent KRAS/TP53 mutations (KP) associated with NR tumors and were enriched for an epithelial-mesenchymal transition transcriptional program. Furthermore, NR was associated with reduced CD4/CD8 T-cell infiltrates and a post-CRT M2 macrophage phenotype. Absence of any local tumor recurrences, KP/NR status predicted worse progression-free survival, suggesting that local immune escape during or after CRT with specific genomic features contributes to distant progression. CONCLUSIONS Overall, while CRT did not impact genomic profiles, CRT impacted the tumor immune microenvironment, particularly in resistant cases.
Collapse
Affiliation(s)
- Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, Massachusetts
| | - Claire A Margolis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David Liu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brendan Reardon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Stephanie A Wankowicz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Emily E Van Seventer
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Adam Tracy
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott L Carter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Eliezer M Van Allen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): a meta-analysis of 28 studies. Eur Urol Oncol 2019; 2:515-523. [DOI: 10.1016/j.euo.2019.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
|
23
|
Luo L, Lv M, Zhuang X, Zhang Q, Qiao T. Irradiation increases the immunogenicity of lung cancer cells and irradiation-based tumor cell vaccine elicits tumor-specific T cell responses in vivo. Onco Targets Ther 2019; 12:3805-3815. [PMID: 31190880 PMCID: PMC6529730 DOI: 10.2147/ott.s197516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Background: During the past decades, great efforts have been built to develop lung cancer vaccines. Whole tumor cell lysate (TCL) are ideal sources of antigens for cancer vaccine design, which however have limited efficacy due to insufficient immunogenicity. Recently, radiotherapy has been closely related to immunotherapy. Numerous studies have demonstrated the regulatory effect of irradiation (IR) on tumor immune response. Purpose: To explore the immunogenicity modulation effect of IR on lung cancer cells. Methods: RNA-sequence and qPCR assay was used to evaluate the change of tumor antigens expression after repeated X rays radiation on A549 cells. Vaccine based on TCL of irradiated Lewis lung cancer cells (IR-LLC) was established; therapeutic effect of TCL (IR-LLC) was examined in xenografted tumor model of mice. Flow cytometry was conducted to evaluate the rate of immune cells in spleen; ELISA was used to detect the level of cytokines in plasma. Immunohistochemistry was performed to evaluate the infiltrations of T-cell in tumor tissues; TIMER analysis was used to explore the correlations between tumor antigen expressions and the abundances of immune infiltrates. Results: IR upregulated the expression of tumor antigens in A549 cells. Compared to the control group and unirradiated tumor cell vaccine, TCL(IR-LLC) had a significantly stronger anti-tumor effect in mice bearing with LLC xenografts. TCL(IR-LLC) significantly increased matured DCs and total CD4+ T cells but downregulated Tregs and PD-1+ CD8+ T cells in mice spleen; TCL(IR-LLC) vaccine upregulated the level of IFN-γ and IL-4 while decreased IL-10 in serum; increased infiltrations of CD4+ T-cells and CD8+ T-cells were observed in the tumor issues of mice immunized with TCL(IR-LLC). Tumor antigens including FN1, MFGE8, MMP2, MYL9 may contribute to the enhanced T-cell response. Conclusion: This study confirmed the immunogenicity modulation effect of IR in NSCLC cells, indicating IR might be an effective strategy to enhance the anti-tumor immunity of cancer cell vaccine.
Collapse
Affiliation(s)
- Lumeng Luo
- Department of Oncology, Jinshan Hospital, Medical Center of Fudan University, Shanghai201500, People’s Republic of China
| | - Minghe Lv
- Department of Oncology, Jinshan Hospital, Medical Center of Fudan University, Shanghai201500, People’s Republic of China
| | - Xibing Zhuang
- Department of Oncology, Jinshan Hospital, Medical Center of Fudan University, Shanghai201500, People’s Republic of China
| | - Qi Zhang
- Department of Oncology, Jinshan Hospital, Medical Center of Fudan University, Shanghai201500, People’s Republic of China
| | - Tiankui Qiao
- Department of Oncology, Jinshan Hospital, Medical Center of Fudan University, Shanghai201500, People’s Republic of China
| |
Collapse
|
24
|
Gui C, Kleinberg LR, Lim M, Redmond KJ. Extracranial Abscopal Responses after Radiation Therapy for Intracranial Metastases: A Review of the Clinical Literature and Commentary on Mechanism. Cureus 2019; 11:e4207. [PMID: 31114726 PMCID: PMC6505720 DOI: 10.7759/cureus.4207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The current literature contains a small number of case series and individual case reports that describe radiographic regression of extracranial tumors after treatment of one or more brain metastases with radiation therapy. These observations suggest an abscopal effect that traverses the blood-brain barrier. The purpose of this review is to describe the clinical evidence for this phenomenon and potential mechanistic relationships between radiation, the blood-brain barrier, and the abscopal effect. Among reported cases, the majority of patients received systemic immunotherapy, which is consistent with an immunologic mechanism underlying abscopal responses. Preclinical data suggest that radiation may play multiple roles in this process, including the release of tumor-associated antigens and disruption of the blood-brain barrier. Future studies investigating the abscopal effect would benefit from more rigorous methods to control for patient and treatment factors that may affect distant tumor response.
Collapse
Affiliation(s)
- Chengcheng Gui
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Lawrence R Kleinberg
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Michael Lim
- Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kristin J Redmond
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
25
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
26
|
Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front Immunol 2018; 9:2909. [PMID: 30619273 PMCID: PMC6297829 DOI: 10.3389/fimmu.2018.02909] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, where the patient's own immune system is exploited to eliminate tumor cells, has become one of the most prominent new cancer treatment options in the last decade. The main hurdle for classical cancer vaccines is the need to identify tumor- and patient specific antigens to include in the vaccine. Therefore, in situ vaccination represents an alternative and promising approach. This type of immunotherapy involves the direct intratumoral administration of different immunomodulatory agents and uses the tumor itself as the source of antigen. The ultimate aim is to convert an immunodormant tumor microenvironment into an immunostimulatory one, enabling the immune system to eradicate all tumor lesions in the body. In this review we will give an overview of different strategies, which can be exploited for the immunomodulation of the tumor microenvironment and their emerging role in the treatment of cancer patients.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah K. Maenhout
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Radiobiology of brachytherapy: The historical view based on linear quadratic model and perspectives for optimization. Cancer Radiother 2018; 22:312-318. [PMID: 29858137 DOI: 10.1016/j.canrad.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Most preclinical studies examining the radiobiology of brachytherapy have focused on dose rate effects. Scarcer data are available on other major parameters of therapeutic index, such as cell cycle distribution, repopulation or reoxygenation. The linear quadratic model describes the effect of radiotherapy in terms of normal tissue or tumour response. It allows some comparisons between various irradiation schemes. This model should be applied cautiously for brachytherapy, because it relies on cell death analysis only, and therefore partially reflects the biological effects of an irradiation. Moreover, the linear quadratic model validity has not been demonstrated for very high doses per fraction. A more thorough analysis of mechanisms involved in radiation response is required to better understand the true effect of brachytherapy on normal tissue. The modulation of immune response is one promising strategy to be tested with brachytherapy. A translational approach applied to brachytherapy should lead to design trials testing pharmacological agents modulating radiation response, in order to improve not only local control, but also decrease the risk of distant failure. Here we review the radiobiology of brachytherapy, from the historical view based on linear quadratic model to recent perspectives for biological optimization.
Collapse
|
28
|
Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2018; 280:220-230. [PMID: 29027232 DOI: 10.1111/imr.12568] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Sophia Bornstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
29
|
Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, Bristow R, Demaria S, Eke I, Griffin RJ, Haas-Kogan D, Higgins GS, Kimmelman AC, Kimple RJ, Lombaert IM, Ma L, Marples B, Pajonk F, Park CC, Schaue D, Tran PT, Willers H, Wouters BG, Bernhard EJ. The Future of Radiobiology. J Natl Cancer Inst 2018; 110:329-340. [PMID: 29126306 PMCID: PMC5928778 DOI: 10.1093/jnci/djx231] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.
Collapse
Affiliation(s)
- David G Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Max Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Amit Maity
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Robert Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Iris Eke
- Radiation Oncology Branch, National Institutes of Health, Bethesda, MD
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, MA
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Alec C Kimmelman
- Perlmutter Cancer Center and Department of Radiation Oncology, New York University Langone Medical Center, New York, NY
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Isabelle M Lombaert
- Department of Biologic and Materials Sciences, Biointerfaces Institute, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL
| | - Frank Pajonk
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Catherine C Park
- David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Dörthe Schaue
- Division of Molecular and Cellular Oncology, University of California, Los Angeles, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Brad G. Wouters
- Department of Radiation Oncology (RB), Princess Margaret Cancer Center
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Yuan C, Wang Q. Comparative analysis of the effect of different radiotherapy regimes on lymphocyte and its subpopulations in breast cancer patients. Clin Transl Oncol 2018. [PMID: 29536332 DOI: 10.1007/s12094-018-1851-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this study was to determine whether different radiotherapy (RT) fractionation schemes induce disparate effects on lymphocyte and its subsets in breast cancer patients. METHODS 60 female patients diagnosed with breast cancer were recruited in this study after receiving modified radical mastectomy and were randomly divided into two groups. One group received irradiation at a standard dose of 50 Gy in 25 fractions and the other at a dose of 40.3 Gy in 13 fractions. Both total lymphocyte count and its composition were recorded at three timepoints: right before the radiation treatment (T0), immediately after the last fraction of radiotherapy (T1) and 6 months after irradiation therapy ended (T2). RESULTS Both groups experienced temporal lymphopenia after finishing local radiation (T1) (13F T0 vs. T1 1570.6 ± 243.9 vs. 940.6 ± 141.8, **p < 0.01; 25F T0 vs. T1 1620.5 ± 280.2 vs. 948.5 ± 274.6, **p < 0.01), while the lymphocyte count recovered at follow-up time (T2), and the cell count in the hypofractionation group (13F) was higher than the standard fraction group (25F) (13F vs. 25F 1725.6 ± 225.6 vs. 1657.5 ± 242.4, *p < 0.05). With respect to the composition of lymphocyte, we found T cell, B cell, and NK cell reacted differently to different radiotherapy protocols. CONCLUSIONS Different RT protocols impose different impacts on immunity, leading us to further explore the optimal radiotherapy regimes to synergy with immunotherapy.
Collapse
Affiliation(s)
- C Yuan
- Cancer Research Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Q Wang
- Cancer Research Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
31
|
Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 2018; 10:1758834017742575. [PMID: 29383033 PMCID: PMC5784573 DOI: 10.1177/1758834017742575] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is currently used in more than 50% of cancer patients during the course of their disease in the curative, adjuvant or palliative setting. RT achieves good local control of tumor growth, conferring DNA damage and impacting tumor vasculature and the immune system. Formerly regarded as a merely immunosuppressive treatment, pre- and clinical observations indicate that the therapeutic effect of RT is partially immune mediated. In some instances, RT synergizes with immunotherapy (IT), through different mechanisms promoting an effective antitumor immune response. Cell death induced by RT is thought to be immunogenic and results in modulation of lymphocyte effector function in the tumor microenvironment promoting local control. Moreover, a systemic immune response can be elicited or modulated to exert effects outside the irradiation field (so called abscopal effects). In this review, we discuss the body of evidence related to RT and its immunogenic potential for the future design of novel combination therapies.
Collapse
Affiliation(s)
- Thomas Walle
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Adelheid Cerwenka
- German Cancer Research Center (DKFZ), Research Group Innate Immunity, Heidelberg, Germany
| | - Daniel Ajona
- Division of Oncology, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainIdiSNA, Navarra Institute for Health Research, Pamplona, SpainDepartment of Biochemistry and Genetics, University of Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Ignacio Melero
- Programme in Immunotherapy, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainDepartment of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), IdiSNA, Navarra Institute for Health Research, Department of Histology and Pathology, University of Navarra, School of Medicine, Pamplona, Spain. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| |
Collapse
|
32
|
Abstract
Immune checkpoint inhibitors are effective in cancer treatment. A pre-existing immune response demonstrated by significant pretreatment tumor lymphocytic infiltration is a pre-requisite for response. Within such infiltrated tumors, referred as "hot", immune checkpoint inhibitors rescue anti-tumor T cells activity. In contrast, "cold" tumors lack lymphocytic infiltration and are refractory to immunotherapy. Preclinical data show that radiotherapy sensitizes refractory tumors to immune checkpoint inhibitors by recruiting anti-tumor T cells. Despite the growing number of clinical studies testing radiation's ability to enhance immunotherapy, clinical evidence that it converts cold tumors into responsive ones remains elusive. Here we review evidence that radiotherapy is not only an occasional enhancer of immunotherapy's effects but a "game changer", and propose a blueprint to test this.
Collapse
Affiliation(s)
- Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Ave, Box 169, New York, NY 10065
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research and Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Ave, Box 169, New York, NY 10065
| |
Collapse
|
33
|
Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget 2017; 7:30119-32. [PMID: 27121061 PMCID: PMC5058668 DOI: 10.18632/oncotarget.8798] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/03/2016] [Indexed: 01/09/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have a strong prognostic and predictive significance. However, the mechanism of TIL influx in TNBC is unclear. Expression of major histocompatibility complex class I (MHC I) on the tumor cell is essential for the effective killing of tumor by cytotoxic TILs. In our current study, human leukocyte antigen (HLA) expression was inversely correlated with estrogen receptor (ER) expression in normal and cancerous breast tissue and positively correlated with TILs in breast cancer. The ER score was inversely correlated with TILs in breast cancer. HLA-A and CD8B gene expression was negatively correlated with ESR1 and positively correlated with interferon-associated gene expression in The Cancer Genome Atlas (TCGA) data. Negative correlation between ESR1 and HLA and positive correlation between interferon-associated and HLA gene expression were also confirmed in Cancer Cell Line Encyclopedia (CCLE) data. Taken together, our data suggest that a lower expression of HLA in luminal-type tumors might be associated with low level of TILs in those tumors. Further investigation of the mechanism of higher HLA expression and TIL influx in TNBC may help to boost the host immune response.
Collapse
|
34
|
Kim JW, Shin MS, Kang Y, Kang I, Petrylak DP. Immune Analysis of Radium-223 in Patients With Metastatic Prostate Cancer. Clin Genitourin Cancer 2017; 16:e469-e476. [PMID: 29137877 DOI: 10.1016/j.clgc.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/08/2017] [Accepted: 10/14/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Radium223 (Ra223) delivers high-energy radiation to osteoblastic metastasis of prostate cancer, resulting in irreparable double-stranded DNA damage. The effects of Ra223 on CD8+ T cell subsets in patients with prostate cancer is unknown. PATIENTS AND METHODS Fifteen men with metastatic prostate cancer with clinical indication for Ra223 without any autoimmune or immune deficiency conditions were enrolled. Patients received a course of Ra223 50 kBq/kg. Concurrent use of prednisone ≤ 10 mg a day was allowed. Peripheral blood samples were collected before and 3 to 4 weeks after the first dose of Ra223 50 kBq/kg. Peripheral blood mononuclear cells were purified and analyzed for the phenotypic and functional characteristics of CD8+ T cells using flow cytometry. RESULTS One Ra223 treatment did not result in significant change in the overall frequencies of CD8+ T cells and their subsets including naive, central memory, and effect memory cells. However, the mean frequency of programmed cell death protein 1-expressing EM CD8+ T cells decreased after 1 Ra223 treatment from 20.6% to 14.6% (P = .020), whereas no significant change was observed in the frequencies of CD27-, CD28-, or CTLA4-expressing T cells. One Ra223 treatment was not associated with any significant change in the frequencies of CD8+ T cells producing IFN-γ, TNF-α, and IL-13. CONCLUSION One Ra223 treatment is associated with a decreased mean frequency of programmed cell death protein 1-expressing effect memory CD8+ T cell without affecting other immune checkpoint molecules or cytokine production. Further investigations are warranted to elucidate the immunologic and clinical significance of our observations and its long-term effects after multiple treatments.
Collapse
Affiliation(s)
- Joseph W Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT; Prostate and Urological Cancers Program, Yale Comprehensive Cancer Center, New Haven, CT.
| | - Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Youna Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Daniel P Petrylak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT; Prostate and Urological Cancers Program, Yale Comprehensive Cancer Center, New Haven, CT
| |
Collapse
|
35
|
Lin AJ, Rao YJ, Acharya S, Schwarz J, Rao PK, Grigsby P. Patterns of care and outcomes of proton and eye plaque brachytherapy for uveal melanoma: Review of the National Cancer Database. Brachytherapy 2017; 16:1225-1231. [PMID: 28966081 DOI: 10.1016/j.brachy.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To examine national practice patterns and outcomes of eye plaque brachytherapy compared to proton external beam radiotherapy in the treatment of choroid melanoma. METHODS AND MATERIALS Demographic and clinical data for 1224 patients with choroid melanoma treated with either brachytherapy or proton beam therapy from 2004 to 2013 were obtained from the National Cancer Database. Logistic regression and propensity score matching was used to create a 1:1 matched cohort. Kaplan-Meier and Cox regression analyses were performed to evaluate survival in brachytherapy and proton groups. RESULTS Median followup was 37 and 29 months for brachytherapy and protons, respectively. Most patients were treated with brachytherapy (n = 996) vs. protons (n = 228). Proton patients came from more urban, affluent, and educated zip codes, and they were more likely to be treated at an academic center (all p < 0.004). In the propensity-score matched cohort, 2-year overall survival was 97% vs. 93%, and 5-year overall survival was 77% vs. 51% for brachytherapy and protons, respectively (p = 0.008). Multivariate Cox regression found older age (hazard ratio [HR] = 1.06, 95% confidence interval (CI) = 1.03-1.09), larger tumor diameter (12-18 mm, HR = 2.48, 95% CI = 1.40-4.42, >18 mm, HR = 6.41, 95% CI = 1.45-28.35), and protons (HR = 1.89, 95% CI = 1.06-3.37) were negative prognosticators of survival. CONCLUSIONS Patients selected for proton treatment have inferior survival outcomes compared to brachytherapy in this retrospective analysis. There may be unaccounted variables that influence survival, warranting further prospective studies.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Radiation Oncology, Barnes-Jewish Hospital, St. Louis, MO
| | - Yuan J Rao
- Department of Radiation Oncology, Barnes-Jewish Hospital, St. Louis, MO
| | - Sahaja Acharya
- Department of Radiation Oncology, Barnes-Jewish Hospital, St. Louis, MO
| | - Julie Schwarz
- Department of Radiation Oncology, Barnes-Jewish Hospital, St. Louis, MO
| | | | - Perry Grigsby
- Department of Radiation Oncology, Barnes-Jewish Hospital, St. Louis, MO.
| |
Collapse
|
36
|
ALBERTI C. Prostate cancer immunotherapy, particularly in combination with androgen deprivation or radiation treatment. Customized pharmacogenomic approaches to overcome immunotherapy cancer resistance. G Chir 2017; 37:225-235. [PMID: 28098061 PMCID: PMC5256907 DOI: 10.11138/gchir/2016.37.5.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conventional therapeutic approaches for advanced prostate cancer - such as androgen deprivation, chemotherapy, radiation - come up often against lack of effectiveness because of possible arising of correlative cancer cell resistance and/or inadequate anti-tumor immune conditions. Whence the timeliness of resorting to immune-based treatment strategies including either therapeutic vaccination-based active immunotherapy or anti-tumor monoclonal antibody-mediated passive immunotherapy. Particularly attractive, as for research studies and clinical applications, results to be the cytotoxic T-lymphocyte check point blockade by the use of anti-CTLA-4 and PD-1 monoclonal antibodies, particularly when combined with androgen deprivation therapy or radiation. Unlike afore said immune check point inhibitors, both cell-based (by the use of prostate specific antigen carriers autologous dendritic cells or even whole cancer cells) and recombinant viral vector vaccines are able to induce immune-mediated focused killing of specific antigen-presenting prostate cancer cells. Such vaccines, either used alone or concurrently/sequentially combined with above-mentioned conventional therapies, led to generally reach, in the field of various clinical trials, reasonable results particularly as regards the patient's overall survival. Adoptive trasferred T-cells, as adoptive T-cell passive immunotherapy, and monoclonal antibodies against specific antigen-endowed prostate cancer cells can improve immune micro-environmental conditions. On the basis of a preliminary survey about various immunotherapy strategies, are here also outlined their effects when combined with androgen deprivation therapy or radiation. What's more, as regard the immune-based treatment effectiveness, it has to be pointed out that suitable personalized epigenetic/gene profile-achieved pharmacogenomic approaches to target identified gene aberrations, may lead to overcome - as well as for conventional therapies - possible prostate cancer resistance to immunotherapy.
Collapse
|
37
|
A retrospective study of 606 cases of nasopharyngeal carcinoma with or without oropharyngeal candidiasis during radiotherapy. PLoS One 2017; 12:e0182963. [PMID: 28797119 PMCID: PMC5552301 DOI: 10.1371/journal.pone.0182963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Background To evaluate the clinical characteristics, treatment-related toxicities and survival in patients with nasopharyngeal carcinoma (NPC) with or without oropharyngealcandidiasis (OPC) during radiotherapy. Methods The current study was conducted with NPC patients undergoing radiotherapy at Sun Yat-Sen University Cancer Center between June 2011 and May 2012. A clinical diagnosis of candidiasis was determined on the basis of a positive potassium hydroxide (KOH) test and the presence of pseudomembranous (white) form of candidal overgrowth. The Cox proportional hazard regression model was used to test the association of OPC and related survival rates. Results Compared with the non-OPC group, the OPC group had significantly increased occurrence rates of grade 3–4 mucositis (14.5% vs. 7.4%, P = 0.049), anaemia (11.3% vs. 4.4%, P = 0.020), hepatotoxicity (4.8% vs. 1.1%, P = 0.021) and critical weight loss (85.5% vs. 56.6%, P<0.001) during radiotherapy. The OPC group had a significantly lower disease-free survival (DFS) (70.9% vs. 82.6%, P = 0.012), mainly as a result of a reduction in locoregional relapse-free survival (LRFS) (87.0%vs. 94.9%, P = 0.025). After stratification by T stage, the 5-year DFS in T3-4 patients were 82.0% and 68.8% in non-OPC and OPC groups, respectively (P = 0.022). Multivariate analyses indicated that OPC was a prognostic factor for LRFS and DFS. Conclusions OPC during radiotherapy may worsen the nutritional status of NPC patients according to weight loss and anaemia, leading to a negative impact on 5-year locoregional relapse-free survival and disease-specific survival. Further investigations are needed to explore whether prevention and treatment of OPC during radiotherapy will be useful.
Collapse
|
38
|
Vanpouille-Box C, Formenti SC, Demaria S. Toward Precision Radiotherapy for Use with Immune Checkpoint Blockers. Clin Cancer Res 2017; 24:259-265. [PMID: 28751442 DOI: 10.1158/1078-0432.ccr-16-0037] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
The first evidence that radiotherapy enhances the efficacy of immune checkpoint blockers (ICB) was obtained a dozen years ago in a mouse model of metastatic carcinoma refractory to anti-CTLA-4 treatment. At the time, ICBs had just entered clinical testing, an endeavor that culminated in 2011 with the approval of the first anti-CTLA-4 antibody for use in metastatic melanoma patients (ipilimumab). Thereafter, some patients progressing on ipilimumab showed systemic responses only upon receiving radiation to one lesion, confirming clinically the proimmunogenic effects of radiation. Preclinical data demonstrate that multiple immunomodulators synergize with radiotherapy to cause the regression of irradiated tumors and, less often, nonirradiated metastases. However, the impact of dose and fractionation on the immunostimulatory potential of radiotherapy has not been thoroughly investigated. This issue is extremely relevant given the growing number of clinical trials testing the ability of radiotherapy to increase the efficacy of ICBs. Recent data demonstrate that the recruitment of dendritic cells to neoplastic lesions (and hence the priming of tumor-specific CD8+ T cells) is highly dependent on radiotherapy dose and fractionation through a mechanism that involves the accumulation of double-stranded DNA in the cytoplasm of cancer cells and consequent type I IFN release. The molecular links between the cellular response to radiotherapy and type I IFN secretion are just being uncovered. Here, we discuss the rationale for an optimized use of radiotherapy as well as candidate biomarkers that may predict clinical responses to radiotherapy combined with ICBs. Clin Cancer Res; 24(2); 259-65. ©2017 AACR.
Collapse
Affiliation(s)
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
39
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
40
|
Zaorsky NG, Davis BJ, Nguyen PL, Showalter TN, Hoskin PJ, Yoshioka Y, Morton GC, Horwitz EM. The evolution of brachytherapy for prostate cancer. Nat Rev Urol 2017; 14:415-439. [PMID: 28664931 PMCID: PMC7542347 DOI: 10.1038/nrurol.2017.76] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brachytherapy (BT), using low-dose-rate (LDR) permanent seed implantation or high-dose-rate (HDR) temporary source implantation, is an acceptable treatment option for select patients with prostate cancer of any risk group. The benefits of HDR-BT over LDR-BT include the ability to use the same source for other cancers, lower operator dependence, and - typically - fewer acute irritative symptoms. By contrast, the benefits of LDR-BT include more favourable scheduling logistics, lower initial capital equipment costs, no need for a shielded room, completion in a single implant, and more robust data from clinical trials. Prospective reports comparing HDR-BT and LDR-BT to each other or to other treatment options (such as external beam radiotherapy (EBRT) or surgery) suggest similar outcomes. The 5-year freedom from biochemical failure rates for patients with low-risk, intermediate-risk, and high-risk disease are >85%, 69-97%, and 63-80%, respectively. Brachytherapy with EBRT (versus brachytherapy alone) is an appropriate approach in select patients with intermediate-risk and high-risk disease. The 10-year rates of overall survival, distant metastasis, and cancer-specific mortality are >85%, <10%, and <5%, respectively. Grade 3-4 toxicities associated with HDR-BT and LDR-BT are rare, at <4% in most series, and quality of life is improved in patients who receive brachytherapy compared with those who undergo surgery.
Collapse
Affiliation(s)
- Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111-2497, USA
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Charlton Bldg/Desk R - SL, Rochester, Minnesota 5590, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital, 75 Francis St BWH. Radiation Oncology, Boston, Massachusetts 02115, USA
| | - Timothy N Showalter
- Department of Radiation Oncology, University of Virginia, 1240 Lee St, Charlottesville, Virginia 22908, USA
| | - Peter J Hoskin
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| | - Yasuo Yoshioka
- Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Gerard C Morton
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario M4N 3M5, Canada
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111-2497, USA
| |
Collapse
|
41
|
Bauman JE, Cohen E, Ferris RL, Adelstein DJ, Brizel DM, Ridge JA, O’Sullivan B, Burtness BA, Butterfield LH, Carson WE, Disis ML, Fox BA, Gajewski TF, Gillison ML, Hodge JW, Le QT, Raben D, Strome SE, Lynn J, Malik S. Immunotherapy of head and neck cancer: Emerging clinical trials from a National Cancer Institute Head and Neck Cancer Steering Committee Planning Meeting. Cancer 2017; 123:1259-1271. [PMID: 27906454 PMCID: PMC5705038 DOI: 10.1002/cncr.30449] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
Recent advances have permitted successful therapeutic targeting of the immune system in head and neck squamous cell carcinoma (HNSCC). These new immunotherapeutic targets and agents are being rapidly adopted by the oncologic community and hold considerable promise. The National Cancer Institute sponsored a Clinical Trials Planning Meeting to address the issue of how to further investigate the use of immunotherapy in patients with HNSCC. The goals of the meeting were to consider phase 2 or 3 trial designs primarily in 3 different patient populations: those with previously untreated, human papillomavirus-initiated oropharyngeal cancers; those with previously untreated, human papillomavirus-negative HNSCC; and those with recurrent/metastatic HNSCC. In addition, a separate committee was formed to develop integrative biomarkers for the clinical trials. The meeting started with an overview of key immune components and principles related to HNSCC, including immunosurveillance and immune escape. Four clinical trial concepts were developed at the meeting integrating different immunotherapies with existing standards of care. These designs were presented for implementation by the head and neck committees of the National Cancer Institute-funded National Clinical Trials Network. This article summarizes the proceedings of this Clinical Trials Planning Meeting, the purpose of which was to facilitate the rigorous development and design of randomized phase 2 and 3 immunotherapeutic trials in patients with HNSCC. Although reviews usually are published immediately after the meeting is held, this report is unique because there are now tangible clinical trial designs that have been funded and put into practice and the studies are being activated to accrual. Cancer 2017;123:1259-1271. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Julie E. Bauman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ezra Cohen
- Department of Medicine, University of California at San Diego, San Diego, California
| | - Robert L. Ferris
- Department of Otolaryngology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J. Adelstein
- Department of Medicine, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - David M. Brizel
- Department of Radiation Oncology, Duke Cancer Institute, Durham, North Carolina
| | - John A. Ridge
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian O’Sullivan
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Barbara A. Burtness
- Department of Radiation Oncology, Yale Cancer Center, New Haven, Connecticut
| | | | | | - Mary L. Disis
- Department of Medicine, University of Washington, Seattle, Washington
| | - Bernard A. Fox
- Department of Immunology, Earle A. Chiles Research Institute, Portland, Oregon
| | | | - Maura L. Gillison
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | | - Quynh-Thu Le
- Department of Radiation Oncology-Radiation Therapy, Stanford University, Stanford, California
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Scott E. Strome
- Department of Otolaryngology, University of Maryland, Baltimore, Maryland
| | - Jean Lynn
- Cancer Therapeutics Evaluation Program
| | | |
Collapse
|
42
|
Sindoni A, Minutoli F, Ascenti G, Pergolizzi S. Combination of immune checkpoint inhibitors and radiotherapy: Review of the literature. Crit Rev Oncol Hematol 2017; 113:63-70. [PMID: 28427523 DOI: 10.1016/j.critrevonc.2017.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Literature experiences in cancer treatment usually deal with either targeting the tumour cell or the immune system, which often fail to reach the curative purposes in many solid tumours. On the other hand, one mechanism of radiation-induced tumour control is the activation of the adaptive immune system by tumour antigen release following radiotherapy. So, combining radiation therapy with immune checkpoint blockade treatment at the same time may represent a way to stimulate the adaptive immune system, with further amplification of immune responses reached through systemic immune checkpoint blockade. Until now, only few studies deal with the association of immune checkpoint blockade treatment and radiotherapy. In this review, we evaluate this association, highlighting this possibility as a new strategy to improve outcome in cancer patients.
Collapse
Affiliation(s)
- Alessandro Sindoni
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Italy.
| | - Fabio Minutoli
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Giorgio Ascenti
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| | - Stefano Pergolizzi
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Italy
| |
Collapse
|
43
|
Eckert F, Gaipl U, Niedermann G, Hettich M, Schilbach K, Huber S, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol 2017; 2:29-35. [PMID: 29657997 PMCID: PMC5893529 DOI: 10.1016/j.ctro.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
The revival of cancer immunotherapy has taken place with the clinical success of immune checkpoint inhibition. However, the spectrum of immunotherapeutic approaches is much broader encompassing T cell engaging strategies, tumour-specific vaccination, antibodies or immunocytokines. This review focuses on the immunological effects of irradiation and the evidence available on combination strategies with immunotherapy. The available data suggest great potential of combined treatments, yet also poses questions about dose, fractionation, timing and most promising multimodal strategies.
Collapse
Key Words
- Bispecific antibodies
- CAR, chimeric antigen receptor
- CAR-T-cells
- CDN, cyclic dinucleotides
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- GM-CSF, granulocyte-monocyte colony stimulating factor
- IR, irradiation
- Immunocytokines
- Immunotherapy
- PD-1, Programmed cell death protein 1 receptor
- PD-L1, PD-1 ligand
- Radiotherapy
- TCR, T cell receptor
- Treg, regulatory T cells
- Vaccination
- bsAb, bispecific antibody
- scFv, single chain variable fragment
Collapse
Affiliation(s)
- F. Eckert
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - U.S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Niedermann
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - M. Hettich
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - K. Schilbach
- Department of General Pediatrics/Pediatric Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - S.M. Huber
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - D. Zips
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
44
|
Schoenhals JE, Skrepnik T, Selek U, Cortez MA, Li A, Welsh JW. Optimizing Radiotherapy with Immunotherapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 995:53-71. [PMID: 28321812 DOI: 10.1007/978-3-319-53156-4_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several factors must be considered to successfully integrate immunotherapy with radiation into clinical practice. One such factor is that concepts arising from preclinical work must be tested in combination with radiation in preclinical models to better understand how combination therapy will work in patients; examples include checkpoint inhibitors, tumor growth factor-beta (TGF-β) inhibitors, and natural killer (NK) cell therapy. Also, many radiation fields and fractionation schedules typically used in radiation therapy had been standardized before the introduction of advanced techniques for radiation planning and delivery that account for changes in tumor size, location, and motion during treatment, as well as uncertainties introduced by variations in patient setup between treatment fractions. As a result, radiation therapy may involve the use of large treatment volumes, often encompassing nodal regions that may not be irradiated with more conformal techniques. Traditional forms of radiation in particular pose challenges for combination trials with immunotherapy. This chapter explores these issues in more detail and provides insights as to how radiation therapy can be optimized to combine with immunotherapy.
Collapse
Affiliation(s)
- Jonathan E Schoenhals
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tijana Skrepnik
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, USA
| | - Ugur Selek
- Department of Radiation Oncology, Koc University, Istanbul, Turkey
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Anderson Central (Y2.5316), 1515 Holcombe Blvd., Unit 0097, Houston, TX, 77030, USA
| | - Maria A Cortez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailin Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Anderson Central (Y2.5316), 1515 Holcombe Blvd., Unit 0097, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Hanna GG, Illidge T. Radiotherapy and Immunotherapy Combinations in Non-small Cell Lung Cancer: A Promising Future? Clin Oncol (R Coll Radiol) 2016; 28:726-731. [PMID: 27519157 DOI: 10.1016/j.clon.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
The goal of re-programming the host immune system to target malignancy with durable anti-tumour clinical responses has been speculated for decades. In the last decade such speculation has been transformed into reality with unprecedented and durable responses to immune checkpoint inhibitors seen in solid tumours. This mini-review considers the mechanism of action of immune modulating agents and the potential for combination with radiotherapy in the treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- G G Hanna
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.
| | - T Illidge
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, The Christie Hospital, Manchester, UK
| |
Collapse
|
46
|
Rammal H, Saby C, Magnien K, Van-Gulick L, Garnotel R, Buache E, El Btaouri H, Jeannesson P, Morjani H. Corrigendum: Discoidin Domain Receptors: Potential Actors and Targets in Cancer. Front Pharmacol 2016; 7:346. [PMID: 27703433 PMCID: PMC5043063 DOI: 10.3389/fphar.2016.00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022] Open
Abstract
[This corrects the article on p. 55 in vol. 7, PMID: 27014069.].
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hamid Morjani
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369, Reims UniversityReims, France
| |
Collapse
|
47
|
Silvestri I, Cattarino S, Giantulli S, Nazzari C, Collalti G, Sciarra A. A Perspective of Immunotherapy for Prostate Cancer. Cancers (Basel) 2016; 8:cancers8070064. [PMID: 27399780 PMCID: PMC4963806 DOI: 10.3390/cancers8070064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/24/2022] Open
Abstract
In cancer patients, the immune system is often altered with an excess of inhibitory factors, such as immunosuppressive cytokines, produced by regulatory T cells (Treg) or myeloid-derived suppressor cells (MDSC). The manipulation of the immune system has emerged as one of new promising therapies for cancer treatment, and also represents an attractive strategy to control prostate cancer (PCa). Therapeutic cancer vaccines and immune checkpoint inhibitors have been the most investigated in clinical trials. Many trials are ongoing to define the effects of immune therapy with established treatments: androgen deprivation therapy (ADT) and chemotherapy (CT) or radiotherapy (RT). This article discusses some of these approaches in the context of future treatments for PCa.
Collapse
Affiliation(s)
- Ida Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
| | - Susanna Cattarino
- Department of Urology, Sapienza University of Rome, Rome 00161, Italy.
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
| | - Cristina Nazzari
- Department of Public Health hand Infectious Diseases, "Sapienza" University of Rome, Rome 00185, Italy.
| | - Giulia Collalti
- Medicine of Systems, Rheumatology, Allergology and Clinical Immunology, Translational Medicine of the University Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
48
|
Shahid S. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone. Crit Rev Oncol Hematol 2016; 105:145-55. [PMID: 27423975 DOI: 10.1016/j.critrevonc.2016.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 01/18/2023] Open
Abstract
We observed the outcomes of chemotherapy with radiotherapy (CR) or radiotherapy (RT) alone for cancer patients of larynx, breast, blood and brain origins through complete blood count (CBC). Following were more depressed in CR patients: mean corpuscular hemoglobin-MCH & lymphocytes-LYM, hematocrit, mean corpuscular hemoglobin concentration-MCHC, hemoglobin-HB and red blood cells-RBC. In RT patients, following were more depressed: LYM, MCH and MCHC. Overall, in all cancer patients, the lymphocytes were depressed 52%. There existed a significant difference between white blood cells and RBC in both CR and RT patients. A significant moderate negative correlation is found in HB with the dose range 30-78 (Gray) given to the CR cancer patients. More number of CBC parameters affected in patients treated with CR and RT; but in less percentage as compared to patients who treated with RT alone. The cancer patients suffered from anemia along with immune modulations from the treatments.
Collapse
Affiliation(s)
- Saman Shahid
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences (NUCES)-Foundation for Advancement of Science and Technology (FAST), Lahore, Pakistan.
| |
Collapse
|
49
|
Gameiro SR, Malamas AS, Bernstein MB, Tsang KY, Vassantachart A, Sahoo N, Tailor R, Pidikiti R, Guha CP, Hahn SM, Krishnan S, Hodge JW. Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell-Mediated Killing. Int J Radiat Oncol Biol Phys 2016; 95:120-130. [PMID: 27084634 PMCID: PMC4834148 DOI: 10.1016/j.ijrobp.2016.02.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/06/2016] [Accepted: 02/05/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE To provide the foundation for combining immunotherapy to induce tumor antigen-specific T cells with proton radiation therapy to exploit the activity of those T cells. METHODS AND MATERIALS Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. RESULTS These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibility leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. CONCLUSIONS These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony S Malamas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael B Bernstein
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - April Vassantachart
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - Narayan Sahoo
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - Ramesh Tailor
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - Rajesh Pidikiti
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - Chandan P Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Stephen M Hahn
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - Sunil Krishnan
- Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
50
|
Gallegos CE, Michelin S, Dubner D, Carosella ED. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation. Cell Immunol 2016; 303:16-23. [PMID: 27113815 DOI: 10.1016/j.cellimm.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules.
Collapse
Affiliation(s)
- Cristina E Gallegos
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), CONICET, Toxicology laboratory, Bahía Blanca, Argentina(2).
| | - Severino Michelin
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Diana Dubner
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Edgardo D Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMR E-5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France
| |
Collapse
|